' Aalto University

Silva Duran, Rodrigo; Sorva, Juha; Seppala, Otto
Rules of Program Behavior

Published in:
ACM Transactions on Computing Education

DOI:
10.1145/3469128

Published: 01/12/2021

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Silva Duran, R., Sorva, J., & Seppalg, O. (2021). Rules of Program Behavior. ACM Transactions on Computing
Education, 21(4), 1-37. Article 33. https://doi.org/10.1145/3469128

This material is protected by colpyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by ?/ou for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.


https://doi.org/10.1145/3469128
https://doi.org/10.1145/3469128

Rules of Program Behavior

RODRIGO DURAN, Federal Institute of Mato Grosso do Sul, Brazil and Aalto University, Finland
JUHA SORVA and OTTO SEPPALA, Department of Computer Science, Aalto University, Finland

We propose a framework for identifying, organizing, and communicating learning objectives that involve pro-
gram semantics. In this framework, detailed learning objectives are written down as rules of program behavior
(RPBs). RPBs are teacher-facing statements that describe what needs to be learned about the behavior of a
specific sort of programs. Different programming languages, student cohorts, and contexts call for different
RPBs. Instructional designers may define progressions of RPB rulesets for different stages of a programming
course or curriculum; we identify evaluation criteria for RPBs and discuss tradeoffs in RPB design. As a proof-
of-concept example, we present a progression of rulesets designed for teaching beginners how expressions,
variables, and functions work in Python. We submit that the RPB framework is valuable to practitioners and
researchers as a tool for design and communication. Within computing education research, the framework can
inform, among other things, the ongoing exploration of “notional machines” and the design of assessments
and visualizations. The theoretical work that we report here lays a foundation for future empirical research
that compares the effectiveness of RPB rulesets as well as different methods for teaching a particular ruleset.
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PRELUDE
Four people, four questions:

e Amal: What exactly should I teach about program execution to the beginners in my class?

e Bao: I'd like to share my course design with other programming teachers. What information
would be useful for them to know?

e Camille: For my research, 'm collecting assessment results from Amal and Bao’s courses.
The courses seem to cover the same topics, but do they really and what are the differences?
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e Dana: There’s this tool that illustrates program runs, which might help my students, but is it
a good fit for what I'm trying to teach?

The people are imaginary but the questions are real. In this article, we chart some progress toward
answering them.

1 INTRODUCTION

A programming environment is a user interface that enables its users to specify a system’s future
behavior. To learn to program, the user must learn the capabilities and limitations of that interface.
They must learn to reason about what the system does as it runs a program and to predict the
effects of each instruction on the system. They need a model of program behavior [64, 132].

The solution is not that all or most learners study the formal semantics used by programming-
language researchers or the innumerable details of hardware. Rather, learners need a model of
program behavior that is based on concepts within the learners’ grasp and that explains the kinds
of programs that the learners read and write. for number in range(10):

Consider, for instance, this tiny Python program: print(number)

Code just like that shows up in many introductory courses. However, different courses discuss it in
different terms—and indeed aim for different readings of such examples. One course might teach
that number in range(X) is a way of covering the integers smaller than X and leave it at that; another
course might emphasize that for number in is an alternative way of defining a local variable; a third
would expect students to learn that range(10) is a function-calling expression; and a fourth would
elaborate on the fact that any suitable object reference may follow in. Saying that a course “teaches
students for loops in Python” might mean a range of different things.

Given the need and demand for computing education worldwide, practitioners’ efforts to share
ideas with their colleagues are highly valuable, as is research that evaluates different pedagogi-
cal approaches. In both activities, context is paramount: There is no universal best practice [22].
Whether a pedagogy works depends on specific goals and specific circumstances. It is thus unfor-
tunate that we researchers and educators have so often neglected to give much attention to the
specific models of program behavior that are being taught. Learning objectives for programming
courses are commonly documented only in terms of high-level concepts (e.g., iteration) or syntac-
tical constructs (e.g., for loops). Similarly, many research articles describe programming courses
by merely listing which high-level topics were covered in each week. Curricula, course syllabi,
and even lesson plans are typically vague about how students should reason about programming
constructs.

In this article, we argue that it is a good idea to set down, in some detail, what learners are
expected to learn about program behavior: The rules that govern what the programmable system
does with the programmer’s instructions. Doing so has the potential to benefit instructional design,
teacher collaboration, and computing education research (CER). It will not fully answer Amal,
Bao, Camille, and Dana’s complex questions, but it should take us a step closer to having better
answers.

2 ARTICLE STRUCTURE AND GOALS

This is not an empirical paper as such. Instead, we formulate a framework that is motivated and
informed by prior empirical research and cognitive theories of learning and that can instruct and
inspire further research.

We contribute to the literature in four ways.

First, we propose a framework for identifying, organizing, and communicating learning objec-
tives that involve program semantics. These learning objectives are written down as rules of
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When it runs a turtle-movement command, the computer
makes the turtle and its pen move instantly onscreen.

When the computer evaluates an expression, it essentially
substitutes the expression in the running code.

An expression is a piece of code that the computer can
evaluate to produce a value.

Running programs live in memory, which is divided be-
tween a call stack and a heap. (Quoted from [149].)

Applying a function f means replacing the expression with
f’s body, with all occurrences of f’s parameters therein
replaced by the argument values. (Adapted from [44].)

In Scratch, when the green flag is clicked, all scripts starting
with the green-flag block run.

A Java variable is much like Python variables (which the
learners know) except that it has a fixed data type.

You can assign a list to a variable; this ‘names’ the list. The
computer uses such names to identify which list you mean.

An object responds to a message by following a specific
algorithm. It may modify state, send messages to other
objects, etc. Finally, it responds with a return message, at
which point the calling object resumes its task.

A list-creating expression evaluates to a new reference,
which is essentially a number that the computer uses be-
hind the scenes to note where in memory the list is. The
programmer can store the reference in a variable.

A method is a function on an object. Calling a method re-
quires a reference to the target object, a method name, and
arguments. The computer runs the method like any other
function; the target object is just another argument.

To evaluate a binary operator like ==, the computer pops
two values off the accumulator stack, computes the result,
and pushes it onto the stack. (Adapted from [97].)

A class is a template for creating a new objects in memory.
*Objects are distinct from it; a class is not a collection of,
or container for, objects (as learners may assume).

Fig. 1. Statements that could be used as RPBs in different contexts in combination with others not shown
here. (N.B. We are not claiming that these are excellent RPBs.)

program behavior (RPBs): teacher-facing, context-sensitive statements about the execution of
a specific sort of programs. Related rules are grouped into rulesets. Rulesets can be taught in pro-
gressions, with a variety of different teaching methods possible for any given ruleset. Section 3
introduces the RPB framework in more detail before we get to related work in Section 4, where
we discuss how our framework derives from—and provides structure to—earlier research in com-
puting education and the work on “notional machines” in particular.

Second, Section 5 presents a proof-of-concept progression of RPB rulesets.

Third, we contribute a discussion on the design of RPB rulesets and progressions. Section 6
examines how the choice of RPBs is affected not only by the programming language but also the
overall goals, audience, and other contextual factors. We highlight the importance of pedagogical
content knowledge in RPB design and point up a number of criteria for evaluating designs.

Fourth and finally, in Section 7, we envision how the RPB framework may help computing
educators to improve and share their practices as well as helping computing education researchers
to ask more incisive questions and design better studies, assessments, and software tools.

Our main focus is introductory-level programming. However, we believe that the RPB concept
has potential in other contexts as well, such as intermediate or advanced courses where learn-
ers switch between programming languages or paradigms, and we will comment on this topic
intermittently.

3 DEFINITIONS
3.1 Rules of Program Behavior

RPBs are written statements about how computer programs of a particular kind behave when
executed. Figure 1 shows an assortment of examples.

RPBs specify learning objectives for programming education. In particular, they break down the
generic objective that students should learn what programs do, which is required for reading and
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Fig. 2. Rules of program behavior are learning objectives designed for a context. They describe, in a teacher-
facing way, selected aspects of program behavior that should be taught.

writing programs. RPBs elaborate on descriptions such as “The learner should know assignment
statements” by giving semantics to programming-language constructs. In other words, the teacher
identifies the specific content that will help learners reason about what happens at runtime. That
content is the target model of program behavior and can be written down as RPBs.

RPBs are teacher-facing. They should be understandable by teachers and assist in instructional
design. RPBs may also help teachers and researchers document and share their designs (Figure 2).

RPBs serve a pedagogical purpose. They apply to a specific sort of programs, such as those written
in a certain programming language or subset of a language. They describe program behavior at a
level of abstraction that helps state what the learners should learn; that description may be more
or less informal and more or less detailed, as decided by the RPBs’ author.

RPBs are sensitive to context. Different programming languages and environments, different pro-
grams, different cohorts of learners, and different curricular goals call for different RPBs. A set
of RPBs designed for a context may be useful in another sufficiently similar context. RPBs may
target a specific point in a curriculum (e.g., the end of a course or “after Week 2”) at which learn-
ers should reach a certain understanding. RPBs may be organized into progressions that trace a
planned trajectory of detailed learning objectives for different stages of a course or curriculum.

RPBs do not reflect only the technical aspects of the system; They also embody their author’s
pedagogical content knowledge [119, 126, 151]. For instance, RPBs may list “negative goals”: What
students need to learn the system does not do, even though a student might assume otherwise.

3.2 Progressions

Introductory-level programming concepts are interdependent, perhaps even more so than in other
disciplines [93, 117]. It is difficult or impossible to write individual RPBs that are independent of
other concepts and rules. Since we would like students to make progress toward a consistent,
widely applicable understanding of a programming language, it often makes sense to design rule-
sets rather than isolated rules. A ruleset is a collection of RPBs that have been designed to work
together and that describe a perspective to program behavior.
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§1 The program text you write dictates the computer’s be-  §7 Arithmetic expressions are a kind of expression that is
havior when it runs your code, but the behavior involves composed of smaller expressions. The computer evalu-
stages and concepts that aren’t spelled out in code. ates such an expression by doing the arithmetic.

§2 An expression is a piece of code that the computer can ~ §8 A literal is a kind of expression where a value is written
evaluate to produce a value. as is’ into code. Its evaluation is straightforward.

3 A valuei le of data that ¢ be further si §8.1 Nevertheless, a literal too is evaluated, e.g., to get the

§ VNG 15 €] (Rl @i @l Ml CEnino [0 [RINEr Ehi- integer represented by a sequence of digits.

lified b; luation.
AN Example code:

§4 You can write expressions into code. The computer eval-

uates them when it runs that code. >>> 1 +1
g . . 2
§5 The REPL does evaluation for you: type in an expression | oo 5 , (10 + 5
to get (a description of) its value. 30

§6 Evaluation happens in a section of computer memory,

an ‘evaluation area,’ where the computer stores interme- T;g 100
diate results during evaluation. S>> 1%2%3*4%5Kk6% 1% 2% 3% 4*5x6% 1 * 2% 3% 4%5%6
373248000

Fig. 3. Example ruleset #1: Expressions, values, and evaluation in python. The example code in the Python
REPL (Read-Eval-Print Loop; interactive interpreter) illustrates the programs that the ruleset applies to.

Figure 3 shows a ruleset that we include here as an illustration, not as an exemplar of high-
quality RPB design. (Quality depends on context and involves tradeoffs, which we will discuss
in Section 6.) For ease of reference, we have chosen to express Figure 3 and other rulesets in this
article as lists of numbered rules, but we do not mean to imply that rulesets must be enumerated so.

An RPB progression is a sequence of increasingly powerful rulesets that plot a learning trajec-
tory. Each ruleset in a progression builds on the previous one but has more rules and/or its rules
are more detailed or otherwise different. It is more powerful than the progression’s earlier rulesets
in that it applies to a greater variety of programs, is more accurate, or otherwise represents a more
ambitious learning goal. Not all RPB rulesets need to be part of a progression, but we will argue
in this article that designing progressions is often a good idea.

An RPB progression may be local to a programming language and course or it may be scopious,
covering multiple courses or languages. A local progression helps educators plan and communicate
the pedagogy of a single course or a part thereof. Depending on needs, a local progression might
have just a few rulesets that describe major milestones or it might detail each evolutionary step at
a fine grain. The ruleset of Figure 3 is part of a local progression whose design we will introduce
later in Section 5. (The reader may wish to peek ahead at Figures 5-8.) A scopious progression
has a coarser grain and describes the learning objectives at the ends of courses or other key points
within a broader curriculum. It highlights what students know coming in to a course and what
they need to learn during each course.

A local progression is often monolingual: It blazes the trail that students take as they learn
about one language and its rules. Even for a single language, many paths are possible, which
is now even more apparent given the popularity of so-called multi-paradigm languages such as
JavaScript and Python. For example, a monolingual RPB progression might take learners from
imperative scripts to “everything is an object,” or from immutable to mutable state, or even from
dynamic to static typing, all within a single language (cf. Reference [83]). A scopious progression
is often multilingual: Learners use different languages in different courses, so all the rulesets do
not apply to the same language.

3.3 Clarifications of the RPB Concept

RPBs are conceptually distinct from any student-facing materials that are used to teach the RPBs;
see Figure 4. (Some rulesets may be accessible to some students in their teacher-facing written

ACM Transactions on Computing Education, Vol. 21, No. 4, Article 33. Publication date: November 2021.



33:6 R. Duran et al.

® @® O otherteachers
..- and researchers
can be
/vshared with T
. . (Activities,
Instructional . . Teaching PN
I]esigner / writes down as . R P B S are taught Methods visualizations,

learning objectives using etc)

(&%%"<®%

Teacher T
behavior of
learns from

identifies
and targets A category of
Program

Model of — > Program interacts with
. is a perspective to
Program Behavior Program

isan et
abstraction of lcons ructs
executes

Educational Context

System

(Programming Language + Environment) assists in

reasoning about
Hardware

Knowledge /
Mental Models

—

Fig. 4. RPBs are a basis for didactics. However, a set of RPBs is distinct from the various methods for teaching
it. (This diagram extends Figure 2, whose contents appear as the left-hand side of this diagram.)

form, but that is incidental to the RPB framework.) Pedagogy that is based on a ruleset may employ
different kinds of activities, explanations, or visualizations. Different teachers may target the same
ruleset but use different methods that match their contextual needs or personal preferences.

Since an RPB ruleset is tied to a context and a purpose, it does not need to describe a uni-
versal model of computation. Neither is a ruleset a generic model of the underlying hardware
or operating system. Powerful abstractions separate modern programmers from a myriad of
implementation details, and the RPB framework relies on that. A ruleset captures selected aspects
of the programming language and its associated tools and runtime environment, at a level of ab-
straction that is helpful for instructional design. It records only those high-level properties of the
system that matter for the sort of programming that the learners will engage in.

The concept of RPBs is similar to programming-language semantics, which define formal rules
that describe what programs do and mean. An RPB ruleset can be thought of as a teaching-oriented,
more or less informal relative of operational semantics that applies to a certain context.

Many formal semantics seek to cover an entire language as completely as is feasible. In contrast,
an RPB ruleset typically focuses on a narrow set of aspects of a language and an environment. A
ruleset will often be quite incomplete—i.e., it will not explain nearly all programs in the language.
Like a semantics, RPBs can be unsound in some respects; it may cut corners for educational reasons.

As noted, RPBs are not independent of programming language. However, they are not necessar-
ily tied to only one language: Just as different programming languages can have the same seman-
tics, an RPB ruleset designed for one language may work for a similar language.

Program behavior is just one aspect of programming languages that influences learning. Other
aspects include syntax, code organization, and input modality (e.g., text or blocks) [83]. The RPB
framework focuses on behavior while acknowledging that other aspects may impinge on under-
standings of behavior and, consequently, behavior-related learning goals and teaching methods.
For instance, while syntax does not uniquely determine program behavior, it affects people’s learn-
ing about behavior. The purpose of RPBs is to explain behavior, not syntax; it is up to the RPB
author to decide whether it helps to refer to syntactic elements when phrasing RPBs.
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4 RELATED WORKIN CER

In this section, we look at related work and consider its ties to the RPB framework presented
above. The first (Section 4.1) discusses beginners’ difficulties with tracing program behavior. The
second (4.2) overviews theories of conceptual change and beginner programmers’ misconceptions.
The third (4.3) presents advice from research on causal systems. The next two subsections
compare RPBs to related concepts in the CER literature: notional machines (4.4) and progressions
of sublanguages (4.5). Finally, we comment on how teaching methods link to the RPB concept (4.6).

4.1 Reasoning about Program Behavior

Tracing a program means reasoning systematically about a program’s behavior and predicting
what the program will do. Tracing is a component skill that is required for many programming
activities; learning to trace contributes to learning other programming skills. A student who cannot
trace reliably will have a hard time debugging programs, learning from examples, and writing
programs of their own, except by copy-paste and trial-and-error.

Beginner programmers frequently fail at tracing, either neglecting it entirely or being unsuc-
cessful at the attempt [24, 25, 52, 89, 105]. One of the underlying reasons is that many beginners
struggle to understand the relationship between a program and the runtime behavior that it spec-
ifies; learners (and their teachers) may focus excessively on the visible program and neglect the
intangible concepts that give that program meaning [5, 41, 132].

Before they have learned of and sufficiently practiced better alternatives, many beginners intu-
itively fall back on behaviors that work in natural-language conversation or math class but fail
when applied to program code (see, e.g., References [36, 88, 94, 102]). The division of labor be-
tween the programmer and the system that interprets and runs the programs is often not obvious:
Learners frequently overestimate the capabilities of the system and underestimate the precision
required in instructing it. Left to their own devices, beginners invent ad hoc tracing strategies that,
with luck, may work but that are often unsound or inefficient [20, 24, 52, 88, 145].

The lack of viable knowledge of program behavior is an obstacle to learning and a source of
frustration and unproductive failure. There is also some evidence linking conceptual difficulties to
lower programming self-efficacy [79] and hard-to-fix bugs [42].

It thus makes sense to acknowledge a model of program behavior as a learning objective. Since
there are many possible models with different characteristics, teachers need to make choices. How-
ever, although programming curricula and course designs often list language constructs and other
content, they usually do not clearly articulate the semantic perspective that they target. We offer
the RPB framework as a tool for making such learning objectives more explicit, precise, commu-
nicable, and heedful of what is known about student learning.

4.2 Conceptual Change and Misconceptions

Research on conceptual change seeks to understand changes in how people conceptualize phe-
nomena. Many theoretical models of conceptual change have been proposed; a recent review
identified 86 from just five major journals [109]. Some models describe beginners’ knowledge as
relatively coherent “naive theories” that are supplanted by better ones as one learns [95, 98, 146];
others characterize knowledge as initially disorganized context-dependent fragments that mature
into integrated concepts [33, 98, 146]. A commonality between conceptual-change models is that
they emphasize content-specific aspects of learning, the influence of everyday experience on
intuitive knowledge, and the difficulty of changing some conceptions through instruction. They
aim to help students reach normative models of specific phenomena. RPBs assist in defining that
normative model for a particular programming-education context; the RPB framework defers
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to the unyielding reality of the computer system (cf. Reference [11]) yet permits a pluralism of
semantics that reflect that reality.

Some forms of conceptual learning are relatively easy: adding new knowledge, filling in gaps in
existing concepts, and amendment of simple facts. Replacing or restructuring existing knowledge
and beliefs is cognitively more demanding [95, 106, 146]. The latter form of learning can be difficult
either because the learners are committed to an incorrect but coherent “theory” or because the new
information melds into a fluid mishmash of knowledge where normative understandings exist in
parallel with non-normative ones [146]. With an RPB progression, a teacher can plan out how new
information is gradually added and integrated while minimizing interference and “unlearning.”

Students’ misconceptions about specific programming-language constructs have been docu-
mented in dozens of studies across several decades. (For recent reviews, see References [114, 133].)
Some misconceptions are syntactic, others semantic; many semantic misconceptions involve the
“invisible” aspects of program behavior at runtime, such as the contents of memory, control
flow, parameter passing, return values, references, objects, and so on. Learners infer their own
“rules” about programming constructs [29, 54], but without sufficient guidance, these rules are
often under- or over-generalized. When reasoning about a program, learners may call on a vari-
ety of ostensibly contradictory “rules” or notions that they associate with different programs or
other contextual cues [20, 27, 85, 94, 133]. Even a so-called misconception is generally not “dead
wrong” but a mismatch between knowledge that is productive for some purpose other than the
context at hand. Evidence shows [58, 62, 110, 121, 139, 148] that the conceptual difficulties of in-
troductory programming do not vanish even if the syntax barrier is lowered using blocks-based
environments.

What counts as a misconception depends on the language and the model of program behav-
ior. For example, the notion that the computer continuously checks the conditions on ifs and
whiles is generally identified as a misconception [36, 102] but it is not universally incorrect. In-
deed, Touretzky et al. [142] report the reverse problem: In the Kodu language, the computer does
check conditions every few milliseconds and trigger behaviors accordingly, so that the sequential
thinking employed by some learners is fallacious. (For other examples, see Reference [83].) That
being said, many misconceptions have been observed across several similar languages.

We envisage a two-way relationship between RPBs and (mis)conceptions. RPBs set an explicit
model against which students’ conceptions may be examined. And, on the other hand RPB design
can be informed by research on misconceptions and conceptual change.

4.3 Causal Systems and Mental Models

Nelson et al. [97] discuss program comprehension in terms of causal inferences [61], highlighting
types of knowledge that help people learn efficiently from examples of causal relationships.
According to this theory (which we paraphrase heavily from Reference [97]), students should
know (1) what entities there are in the causal system; (2) how the various entities depend on each
other; and (3) what constraints make behaviors plausible or likely, e.g., computers do not reason
as humans do.

Other researchers (e.g., References [133, 145]) have been influenced by theories of mental mod-
els of causal systems. One such theory is that of de Kleer and Brown [30, 31], who argue that
expertise on a causal system is characterized by a robust mental model. A robust model consists
of submodels of system components; those submodels are modular in that their internal behav-
ior is governed by rules that are independent of other components’ internals. Moreover, the rules
that specify a component’s behavior are independent of what the overall system accomplishes:
The purpose (or “function”) of the whole does not impinge on one’s understanding of the system’s
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structure (cf. also References [76, 124]). Although a non-robust model may work to an extent, a
robust model is beneficial for troubleshooting and transfer of learning. Even a single line of code
such as my_number = my_number + 1 may be considered as a causal system with several components.
A person with a robust mental model of the system can reason about it independently of the state-
ment’s purpose, in terms of the rules that govern its components (i.e., expressions, variables, and
assignment). Someone with a non-robust model might have simply memorized this pattern as an
atomic “variable-incrementing command.”

RPBs can be used to express an expert’s robust mental model of program behavior. RPBs may
identify system entities and their dependencies; they can also provide constraints on what is plausi-
ble within the system. They can characterize program execution in terms of components that each
follow certain rules independently of the overall purpose of the program, subprogram, or line
of code. We believe, therefore, that RPBs can be useful for specifying which principles learners
need to capture in mental models of their own so that they can trace and debug reliably, envision
changes to their code, and transfer their knowledge to new programs.

4.4 Notional Machines

In an influential commentary, du Boulay [36] pointed out that one of the major challenges for
beginner programmers is that they need to learn a notional machine, to wit, “the general properties
of the machine that one is learning to control.” Those properties are “implied by the constructs in
the programming language employed” [37] but may be taught explicitly.

The concept of a notional machine has gained traction in CER since du Boulay’s article and
perhaps especially in the past decade. It has motivated pedagogies, visualization tools, and re-
search studies. It has been used to interpret empirical findings and cohere separate threads of
research [132]. It continues to inspire exciting research questions and influence how the CER field
views programming languages [83] and other computer-science topics such as algorithmic com-
plexity [81, 83]. In 2019, a Dagstuhl Seminar was organized under the title Notional Machines and
Programming Language Semantics in Education [64]. A recent international working group has
collected and documented notional machines that are used by teachers [47].

4.4.1 A Term with Many Meanings. The fecundity of the notional-machine concept, probably
assisted by its loose definition, has resulted in a proliferation of interpretations. Some authors call
educational visualizations notional machines; others distinguish between notional machines and
student-facing materials. Some state that only something explicitly written down counts as a no-
tional machine; others use a broader definition where a notional machine may be either explicit or
implicitly embodied in a pedagogy or tool. Some assume a single notional machine per program-
ming language; others stress that a single language may be explained in terms of different notional
machines. Some have referred to notional machines as mental representations; others have distin-
guished the concept from them, and so on. It is our impression that all the entities represented by
dark blue rectangles in Figure 4—and other things besides—have been called notional machines. In
practice, we have often found it difficult to guess at what colleagues and authors precisely mean
when they say or write “notional machine”

4.4.2  Notional Machines and RPBs. Our work in this article is intimately linked to the literature
on notional machines. We might have adopted one of the notional-machine definitions and built
the RPB concept on it. We felt, however, that the existing term was too indistinct and unfixed for
present purposes and it would have been counterproductive for us to rely on it. In this article, we
discuss the links between RPBs and several related concepts—all of which have been sometimes
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called “notional machine”—and we found ourselves unable to do so with clarity except (we hope)
by introducing new terminology.

As for whether an RPB ruleset constitutes a notional machine, that depends on which meaning is
given to the latter term. For instance, RPBs are not student-facing materials or mental models. RPBs
are also never implicit, and so differ from some notional-machine definitions (such as Reference
[132]). We do not intend to use this article to debate what should or should not be called a notional
machine.

Several recent outgrowths of the notional-machine literature warrant a separate mention here.

First, as part of a far-reaching review, Krishnamurthi and Fisler [83] comment on the similarity of
the concept of semantics as discussed by the programming-languages community and the concept
of notional machine as discussed by the CER community. If “notional machine” is taken to mean
an operational semantics written for educational purposes, then RPBs are a closely related concept,
with the proviso that RPBs can be informal and imprecise.

Second, Pollock et al. [107], building on earlier work by Berry [13], conciliate the CER concept
of notional machines with abstract machines from programming-languages research. Pollock et al.
cite the benefits of formal, fine-grained, complete, machine-readable rulesets as a basis for creating
versatile educational visualizations and comparing languages in detail. Their work is similar to
ours in that it seeks to identify semantic rules on which to build pedagogy and separates those
rules from teaching methods. We see formal abstract-machine rules as one style of writing RPBs
that has benefits for some purposes, but our framework is broadly inclusive of other styles as well.

Third, Nelson et al. [97] explored how to teach “not the abstract formal semantics for a language,
but the semantics as actually implemented in a language’s interpreter, mapped to a notional ma-
chine to facilitate comprehension” (p. 3). Nelson et al. emphasize, as we do, the need to define and
teach the rules of program execution. The thrust of their work was to produce a particular set of
rules and a corresponding pedagogy that exemplify comprehension-first programming education,
whereas our goal is to sketch out a broader framework for discussing designs such as theirs.

Fourth, Touretzky et al. [141, 142] formulated and studied “laws” that describe what children
should learn about the behavior of programs created in an event-based programming environment
for beginners. The laws, which can be taught explicitly or via guided discovery, help learners
reason about code, predict behavior, and generally appreciate the “lawfulness” [141] of computer
programs. The authors have linked their work to research on tracing and notional machines [142];
we moreover interpret it as an instance of the rule-based approach that we are proposing here.

Fifth, Dickson et al. [32] seek to make the notional-machine concept more accessible to teach-
ing practitioners. The authors delineate between notional machines, mental models, and visualiza-
tions, arguing that if teachers distinguish between these concepts, then they are better positioned
to make use of each. Dickson et al. moreover demonstrate how a single notional machine may
be visualized in different ways and, conversely, how the same visuals can be applied to multiple
notional machines. We advance a similar agenda and expand on it: Our RPB framework highlights
the conceptual distinctions that Dickson et al. mention and is intended to help teachers and re-
searchers use these concepts and communicate about them.

Sixth, Fincher et al. [47] define notional machines as student-facing pedagogic devices, each
with a particular representation such as a metaphor or a visualization. Moreover, they interviewed
teachers and studied educational materials to catalogue such notional machines. In RPB terms,
Fincher and colleagues’ pedagogic devices are teaching methods that target various models of

!We decided not to use either “notional” or “machine” in the name of our framework to avoid any suggestion that RPBs
are mental notions or that they are (primarily) about hardware.

2We chose “rules of program behavior” over, say, “education-oriented operational semantics” to distinguish this educational
framework from research in programming languages and, perhaps, to make it easier to communicate to a wider audience.
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program behavior (or fragments thereof). Our focus in this article is on describing such models as
RPBs, not on the student-facing materials.

Seventh, and finally, Greg Wilson’s blog post Is This a Notional Machine for Python? [150] infor-
mally describes an execution model for Python programs as 14 bullet points. It inspired discussions
at the 2019 Dagstuhl seminar on notional machines [64]; the present work is an offshoot of those
discussions. We thus consider Wilson’s list the prototypical RPB ruleset avant la lettre.

In summary, our work echoes the advice from the notional-machine literature to acknowledge
semantical models as key learning objectives (cf. e.g., References [32, 36, 83, 118, 132]). We
believe that RPBs complement the extant literature as a tool that (1) helps treat models of
program behavior—and progressions of such models—as explicit learning objectives; (2) provides
a framework for discussing, documenting, and evaluating designs; (3) brings focus to meaningful
research questions; and (4) might assist in distinguishing between the meanings attached to
“notional machine.”

4.5 Sublanguages and Language Progressions

Programming teachers and textbooks introduce language features in progressions. The appropri-
ate ordering has been debated for decades. Whichever order is chosen, the common approach is
to gradually expand coverage of a language, introducing new syntax and the corresponding be-
haviors together. Some new syntactic features can be explained in terms of earlier knowledge of
program behavior, while other additions demand a more complex model.

Many experienced teachers consider such matters when designing their courses, but document-
ing a progression of semantic rulesets is not a common practice. The most prominent exception
to the rule is Racket, a language that “is about creating new programming languages” [45]. Racket
is supported by the DrRacket environment [49, 50] and often used in conjunction with the How
to Design Programs curriculum [43, 44]. In this curriculum, Racket is introduced as a sequence of
increasingly sophisticated sublanguages that the environment is sensitive to. A sublanguage is a
subset of a programming language that is implemented as a language in its own right. Working
within the confines of a sublanguage brings a variety of benefits, such as better error messages,
elimination of confusing encounters with unfamiliar language features, reduced risk of student
programs that “work” by accident, learner-friendlier documentation, and so on [50, 83]. An espe-
cially germane feature of sublanguage progressions is that sublanguages can differ from the full
language (and each other) not only syntactically but also semantically: “One particularly useful de-
sign criterion [for sublanguages] is to layer the complexity of the notional machine” [83, p. 398].

Although the sublanguages approach is not the mainstream, the idea has existed since the
1970s [73] and been applied to several languages [6, 9, 16, 19, 59, 140]. A recent entry in this
space is Hedy [70], a language designed for incremental introduction, primarily to ease beginners’
difficulties with syntax. Outside of introductory programming and formal education, sublanguages
have been suggested as a way to ease industry professionals’ migration between languages [123].

The RPB framework is compatible with the sublanguages approach but distinct from it.

The work on sublanguages pursues the ideal that, at each stage of a curriculum, learners know
a semantics that is viable for any program in the (sub)language that they currently use. This work
points at the need to create better teaching languages, compilers, and programming environments.
Using our terminology, sublanguages are a way to implement an RPB progression.

In contrast to a typical sublanguage semantics, an RPB ruleset will often cover a very limited part
of a language. There is no implication that each ruleset must be matched by a restricted language
or bespoke tooling—although it may be. Despite the unique benefits of sublanguages, we want
our framework to cover the manifold contexts that depend on a programming language without
sublanguages. (This is to help more people like Amal, Bao, Camille, and Dana from the Prelude.)
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4.6 Teaching Methods

The RPB framework does not prescribe teaching methods. On the contrary, it highlights the dis-
tinction between educational goals (i.e., RPBs) and the methods for achieving those goals.

As we have already mentioned, it is uncommon for introductory programming curricula to
articulate a model of program behavior explicitly. However, many teaching methods and tools
implicitly target some such model, whose definition may be vague or nonexistent.

The sheer number of methods makes it difficult for teachers to choose between them. The enor-
mous variety between the methods makes it hard for teachers and researchers to compare them.
The vagueness of the targeted models of program behavior makes evaluations and comparisons
harder still. We suggest that when comparing teaching methods, specific learning objectives re-
garding program behavior should be part of the discussion.

A full review of teaching methods is beyond the range of this article. However, this article’s
online supplement in the ACM Digital Library [40] lists teaching methods that have direct connec-
tions to the RPB framework. These include the following: tracing and debugging activities; pro-
gram visualizations; microworlds; tangible computing; serious games, analogies, and metaphors;
and strategies for topic sequencing. Either explicitly or implicitly, all these methods target improve-
ments to how learners perceive program execution. However, they target many different models
of program behavior; if we had RPB rulesets to match each method, then it would be a varied
assortment.

Whether any given method “works” depends on specific objectives. We argue that RPBs can
help instructional designers and researchers analyze programming pedagogies by differentiating
between learning objectives and teaching methods. And even when a method or tool has already
been deemed useful, RPBs can help communicate it and analyze its relationship to other meth-
ods, such as when designing for transfer from a programming language to another or from a
microworld to a more generic programming environment. RPBs may also be used as a foundation
for the design of new visualizations, games, and other learning activities.

We will return to these potential benefits of RPBs under Discussion (Section 7) after presenting
our case-study RPBs for Python programming and considering RPB design.

5 EXAMPLE: AN RPB PROGRESSION FOR PYTHON BASICS

In this section, we present a local progression of RPB rulesets, each accompanied by code that
exemplifies programs that the ruleset is designed for. The first ruleset appeared above in Figure 3;
the rest are in Figures 5-8. Our five rulesets are designed for the early stages of an introductory
university course that uses the Python language. The target course does not in fact exist exactly
as described: What we present here is a close adaptation from the pedagogy of an actual course
designed and taught by the second author, which uses a different, statically typed language.

Our RPB progression is meant for programs that feature imperative commands, mutable state,
and aliasing. It does not feature objects in the OOP sense but is designed to support the introduc-
tion of object-oriented concepts immediately after these five rulesets have been introduced and
sufficiently practiced on. Selection and repetition also come up later and are beyond the scope of
these rulesets.

The course attempts to teach a viable model of program behavior so that students will write code
that they can themselves understand, as opposed to twiddling with example code and perhaps get-
ting a program to work by accident. There is an article [137] that describes some of the principles
that have guided the course’s instructional design, and the electronic textbook that shapes the
course can be viewed online [135].
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§9 A variable is a location in computer memory that has a §16.3 *Assigning to a variable V does not instantly impact on the
value of any other variable, not even if V has previously ap-
peared on the right-hand side of an assignment statement.

§16.4 You cannot access a variable that has not been created.

name. You can create and name variables in code.

§10 You can assign to a variable to store a value in memory.
§11 You can use a variable’s name as an expression. The com-
puter evaluates the name by retrieving from memory ~Example code:

the value currently stored in the variable. >>> factorial = 1 * 2 * 3 x4 %5 % 6
§11.1 Since a variable name is an expression, you can use it as [evaluation and storage not shown by REPL]
part of a composite expression. >>> factorial * factorial * factorial
§11.2 *The name’s natural-language meaning is irrelevant to the 373248000
computer.

>>> my_test = 100

>>> another = 1 + my_test

>>> third = another

§13 The computer deals with assignment by taking an ex- | [effects not shown by Python REPL]
pression (‘on the right’) and storing its value in the target | >>> 1 + my_test

§12 A variable must be assigned a value upon creation.
§12.1 A variable never remains empty.

variable. 101
§13.1 Once the computer has the expression’s value in the evalu- | >>> my_test - third
ation area, it copies the value into the variable. -1
§13.2 *It’s the value that’s stored, not the expression.
§13.3 You can use any expression ‘on the right’: arithmetic, lit- | >>> number = 10
eral, variable name, etc. Assignment works the same any- | >>> twice_that = number * 2
way: first evaluate, then store the result. [effecics not shown by Python REPL]
§13.4 *An assignment command is not symmetric. Even a = b ;;> twice_that

does not have a variable on the left and a variable on the
right in the same sense: b is an expression and a = indicates
the target location.

>>> number = 3
[effect not shown by Python REPL]
>>> twice_that
§14 A variable stores a single value at a time. 20
§14.1 Whatever was in the variable upon assignment is discarded. >>> twice_that = number * 2
§14.2 A variable may or may not keep storing the same value, [effect not shown by Python REPL]
depending on whether the code reassigns to it. >>> twice_that
§14.3 *A variable does not store multiple values, or a history of 6
its values, or a sum of the assigned values.
§14.4 *Assignment is not an equation. It does not ‘forever equate >>> coordinate
the symbols’ a = bora = b + 1 does not persistently link >>> velocity =
variables together. >>> coordinate = coordinate + 1

. . >>> coordinate = coordinate + velocity
§15 The computer runs commands in sequence. Previously | rcffects not shown by Python REPL]

executed commands can affect what later ones do. >>> coordinate
§15.1 *The computer does not look at the lines ‘as a whole” or 9
continuously keep checking each command.

3

[ e, Il

§16 Where a variable name appears as an expression, itevalu- | >>> temp = first

ates to what is in the variable at the moment of evaluation. | >>> first = second
§16.1 *A sequence of assignment commands does not get ‘solved’ >>> second = temp
like math equations. [effects not shown by Python REPL]
§16.2 *Code like a = a + x is not special. It works like any other

assignment: evaluate, then store. >>> asdf
NameError: name 'asdf' is not defined

Fig. 5. Example ruleset #2: Variables, mutable memory, and sequencing. The “negative” items marked with
an asterisk directly contradict documented student misconceptions.

We are not constructing an argument here for the superiority of this progression over any other.
We mean to give an example of what an RPB progression may look like and to provide a point of
reference for the RPB design criteria in Section 6 below.

To keep this section shorter and simpler, we have omitted some concepts and constructs. The
greatest omission concerns data types: All our examples here deal with integers and lists of in-
tegers, even though the actual course uses a combination of integers, floats, strings, and im-
mutable Pics and Colors from a library right from the start. Another is that we have left out the
print command and library functions for playing sounds and displaying pictures (all of which
the course introduces as special cases before other functions). Our example code consists only of
decontextualized fragments that suffice for present purposes, which belies how the course uses
both decontextualized code and considerably more interesting programs that employ the same
constructs.
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§17 A list is a collection of elements in computer memory.
§17.1 A list may contain one or more elements or be empty.
§17.2 A list’s contents may change. A list’s size may change.
§17.3 A list’s elements are numbered with indices.

§17.4 Lists exist in memory outside of any variable or evaluation
area.

§18 There is an expression that you can write to create a list.
Such an expression evaluates to a new reference.

§19 A reference is a value that indicates the location of cer-
tain data in memory, such as a list.

§19.1 A reference is essentially a number that identifies a mem-
ory location. The computer uses that number behind the
scenes. The programmer doesn’t see it in code and doesn’t
have to worry about the exact number.

§19.2 A reference, being a value, can be stored in a variable.

§19.3 *The name of a variable is still just that. References or lists
do not have names.

§20 You can access a specific list element by writing an ap-
propriate expression. The expression must specify the
reference to the list and the index.

§20.1 The reference can come from any (sub)expression that eval-
uates to a list reference (e.g., a variable name); the index
from any int-valued expression (not only name or literal).

§21 You similarly use a reference and an index when you
modify an element, or add or remove elements.
§22 If you use too high an index, you get a runtime error.
§23 You can use a reference-valued expression ‘on the right,
asinmy_ref = your_ref.
§23.1 The source expression evaluates to a reference. That refer-
ence is copied into the target variable.
§23.2 *Such a command does not mean copying the contents of
the referenced object (list). It does not ‘rename’ the object.

§24 If you reassign a variable to store a different (list) refer-
ence, a different (list) object becomes accessible via that
variable.

§24.1 Mutating a list’s contents is different from mutating which
variable(s) refer to the list.

§25 Variables can store identical references. For example,
multiple variables can point to the same list, making it
accessible via different variable names.

§25.1 If you mutate a list through one such variable, that change
will be observable via other variables as well.

Example code:

>>> numbers = [12, 2, 4, 4, 7, 4, 10, 3]
[effect not shown by Python REPL]

>>> numbers[@]

12

>>> fifth_element =
>>> numbers[4] = 100
[effects not shown by Python REPL]
>>> numbers

[12, 2, 4, 4, 100, 4, 10, 3]

>>> fifth_element

7

>>> 1000 + fifth_element + numbers[0]
1019

>>> numbers[10]

IndexError: list index out of range

numbers[4]

>>> my_list = [4, 10, 3, 10, 15, -2]
>>> some_index = 2

[effects not shown by Python REPL]
>>> my_list[some_index]

3

>>> my_list[some_index + 1]

10

>>> my_list[some_index] + 1

4

>>> my_list = [1, 2, 3, 4]
>>> my_list[2] = 999

>>> my_list = [11, 22, 33, 44]
>>> my_list[0] = -1

[effects not shown by Python REPL]
>>> my_list
[-1, 22, 33, 44]

>>> first = [1000, 100, 10, 1]
>>> second = first

>>> first[2] = 999

>>> second[0] = -1

[effects not shown by Python REPL]
>>> first

[-1, 100, 999, 1]

>>> second

[-1, 100, 999, 1]

Fig. 6. Example ruleset #3: Lists, references, and aliasing.

Ruleset #1 in Figure 3 is focused on the concepts of expression and evaluation. These concepts
are introduced not because they are strictly necessary for explaining the programs that students
read and write at this stage but because they pave the way for the rulesets and programs that
follow. The second ruleset in Figure 5 extends the first by adding the concept of variable. (All our
example rulesets subsume the preceding rules without modification.) The third ruleset in Figure 6
further extends the first two by introducing mutable collections that are accessible via references.
These concepts will assist learners as they encounter stateful functions in Rulesets #4 and #5 and
object-oriented programs with mutable state soon afterwards. Those last two rulesets (Figures 7
and 8) deal with calling and implementing functions, respectively.

During the early stages that introduce these rulesets, the REPL is the students’ primary program-
ming environment. Students explore expressions, variables, function calls, and so on, in the REPL.
Once function implementations (Ruleset #5) come into play, students write their own functions
in files and call the functions via the REPL. Application entry (“main”) is introduced later in the

course and not covered here.
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§26 A function is a program component that takes care of a
particular task.
§27 You don’t need to know a function’s implementation in
order to make it run.
§27.1 You can run functions from libraries, which may be part of
the system or provided by a teacher or others.

§28 To run a function, you write an expression that calls it.
§28.1 The computer evaluates the function-calling expression by

§31.2 *But in general functions are not like (the usual) math func-
tions: they specify computations by the machine, some-
times with observable effects.

§32 Function-calling expressions are expressions too.
§32.1 You can combine them in arithmetic expressions and other
function-calling expressions.
§32.2 A function call written into another call’s argument expres-
sion will run before the surrounding call.

executing the code that implements the function. Example code:

§29 A function-calling expression specifies the function to
call and some number of arguments.

§29.1 You write argument expressions, which the computer eval-
uates as per usual before running the function.

§29.2 The resulting argument values are passed to the function.
The function’s implementation may use those values.

§29.3 *An argument expression does not have to be a literal or a
variable name.

>>> data = [-2, @, 10, -100, 50, 100, 5, -5, 2]
[effect not shown by Python REPL]

>>> remove_negatives(data) # teacher-provided lib
[effect and return value of None not shown]

>>> data

[o, 10, 50, 100, 5, 2]

>>> average(5, 11)
§30 A function-calling expression evaluates to the function’s | 8
return value. >>> average(13, 7) + 100
§30.1 Functions always return a value. 110
§30.2 However, a function may return the special value None, >>> first = 10 + average(1, 11)

which means there is no return value of interest. Leffect not shown_by Python REPL]
>>> 2 + average(first + 3, 1)

# teacher-provided lib

§30.3 *You don’t have to assign the return value to a variable. You 12
can do anything with it: assign it, do arithmetic on it, etc. . _ _
Or leave it for the REPL to print out. 1>Z> average(24, first) + average(0, -10) - 1

§30.4 *Returning a value is different from printing it out.

§31 A function may or may not have observable (side)effects | >>> min(10, abs(-15)) # standard lib
on output or stored state (e.g., a list’s elements). 10
§31.1 Some functions never do and are similar to math functions:

arguments in, return value out.

>>> do_sthg_fancy_that_i_cannot_implement_yet(args)

Fig. 7. Example ruleset #4: Calling functions.

Together, the rulesets show that understanding the behavior of ostensibly simple code requires
learning a number of concepts, making various fine distinctions, and avoiding a number of pitfalls.
The RPBs detail dozens of micro-level learning goals that the course’s teachers have identified as
relevant and hope to attend to.

These RPBs, like others, might be taught (or implicitly acquired by students) in any number of
ways. In the actual course, we use a combination of activities, code examples, textual descriptions,
program visualizations, and concept maps [135, 137].

6 DESIGNING RPB RULESETS AND PROGRESSIONS

In this section, we first identify factors that feed into the design of models of program behavior
and the RPBs that describe those models (Section 6.1). The bulk of this section is devoted to criteria
for evaluating and comparing RPB designs (Section 6.2).

6.1 Factors Contributing to RPB Design

The main requirement for writing an RPB ruleset is to identify the model of program behavior
that the RPBs express. The diagram in Figure 9 illustrates the knowledge that informs this design.
Below, we briefly discuss each of the four inputs at the top of the diagram: knowledge about the
computing system, the educational context, the learners, and content-specific pedagogy.

6.1.1  Knowledge about the System. RPB design is grounded in the system whose behavior
is being taught. That system comprises the programming language, runtime environment, and
other tooling such as compilers. Formal semantics may inform RPB design (cf. Reference [107]), as
may the implementations of programming-language interpreters (cf. Reference [97]). RPBs may
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§33 You can write a function definition in the REPL or save
it in a file.

§40.1 The computer copies the return value from the expiring
frame’s evaluation area into the evaluation area of the

§33.2 *When you define a new function, its code does not run frame below.

right away. It runs whenever you call it.
4 ¥ ¥ §41 Execution then resumes in the calling context. What

happens next depends on what command the function-
calling expression is part of.
§42 In addition to parameter variables, a function body may
create additional local variables.
§42.1 They, too, exist only temporarily within the frame.
§42.2 Local variables can only be used within the function body
that they are local to.

§34 A function’s code dictates the computer’s behavior when
it activates the function, but a function activation is dis-
tinct from the code.

§35 The computer keeps track of a function activation in a
frame in memory.

§35.1 Each frame has a separate evaluation area for evaluating
expressions while running the function body.

§35.2 The frame also holds any local variables that are defined
within the function body and exist temporarily during the
function activation.

§43 Local variables are distinct from variables in other
frames.
§43.1 *Even having the same name as a variable in another frame
does not connect the variables or mean they are the same.
§43.2 However, variables in different frames may store references
to the same (list) object. Mutations via one such variable are
observable via others.

§35.3 The initial calling context is also a frame: it has its own
evaluation area and local variables.

§36 The frame exists while the function is active.
§36.1 When an activation starts, the computer creates a new
frame for it ‘on top of” the calling frame. When the acti-

vation terminates, the computer removes the frame. Example code:

§36.2 In the meantime, the calling frame remains suspended. def average(first, second):

§37 Within a function body, you may write expressions that return (first + second) / 2

call functions.

§37.1 Evaluating those calls adds further frames ‘on top of” the def print_twice(message):
call stack. print(message)
print(message)

§38 Parameter variables (formal parameters) are a special
kind of local variable.

§38.1 You don’t assign to them explicitly. They receive the val- | def set_first_to_zero(list):
ues of the evaluated arguments as soon as the function ac- list[e] = o
tivates. The computer copies argument values from the call-
ing frame’s evaluation area into the new frame. def tax(income, threshold, base_rate, extra_rate):

base = min(threshold, income)
extra = max(income - threshold, @)
return base * base_rate + extra * extra_rate

§38.2 *Even if the argument expression is a variable name, the
computer just copies its value into the other frame. It does

not link the variables in any way.

§39 Once the parameter variables have received their values, | 4o
the computer begins running the called function’s body.
It executes the commands in the body in order, until a
value is returned. de

5

distance(x1, y1, x2, y2):
return hypot(x2 - x1, y2 - y1)

LY

greatest_distance(x1, y1, x2, y2, x3, y3):

§39.1 One way to return a value is a direct command to evalu- first = distance(x1, y1, x2, y2)
ate an expression and return its value. This terminates the second = distance(x1, y1, x3, y3)
function activation. third = distance(x2, y2, x3, y3)

§39.2 *The return value does not need to come from a variable; return max(first, second, third)

any expression will do.
§39.3 Another way to return a value is to reach the end of the def swap_contents(a, b):
function body without encountering a return command. In temporary_store = a
this case, the computer defaults to returning None. a=b
b = temporary_store

LY

§39.4 *The computer does not print out the value of each consec-
utive expression within the function body (cf. the REPL).
swap_contents(my_var1l, my_var2) # No effect.

§40 When a function activation terminates, the return value swap_contents(a, by # Even this fails.

becomes the value of the calling expression.

Fig. 8. Example ruleset #5: Function implementations, parameters, and the call stack.

highlight the interplay between program runs and the environment that learners use for writing
programs, such as an IDE.

Software libraries can greatly impact RPB design, as they affect which concepts the learners
have to understand and which ones can be abstracted away for the time being. Programming
languages’ standard libraries are relevant, as are other libraries, such as microworld interfaces and
other scaffolds for learning. As an example, the repetition of operations on collection elements
might be explained in terms of very different RPBs depending on whether the learners use state-
based loops (such as while) or library functions on collections (such as map or filter).

6.1.2 Knowledge about the Educational Context. The quality of RPBs depends on the goals of
the course or module they are intended for. If that course is part of a broader curriculum such as
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programming language — course goals learners’ needs knowledge about students
tooling institutional goals cultural factors pitfalls and opportunities
libraries overall instr. design prior knowledge instructional methods
formal semantics constraints on teaching [ abilities theories of learning
o System Educational Learners Pedagogical
Context Content Knowlegde
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Fig. 9. Several types of knowledge (a) feed into the design of a model of program behavior (b). That model
can be expressed as RPBs (c) to meet some communicative needs (d). The resulting RPB ruleset may be part
of a progression (e) and may be accompanied by information about the design choices that produced it (f).

a degree programme, then those curricular goals also need to be considered. For example, a short
course that merely gives a taste of programming and sparks interest may rely on a simpler model
of program behavior than a foundational course for software-engineering majors. If students learn
programming conjointly with another subject (e.g., math, crafts, data science), then some RPBs may
synergize better with that subject than others [83]. In some courses, it can be appropriate to gloss
over performance, while others require a model that enables discussions of efficiency. A course
that emphasizes security in C programming will need a different model than one that does not.

Moreover, an RPB ruleset may be intended for a particular stage of a course so that its design is
influenced by where it fits in the course’s overall instructional design.

RPB design also needs to be mindful of restrictions imposed by the educational context, such as
the need to meet specific standards, the lack of available resources (e.g., time, teachers, computers,
network connections), or other constraints on what educational goals are realistic.

6.1.3 Knowledge about Learners. The design of RPBs, like any learning objectives, is crucially
influenced by the intended audience. To begin with, the generic things matter: What is the learners’
age and stage of cognitive development? Are their study skills or metacognitive skills known? Are
they literate and numerate? Do they have disabilities?

Culture matters. Are there tensions between the learners’ cultures and the type of programming
they are learning? Are the RPBs intended to align with that culture or to disrupt it?

Language matters. Are there natural-language challenges [10, 63, 115] that limit the effectiveness
of teaching to the extent that goals (RPBs) need adjustment?

Prior knowledge in computing matters crucially. What a learner already knows affects which
parts of an RPB ruleset are new to them, how hard those rules are for them to learn and recall,
and what they can reach in a given time frame. Prior knowledge shapes how learners interpret
new information, which influences not only which teaching methods are appropriate but also the
specifics of what to teach. For example, students with prior knowledge of assembly programming
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Fig. 10. Criteria for evaluating tradeoffs in models of program behavior.

will perceive any new model differently than other students who have only programmed in Scratch
or have no prior programming experience. RPBs may be designed to highlight the differences to
previously learned models, as those differences may challenge learners; on the flip side, RPBs may
explicitly link to the knowledge that learners are expected to have, and leverage it.

6.1.4 Pedagogical Content Knowledge. As mentioned in Section 3, RPBs incorporate the de-
signer’s pedagogical expertise. The effort of RPB design is influenced by the designer’s awareness
of common pitfalls, methods for teaching particular content, and other content-specific pedagogi-
cal knowledge.

Knowledge of learners’ likely (mis)conceptions is a significant component of pedagogical con-
tent knowledge [113, 119, 151]. An especially direct way to apply pedagogical content knowledge
in RPBs is to include items such as the asterisked ones in our examples, which directly contradict
potential misconceptions (see, e.g., Figure 5). That is, if a non-normative conception is prominent
enough, then avoiding or improving it can be worth noting as a learning objective.

Phrasing and annotating RPBs. RPBs’ wording depends on who they are written for—only their
author, colleagues in the same context, or other teachers and researchers?

In addition to writing down the rules of a ruleset, the author may wish to annotate them with
comments that document the intended context, the design decisions that produced the RPBs, or
other relevant information that is not part of the RPBs per se.

6.2 Evaluation Criteria

RPBs express detailed learning objectives that are subservient to broader objectives. The overar-
ching criterion for judging any RPBs is how well they serve that purpose, which is a multi-faceted
question. Figure 10 lists 16 criteria for evaluating models of program behavior and the RPBs that
describe such models; they are interdependent in a complex way. Our list is non-exhaustive and
ordered for ease of exposition, not by importance. It is a synthesis of our own thinking with sugges-
tions from the literature on notional machines and similar concepts; in broad terms, the discussion
is influenced especially by cognitive theories of learning. We intend it as a tool for discussing trade-
offs in RPB design, perhaps similarly to how Green and Petre’s cognitive dimensions [60] can be
used to debate the relative merits of notations.

6.2.1 Cultural Fit. As discussed in Section 6.1 above, RPB design is influenced by cultural fac-
tors from the educational context and the learners’ backgrounds and goals. For example, there
may be synergies and tensions between computing and other school subjects. The criterion of
CULTURAL FIT refers to how well RPBs attend to cultural and cross-disciplinary considerations.

6.2.2 Accuracy. This is the RPB cousin of the formal-semantics concept of soundness. An RPB
ruleset is ACCURATE if what the rules say about the system effectively happens and the rules thus
lead to correct predictions of the system’s behavior. That ground truth is established by the pro-
gramming language and the system’s implementation.
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Accuracy is obviously desirable. However, some inaccuracy may be welcome for a variety of
reasons, such as simplicity or expressibility. Teachers are familiar with this compromise: “Well,
that’s not exactly how it (always) works, but you can think about it this way for now” An RPB
might describe floating-point numbers as behaving like decimal numbers, for example, or Java
variables as containing the characters of a string. Even the idea of imperative statements being
executed strictly one after the other is inaccurate in modern computers, but the illusion of pure
sequentiality is good enough for many purposes.

Like the other criteria, the need for accuracy depends on context. RPBs may be designed for
short-term needs: “If the goal is to . . . allow them to solve simple, immediate problems, then ... a
deep understanding of the semantics of the language is less important” [77]. However, if the goal is
deep learning in the long term, then it is a problem if “students develop only a vague and inaccurate
understanding of basic language constructs and fundamental programming techniques” (ibid.).

Phrasing RPBs metaphorically might lower accuracy but be a useful shorthand. Moreover, we
distinguish between using metaphor in RPBs (i.e., in the teacher-facing objectives) and using
metaphor when teaching the RPBs to students. The semantic waves approach to lesson design [26,
147] exploits a temporary dip in accuracy: A brief technical introduction is followed by metaphors
and analogies before the lessons learned are deliberately linked back to the technical concepts.

6.2.3 Coverage. An RPB ruleset may be viable for only some of the programs that can be written
in the learners’ programming language. The more programs it is viable for, the higher its COVERAGE.
Coverage is a cousin of completeness in semantics.

Incomplete coverage means that learners may encounter or write programs whose behavior
the RPBs do not explain, or explain incorrectly. Error messages are a noteworthy part of behavior;
incomplete coverage means, among other things, that error messages may use unfamiliar concepts.

Various authors have highlighted the need for complete coverage (e.g., References [14, 97, 107]).
Completeness is particularly prized in sublanguages approaches (Section 4.5): Each sublanguage
along the progression has its own complete semantics and tooling, which shield learners from
undesirable surprises. Such benefits notwithstanding, many curricula rely on programming lan-
guages for which no sublanguages are available. Where the programming language is too com-
plex for the learners to tackle in its entirety, teachers accept compromises to coverage, increasing
it gradually as the learners progress and attempting to mitigate the consequent issues.

6.2.4 Simplicity. An RPB ruleset is simpler if it has fewer concepts and—especially—fewer com-
plicated relationships between concepts. Beginners’ need for a simple model of program behavior
has been noted since the early days of CER: “the notional machine should be simple. That is, it
should consist of a small number of parts that interact in ways that can be easily understood” [37,
p. 265]. As others before [37, 77, 83, 120], we distinguish between conceptual simprLiCITY Of pro-
gram behavior and syntactic simplicity; we focus on the former.

When designing progressions, simplicity can be considered relative to earlier RPB rulesets and
prior knowledge: What rules, concepts, and relationships are new here? Which rules are the learn-
ers already fluent with and can “chunk away” or even reason about instinctively? As an example,
students might practice on Boolean expressions before selection is introduced. Our rulesets on
functions (Figures 7 and 8) are another example: They follow the consume-before-produce princi-
ple [18, 101] of students using an abstraction before they learn to implement it.

Various arguments have been made in the literature concerning simplicity of different languages
and paradigms. Sajaniemi and Kuittinen [120] advocate procedural over object-oriented program-
ming: “In contrast to the procedural approach, OOP requires a much larger and more complicated
notional machine from the very beginning” Felleisen et al. [43] similarly point at added seman-
tic complexity from objects compared to functional programming. Ben-Ari [11], having argued
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that a model of a computer must be explicitly taught and that the chosen programming language
must not spoil the model’s simplicity, recommends that “introductory CSE should be based on the
functional or logic programming paradigm, [primarily] because the underlying models can be ex-
plained in relatively high-level, hardware-free terms.” Krishnamurthi and Fisler [83] suggest start-
ing beginners with a simple notional machine based on immutable state and introducing concepts
such as mutation “only after students have gained familiarity with basic programming techniques.”
Johnson et al. [77] argue that Python’s syntactic simplicity belies a complex notional machine.

Many of the other considerations on our list impact on simpLICITY. For example, CONSISTENCY
and ABSTRACTION tend to make rulesets simpler, whereas COVERAGE, ACCURACY, and fine GRANU-
LARITY may add complexity. For some additional comments on these tradeoffs, see Dickson et al.
[32].

6.2.5 ConsisTENCcY. CONSISTENCY means few exceptions, few special cases, few unpleasant sur-
prises. “Special cases increase the amount that has to be learned by the novice by complicating the
properties of the notional machine” [37]. For example, a ruleset where “everything is an object” has
greater consistency than one that separates objects and primitives. A ruleset that treats all assign-
ment statements the same is more consistent than one that treats numerical assignment statements
differently than assignment statements that “name lists” (see also GRANULARITY, below).

Consistency helps RPBs provide conceptual constraints on what is plausible or likely within
the system; such constraints support learning from example programs (see Reference [97] and
Section 4.3 above). If an RPB ruleset is consistent, then new rules seem like a logical extension of
what was known before and may be guessable intuitively.

Providing multiple perspectives to program behavior (e.g., a multi-paradigmatic RPB ruleset or
many rulesets for many perspectives) is a powerful notion. A caveat is that multiple perspectives
can compromise consistency if learners are unsure which perspective is useful for which pur-
pose. Ko [80] and Hermans [69] describe Franke’s comments on how a “teachable” language needs
a “consistent narrative [to] help learners build larger models about languages, which help them
make predictions about how to use them, help them generalize knowledge, and help them retrieve
resources about the language” [80]. Seen from this angle, odd language quirks, multi-paradigm
languages, and alternative ways of expressing a solution pose challenges that teachers need to
work around, which is why some teachers prefer simple micro-languages [69, 80]. This considera-
tion applies to syntax, idioms, and libraries—and RPBs, too. Teachers need to weigh the benefits of
multiple perspectives, authenticity and TRANSFERABILITY against those of consistent narratives.

6.2.6  Granularity. COVERAGE concerns the breadth of RPB rulesets. GRANULARITY is about
depth: Is program behavior covered in sufficient detail?

Models of program behavior emphasize mechanistic execution: There are certain rules that are
always followed, no matter what the program’s or subprogram’s or line’s intended purpose is.
(See Section 4.3 on causal systems above.) To capture those rules, RPBs need to “zoom in” from the
teleological level that involves the programmer’s goals and plans to a structural level where the
rules apply mechanically (cf. References [76, 124]). Fine granularity is especially important when
learners trace, debug, or modify code in which constructs appear in unfamiliar or flawed patterns.

Ideally, RPBs are detailed enough to explain many combinations of constructs, not only the
commonest or simplest patterns. A granular model can reveal connections that might otherwise
be overlooked. As an example, we will discuss an issue that matters to many RPB designs: the con-
cepts of expression, evaluation, and value. How useful is it for students to know these concepts and
their relationships to other constructs, such as variables, parameter passing, and return values?

Some of the research literature focuses on statements. For example, the Block Model of program
comprehension [76, 124] treats statements (rather than expressions at the sub-statement level)
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as the “atoms” of program execution and the lowest level for discussing the purpose of language
elements. We also observe (anecdotally) that many programming teachers and introductory
textbooks do not emphasize expressions and evaluation, except when it comes to arithmetic and
logic; it seems common to reserve the word “expression” for expressions constructed using infix
operators. Statements such as num = 10, a = b, nums = [3, 1, 3], or print(my_func(100)) are often not
taught as involving expressions and evaluation. We have heard teachers argue that it is simpler not
to; they might prefer to teach nums = [3, 1, 31 as “naming a list,” for example. Of course, there are
also many teachers who do discuss such code in terms of expressions. Sorva [134] recommends:

The lines result = 2 % (input + 10),i = i + 1, and myList = list(5, 1, 2) have different pur-
poses . .. Students may think of them variously as a “result-computing assignment statement,” a “counter-
incrementing command,” and a “command for naming lists,” respectively. The lines’ structural similarity
may escape the students’ attention: Each evaluates an expression and assigns its value to a variable. . ..
These key concepts enable students to reason about code in terms of its structural components while setting
aside the purpose of the entire line or block of code . .. Don’t neglect them.

In terms of the present article, we can restate that advice as “Teach RPBs that have sufficient
GRANULARITY to explain expression evaluation.”

In addition to CONSISTENCY, granularity can synergize well with SENSITIVITY TO CONCEPTIONS
and AsSESSABILITY. However, fine granularity can compromise sIMPLICITY and WIELDINEsS and
may be prevented by a high level of ABSTRACTION.

These tradeoffs in granularity are mirrored in the design choices of program visualization
(PV) systems that illustrate a model of program behavior to novices. Specifically, whether pro-
gram behavior should be illustrated at a coarser line level or a finer expression level continues to
be debated by PV designers. Line-based PV has been the norm [136], but expression-level PV is
also supported by a number of tools and appears to be increasingly common [2, 7, 12, 21, 78, 97, 107,
128, 129]. Some authors of line-based PV tools have sought alternative means to highlight evalu-
ation [82], while others have explored unplugged visualizations at the expression level [35, 144].
There is some empirical evidence that students value the expression-level aspect of PV [1, 78]
and at least one experiment whose results support teaching program behavior at the expression
level [78]. Overall, we interpret the PV literature as suggesting that granularity is a significant
criterion in RPB design, whether the rules are taught using PV or otherwise.

6.2.7 Abstraction. This is the other side of the GRANULARITY coin: Has enough unnecessarily
detail been eliminated? ABSTRACTION is closely associated with siMpLICITY.

Many authors have noted the need to find a suitably high level of abstraction. In early work,
du Boulay et al. [37] built on Mayer’s concept of “transactions” that describe program behavior:

[Transactions characterize] a mechanism that has sufficient structure to explain the sequence of events
while [a program] is running, but is simple enough to be grasped by a novice and avoids over-technical
descriptions that would be confusing and irrelevant. Mayer’s transactions are ‘black boxes’ whose own
internal workings do not need to be explained.

Leaving out detail from a notional machine (or RPB ruleset) is not even optional:

Some teachers [hold] the view that students need to understand what ‘really happens’ [but even] discussions
about assembly language or machine code are almost necessarily abstractions, since hardware optimisations
of modern processors are so complex . .. A meaningful discussion about notional machines does not centre
around the question whether or not to use one, but around the most useful level of abstraction to aim for [14].

3To be clear, we do not mean that a “whole-line interpretation” (e.g., “a variable-incrementing command”) cannot be pro-
ductive (cf. Reference [27]). We merely stress that sometimes students need to look at the finer structure as well.
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The design question becomes the following: What can you leave out from an RPB ruleset?

Microworlds and educational software libraries provide abstract interfaces to behaviors that
are not topical for the learners. For example, Touretzky et al. [141] observed that the rules for
their Kodu microworld did not require subscripted data structures, as they can be expressed using
abstract pattern-matching behaviors.

Many models and visualizations of program behavior make computer memory explicit. How-
ever, Krishnamurthi and Fisler [83] point out that memory layout may be abstracted away until
mutation and aliasing are covered later. They also identify additional opportunities for abstraction:

In addition to iteration and recursion, there are more forms of repetition used widely in programming
but rarely studied in introductory programming. For instance, programmers in languages from Haskell
to Python can use comprehensions . .. Big-data programmers use abstractions such as MapReduce . .. The
users of these abstractions do not perform explicit iteration; that is hidden inside the implementation . . . Stu-
dents exposed to SQL-style interfaces can possibly begin to program repetition—and hence tackle interesting
data sets—quickly and with a much higher-level notional machine that does more behind the scenes [83].

6.2.8 Expressibility. Some RPBs are easier to translate into words or pictures or activities than
others; we call this EXPRESSIBILITY. More specifically, we mean how feasible it is to construct a
student-facing form of the RPBs that is suitable for the target audience.

Formal rule systems may be more ACCURATE than informal ones but can also be harder to trans-
late into a beginner-friendly form. Some rulesets can be readily expressed using metaphors or
analogies to common-sense concepts (although care must be taken to draw the learners’ attention
to where the analogies fail and to facilitate transfer from the everyday concepts to the abstract
RPBs [26, 147]). As an example, the Boxer environment for end-user programming [34] features a
model of computation that deliberately exploits people’s everyday spatial understandings; in this
model, concepts such as scope are readily expressible using spatial metaphors.

6.2.9 Notational Fit. Although RPBs focus on behavior rather than syntax, their relationship
with syntax influences their quality. Students “construct mental models of computation that are
inconsistent with the actual behavior [in part because] the mapping from the surface syntax to
intended behavior may not be obvious or may have multiple reasonable interpretations” [83].

Expressing and teaching RPBs is easier if there is a close and obvious mapping from the program-
ming notation’s surface concepts to the RPBs and the execution-time world of program behavior.
We call this NoTATIONAL FIT. (N.B. This criterion is not limited to syntax alone but applies more
generally to the notation’s tangible parts and involves, for example, the names of library functions.)

NoTtaTioNAL FIT is reduced by additional concepts that are needed to explain program behav-
ior, beyond those that are readily apparent in code. For example, our ruleset in Figure 8 uses the
additional concepts of call stack and frame, which are not explicit in Python code and whose re-
lationship to code requires clarification. The explanatory power gained from additional concepts
needs to be weighed against the loss of notational fit.

Another consideration is the cardinality of the mapping from syntax to RPBs. A one-to-one
mapping is uncomplicated: There is precisely one syntax for each behavior, and each keyword
or other syntactical element is reserved for expressing a particular behavior. However, in many
programming languages, the mapping is considerably more complicated, with multiple ways to
express the same behavior and overloaded keyword semantics (cf. CONSISTENCY above).

NOTATIONAL FIT is better if runtime behavior is treated in terms of the notation itself. For exam-
ple, in the substitution model for programs with immutable state [144], program runs are treated
as transformations of the code, which replace each evaluated expression by its value.

Some attempts at improving NOTATIONAL FIT may reduce ACCURACY and SENSITIVITY TO
CONCEPTIONS. For example, an RPB might say that “assignment statements replace what’s on the
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left-hand side with what’s on the right” This expresses behavior in terms of the textual notation
that learners use but fails to distinguish between the fundamentally different fragments of code
that appear on the left and right. A ruleset that introduces memory storage as separate from code
(as our example rulesets do) has poorer notational fit but may help students with the asymmetry
of an assignment.

An example of high NoTATIONAL FIT can be found in programming-by-example (PbE)
systems. In PbE, the programmer demonstrates what they would like the program to do by di-
rectly manipulating a graphical representation of the problem domain, and the system constructs
the program from these interactions [87]. PbE’s notational fit comes at the cost of GENERALITY
and TRANSFERABILITY [116, 130]. A similar unity of notation and behavior is achieved in Hauswirth
and colleagues’ educational languages “that are the system, instead of languages that are about the
system” [67]. For example, one of these languages is programmed by placing physical toy railroads
according to certain rules; the program is run by making a toy engine run along the tracks—that
is, within the program itself. The RPBs for such a language can be phrased in terms of the concrete
manipulatives that the “code” consists of. The Boxer environment [34] implements a related
approach, following a principle of “naive realism” so that its programmers can “pretend that what
they see on the screen is their computational world in its entirety”” For example, Boxer’s variables
are visible and directly manipulable in the same display where code can be typed and run.

6.2.10  Generality. Many models of program behavior are, by design, specific to a language.
Some RPBs are particularly specific: rulesets for domain-specific languages have limited GENERAL-
ITY, as do RPBs that explain microworlds in terms of domain concepts.

It is, however, possible to write rulesets that seek GENERALITY over multiple sufficiently similar
languages. Such an aspiration is embodied in some program-visualization tools, which have been
intended as “language-independent” or at least visualize the same model of program behavior for
several languages [74, 136, 138]. The increase in generality comes with a loss of AccUurAacy and/or
COVERAGE, as only an intersection of the languages can be covered accurately. Pollock et al. [107]
describe a more nuanced approach to creating visualizations that are “consistent across languages”
by generating them automatically from formal semantics.

Even if an entire ruleset does not generalize, partial generality can be assessed by considering
which individual rules apply to many languages.

6.2.11 Transferability. In many cases, TRANSFERABILITY is a more realistic goal than GENERAL-
1TY. The difference is that whereas GENERALITY is about how broadly the rules apply, TRANSFER-
ABILITY is about how manageable the transfer gap is from the rules to other languages or rulesets
that the learners are expected to encounter—that later learning may happen at a specific point of
a multilingual progression or at some other time in the learners’ foreseeable future.

Transfer between programming languages does take place but tends to require explicit guid-
ance and is known to be challenging for novices and even seasoned programmers (see, e.g., Refer-
ences [8, 51, 57, 122, 125, 143]). Santos et al. [122] (p. 40) write on learning a sequence of languages:

Knowledge of prior languages [matters], because the concepts in different languages are often closely related
but different in important ways. We believe that it is thus important . . . to explicitly bridge between subse-
quent languages. Part of this bridge can be built in the initial course, by establishing bridgeheads when key
concepts are introduced. The subsequent course can then build bridges that connect to the corresponding

bridgeheads.

To improve TRANSFERABILITY, a multilingual RPB progression can identify connections and
disconnections between successive models of program behavior. Rulesets can be annotated
to point up needs and opportunities for bridge-building, guided transfer, and communication
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between instructors. Such designs can be informed by research on the specific difficulties in
conceptual transfer between languages or paradigms (e.g., References [122, 143]).

TRANSFERABILITY is a potential downside of domain-specific RPBs, as special attention may be
needed to mediate transfer to general-purpose languages. Dann et al. [28] noted the need for sup-
port in transfer from the visual behaviors of the Alice environment to Java programming, and
Touretzky et al. [142] comment on the challenge of transfer from the Kodu microworld to “proce-
dural languages such as Scratch or Python” However, Touretzky et al. note that a general apprecia-
tion for the rule-based “lawfulness” of program behavior—which can be learned through Kodu—is
a valuable learning goal in itself [141]; moreover, “mental simulation and analytical reasoning are
important in all types of programming. If children become concrete operational thinkers about
Kodu programs, then we expect they will then be quicker to reach this developmental stage when
learning other languages” [142].

Of course, in addition to a model of program behavior, other things also matter for transfer, such
as syntax and problem-solving patterns. As ever, RPBs can cover only part of the picture.

6.2.12  Sensitivity to Conceptions. This criterion is concerned with how RPBs attend to the learn-
ers’ expected prior knowledge, common (mis)conceptions, and difficult-to-learn content.

SENSITIVITY TO CONCEPTIONS can be direct or indirect. The former means singling out selected
conceptions in the RPB text, such as in our asterisked RPBs that contrast with relevant non-
normative conceptions. The latter means otherwise designing the model of program behavior so
that it can help students overcome known conceptual difficulties.

Teachers and researchers have identified many trouble spots in learning to program, such as
arguments vs. parameters, printing vs. returning, assignment statements, and object instantia-
tion [36, 114, 133]. Ideally, an RPB design is sensitive to these known difficulties. Sufficient GRAN-
ULARITY is needed to express the critical features of the challenging phenomena, and designers
need to watch out for excessive attempts at SIMPLICITY that blur key distinctions.

SENSITIVITY TO CONCEPTIONS can look very different when considered for an entire progression
rather than a single ruleset. A design choice that has some immediate benefits may encourage a
limited or mistaken conception that bites back sooner or later, as the learners progress.

A possible design trap is to introduce every new concept with the simplest imaginable code and
RPBs to suit. For example, when teaching parameter passing, some teachers initially use only
atomic argument expressions—i.e., simple literals and variable variables—as in myFunc(1, 3) or
myFunc(myVar). Such code can be explained in terms of simple RPBs that do not cover the general
case. However, the relationship between arguments and parameters is a notoriously tricky concept
for beginners, with many misconceptions and general confusion reported in the literature (e.g., Ref-
erences [53, 79]). For instance, students sometimes perceive parameter passing as the creation of
links between variables in the calling code and the function. The simplest code examples and RPBs
are (we suggest) not ideal for addressing these issues. Our example rulesets treat expressions as a
general concept early and build on that in the later RPBs that add parameter passing.

Similar design concerns apply to many other concepts that learners may initially encounter
only in a simple form or particular use case, which limits how they perceive the new concept
and link it to other concepts (e.g., Boolean expressions may be perceived as a special syntax in if
statements rather than expressions that are evaluated as usual and usable in a variety of ways).
As we noted in Section 4.2, students infer their own “rules” about programming; those rules are
often too restrictive, which can be addressed by having students practice on a rich variety of
programs [134] and by teaching RPBs that link those programs together with general principles.

There is also the possibility that an RPB design might do harm: are there difficulties that might
be triggered or exacerbated by the RPBs? For example, learners are known often to conflate objects
with the referring variables and think of the variable names as properties of the objects [72, 131],
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which causes problems with aliasing and scope. An RPB that treats assignment as “naming” an
object (or list) does distinguish imperative assignment from mathematical equality (thus partially
attending to one common misconception); however, it could encourage variable-object conflation
unless the relationship between names and objects is carefully taught.

RPB designers must consider what is not highlighted by the system but nevertheless needs to be
learned. For example, Grover and Basu [62] comment on how Scratch de-emphasizes types: “[stu-
dents who] don’t have to deal with variables’ data types . . . end up with an incomplete understanding
of expressions and operators (e.g. the fact that arithmetic operators make sense only with numbers [is
Jjust one] of the many issues).” Franklin et al. [57] discuss variable initialization in Scratch similarly.
RPBs that deal with non-obvious aspects of the system should be constructed with particular care.

6.2.13  Wieldiness. This criterion is about how convenient RPBs are to use. It may be considered
separately for different tasks, but there is one task that stands out: tracing code. Some RPBs are
clunkier than others as tracing tool.

WIELDINESS can be at odds with high GRANULARITY: more detail means more working-memory
load and more work to keep track of a program run. Mutable state is another consideration: Krish-
namurthi and Fisler [83] suspect that although mutability can make program-writing quicker, it
may greatly increase the cognitive load of tracking state. In contrast, some of the techniques that
improve NOTATIONAL FIT can also boost WIELDINESs. If program behavior is viewed as transfor-
mations of, or events within, then the notation itself, the need for a separate “status representa-
tion” [104] in memory is reduced, as the notational context supports distributed cognition [71].

Even a SIMPLE ruleset with high NOTATIONAL FIT is not necessarily wieldy. Tunnell Wilson et al.
[144] report that a weakness in the substitution model of evaluating immutable-state programs is
that it can be laborious to use, especially when dealing with large data structures. That unwieldi-
ness, the authors suggest, may predispose learners to take unsafe “shortcuts” when tracing.

The presence of static typing may influence how easy it is to apply RPBs for tracing. A colleague
recently remarked to us: “My [mental model of a] notional machine runs faster if I can leave type
checking to the compiler” (If there is research investigating this, then we are not aware of it.)

6.2.14  Assessability. Knowledge of any model of program behavior can be assessed indirectly
by teaching the model and then observing how successful learners are at tracing or some other
task. A ruleset is more AsSEssSABLE if it lends itself to a more detailed analysis of which rules the
learners have or have not successfully applied.

Nelson et al. [96] observe that typical programming assessments “have items that require 10-20
concepts to answer correctly, even for basic skills like program tracing,” which is a problem for
formative assessment especially (see also Reference [91, 92]). As an improvement, Nelson et al. [96]
seek assessments of program-tracing knowledge that can target individual constructs separately
and in specific combinations. For an RPB ruleset to support such assessment, its rules and concepts
need to be sufficiently detailed and as distinct from each other as possible.

6.2.15 Implementability. A limited form of IMPLEMENTABILITY is that a human can, with reason-
able effort, write the rules into a program such as a semantics game [4] or a program visualization.

A stronger form of IMPLEMENTABILITY is machine-readability: A computer can read in the
ruleset and operate on it. For instance, program visualization might be automatically created
from formal rulesets [107]. The generation of educational examples is another prospect (cf.
References [97, 112]).

6.2.16  Clarity of Writing. Our other evaluation criteria are tied to the RPBs’ content: They re-
flect what the model of program behavior is like. This last criterion is about the way the RPBs are
expressed as text. Essentially, it asks whether the model of program behavior is communicated
well to the RPBs’ target audience of teachers and/or researchers.
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7 DISCUSSION

Although few teachers, textbooks, tools, and curricula explicitly describe a model of program
behavior, many nevertheless implicitly target one. Fewer still set down detailed progressions of
models in writing. It is often difficult to disentangle learning goals from visualizations and other
teaching methods [32]. We believe the framework presented in this article can help.

A lightweight way to use the RPB framework is to adopt it as a tool for thinking and discussing,
without actual, written-down RPBs. Even without RPBs as such, distinguishing between syntax,
models of program behavior, and teaching methods may crystallize instructional-design decisions
and research questions. Mentally or textually sketching out RPBs can help educators define what
they hope or expect students to learn and consider whether a method matches those goals.

Full use of the framework requires some more effort: The RPBs need to be designed and written.
However, not everyone has to write their own from scratch, which is as well given that document-
ing detailed learning objectives is not most teachers’ favorite activity. RPBs can be shared and
published. Teachers and researchers can adopt and adapt RPBs from others.

7.1 Using the RPB Framework to Look at Notional Machines

Our work derives from, parallels, and extends the literature on notional machines. We feel
that the breakdown between models of program behavior, written-down RPBs, and teaching
methods (Figure 4 on p. 6 above) has helped us debate notional machines and related concepts
with greater precision. We hope that the framework will help people to interpret the many
meanings of “notional machine” in the literature and to understand each other.

Our design advice, evaluation criteria, and example progression (Sections 5 and 6) are potentially
useful for designing notional machines even without otherwise adopting the RPB framework.

7.2 Using RPBs in Instructional Design

At the very beginning of this article, Amal wanted to know what exactly they should teach about
program behavior. Dana wanted to know how to pick a teaching method. The RPB framework
could help teachers like Amal to establish what the target is and teachers like Dana to analyze how
existing methods match their specific, contextual needs. As the long and yet incomplete review in
this article’s web supplement [40] illustrates, there is a bewildering and growing array of tools and
methods whose suitability depends in part on the chosen model of program behavior. Once the
target RPBs are established, the teacher can use them as a guide and a checklist when selecting
or creating a suitable combination of activities, visualizations, metaphors, and other tools. RPB
progressions can assist in planning learning trajectories and minimizing negative transfer.

Many instructors would like to have students first read and/or write simpler programs before
gradually advancing to increasingly complex programs. The instructor thus needs to order pro-
grams by cognitive complexity, which is non-trivial. To address this, Duran et al. [39] have pro-
posed an extension to cognitive schema theory, characterizing each program’s complexity in terms
of the hierarchical schemas that the programmer uses to reason about the program. The lowest-
level schemas correspond to the mechanical operations of a model of program behavior, meaning
that a program’s cognitive complexity is contingent on the model that students learn. RPB rulesets
and progressions could thus provide a foundation for cognitive analyses of program complexity
and inform task sequencing in instructional design.

Neo-Piagetian theories of learning posit that learners progress through certain stages of develop-
ment that reoccur within each (sub)domain of learning; different stages call for different learning
activities. Working from this perspective, Lister [88] describes how learners progress from a senso-
rimotor stage of not being able to trace code to a pre-operational stage (and beyond). This pattern
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repeats after new concepts cause the learner’s earlier abilities to break down, triggering accommo-
dation and a return to an earlier developmental stage. We see RPB progressions as a way to mark
where a new ruleset may disrupt an earlier understanding of program behavior and necessitate a
new cycle through the stages.

RPB progressions may assist teachers in designing scaffolding that supports learners as they
progress toward richer understandings of program behavior. In master-apprentice pedagogies
such as cognitive apprenticeship [68], the master might use RPBs to record aspects of their tacit
knowledge and to identify candidate zones of proximal development for exploring together with
the apprentices.

7.3 Using RPBs to Document Teaching and Research

Our imaginary teacher Bao wanted to decide which parts of their course design to document for
others’ benefit. Perhaps Bao means to share the design with local colleagues, such as teaching
assistants or teachers of related courses. RPBs can be part of such a description. Teachers might
document RPBs for personal purposes as well, and learn as they do so. Documenting pitfalls and
potential misconceptions into an RPB ruleset further enriches these descriptions.

Dissemination of practice to other contexts is another reason for sharing. A teacher edition of
a textbook could list RPBs. A training course might ask pre-service teachers to critique a course’s
RPB progression (or design and discuss new RPBs). RPBs could be collected in a repository.

Concurrently with our work for this article, Fincher et al. [47] have been working toward a cat-
alogue that helps teachers select and compare notional machines (which Fincher et al. define as
student-facing “pedagogic devices”; i.e., teaching methods). The models of program behavior be-
hind these teaching methods could be recorded as RPBs. Moreover, teachers who have a particular
RPB ruleset in their sights might use the catalogue to guide their selection of teaching methods.
Overall, we see the present work and that of Fincher et al. [47] as complementary.

Researchers like Camille from our Prelude need to compare assessment results from different
programming courses. The easy assumption is that two courses have similar goals if they use the
same programming language and cover the same constructs. The reality is much more nuanced,
as students may learn very different styles, patterns, tools—and models of program behavior.

We call on empirical researchers not only to report programming languages but also to reference
the RPBs that the learners had been taught. To draw incisive conclusions, just knowing “the stu-
dents had been taught variables, functions, and loops” is often insufficient, as it would help to know
what the students had been taught about those constructs and how the students were expected to
reason about code that features them. Multi-institutional studies and meta-analyses compare dif-
ferent cohorts of learners assessed at different stages of different programming courses; RPB pro-
gressions could help to make such comparisons fairer, or at least to illustrate their shortcomings.

We also call on the creators of educational visualizations to set down the RPBs that the visual-
izations are designed for (even though the visualization might work with other RPBs as well [32]).

In this article, we have discussed the use case where a single instructional designer deliberately
identifies RPBs and teaching methods. However, RPBs might also find a different use as a tool for
analyzing instructional designs created without RPBs, post hoc. For example, researchers might ex-
tract rulesets and progressions from a textbook by extrapolating from the student-facing materials,
with or without the book author’s assistance.

7.4 Using RPBs to Sharpen Research Questions

The RPB framework suggests new research questions and new, more precise forms of old ones.
Some obvious questions to ask are as follows: Which models of program behavior suit which
contexts? What are the benefits and drawbacks of adopting a particular RPB ruleset? What makes a
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good RPB progression? When should students learn multiple perspectives—multiple rulesets—that
provide complementary perspectives to program behavior? Our design criteria from Section 6.2
provide a vocabulary for exploring such questions. To date, studies that directly compare models
of program behavior—or notional machines in this sense—are rare (but do exist [144]).

Another broad and important question is how to teach a particular model. Which methods work
for which RPBs and how does that depend on context? Conversely, which RPBs is a particular
method—a visualization, say—suited for? Are there methods that work well for an entire RPB
progression or many alternative rulesets?

The thread of CER that explores students’ conceptions and misconceptions of programming con-
cepts is alive and well. RPBs provide a normative target model against which learners’ conceptions
may be viewed. Studies could examine how the choice of RPBs and/or teaching methods affects
the frequency of (mis)conceptions. In some cases, having a course’s learning objectives detailed as
RPBs should help researchers (and teachers) identify why a particular conception is frequent.

The model of program behavior that learners are exposed to affects what they can learn. The
validity of, say, a program-tracing assessment depends on the target ruleset as well as the program-
ming language [83]. This means that great care is needed when designing concept inventories for
multiple languages (e.g., References [17, 99]) or interpreting findings from such instruments. RPBs
could support the design of assessments, whether formative or summative. For example, assess-
ment questions might target specific RPBs or RPB combinations.

Computing educators are locked in an eternal struggle among themselves about which lan-
guages to teach. RPBs do not resolve this conflict but they could inform some of the discussions:
the choice of language and paradigm should be influenced by which models of program behavior
one wishes to teach. Researchers might explore which rulesets are suited to which languages, or
which language—with its syntax, libraries, and so on—is the best vehicle for teaching a particu-
lar ruleset (or a language-specific variant of a generic ruleset). Notional machines already feature
occasionally in language and paradigm debates; see Section 6.2.4 above for examples.

Although initiatives in programming education have tended to focus on a single language, soft-
ware and other tools have been developed for cross-language transfer as well. Krishnamurthi and
Fisler [83] point to many open research questions about transfer and argue that “the similarity
between two languages is the extent to which a notional machine for one gives an accurate ac-
count of the behavior of the other” Tshukudu and Cutts [143] are exploring the differences in
how different concepts transfer between languages. The topic of transfer is sizzling hot in pri-
mary school education, with an explosion of recent research on the transition from blocks-based
to text-based environments. RPBs can record the similarities and differences between stages and
contribute to the design of these tools and studies. As an increasingly diverse worldwide popula-
tion of programmers uses an ever greater number of general-purpose and domain-specific (and
even task-specific [65]) programming languages, a future seems likely that requires people to un-
derstand many languages and other programming notations [3] and to fluently switch between
them [66]. If that happens, then multilingual RPB progressions will be more useful still.

The relationship between natural and programming languages is another trendy topic.
Researchers track eyes and scan brains to explore whether and how programming resembles
natural-language use, with a clear picture yet to emerge [55, 75, 84, 103, 111, 127]. The language-
ness of programming notations is being both celebrated and questioned as restrictive [3, 15, 56].
Ideas from language learning and literacy education are working their way into programming
pedagogy [10, 15, 56, 70, 100, 108, 143]. Natural languages, like programming languages, have
rules; people acquire the rules of their native language implicitly and may do so even for
subsequent languages. Should it turn out that the cognitive similarities between programming
and natural languages are substantial, the impact on programming education would be great.
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A target semantics set down as RPBs could help researchers to explore the implicit acquisition
of programming rules, to compare the explicit teaching of rules to implicit acquisition through
constant exposure, or to evaluate other pedagogies inspired by language learning.

Practice is widely cited as crucial to the development of students’ code-tracing skills (and by
extension their code-writing skills), but there is a variety of views on which type of practice is
ideal. The PLTutor system [97] is a recent example of having students practice semantic rules
on decontextualized code fragments. In contrast, Lowe [90] proposes that rather than targeting
rules directly, beginners should practice contextualized and scaffolded debugging activities, which
motivate tracing and are more likely to generate intuitive, automatic mental representations that
transfer. A combination of different practice tasks is another possibility, of course. Again, explicit
RPBs could provide a foundation for studies that compare these approaches.

Program-comprehension frameworks such as the Block Model [124] highlight the diversity
of knowledge needed in programming. RPBs reflect just one kind; others include syntactic
knowledge, domain knowledge, and solution schemas at various levels of abstraction. Danielak
[27] urges researchers to recognize that learners employ a variety of models as they deal with
programs and make many moment-to-moment decisions about which knowledge to draw on.
These models are not limited to the mechanistic behavior captured in our RPBs and include, for
example, domain-specific metaphors and ways of reasoning. Further research is needed to explain
how RPB-like knowledge of program behavior interacts with other programming and domain
knowledge, and which contextual factors prompt learners to use different knowledge as they read
and write programs.

RPBs record teacher-set goals, but a similar approach might also be applied to student knowl-
edge. Researchers might elicit students’ conceptions of program behavior and write them down
as “rules” of some description. Whether it makes sense to treat students’ conceptions as relatively
stable “rulesets” or incoherent collections of separate context-bound elements is an open ques-
tion being debated by conceptual-change theorists (Section 4.2). Either way, documenting more
student-constructed rules would help CER characterize how students’ reason about programs and
trace them mentally. Lewis et al. [86] discuss early work by Davis et al. [29] in this vein.

Our example RPBs apply to the sort of text- or block-based programs that tend to appear in in-
troductory programming courses. Other forms of programming could also be expressed as RPBs,
including machine learning (cf. Reference [46]), embedded systems (cf. Reference [23]), visual pro-
gramming and direct-manipulation interfaces (cf. Section 6.2.9), and so on.

In this article, we have posited that RPBs are written by instructional designers. Future research
might explore how to guide students to identify and write down rules that explain program
behavior.

7.5 Limitations

While we have ourselves found the RPB framework helpful for organizing our thoughts about
notional machines and related phenomena, we do not have evidence of how understandable or
usable the framework is by other researchers and practitioners.

We have not detailed a process for designing RPBs or evaluating designs. We have identified
evaluation criteria, but we do not expect our list to be final. On the contrary, we hope that others
might refine and extend the list.

We have not presented empirical evidence for or against any particular RPB ruleset or progres-
sion, and indeed it is not the purpose of this article to attempt such an argument.

Although the basic notion of RPBs is not inextricably tied to any specific epistemology or theory
of knowledge (such as mental models or a particular theory of conceptual change), the framework
does rely on some fundamental assumptions and this article does lean toward certain theoretical
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perspectives. Much of the research that we have cited in support of the RPB framework and the
evaluation criteria derives from cognitive psychology. Moreover, our discussion in this article
assumes that targeting a certain kind of understanding is a pragmatic thing to do in education
(which is not to say that RPBs attempt to tell an objective “truth”; on the contrary, we encourage
targeting different kinds of models as befits each context). We acknowledge that this assumption
is not universally accepted and that there are tensions between the RPB framework as presented
here and other perspectives on program behavior. For example, some social-constructivist theories
posit that the teachers should not attempt to set particular knowledge as a target but should
instead explore different ways of meaning-making together with learners. A related concern is
that a particular teacher-defined model of program behavior might not suit all learners within a
context equally well, so targeting a single model might hinder the learning of some students; this
is a caveat in applying the RPB framework.

Overall, more research is needed to explore whether and how RPBs may fit with different episte-
mologies and theories of learning. One plausible use for an RPB ruleset could be to repurpose the
RPBs as a point of reference while exploring the viable and non-viable aspects of learners’ various
conceptions, rather than treating the RPBs as a normative target.

8 CONCLUSION

We join others in bringing models of program behavior into the spotlight as explicit learning ob-
jectives. To that end, we have proposed a framework for setting down these models as teacher-
facing rules, rulesets, and progressions of rulesets. We have argued that the RPB framework pro-
vides structure to ongoing research and discussions around notional machines and programming-
language semantics in education; the framework might also help these ideas gain greater purchase
among practitioners. We have outlined how RPBs may assist in instructional design, help docu-
ment teaching and research, and sharpen research questions and tool designs. We have nominated
a set of evaluation criteria for models of program behavior and the RPBs that describe those mod-
els; we have discussed tradeoffs between those criteria and presented an example progression of
RPBs as a proof-of-concept example.

We encourage instructional designers and researchers to describe models of program behavior,
whether in terms of the RPB framework or otherwise. We invite the computing education com-
munity to formulate research questions that distinguish between models of program behavior and
methods for teaching those models.

This article is part of a burst of scholarly activity around program behavior, which is being
looked at through the lenses of semantics [83], visualizations [32], and pedagogical practices [48].
We hope that our contribution will help to connect these perspectives and, ultimately, contribute
toward better programming education.
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