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Abstract—We propose a novel machine-learning pipeline for
clustering unknown IoT devices in an industrial 5G mobile-
network setting. Organizing IoT devices as few homogeneous
device groups improves the applicability of network-intrusion
detection systems. More specifically, we develop feature engineer-
ing methods that transform IP-flows into device-level data points,
define distance metrics between the data points, and apply the
DBSCAN algorithm on them. Our experiments on a simulated
IoT device network with varying levels of noise show that our
proposed methodology outperforms alternative methods and is
the only one producing a robust grouping of the IoT devices
with noise present in the traffic data.

Index Terms—clustering, IoT, 5G, machine learning, network
security, IP flows

I. INTRODUCTION

The industrial market for the Internet-of-Things (IoT) de-
vices is growing rapidly. Ericsson expects the installed base
of cellular IoT devices to increase from one to four billion
between 2018 and 2024 [1]. Traditionally, security solutions in
this domain have relied on manual configuration, monitoring,
and response processes; however, the expanding device attack
surface calls for automated and scalable methods.

We are looking into a scenario where a mobile network
operator is providing security services to its industrial clients
with large quantities of IoT devices. In this context, the secu-
rity provider does not directly operate the IoT devices, thus, the
intended communication patterns of the devices are unknown
to the security provider. Not knowing intended communication
patterns makes intrusion detection a challenging task, as tradi-
tional methods rely on setting static rules for whitelisted traffic.
Modern machine-learning-/anomaly-detection-based intrusion
detection approaches bypass this problem by assuming that
common traffic is legitimate while rare traffic is malicious.
However, with a heterogeneous IoT-device base, this can lead
to systematically misclassifying uncommon device types as
malicious since their intended traffic is not common relative
to other devices’ traffic. For instance, if a factory has thou-
sands of temperature sensors but only a handful of humidity
sensors, the humidity sensors can get systematically flagged
as malicious as a result of the assumptions behind anomaly
detection.

This work has been funded by Ericsson Finland.

Given this scenario, we make the following contributions in
this paper1:

1) We propose a novel approach of clustering unknown IoT
devices in a 5G mobile network into groups of homoge-
neous devices with the motivation that after clustering,
any anomaly-based intrusion detection method can be
applied without a high risk of misclassifying uncommon
devices as malicious, as their legitimate traffic will now
be common within their respective cluster.

2) In order to cluster the devices with high precision, we
introduce a novel feature-engineering method, where
device-level data points are formed as distributions of
relative frequencies of triplets containing the network
IP address, network port, and IP protocol, which we
propose to call the network socket identifier.

3) We show through experiments that our approach of com-
puting cosine distances between network-socket iden-
tifiers outperforms typical IP-flow feature-engineering
approaches when measuring DBSCAN clustering accu-
racy by a large margin. The results indicate that using
clustering as a preprocessing step for intrusion detection
is viable only through using the feature-engineering
method we introduce.

II. RELATED WORK

The need for security providers to know the intended
communication patterns of their networks’ devices has been
recognized in the industry, as evidenced by Cisco having
published the Manufacturer Usage Description (MUD) as an
IETF RFC [2]. Its purpose is to let manufacturers define the
intended communication patterns for their devices so that the
trusted patterns can be used to enforce security. Having access
to existing MUDs would render our work redundant, however,
the current status is that the majority of existing devices do
not have MUDs defined for them. Furthermore, in our setting,
it is unfeasible for the security provider to map MUDs to
devices as they can not access device specifications. Thus,
we aim to close this gap by grouping the devices with the
same intended communication patterns through clustering. To

1The results this research presents are obtained within the Master’s thesis
work of the first author under the advisorship of the second author.



our best understanding, no prior work has attempted to use
clustering for this purpose.

Cisco states in their MUD documentation that “numerous
fingerprinting methods are being explored in the market to
profile IoT devices to address this vulnerability”, though
dismissing them as being subject to spoofing [3]. For instance,
one such fingerprinting tool is MUDgee, published by Hamza,
Ayyoob, et al. [4]. A challenge with these fingerprinting
tools is that they trust all captured traffic to be intended and
legitimate: this assumes that no device has been compromised
before the fingerprinting analysis. Hence, they are not suitable
for networks with existing device bases that have possibly been
subject to intrusions. We aim to solve this challenge through
leveraging the power of data. We assume that it is unlikely for
all devices to be compromised in the exact same way, thus,
leveraging similarities between device communication patterns
to identify legitimate traffic.

Several authors have studied deep-packet inspection as a
means of classifying devices types [5]–[7]. Furthermore, sev-
eral authors have studied packet interarrival times that identify
timing-dependent characteristics (such as clock frequencies
and packet-generation processes) [8]–[10]. Nonetheless, these
approaches are not available to us due to our starting point
of having access to IP-flow-level data only, which conceals
packet-level details.

Many IoT-related intrusion detection approaches opt to
go toward a supervised learning route which eliminates the
need for the assumptions of anomaly detection that cause
systematic bias [11]–[18]. However, a supervised approach
requires having labeled ground-truth data samples available
for all traffic types of all device types, which is impractical in
our setting. Even though the ultimate purpose is different, the
multiple-connection-derived (MCD) features from supervised
learning can directly be applied in the feature engineering
for clustering as well. Davis et al. have published a review
of data preprocessing methods for anomaly-based intrustion
detection [19]. The majority of approaches use simple descrip-
tive statistics, such as averages, counts, and sums of each IP
header field. We assume these techniques as benchmarks in
our experiments.

Previous research on performing feature engineering on IP
flows typically ignores or aims to aggregate high-dimensional
categorical features, such as IP addresses, port numbers,
and protocol numbers to simple statistics. Unlike previous
research, our approach extracts the vast predictive power of
these high-dimensional categorical features. This is possible
because we compute pairwise distances between devices,
which allows us to utilize the full dimensionality of a pair
of data points without having to form a matrix containing all
possible categorical values of all data points, which would be
unfeasible resource-wise.

III. BACKGROUND

Our aim is to recognize homogeneous IoT device groups
from their 5G network traffic data, more specifically, their time
series of IP flows. Deriving homogeneous device groups from

IP flows involves two phases. Firstly, the raw data must be
processed into device-level data points, and then, a clustering
algorithm is applied on the data points. In this section we first
discuss the available data, and then explain what this means
for the choice of a clustering algorithm.

A. Data characteristics

The following characteristics describe the context of the IoT
devices in the industrial mobile-network setting:

1) We expect IoT devices to exist in massive numbers,
which requires scalability from the system, both in terms
of data-point counts and data-feature dimensionality
(vast number of unique target addresses, ports, and
protocols).

2) The amount of data generation per device varies greatly:
some devices send large data streams continuously,
while others send single packets infrequently.

3) True underlying device groups vary greatly in size. We
expect cluster sizes to range from a few devices up to
tens of thousands of devices in live networks.

The raw data captured from the 5G network consists of
header information of IP packets, aggregated to the IP-flow
level, listed in Table I. Looking at the data from a data-science
perspective, we notice three characteristics that make the data
challenging to deal with. These characteristics are (1) mixed
data types, i.e., the data contains numerical, categorical, and
boolean data types; (2) variable-length data, i.e., the amount
of flows per device is dependent on the device’s behavior;
and (3) high dimensionality of categorical features, i.e., certain
fields such as IP addresses, ports, and protocols contain a large
amount of possible values, i.e. dimensions.

B. Data simulation

In order to obtain quantified performance measures for the
clustering system, we need labeled data. As manually labeling
the live network data is unfeasible, we resort to simulating
the IoT network traffic using Ixia Breaking Point [20], an
advanced tool widely used in the industry for testing and
simulation purposes. We consider all the IoT devices to exist
within a single radio access network from which they connect
to servers that reside in the Internet. The data capture happens
at the network probe, which is located within the Packet Core.

We assume the taxonomy introduced in IETF’s RFC 7228
that categorizes IoT devices based on how constrained they
are into classes 0, 1, and 2 [21]. Furthermore, we add class 3,
which we define as smart/unconstrained. We model all device
behavior based on the OMA Lightweight M2M (LwM2M)
IoT device lifecycle management specification [22]. It includes
operations between interfaces regarding device onboarding,
boot-ups, updating, configuring, etc. Each process has its own
traffic configuration including protocols, network addresses,
ports, and data volumes.

We simulate a total of 4700 devices across twelve groups,
distributed into four organizations. We define a device group as
a set of devices that share all of their intended communication
patterns. Device groups that belong to the same organization



share some operations. The shared operation across device
types could be, e.g., a login routine. Each device group has
an assigned class that determines its application protocol and
related operations.

Even though IoT devices mainly adhere to deterministic
communication patterns, the networks experience external
interference. This traffic, which we call noise, can consist of
both legitimate and malicious traffic. For example, network
administrators might establish one-off connections to devices
for administrative purposes, or hackers might be scanning
through the network looking for devices with vulnerabilities.
In the simulation, we model noise as random connections,
using random protocols, and random network IP addresses,
while targeting well-known ports of the devices [23].

C. Clustering algorithm

The characteristics of the domain and its data pose con-
straints to the choice of the clustering algorithm. We have
selected to use the density-based spatial clustering of appli-
cations with noise algorithm (DBSCAN) in our approach.
DBSCAN fulfills three main features that make it a suitable
choice in this context; others that do are mainly variants
of DBSCAN. Firstly (1), it is able to derive the number
of clusters from the data: while many clustering algorithms
require a user-inputted count of clusters k, DBSCAN infers it
from the data instead, based on hyperparameters epsilon (ε),
indicating the minimum distance between points, and minPts,
indicating the minimum number of nearby points. Secondly
(2), DBSCAN is reasonably computationally efficient, being
able to reach O(n log n), whereas most alternative clustering
algorithms capable of inferring cluster counts from the data are
magnitudes slower, a crucial factor considering large quantities
of IoT devices. Lastly (3), DBSCAN has the capability to
deem data points as outliers, i.e., points that do not belong
to any cluster. The networks of IoT devices are likely to
include outliers, such as administrative personal computing
devices, which are not homogeneous with other devices. From
a security perspective, it is better to leave uncertain cases to
be handled manually than make a false positive clustering.

IV. METHODS

DBSCAN requires querying pairwise distances between
device-level data points. However, it does neither specify of
what form the data points should be, nor which distance metric
should be used to compute pairwise distances with. Thus, we
need to aggregate our raw data into device-level data points
and define a metric to compute distances between them. These
steps have a radical effect on the predictive power of the
clustering algorithm, yet there is room to customize these. We
introduce our novel feature engineering solution and compare
it to typical IP-flow aggregation and distance computation
approaches.

A. Forming a device-level data point

Computing a distance between data points requires the data
points to be in a standardized format. Since our raw data

is of variable length, an aggregation is required. Overall,
transforming raw IP-flow data into device-level data points
consists of three steps: (1) feature selection, (2) applying
aggregation functions, and (3) normalizing the features.

1) Feature selection: The list of available features is pre-
sented in Table I. Some of the features have been disregarded
due to being used as the identifier, being redundant to other
features, or being randomly assigned, thus bearing no predic-
tive power.

Typical approaches to feature selection are dependent on
the aggregation functions and the distance metrics used in
succession, as these steps limit which data types can be
handled. Typical solutions to the challenge of varying data
types include (1) only considering continuous features, (2)
only considering categorical features, (3) using specialized
distance metrics that can deal with mixed data types, or (4) re-
encoding the categorical features as numerical features (e.g.,
one-hot encoding).

Feature Type Count of
unique

Ref
1

Ref
2

Ref
3

Our
mtd

TEID Categorical � 10 000
IMSI Categorical � 10 000 (X) (X) (X) (X)
IMEI Categorical � 10 000
Ue IP Categorical � 10 000
Ue port Categorical ∼ 10 000
Flow start Continuous - X X
Flow end Continuous -
Duration Continuous - X X
Vol. rec Continuous - X X
Vol. snt Continuous - X X
IP prtcl no. Categorical ∼ 10 X X X X
Ntwrk IP
address

Categorical � 10 000 X X X X

Ntwrk port Categorical ∼ 100 X X X X
TCP flags Categorical ∼ 10 X X X

TABLE I
SELECTED FEATURES FOR THE REFERENCE METHODS AND OUR METHOD

The chosen reference methods for feature engineering corre-
spond to solutions (1), (2), and (3). In reference method (1), we
consider both continuous features and categorical features with
such aggregations that have a numerical output. Solution (4) is
not feasible due to the high dimensionality of the categorical
features in our data.

We hypothesize that IP protocol number, network IP ad-
dress, and network port contain the majority of the predictive
power; hence, our approach considers only them. The basis
for the hypothesis emerges from the intended communication
patterns being dependent on the applications running on the
device, and applications being mappable to the combination
of these three features.

2) Aggregation from flow level to device level: The typical
approaches of aggregating IP flows utilize descriptive statistics
as aggregation functions for each input feature [19]. Aggrega-
tion functions for the reference methods are listed in Table II.

In our method, we only consider three categorical input
features: IP protocol number, network IP address and net-



Aggregation
function

Data type
of input
feature

Data type of
aggregation
output

Ref
mtd
1

Ref
mtd
2

Ref
mtd
3

Count - Numerical X X
AvgTimeBetween Datetime Numerical X X
Mean Numerical Numerical X X
Min Numerical Numerical X X
Max Numerical Numerical X X
Std Numerical Numerical X X
Median Numerical Numerical X X
Skew Numerical Numerical X X
Trend Numerical Numerical X X
Entropy Categorical Numerical X X
NumUnique Categorical Numerical X X
Mode Categorical Categorical X X

TABLE II
AGGREGATION FUNCTIONS USED FOR REFERENCE METHODS

work port. We hypothesize them to contain the majority of
the predictive power given they define the socket where a
server application is listening in client-server communication.
Furthermore, instead of using them as separate features, we
combine them to form a new categorical feature. We propose
to call this novel concept a network socket identifier.

To aggregate the network socket identifier, we compute the
frequencies of each distinct value observed over a sliding
window of time. This produces a variable-length set of network
socket identifier frequencies for each device.

3) Data point normalization: The fields of the IP flow
headers are not directly comparable with each other. As
is standard practice in data science, they thus need to be
normalized with a suitable normalization method per data type.

For the reference methods, we follow industry standards.
Reference method 1 contains numerical values, for which
Z-score normalization is a match. Reference method 2 con-
tains only categorical values, for which normalization is not
applicable. The normalization for reference method 3 has
been chosen based on Gower’s distance, which necessitates
MinMax-scaling numerical features between 0.0 and 1.0.

Our method differs from the reference methods in that only
a single flow-level feature is used: the network socket identi-
fier. The aggregation of calculating network socket identifier
frequencies produces a set of value counts for each device.
Due to the frequency values being calculated based on a
single flow-level feature, it would not be necessary to perform
normalization. However, our choice for the distance function,
cosine distance, requires scaling each device-level data point
to a unit-length vector w.r.t. the Euclidean norm. Intuitively,
the output can be viewed as proportions of flows with respect
to each server application, identified by their network socket.

B. Distance metric

For the reference methods, we follow data-type-dependent
industry standards. For reference method 1, the Euclidean
distance is chosen. Jaccard index is one of the most common
metrics to compare finite sets. Thus, for reference method 2,
we select the Jaccard distance, which can be trivially derived
from the index. Combining categorical and continuous features

in a distance metric requires making assumptions. We resort
to assigning a fixed dissimilarity value-range for each feature
(0.0 - 1.0). This is the basis for the Gower’s distance, defined
as the average dissimilarity of each feature, which we choose
for reference method 3.

We select the cosine distance for our method due to three
properties. Firstly, the cosine distance has an understandable
meaning in a high-dimensional space: the angle between two
feature vectors. Secondly, the distance range is bound between
zero and one, which makes setting hyperparameter values
for DBSCAN intuitive. Thirdly, since the cosine distance is
calculated with a dot product, it is computationally efficient
with sparse matrices - only features for which both feature
vectors have a non-zero value need to be considered.

V. RESULTS

In this section, we first define and describe the evaluation
metrics. Secondly, we show the results from our experiments
and interpret their performance and applicability.

A. Evaluation metrics

For the evaluation and interpretation of the performance of
the clustering system, we rely on completeness and homo-
geneity, which together form the V-measure, as defined by
Rosenberg et al. [24]. Together, they provide an understandable
description of what types of clustering errors are occurring,
depicted in Figure 1. The computation of homogeneity and
completeness is based on conditional entropy analysis.

Fig. 1. Examples of proposed cluster boundaries that result in high and low
completeness and homogeneity values

Furthermore, as homogeneity and completeness metrics
assume that the clustering algorithm assigns all data points
into clusters, we need to complement them with our own
metric, unlabeledness, which quantifies the proportion outlier
assignments by the clustering algorithm, a feature specific to
DBSCAN. We define it as the count of outlier assignments
divided by the count of all points. We prefer the clustering
system to declare points as outliers rather than miscluster them
together with data points they should not be clustered with.
However, the simulated data set does not contain any true
outliers, therefore, a non-zero value of unlabeledness means
the clustering system is overly conservative with labeling.

B. Experimental results

To evaluate the methods, we have simulated 10 data sets
with increasing degrees of noise, starting from 0% up to 90%.



As the proportion of noise in the data grows, the clustering
task becomes increasingly difficult. In the following figures,
we plot the evaluation metrics with respect to various values
of the hyperparameter epsilon of DBSCAN, ranging from zero
to one. This graph is plotted separately for different values of
noise. Epsilon effectively dictates how close adjacent points
have to be in order to be considered neighbors. For example,
with a bound distance range of [0,1], an epsilon value of zero
means all points are proposed to have their own individual
cluster, while a value of one would have all data points
assigned to a single cluster. The robustness of the system
is directly proportional to the width of the range of epsilon
values for which the clustering system produces good results:
the wider the range, the more robust the system is.

In Figure 2, we show how reference method 1 performs.
With low values of epsilon, the clustering system is incor-
rectly declaring the majority of data points as outliers. With
epsilon values ranging from 0.2 to 0.5, the clustering performs
decently: few points are left unlabeled. The homogeneity
and completeness values are quite high, suggesting that the
clustering is recognizing some true patterns from the data.
However, neither homogeneity nor completeness reach a value
of one, meaning that the system keeps making errors in both
directions: it clusters together devices that should not be in
the same cluster, and assigns devices that should be part of
the same cluster into separate clusters. Epsilon values larger
than 0.5 tend to result in low homogeneity, suggesting that
the system is erroneously assigning most points into few large
clusters, regardless of their types.

Fig. 2. Results for reference method 1: Numerical aggregations / Euclidean
distance

In Figure 3, we show how reference method 2 performs.
The clustering never assigns any points as outliers. This
makes sense, as there are some categorical fields with very
few distinct values, resulting in overlap. With low epsilon
values, the clustering tends to propose decent results: with
the exception of the noisiest data sets, homogeneity achieves
a perfect score, while completeness stays above 0.8. This
means that the clustering does not cluster together devices that
should not be in the same cluster, but tends to split clusters
into too many small clusters, resulting in a true device type
being spread across clusters. With higher values of epsilon,
the overall performance of the clustering drops considerably.

Fig. 3. Results for reference method 2: Categorical aggregations / Jaccard
distance

Reference method 3 combines the aggregations used in
methods 1 and 2. However, as shown in Figure 4, instead of
providing better clustering results with the aid of additional
available information, the difficulties of comparing data types
meaningfully weigh the end-results down. The clustering sys-
tem produces decent results with a small range of very low
epsilon values, but quickly deteriorates to assigning all data
points into a single large cluster.

Fig. 4. Results for reference method 3: All aggregations / Gower distance

The results for our method are presented in Figure 5. Unlike
the reference methods for any data sets, our method provides
a range of epsilon values with a flawless clustering outcome
for the data sets with degrees of noise ranging from 0% to
50%. With higher degrees of noise, the clustering produces
a reduced completeness score with low epsilon values, and a
reduced homogeneity score with higher epsilon values, the
optimal epsilon range being around 0.3-0.4. Generally, we
can deduce that with low degrees of noise, the system is
very robust: a wide range of epsilon values will produce
flawless outcomes. With higher degrees of noise, the system
will perform decently, and with the choice of the epsilon value,
it is possible to optimize either homogeneity or completeness.

VI. CONCLUSION AND FUTURE WORK

The main contribution of this work is presenting the novel
concept of clustering IoT devices as a preceding step to
intrusion detection to enhance its applicability: we show that
IoT devices can be accurately and robustly clustered based
solely on observed network traffic. Furthermore, we present



Fig. 5. Results for our method: Relative frequencies of network socket
identifiers / Cosine distance

a novel feature engineering approach that outperforms alter-
native methods in our experiments. Our approach consists of
first transforming connection-level IP-flow data into device-
level points as relative frequencies of observed network socket
identifier values (triplets of IP addresses, protocols, and ports),
further computing pairwise distances between such data points
using the cosine distance, and finally applying the DBSCAN
clustering algorithm to them.

As future research work, we propose to (1) formally
assess the performance of intrusion detection after having
successfully clustered the IoT devices with respect to applying
intrusion detection to the raw data, and (2) to investigate ways
of optimizing the run-time complexity of the clustering system
through better suited data partitioning methods.

With regard to to the former, it is not trivial to formulate
a test setting to assess this. Traditionally, intrusion detection
algorithms are measured on publicly available and well-known
data sets; nevertheless, these data sets do neither aim to
simulate IoT devices, nor specify device types. Due to this,
our clustering approach can not be assessed using them. We
can envision testing happening on live IoT networks, however,
the challenge is to obtain reliable labels for intrusions.

With respect to the latter, KD-trees and ball trees are
often integrated into implementations of DBSCAN to avoid
unnecessary computations, as for example in the implemen-
tation by scikit-learn [25]. However, these methods do not
perform well in high-dimensional settings. Thus, we suggest
studying the applicability of partitioning methods that have
taken recent advances in high-dimensional settings, such as
proximity graphs, random projections, and locality sensitive
hashing.
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