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ABSTRACT 

Three-dimensional city models are an increasingly common data set maintained by many cities 
globally. At the same time, the focus of research has shifted from their production to their 
utilization in application development. We present the implementation of a demonstrator 
application combining the online visualization of a 3D city information model with the data from 
an application programming interface. By this, we aim to demonstrate the combined use of city 
APIs and 3D geospatial assets, promote their use for application development and show the 
performance of existing, openly available tools for 3D city model application development. 

1. INTRODUCTION

Three-dimensional (3D) city models have become established GIS data sets in the urban 
context, with many cities producing and maintaining them as a part of their survey work. 
Typically, they depict the urban environment reflecting its geometry, semantics and topology 
in a digital form, most commonly created following the CityGML standard (Gröger & Plümer, 
2012). The term “city information model” is occasionally used for 3d city models with semantic 
properties. The ongoing development of the CityGML standard introduces further support for 
multitemporal objects and dynamic attributes in city models, further expanding its applicability 
(Kutzner et al., 2020).  

As 3D city models are increasingly available, the scope of research has during the last ten years 
shifted from their production towards their regular maintenance, application and use. Here, the 
research activities have included integrating the models to various registers (Eriksson & Harrie, 
2021), using the models for analyses (e.g. Virtanen et al., 2021), distributing them online 
(Alatalo et al., 2016; Julin et al., 2019) and utilizing them for participatory planning activities 
(Jaalama et al., 2021). 3D city modeling is also affected by developments in neighbouring 
fields, such as building information modeling and tighter integration of city and building 
information models (Ohori et al., 2018). 

Applying 3D city models also has a significant role in the “smart city” concept, supporting e.g. 
participatory planning and scenario visualization (Daniel & Doran, 2013). 3D city models are 
also connected to the development of urban digital twins (Ketzler et al., 2020). As Ketzler et 
al. (2020) point out, the precise role of the 3D city model in a digital twin is difficult to define 
as the term is understood differently by different stakeholders. However, both of these 
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developments (smart city and urban digital twin) are commonly connecting urban GIS assets, 
such as 3D city models, with online systems and dynamic data sources. 
 
1.1 Online applications utilizing 3D city models 
 
Several possibilities exist for visualizing 3D city models. In addition to commercial 3D GIS 
and visualization software, even 3D printing has been applied (Oswald et al., 2019). Interactive 
visualization, where the user is granted more freedom to study the 3D city models, has been 
seen as a potential tool for e.g. participatory planning (Jaalama et al., 2021). For this, both 
dedicated systems and more general tools such as game engines or virtual world clients have 
been applied. In interactive visualization of 3D city models, the use of systems that operate in 
the web browser has been seen as beneficial for participatory activities and communication - 
mostly due to the ease of distributing these applications over the Internet (Julin et al., 2018; 
Virtanen et al., 2018). Here, the potential tools have included browser-based game engines (e.g. 
Laksono & Aditya, 2019), specific viewer tools (e.g. Ninja, see Vitalis et al., 2020), commercial 
participation and visualization platforms and virtual globes (Blaschke et al., 2012).  
 
While game engines offer a high visualization capability, their support for geospatial data is 
often limited (Buyukdemircioglu & Kocaman, 2020). Browser based virtual globes have 
therefore been a very attractive tool, as they combine the support for geoinformation data and 
geodetic coordinate systems with the ability to create interactive applications. Several virtual 
globe platforms have been developed and applied (Table 1). In addition to these, several others 
have been developed using e.g. CesiumJS as the starting point, such as TerriaJS (2021). A more 
thorough listing of web mapping and virtual globe libraries can be found from Gábor (2020). 
 

Table 1. Some available virtual globe platforms 
Virtual globe 

platform 
Project website  Use cases and 

reference(s) 
NASA WorldWind https://worldwind.arc.nasa.gov/ Cultural heritage 

& tourism (Brovelli 
et al., 2013); data 

visualization (Zong 
et al., 2012) 

CesiumJS https://cesium.com/platform/cesiumjs/ Participatory 
urban planning 
(Lafrance et al., 

2019), flood 
simulation (Kumar 

et al., 2018), 
cultural heritage 
(Scianna & La 

Guardia, 2018), 
managing large 

construction 
projects (Zhang et 

al., 2020). 
iTowns http://www.itowns-project.org Geoportal (Konini 

et al., 2019) 
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As 3D city models can become fairly large in terms of data amount, their application in online 
environments requires efficient transfer and loading. While applied widely for storage and file-
based data transfer, the CityGML format is not ideally suited for efficient online visualization 
(Ohori et al., 2018).  
 
For online visualization of city models, the most common approach is applying model tiling in 
combination with efficient binary formats that allow storing object information via binding it 
with model vertices (Schilling et al., 2016). This allows both efficient rendering of the model 
with limited draw calls and inclusion of semantic information in models - essential for many 
applications (Schilling et al., 2016). This approach has also become standardized as 3D Tiles 
(2021). As 3D city models are most commonly stored in a relational database, such as 3D City 
DB, applying them on an online platform usually implies that this tiled, binary compressed 
model is generated beforehand for online visualization purposes (e.g. Lafrance et al., 2019). 
Extending the 3D tiles format to cover multitemporal data has also been suggested (Jaillot et 
al., 2018). 
 
In many of the presented applications, combining city-wide geospatial data with other data sets 
in visualization is needed. This additional data can, for example, consist of more detailed 
models (Scianna & La Guardia, 2018) or planning information (Lafrance et al., 2019). We 
therefore assume that further integration of online visualization, geospatial assets and other 
data sources in the urban environment is beneficial for developing new services, increasing the 
adoption of 3D city models and potentially supporting the progress towards smart cities and 
urban digital twins. 
 
1.2 Development Aims 
 
Currently, the City of Helsinki provides a number of data sets, and maintains open standard 
interfaces to geospatial data (Helsinki, 2021c). Two different 3D city models are also provided 
as open data, both of which cover the entire city area (Helsinki, 2021b). In addition, a number 
of open interfaces provide data from e.g. city services (Helsinki, 2021a). The 2D map services 
are applied in conjunction with the APIs to produce various applications, such as the 
“Palvelukartta” (eng. Service map) online application (https://palvelukartta.hel.fi/fi/). 
However, the combined use of 3D city models with other data sets or APIs is still more rare. 
 
In the following, we present the technical realization of an application built using the CesiumJS 
framework, utilizing the open geospatial interfaces offered by the City of Helsinki. Out of the 
potential virtual globe platforms, CesiumJS was preferred as it is already applied in a number 
of model viewer applications offered by the city of Helsinki and was thus considered to likely 
offer a high compatibility with existing data sources.  
 
The developed application “Palvelututka” (eng. “Service Radar”) combines the online 
visualization of the Helsinki city information model with the data from application 
programming interface (API) providing information about the services offered in the city. By 
this, we aim to demonstrate the combined use of city APIs and 3D geospatial assets, promote 
their use for application development by third parties and showcase the performance of 
existing, openly available tools for 3D city model application development. The produced 
application is available from the URL: https://foto.aalto.fi/palvelututka/ and its source code can 
be obtained from: https://doi.org/10.5281/zenodo.4550516 The application can be used to 
discover available services in the city based on their location, with a rather limited functionality 
- its main role being that of a technical demonstrator. 
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2.  MATERIALS & METHODS 
 
2.1 Geospatial assets & interfaces 
 
The city information model - Built according to the CityGML standard, the Helsinki city 
information model contains building models corresponding to two levels of detail (LoD): 1 & 
2. The LoD 1 models consist of the building footprint vector extruded, whereas the LoD 2 
contains the simplified roof geometry. Following the specification by Biljecki et al. (2016), 
they would correspond to Lods 1.2 and 2.1. The models are produced from the building 
footprint polygons originating from the base map with airborne laser scanning used to derive 
roof geometries for the LoD 2 building models. The facade textures have been obtained from 
oblique aerial imaging. The model covers the entire city area.  
 
The model is maintained in a postgreSQL database with the 3DCityDB schema. A public 
viewing application is available at: https://kartta.hel.fi/3d/#/ The model can also be downloaded 
as open data from: https://hri.fi/data/en_GB/dataset/helsingin-3d-kaupunkimalli  
  
For use in CesiumJS application, the model was utilized as a 3D Tiles data set directly from 
the city server (kartta.hel.fi). As the model is in a known coordinate system (ETRS-GK25) its 
use in CesiumJS is quite straightforward, and only requires adding the tileset to the CesiumJS 
application. After this, the application controls the loading of model segments according to the 
camera position, as allowed by the 3D Tiles format. The LoD 2 building models are included 
in the 3D Tiles data set. 
 
Cesium World Terrain - As the 3D Tiles data set used for the Helsinki city information model 
only contained the building models, a separate digital terrain model (DTM) was deemed 
beneficial for visualization - otherwise the building models positioned to correct heights would 
have “hovered” over the CesiumJS WGS84 ellipsoid in the visualization.  
 
The Cesium world terrain is a global DTM with a regionally varying resolution, formed as a 
combination of several data sources (https://cesium.com/platform/cesium-ion/content/cesium-
world-terrain/). For Europe, its reported approximate resolution is 30m. The DTM is offered as 
a free asset from the Cesium Ion service, a commercial cloud service for hosting and providing 
assets for CesiumJS applications. 
 
As the heights of the Cesium world terrain do not match the N2000 heights of the Helsinki city 
information model buildings, it was necessary to manually adjust the height position of the 
buildings to approximately match the terrain.  
 
The Guide map of the City of Helsinki was used as the texture for the terrain. It is produced 
by the City of Helsinki, Kaupunkimittauspalvelut (City surveying services) and available in a 
variety of color schemes. Intended to support e.g. navigation and guidance it is simplified to a 
scale of 1:10000 and includes e.g. the road network, buildings, street names and some of the 
main sights in the city (https://hri.fi/data/en_GB/dataset/helsingin-opaskartta) . 
 
In the Palvelututka application, a grayscale version of the guide map was used, being added to 
the CesiumJS application directly from the city WMS interface. The application controls the 
loading of the map as raster tiles according to the camera zoom level and viewing position.  
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The Service Map API of the City of Helsinki was used as the data source describing the 
services offered in the urban environment. This API offers data about the services and service 
points in the Helsinki metropolitan area, along with their details (https://dev.hel.fi/apis/service-
map-backend-api). The API is “RESTful”, (REST, Representational state transfer) meaning 
that it is accessible with HTTP queries, the directory structure and query parameters being 
applicable to narrow down the query and provide specific query terms for the API. 
 
2.2 Software components & functions 
 
The Palvelututka application consists of a set of JS applications and HTML and CSS content, 
that can be hosted on an ordinary web server (Figure 1). The application relies on two external 
libraries that are included in the application, CesiumJS and MDL. In the following, the major 
components of the application are described. 
 

 
Figure 1. Summary of the application components and external assets used. 

 
CesiumJS library, version 1.73 was used as the core of the Palvelututka application, and for 
realizing the majority of the functionalities. Realized with JavaScript, the CesiumJS library 
allows the developer to produce applications that obtain geospatial data from standard 
interfaces (WMS, 3D Tiles) and render it in a web browser.  
 
To keep the user interface of the demonstrator application as simple as possible, the CesiumJS 
application is operated with many of its standard UI elements (e.g. timeline, layer selection 
widget, projection mode selector, home button and geocoding tools) hidden. This was done as 
it was likely that multiple map levels, projection modes, or geocoding would not be required 
in the rather minimalistic demonstrator. In addition the CSS definitions of the entity property 
display elements were modified to alter their appearance by, for example, adding a background 
image. 
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In the Palvelututka application, the default tools offered by the CesiumJS library (apart from 
the UI elements) were used as much as possible. This was to reduce the amount of software 
development required. In the following, we describe the most important elements and their 
utilization in the application. 
 
The DTM was added to the CesiumJS scene as a CesiumTerrainProvider element, using the 
Cesium world terrain directly from the Ion cloud service (https://cesium.com/docs/cesiumjs-
ref-doc/CesiumTerrainProvider.html). The city information model buildings were added as 
Cesium3DTileset, accessing the 3D tiles data directly from the server maintained by the City 
of Helsinki (https://cesium.com/docs/cesiumjs-ref-doc/Cesium3DTileset.html). For plotting 
the results of the API query, the EntityCollection element was utilized 
(https://cesium.com/docs/cesiumjs-ref-doc/EntityCollection.html).  It allows the user to create 
a collection of objects having geographic coordinates and a set of additional information fields, 
that can then easily be drawn on the terrain. Furthermore, the default CesiumJS UI allows their 
information to be queried and displayed to the user by simply clicking on the drawn entity in 
the 3D scene. The Camera element, and its methods were used to realize all camera interactivity 
in the application (https://cesium.com/docs/cesiumjs-ref-doc/Camera.html). The flyTo-method 
allows the developer to conveniently request animated camera flights from the application, 
providing the bounding box of the map area to be displayed. This way, the camera can be 
efficiently used to zoom into a requested object set by only providing their bounding box. 
 
Material Design Lite (MDL) library was used to create most of the user interface elements in 
the Palvelututka application. Consisting of a collection of UI elements built using JS and CSS 
it allows the developer to conveniently specify the needed UI elements in HTML, after which 
most of their functionality and e.g. responsive rendering according to the screen size is carried 
out by the library. Out of the components available in the MLD 
(https://getmdl.io/components/index.html), the menu, cards and buttons were used to create the 
UI for the Palvelututka application. Compared with the default UI elements of the CesiumJS 
library, the MDL allows more dialogue styles and menu structures to be built, opening the route 
for more advanced user interfaces. 
 
Palvelututka.js contains a collection of JavaScript functions for realizing the application. The 
most significant functions are introduced below. These functions were implemented by authors 
to realize the application. After the query functionality is requested by the user, the interface is 
activated to obtain coordinates from the next click on the terrain by setting a binary flag. With 
this activated, the pickEllipsoid method of the default CesiumJS camera is fired. In practice, 
this allows the user to click on the displayed terrain, after which the CesiumJS is used to get 
geographic latitude and longitude for this click event.  
 
The queryServiceMapSpatial function takes the query latitude and longitude (in degrees) as 
arguments, assembles the http query for the Service map api, and after the query is returned, 
initiates the parsing of the query results in a separate function. The query result is obtained as 
a JSON data structure. Prior to plotting, the objects are filtered to remove those that do not 
have location information as they cannot be easily plotted on map. 
 
The plotServiceMapUnits function parses the query result and creates a CesiumJS entity from 
the parsed objects. This is then added to the CesiumJS entity collection, containing all of the 
plotted entities. Prior to appending, the entity collection is checked for duplicate IDs, so 
individual entities are not plotted twice. Here, the entity collection also provides a list of all 
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plotted entities without separate maintenance procedures required. After the parsing is 
complete, a separate function is called to set the UI to the state that allows viewing the results, 
obtain the bounding box for the current entity collection and order a camera animation to view 
these. 
 
AaltoTools.js contains a set of self-developed utilities for manipulating 3D Tiles data sets in 
CesiumJS applications. In the Palvelututka application, the setHeightOffset function is utilized 
for setting the height offset for the Helsinki city information model buildings to better match 
the Cesium world terrain. 
 
 
3.  RESULTS 
 
The complete application, when accessed with a web browser, progresses along the following 
path of functional modes. After loading the MDL, the UI queries the window size, determining 
the menu styles accordingly. After the CesiumJS is loaded, the city information model and 
background map are obtained from the respective city servers and added to the scene. The 
Cesium world terrain is added and the city information model shifted in height to match it 
better. A simple welcome UI is displayed for the user, drawn as a MLD card (Figure 2). From 
the welcome UI, the user can initiate the query of the services. This dismisses the welcome 
card and activates the UI for receiving clicks on the terrain. 
 

 
Figure 2. The application in the initial state. 

 
After the user clicks on the terrain, the geographic latitude and longitude of the click are 
determined and used to perform a spatially limited query from the service map API. The query 
requests 25 closest services within 1000 meters from the clicked location. After the query is 
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completed, the camera is flown to display the results and a UI card is shown announcing to the 
user that query has been completed (Figure 3). 
 

 
Figure 3. Completed query in the UI. 

 
By dismissing the UI card, the user can progress to navigate in the city model and observe the 
query results, their points being colored according to whether the services are public or 
provided by a private company. The labels and their rendering is performed by the default 
functions of the CesiumJS entity collection entities. By clicking on an individual service on the 
map, its information is displayed (Figure 4). The information fields displayed originate from 
the service map API and have been passed with query to the properties of CesiumJS entities. 
The entity information display is realized with the default tools of CesiumJS, albeit with a 
slightly modified style. 
 
The user is provided with buttons to either repeat a query, in which case the new resulting entities 
are added to the current set, or reset the application to its initial state.  
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Figure 4. Viewing the details of an individual result item. 

 
 
4.  DISCUSSION & CONCLUSIONS 
 
Several potential tools are available for developing applications that utilize 3D city models, 
even for browser-based deployments. The combined utilization of standard geospatial 
interfaces and other APIs is a common practice for producing online applications. This case 
study, working with the geospatial data assets of the City of Helsinki, set out to demonstrate 
the use of open APIs with the 3D city model in a browser-based application. As a result, an 
open demonstrator application was developed using the CesiumJS library, allowing users to 
retrieve and visualize data from the city’s service API on top of the 3D city information model. 
As a technical demonstrator, it is not feasible as a replacement for the existing 2D applications, 
as e.g. the query functionalities are far too limited. However, it does successfully combine data 
from the city service API with the 3D city model in visualization. 
 
Looking at the completed demonstrator application, we can identify several aspects that could 
be improved in the future. Firstly, concerning the data sets used, there are mismatches between 
the heights of the city information model buildings and the terrain (Figure 5). This is caused 
by the limited detail level of the global terrain used and the differences in coordinate systems 
between the two. As the Helsinki city surveying regularly undertakes airborne laser scanning 
campaigns and their data is used e.g. for the roof geometries of the LoD 2 building models, it 
would be the best alternative to produce a DTM from this data set. This would also help 
minimize the potential temporal differences between the two data sets. 
 
In addition, this would suit the open data approach as currently the Cesium world terrain is a 
proprietary data set by an individual company. After all, all other data sets in the application 
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are provided openly by municipal actors. However, if done by an external party, this would 
require a separate production of a terrain data set and setting up a system to host it for online 
applications. 
 

 
Figure 5. The mismatch between the terrain and the 3D building models is most pronounced near 

larger terrain forms. 
 
The detail level of the urban visualization is currently sufficient to allow identifying individual 
buildings and street segments from the urban environment. Nevertheless, including other urban 
elements in the 3D city model would further support the human interpretation. Inclusion of e.g. 
trees to CityGML models has been demonstrated in prior research (Virtanen et al., 2021), so 
this remains a data integration task. An alternative approach would be to apply the textured city 
mesh model as it offers a higher degree of visual realism than the city information model, and 
also includes the vegetation elements. 
 
A larger apparent development task would be the tighter integration of service points retrieved 
from the city API with the building information present in the city information model. 
Currently, the points are only visualized according to their coordinates as retrieved from the 
API. By e.g. spatial autocorrelation with building footprint vectors, they could potentially be 
integrated into the building models where appropriate. Thus, the UI could also better use the 
building models for visualization, highlighting e.g. the buildings that provide services of the 
desired nature, such as restaurants. It is questionable whether this data integration could be 
completed in the browser, or whether it would require separate processing steps beforehand. 
 
A similar task of data improvement would be adding further fields of information to the register 
behind the service map API. This could include, for example, URLs to images or other 
documents better describing the service or their classification into sub-categories for more 
refined queries, for example retrieving all parking services simultaneously. However, this 
would most likely require changes to the data offered by the used APIs. While the data can of 
course be processed in the browser prior to visualization, it is most likely unfeasible to perform 
significant additions or revisions in this stage. 
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Naturally the application itself could also be refined further. Currently, it merely demonstrates 
that it is possible to create these kinds of online applications that merge 3D geoinformation 
with API data. For developing an actually useful tool for e.g. discovering urban services, 
several aspects of the application would require further design and development. These include 
at least refining the query UI to allow more complex search criteria and using other search 
operations than just location with closest points. Here, many of the UI conventions could likely 
be adapted from the current 2D services. Additionally, only presenting the results spatially is 
not likely that useful for the user but might be supported e.g. with a listing. In presenting the 
results as points on the map, their presentation could be improved by applying common 
conventions from cartography, such as symbols and color coding and revising the camera 
movement logic when presenting the results. Many of these improvements could likely be 
realized with the currently applied technologies but their implementation would require 
significant additional work. As stated, the applied MDL library supports the creation of more 
complex user interfaces. For more advanced geospatial features, such as managing multiple 
map layers or temporal data, the default elements of the CesiumJS UI could likely be used. 
Going beyond the existing data sets and rendering pipeline, alternative styles of 3D presentation 
emphasizing simplification and readability have also been suggested (Semmo et al., 2015). 
 
On the other hand, even the current version clearly demonstrates the potential and simplicity 
of building applications that leverage standardized geospatial interfaces in CesiumJS. In this 
case, the 3D city model, terrain and background map were all brought together without any 
self-developed processes or middleware. This is highly significant as it greatly simplifies the 
development and maintenance of the produced applications. Providing novel server-side 
infrastructure and functionality is potentially time consuming and also results in some operating 
costs. At the same time, conventional web-hosting is widely available and fairly affordable. 
 
The benefits of directly using the data from city servers via interfaces is also apparent: there 
are no outdated copies on own servers, nor do these additional content servers have to be 
maintained. As the municipality officials update the map data, 3D city model or registers that 
are present via the APIs, all data in the application is automatically up-to-date. In addition to 
the conventionally used geospatial interfaces, the benefits of “RESTful” APIs are also 
demonstrated. As the application operates in a browser, using APIs that rely on http requests 
and data as JSON, their use is extremely simple and can be achieved without additional JS 
libraries. This also reduces the effort required to maintain these applications. It is also clear 
that these API queries can be combined with the visualization possibilities of virtual globes 
rather easily. This is the main technical contribution of the developed demonstrator application. 
 
Combined, the experiences of using the various interfaces are largely positive. They firstly 
offer some confirmation to the idea that providing open API services could potentially support 
the creation of new services - even independent of the municipal actors. Secondly, it appears 
that new services could potentially arise from combinations of existing interfaces and assets 
and that current technologies can support the creation of these combinations. Finally, they 
display potential for creating applications that combine data from multiple actors, e.g. different 
officials, as long as these data are available via similar interfaces. 
 
To conclude, the obtained insight into developing online applications that leverate 3D city 
models - either as “core data” or simply to provide a 3D scene to support visualization of other 
data looks increasingly promising. The potential reached by individual developers mostly 
applying open-source tools and open services is already quite significant and the existing APIs 
are clearly able to support this development. 
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