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Shaoxiong Ji *, Matti Hölttä, Pekka Marttinen 
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A B S T R A C T   

Unsupervised pretraining is an integral part of many natural language processing systems, and transfer learning 
with language models has achieved remarkable results in downstream tasks. In the clinical application of medical 
code assignment, diagnosis and procedure codes are inferred from lengthy clinical notes such as hospital 
discharge summaries. However, it is not clear if pretrained models are useful for medical code prediction without 
further architecture engineering. This paper conducts a comprehensive quantitative analysis of various contex-
tualized language models’ performances, pretrained in different domains, for medical code assignment from 
clinical notes. We propose a hierarchical fine-tuning architecture to capture interactions between distant words 
and adopt label-wise attention to exploit label information. Contrary to current trends, we demonstrate that a 
carefully trained classical CNN outperforms attention-based models on a MIMIC-III subset with frequent codes. 
Our empirical findings suggest directions for building robust medical code assignment models.   

1. Introduction 

Clinical notes generated by healthcare professionals are parts of 
electronic health records and provide an essential source for intelligent 
healthcare applications [1]. Medical information management aims to 
assign standard medical codes to each clinical document for categori-
zation purposes, which requires professional medical knowledge and is 
usually costly and error-prone [2,3]. The International Classification of 
Diseases (ICD) system, as the most used coding system, provides a global 
standard for reporting diseases and health conditions. The rapid devel-
opment of machine learning and natural language processing (NLP) can 
replace manual code assignment with automatic coding systems [4–6]. 
Practical medical code assignment requires to capture semantic concepts 
[7] and tackle the challenges of lengthy note encoding and 
large-dimensional code schemes. 

Pretrained language models (PTM) such as BERT [8] learn contex-
tualized text representation and have started a new era in NLP. NLP 
applications benefit from large-scale pretraining on massive corpora, 
and universal language representations from PTMs have been success-
fully utilized in downstream tasks via transfer learning. In the field of 
clinical NLP, incorporating pretrained contextualized language models 
to encode lengthy clinical notes for large-scale medical code prediction 
has not been well-studied. Recently, Refs. [9–11] performed preliminary 

experiments with pretrained models; however, these three pilot studies 
failed to achieve satisfactory results or provide in-depth analysis. 

This paper investigates language models pretrained in various do-
mains. A language domain here defines a distribution over a topical field 
such as biomedical documents and clinical notes. Specifically, we 
investigate the following three research questions (RQ1-3).  

RQ1 What kind of BERT pretraining works best? We adopt domain- 
specific corpora and BERT variants pretrained with different 
domain adaptation illustrated in Fig. 1, and compare their per-
formance on the MIMIC-III benchmark.  

RQ2 What kind of BERT fine-tuning formulation works best for long notes? 
We employ classical fine-tuning, develop a hierarchical archi-
tecture for long clinical notes, and consider label-aware feature 
representation.  

RQ3 Are BERT models better than convolution-based approaches? We 
reproduce convolutional neural networks (CNNs) with classical 
pretrained word embeddings and conduct a comparison. 

Understanding medical text is a long-lasting research problem. We 
study an essential task in medical information management and diag-
nosis support - medical code assignment, assigning medical codes to 
clinical notes. Language models can either be pretrained using a large 
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corpus of medical text or trained from scratch and fine-tuned for a 
specific task. Several pretrained models have been published for medical 
NLP, and they differ in the collections of medical texts used for pre-
training, e.g., biomedical, clinical, and medical-related social domains. 
We study the usefulness and relative merits of these different pretrained 
models and suggest improvements to the neural network architecture to 
improve performance with long notes: a hierarchical model for longer 
notes and label-wise attention to leverage relevant information about 
medical codes. Despite our careful attempts, we nevertheless find that 
fine-tuning pretrained models performs worse than carefully training 
conventional neural architectures from scratch. Hence, our results pro-
vide practical guidance for building medical information management 
systems: pretrained models offer a convenient plug-and-play solution; 
however, training robust existing standard models offers an appealing 
practical alternative with good performance in practice. 

Our contributions are as follows. 

● This paper conducts a comprehensive quantitative study to investi-
gate the effect of knowledge transfer via mixed-domain and task- 
adaptive language model pretraining in different domains, and a 
thorough comparative study to answer the research questions.  

● We propose a hierarchical BERT architecture with a label attention 
mechanism to enhance contextualized representation with label 
awareness for long clinical notes.  

● We demonstrate that the classical CNN model with appropriate 
training can improve the predictive performance, achieving new 
state-of-the-art results on frequent medical codes (MIMIC-III top-50 
dataset). 

2. Related work 

Rule-based and machine learning-based methods have been studied 
for diagnosis code assignment from clinical notes [12,13]. Ref. [13] 
proposed an SVM-based classification algorithm with a flat and 
hierarchy-based classifier. Recently, the research trend turns to deep 

neural networks. Convolutional neural networks are one popular cate-
gory with many model architecture proposed, including CAML that 
applies CNNs and a label-wise attention mechanism [14], MultiResCNN 
that uses residual connection [9] and DCAN that utilizes dilated con-
volutions [15]. Recurrent neural networks are also extensively studied 
to capture sequential dependency in clinical notes. Such recurrent 
models include AttentiveLSTM [16], HA-GRU [17] and 
tree-of-sequences LSTM network [18] Attention mechanism for match-
ing important diagnosis snippets is widely integrated into CNN- and 
RNN-based models [11,16]. CAML [14] introduced a label-wise atten-
tion mechanism to learn label-aware document representations. 

Understanding clinical notes require professional medical knowl-
edge. Many methods incorporate external knowledge sources to enhance 
neural architectures and facilitate clinical text understanding. Ref. [19] 
proposed a condensed memory network model with iterative conden-
sation of external memory for network updating and data retrieval from 
Wikipedia. Ref. [20] used Wikipedia articles of medical codes to learn 
knowledge-aware embeddings jointly, and [21] utilized ICD code hier-
archy with hyperbolic representation. Another direction to incorporate 
knowledge is through language pretraining and transfer learning. Refs. 
[9] and [10] reported preliminary results with semantic knowledge 
transferring. This paper conducts a comprehensive quantitative analysis. 

Pretrained language models are trained on an auxiliary task, such as 
masked language modeling that predicts a word or sequence based on 
the surrounding context and gains improvement in many NLP tasks [22]. 
Pretraining such auxiliary tasks benefit from large-scale training on 
unlabeled corpora that are readily available from the web or textbooks. 
Ref. [23] hypothesized that pretraining acts as a type of regularization 
and found that pretrained models exhibit lower generalization errors on 
average. Several pretraining models in specific domains have been 
released, such as BioBERT [24] and ClinicalBERT [25]. They have also 
been applied in many domain applications; for example, [26] applied 
contextualized language models for phenotyping and [27] used pre-
trained models to encode clinical notes to predict hospital readmission. 

Fig. 1. Fine-tuning for ICD coding with pretraining in different domains: general, closely related, target, or mixed-domain pretraining.  
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3. Method 

We develop fine-tuning with different architectures, including a 
fully-connected classifier and a hierarchical classifier with an extra 
transformer atop (Fig. 2) to address the long-document challenge. Label- 
wise attention to learn label-aware document representations with these 
two fine-tuning architectures is described in Section 3.3. 

3.1. Pretraining domains 

We study three types of domains: 1) general domains such as book 
corpora and general Wikipedia articles; 2) domains that are closely 
related to the target clinical domain; 3) the target clinical domain. 
Assigning ICD codes from clinical notes is a task in the clinical domain. 
We consider biomedical and health-related social domains as candidate 
domains closely related to the clinical domain. Inspired by domain- and 
task-adaptive pretraining [28], we investigate different ways of pre-
training models for medical code assignment: 1) pretrain only on general 
domains and immediately transfer to the target clinical domain; 2) 
continue pretraining on close domains and clinical domains such as the 
biomedical domain, and transfer to the target clinical domain 3) pretrain 
on close domains from scratch and transfer to the target clinical domain; 
4) pretrain on mixed domains and further fine-tune on the target 
domain. The details of methods that fall into these classes can be sum-
marized with three categories: 

Pretraining in general domains does not involve specific topics or 
genres. We use BERT [8] pretrained on two unsupervised prediction 
tasks, i.e., masked language model and next sentence prediction, using 
the BooksCorpus [29] and English Wikipedia. 

Mixed-domain pretraining contains a mixture of domains. We 
consider continued training and training from scratch. Domain-adaptive 
pretraining has been validated for the ability to improve the predictive 
performance [28] further. We use 1) BlueBERT [30] pretrained with 
PubMed text and MIMIC-III clinical notes; 2) BioBERT [24] continually 
pretrained on domain-specific data from PubMed abstracts and PMC 
full-text articles; 3) BioRedditBERT [31] initialized from BioBERT and 
continually pretrained on health-related posts from health-themed fo-
rums in Reddit; 4) PubMedBERT [32] domain-specific pretrained from 
scratch in biomedical domain using PubMed publications; and 5) Sap-
BERT [33] that benefits from self-aligning biomedical entities to the 
Unified Medical Language System (UMLS) ontology and non-parametric 
metric learning, leading to a better-separated embedding space. 

In-domain continued pretraining continues pretraining in the 
target clinical domain, which is also called task-specific pretraining [28, 
34]. We use the ClinicalBERT [25] with the second phase of pretraining 
in the clinical domain using clinical notes and discharge summaries. 

3.2. Fine-tuning with hierarchical structure 

Clinical notes, consisting of patient history and discharge summaries, 
are often long documents. To address this, we develop two fine-tuning 
strategies, one based on the straightforward truncation and the other 
with hierarchical architecture. In the first approach, we truncate clinical 
notes to 512 tokens, take the final hidden state of the first token [CLS] as 
the pooled representation of the truncated note (denoted as C ∈ Rdh ), 
and apply a fully connected network (FCN) as the classifier with sigmoid 
activation to predict output probabilities. This straightforward fine- 
tuning structure is denoted as BERT-trun, and it serves as the baseline. 

Besides, we propose a hierarchical fine-tuning structure to deal with 
long notes, shown in Fig. 2. The lengthy clinical notes (with more than 
512 tokens) are first divided into several shorter subsequences to build 
the lower-level contextualized representation. An additional trans-
former network [35] is built atop to capture the second-level sequential 
dependencies between the note segments. The classifier follows the 
same setup of the truncated version, i.e., FCN with sigmoid. We call this 
hierarchical structure BERT-hier. 

The learning objective function adopts the binary cross entropy loss 
denoted as: 

ℒ =
∑m

i=1
[ − yilog(ŷi) − (1 − yi)log(1 − ŷi) ], (1)  

where yi ∈ {0, 1} is the ground-truth label, ŷi is the sigmoid score for 
prediction, and m is the number of ICD codes. We use the AdamW 
optimizer [36] to fine-tune the model with backpropagation. 

3.3. Label-wise attention 

To further connect the document representation with label infor-
mation, we introduce label-wise attention [14] in the fine-tuning pro-
cedures. The label attention network (LAN) prioritizes essential 
information in the hidden note representation relevant to the medical 
ICD codes. The LAN calculates the attention score A ∈ Rn×m, which 
measures the importance between each pair of medical codes and words 
in the document. It is defined as a dot product: 

A = Softmax(HU), (2)  

where H ∈ Rn×h is the hidden encoding of the BERT encoder’s last layer, 
U ∈ Rh×m is the parameter matrix of the label attention layer (also 
known as the query), n is the number of tokens in the document, h is the 
hidden representation dimension, and m is the number of ICD codes. The 
attention layer’s output is then calculated by multiplying attention A 
with the hidden representation from the last layer of BERT encoder. The 
attentive representation V ∈ Rm×h formalized as V = ATH is further used 

Fig. 2. Hierarchical BERT dealing with long clinical notes.  
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for medical code classification, representing sequential dependency and 
label awareness. The BERT-trun and BERT-hier fine-tuning architectures 
can both integrate the label-wise attention mechanism. 

3.4. Experimental setup 

This paper focuses on assigning ICD codes to textual discharge 
summaries from a hospital stay. The Medical Information Mart for 
Intensive Care III (MIMIC-III) repository [37] contains patients admitted 
to the Intensive Care Unit (ICU) at a US medical center from 2001 to 
2012. The MIMIC database is available by request via this website https 
://mimic.physionet.org. We use the “noteevents” table in the latest 
release of version 1.4 with a total of 58,576 hospital admissions. Spe-
cifically, free-text discharge summaries are extracted. Two settings are 
used for experimental evaluation. One uses the top 50 frequent labels 
derived from Ref. [16]; while another uses the full set of ICD codes. 
Table 1 shows a statistical summary of two sets of MIMIC data. 

3.4.1. Preprocessing 
We use raw notes, ICD diagnoses, and procedures for patients from 

the public clinical MIMIC-III dataset for experiments. Discharge sum-
maries labeled with a set of ICD-9 diagnosis and procedure codes include 
descriptions of procedures performed by a physician, diagnosis notes, 
patient’s medical history, and discharge instructions. Addenda of ad-
missions are concatenated to a single document. The NLTK package is 
utilized for tokenization, and all tokens are converted into lowercase. 
Non-alphabetic characters, such as numbers and punctuations, are 
removed. All documents are truncated at 512 tokens and 2500 tokens for 
a single BERT encoder (BERT-trun) and hierarchical BERT encoders 
(BERT-hier). 

3.4.2. Training 
For the prior publications and the recommendation of fine-tuning the 

BERT model, we choose some common settings. For example, the 
dropout probability is 0.1. The Adam optimizer [38] is used to optimize 
CNN-based models, and the AdamW optimizer [36] to fine-tune BERT 
variants. We utilize a linear learning rate scheduler with warmup and 
layer-wise learning rates when fine-tuning BERT-based models. For 
retraining the CNN-based models, we use the CBOW of word2vec [39] 
and adopt static word embeddings. We set the batch size for MIMIC-III 
top-50 and full sets at 8, and the learning rate from 1e− 6 to 1e− 3. 

All the models are run on a Linux cluster with Nvidia P100 or V100 
GPUs. For the MIMIC-III top-50 data set, the fine-tuning architecture 
with truncated notes and a linear classifier has about 109 M parameters. 

In comparison, the MIMIC-III full set takes about 115 M parameters. For 
the hierarchical architecture, MIMIC-III top-50 and full codes data sets 
have 115 M and 128 M parameters, respectively. Generally speaking, 
fine-tuning pretrained models consumes the memory of a large GPU; 
however, it is arguably less expensive than training from scratch. 

4. Results 

We conduct a series of experiments with different pretrained models 
on various domains using two fine-tuning architectures and reproduce 
classical CNN-based models with word embeddings from scratch. We 
make our code publicly available at https://agit.ai/jsx/MCA_BERT. 

Different evaluation metrics are utilized for experimental evaluation, 
including micro and macro F1 scores and area under the receiver 
operating characteristic curve (AUC-ROC). We evaluate the metrics of 
precision at k, where k = 5 for MIMIC-III subset with top-50 frequent 
codes and k = 8, 15 for full sets of MIMIC-III, given the observation that 
most medical documents are assigned no more than 20 codes. For 
example, the macro precision is calculated as the overall average pre-
cision across all labels, given by: 

 Macro − Precision  =
1
m

∑m

ℓ=1

TPℓ

TPℓ + FPℓ
,

where TPℓ and FPℓ are the numbers of true and false positives of code ℓ. 
Micro scores give more weight to frequent labels by considering all la-
bels jointly. For example, the micro precision is defined as: 

 Micro − Precision  =
∑m

ℓ=1TPℓ
∑m

ℓ=1TPℓ + FPℓ
.

4.1. Pretraining in close domains improves prediction (RQ1) 

This section studies pretraining in different domains (Sec. 3.1) to 
evaluate which pretraining scheme works best for medical coding in the 
clinical domain. Results on MIMIC-III top-50 and full code set are shown 
in Table 2, where hierarchical fine-tuning architecture is used. Overall, 
pretraining in mixed domains improves predictive performance to some 
extent over the BERT-base pretrained in general domains. These results 
show the effectiveness of transfer learning to enhance the learning ca-
pacity on downstream tasks. Among all pretrained models from various 
domains, PubMedBERT pretrained from scratch on biomedical article 
corpora gains a comparatively better performance. Specifically, it leads 
to improvements of 3.9% and 3.3% for F1 macro and micro scores on the 
MIMIC-III top-50 code set. One possible explanation is that specific 
domain pretraining makes downstream classifier concentrate on speci-
fied semantic knowledge. While for ClinicalBERT with three types of 
domain, the model’s attention may be distracted from relatively broad 
information. However, it still performs better than BERT-base with se-
mantic knowledge only from general domains. 

Table 1 
A statistical summary of datasets.  

Dataset Train Dev. Test Labels 

MIMIC-III top-50 8066 1573 1729 50 
MIMIC-III full 47,723 1631 3372 8921  

Table 2 
Results of PLM fine-tuning with BERT-hier + LAN in various domains on MIMIC-III dataset with top-50 and full ICD codes. Clinical notes are truncated at length of 
2500. Hierarchical fine-tuning structure with label-wise attention is used. Bold text denotes the best and italic text denotes the second best.  

Model MIMIC-III Top-50 Codes MIMIC-III Full Codes 

AUC-ROC F1 P@5 AUC-ROC F1 P@8 P@15 

Macro Micro Macro Micro Macro Micro Macro Micro 

BERT-base 82.7 86.3 40.8 50.8 52.2 82.2 96.6 5.8 44.1 63.3 48.1 
BlueBERT 89.4 92.0 61.0 65.6 62.8 84.4 97.5 5.1 42.5 62.6 47.3 
BioBERT full text 88.8 91.7 60.4 66.0 63.1 85.2 97.4 6.4 47.0 65.8 50.7 
BioRedditBERT 87.1 89.6 59.4 64.8 62.4 86.5 98.0 3.0 40.6 62.4 47.8 
PubMedBERT full text 88.6 90.8 63.3 68.1 64.4 87.4 98.1 4.3 44.5 65.2 50.4 
SapBERT full text 88.5 90.8 62.2 66.7 63.1 86.4 97.7 6.2 46.8 68.5 53.0 
ClinicalBERT all notes 89.2 91.6 59.5 64.8 62.0 84.7 97.4 6.0 46.6 65.1 49.9  
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4.2. Effect of pretraining with more data (RQ1) 

Can a larger pool of unsupervised pretraining data lead to perfor-
mance gain in downstream clinical prediction? To answer this question, 
we conduct experiments on the effect of more pretraining data using 
three groups of pretrained model. In the biomedical domain, there are 
200K abstracts from PubMed and 270K full-text articles from PubMed-
Central. For the clinical domain, The CATEGORY value of the MIMIC-III 
dataset includes ‘Discharge Summary’, ‘ECG’, ‘Radiology’, and ‘Echo’. 
‘Discharge summary’ indicates that the note is a discharge summary. 
Besides, there are also other free-text notes. For example, ‘Report’ in-
dicates a full report, and ‘Addendum’ indicates an additional text added 
to the previous report. 

The results with BERT-hier fine-tuning architecture on two sets of the 
MIMIC-III dataset are shown in Table 3. We also study the effect using 
truncated short notes with fully connected tuning architecture, with 
results reported in Table 4. These two tables suggest that pretraining 
with more data leads to better performance in most cases. 

4.3. Hierarchical fine-tuning improves prediction (RQ2) 

This section answers to the second research question (RQ2) by 
comparing the BERT-trun and BERT-hier fine-tuning architectures. 
Table 5 shows the results on the MIMIC-III top-50 code set using the two 
fine-tuning architectures when used either with a fully connected clas-
sifier or the label attention network. Our results are slightly better than 
the preliminary results reported by Ref. [10] with appropriate training 
tricks. Mixed domain pretraining models, such as PubMedBERT and 
ClinicalBERT, gain increases in evaluation scores. However, most 
BERT-trun variants’ predictive performance suffers due to the lack of 
information when long notes are truncated into short ones. These results 
show that the proposed hierarchical fine-tuning architecture effectively 
utilizes long sequences and boosts performance. The label-wise attention 
mechanism can further improve the prediction in most cases. 

4.4. Reproducing CNN outperforms advanced methods on frequent codes 
(RQ3) 

Several recent advances for medical code assignment are CNN-based 
models. This section investigates whether improved training of CNN can 

Table 3 
Effect of more pretraining data with BERT-hier + LAN on MIMIC-III dataset with top-50 and full ICD codes. Clinical notes are truncated at length of 2500. Bold text 
denotes better performance.  

Model MIMIC-III Top-50 Codes MIMIC-III Full Codes 

AUC-ROC F1 P@5 AUC-ROC F1 P@8 P@15 

Macro Micro Macro Micro Macro Micro Macro Micro 

PubMedBERT abstract 90.1 92.5 62.3 67.0 63.8 85.2 97.1 5.8 37.5 66.6 50.4 
PubMedBERT full text 88.6 90.8 63.3 68.1 64.0 87.4 98.1 4.3 44.5 65.2 51.7 
BioBERT abstract 89.4 91.6 59.5 64.8 62.7 84.5 97.3 6.3 46.5 65.3 50.0 
BioBERT full text 88.8 91.7 60.4 66.0 63.1 85.2 97.4 6.4 47.0 65.8 50.7 
ClinicalBERT disch. sum. 88.7 91.4 60.6 65.9 62.6 82.9 96.6 6.2 45.0 63.8 48.7 
ClinicalBERT all notes 89.2 91.6 59.5 64.8 62.0 84.7 97.4 6.0 46.6 65.1 49.9  

Table 4 
Effect of more pretraining data with BERT-trun on MIMIC-III top-50 code set. 
Clinical notes truncated at length of 512. Bold text denotes better performance.  

Model AUC-ROC F1 P@5 

Macro Micro Macro Micro 

PubMedBERT abstract 82.4 85.9 47.5 54.8 54.7 
PubMedBERT full text 82.1 84.4 52.6 57.3 55.7 
BioBERT abstract 80.9 83.6 48.9 54.8 54.0 
BioBERT full text 81.8 84.3 50.5 55.4 54.5 
ClinicalBERT disch. sum. 81.8 84.2 49.7 55.8 54.9 
ClinicalBERT all notes 82.3 85.3 50.6 56.9 55.7  

Table 5 
Results on MIMIC-III top-50 code set fine-tuning with BERT-trun and BERT-hier 
with FCN or LAN.  

Model AUC-ROC F1 P@5 

Macro Micro Macro Micro 

BERT-base-trun + FCN 80.1 83.0 46.3 51.6 51.1 
BERT-base-hier + FCN 85.4 88.4 53.1 59.4 57.6 
BERT-base-hier + LAN 83.7 86.5 48.1 54.2 53.5 
BlueBERT-trun + FCN 78.2 82.1 23.7 36.6 45.9 
BlueBERT-hier + FCN 89.1 91.8 59.9 65.1 62.5 
BlueBERT-hier + LAN 89.4 92.0 61.0 65.6 62.8 
BioBERT-trun + FCN 81.8 84.3 50.5 55.4 54.5 
BioBERT-hier + FCN 87.3 89.5 59.9 65.6 62.7 
BioBERT-hier + LAN 88.8 91.7 60.4 66.0 63.1 
BioRedditBERT-turn + FCN 80.7 83.5 49.3 55.5 53.8 
BioRedditBERT-hier + FCN 87.0 89.4 59.1 64.2 61.9 
BioRedditBERT-hier + LAN 87.1 89.6 59.4 64.8 62.4 
PubMedBERT-trun + FCN 82.1 84.4 52.6 57.3 55.7 
PubMedBERT-hier + FCN 88.8 91.4 57.7 64.2 62.2 
PubMedBERT-hier + LAN 88.6 90.8 63.3 68.1 64.4 
SapBERT-trun + FCN 82.3 84.8 51.2 56.8 55.2 
SapBERT-hier + FCN 88.5 90.3 63.3 67.3 63.8 
SapBERT-hier + LAN 88.5 90.8 62.2 66.7 63.1 
ClinicalBERT-trun + FCN 82.3 85.3 50.6 56.9 55.7 
ClinicalBERT-hier + FCN 87.2 90.7 54.6 62.5 60.7 
ClinicalBERT-hier + LAN 89.2 91.6 59.5 64.8 62.0  

Table 6 
Results of retrained CNNs on MIMIC-III with top-50 and full ICD codes. Bold text denotes the new state of the art obtained by an old model.  

Model MIMIC-III Top-50 Codes MIMIC-III Full Codes 

AUC-ROC F1 P@5 AUC-ROC F1 P@8 P@15 

Macro Micro Macro Micro Macro Micro Macro Micro 

CNN (Kim, 2014) 87.6 90.7 57.6 62.5 62.0 80.6 96.9 4.2 41.9 58.1 44.3 
CAML (Mullenbach et al., 2018) 87.5 90.9 53.2 61.4 60.9 89.5 98.6 8.8 53.9 70.9 44.5 
MultiResCNN (Li and Yu, 2020) 89.9 92.8 60.6 67.0 64.1 91.0 98.6 8.5 55.2 73.4 58.4 
HyperCore (Cao et al., 2020) 89.5 92.9 60.9 66.3 63.2 93.0 98.9 9.0 55.1 72.2 57.9 
CNN (retrained) 90.8 93.1 62.4 67.1 64.0 85.0 97.4 5.9 36.5 49.0 39.4  
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improve prediction. Inspired by performance improvement owing to 
training tricks, we reproduce the CNN model to check if appropriate 
training strategies can lead to better scores. 

4.4.1. Baselines 
CNN [40] is built on pre-trained word vectors with 1D convolution 

and max-pooling for text classification. CAML [14] integrates CNNs and 
a label-wise attention mechanism to learn rich representations. It has a 
variant called DR-CAML that uses ICD code descriptions to regularize 
the loss function. MultiResCNN [9] combines residual learning [41] and 
multiple channels concatenation with different convolutional filters, 
achieving good performance in most settings. HyperCore [21] utilizes 
hyperbolic embedding and co-graph representation with code hierarchy. 
It gains slightly better performance than the MultiResCNN. 

4.4.2. Reproducing CNNs 
Table 6 shows the reproduced results compared with baselines. The 

hyper-parameters are as follows: the learning rate is 0.003, the filter size 
is 4, the number of filters is 500, the dropout probability is 0.2, and 
word2vec embeddings are static. Our retrained vanilla CNN gains a 
better performance compared with two recent advanced MultiResCNN 
[9] and HyperCore [21] on the MIMIC-III top-50 code dataset. More-
over, the P@15 score of the retrained CAML model leads to a significant 
performance increase in the MIMIC-III full code dataset. These results 
suggest that a simple model with appropriate training could achieve 
decent performance in NLP applications such as this clinical application. 

How did the CNN- and BERT-based models perform on the full code 
set? We bin ICD codes into different groups according to the frequency 
observed in the training set of the MIMIC-III full code dataset to study 
the effect of code frequency on the model’s predictive performance. We 
take ClinicalBERT as a clinical note encoding representative and 
compare three fine-tuning strategies with CNN and CAML model. Fig. 3 
shows models’ predictive behavior on frequent and less frequent codes 
taking F1 scores as the evaluation metrics. These two figures show that 
all compared models’ predictive performance decreases when the ICD 
code groups have fewer training samples. When dealing with few-shot 
codes, model performance drops sharply. These results again suggest 
that medical code prediction algorithms should focus on less frequent 
codes and enhance the robustness of less frequent codes. 

4.5. Discussion 

Pretrained models in both general and specific domains have shown 
effectiveness in capturing contextual information. However, they 
encounter limitations in this study. In the dataset with top-50 frequent 
codes, fine-tuning with pretrained models can achieve a good perfor-
mance; however, the PTM fine-tuning does not work well for high- 
dimensional structured prediction with a full label set that has more 
than 8000 labels. This study suggests focusing on less frequent codes. 

Self attention-based models suffer from the complexity of O(n2d), 
where n is the sequence length, and d is the dimension of hidden 

representation, making it hard to encode extremely long documents. We 
investigated how to incorporate the pretrained BERT model and its 
variants with hierarchical fine-tuning architecture to tackle lengthy 
clinical document encoding. Nevertheless, CNN-based models [15,9,14] 
and RNN-based models [16] perform considerably well with the rela-
tively small model scale and remain a meaningful direction. Recently, 
some improved transformer-based models such as Longformer [42], 
Linformer [43] and Big Bird [44] aim to solve the problem of encoding 
long document and mitigating the quadratic complexity. We leave these 
emerging models as future work. 

5. Conclusion 

This paper presented a comprehensive quantitive analysis of medical 
code assignment from clinical notes using various pretrained models 
with BERT. We compared the behavior of several different domain- 
specific BERT variants. To solve the problem of lengthy clinical note 
encoding, we developed two fine-tuning architectures: 1) fully con-
nected network with simple truncation into short notes; 2) hierarchical 
fine-tuning architecture with long note segmentation and an additional 
Transformer on top. Moreover, we employed label attention to facilitate 
label-aware representation learning. Through intensive experiments, we 
found that the magic of BERT does not apply to the task of assigning ICD 
codes from clinical notes. In contrast, we found that a simple CNN 
trained from scratch can achieve superior predictive performance on 
frequent codes, achieving a new state of the art in the MIMIC-III top-50 
dataset. This demonstrates how recent training strategies can improve 
old models. Our results furthermore suggest that medical code assign-
ment algorithms should pay more attention to less frequent codes. 
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Fig. 3. F1 scores of different models on the MIMIC-III full code dataset (8922 labels). Code frequency groups are sorted in ascending order from left to right.  
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[11] H. Dong, V. Suárez-Paniagua, W. Whiteley, H. Wu, Explainable automated coding 
of clinical notes using hierarchical label-wise attention networks and label 
embedding initialisation, J. Biomed. Inf. Elsevier (2021). 

[12] J. Medori, C. Fairon, Machine learning and features selection for semi-automatic 
ICD-9-CM encoding, in: Proceedings of the NAACL HLT 2010 Second Louhi 
Workshop on Text and Data Mining of Health Documents, Association for 
Computational Linguistics, 2010, pp. 84–89. 

[13] A. Perotte, R. Pivovarov, K. Natarajan, N. Weiskopf, F. Wood, N. Elhadad, 
Diagnosis code assignment: models and evaluation metrics, J. Am. Med. Inf. Assoc. 
21 (2) (2014) 231–237. 

[14] J. Mullenbach, S. Wiegreffe, J. Duke, J. Sun, J. Eisenstein, Explainable prediction 
of medical codes from clinical text, in: Proceedings of NAACL-HLT, 2018, 
pp. 1101–1111. 

[15] S. Ji, E. Cambria, P. Marttinen, Dilated convolutional attention network for 
medical code assignment from clinical text, in: Proceedings of the 3rd Clinical 
Natural Language Processing Workshop, Association for Computational Linguistics, 
2020. 

[16] H. Shi, P. Xie, Z. Hu, M. Zhang, E.P. Xing, Towards Automated ICD Coding Using 
Deep Learning, arXiv preprint arXiv:1711.04075, 2017. 

[17] T. Baumel, J. Nassour-Kassis, R. Cohen, M. Elhadad, N. Elhadad, Multi-label 
classification of patient notes: case study on ICD code assignment, in: Workshops at 
the Thirty-Second AAAI Conference on Artificial Intelligence, 2018. 

[18] P. Xie, E. Xing, A neural architecture for automated icd coding, Long Papers, in: 
Proceedings of the 56th Annual Meeting of the Association for Computational 
Linguistics, vol. 1, 2018, pp. 1066–1076. 

[19] A. Prakash, S. Zhao, S.A. Hasan, V. Datla, K. Lee, A. Qadir, J. Liu, O. Farri, 
Condensed memory networks for clinical diagnostic inferencing, in: Thirty-First 
AAAI Conference on Artificial Intelligence, 2017. 

[20] T. Bai, S. Vucetic, Improving medical code prediction from clinical text via 
incorporating online knowledge sources, in: The World Wide Web Conference, 
2019, pp. 72–82. 

[21] P. Cao, Y. Chen, K. Liu, J. Zhao, S. Liu, W. Chong, HyperCore: Hyperbolic and Co- 
graph representation for automatic ICD coding, in: Proceedings of the 58th Annual 
Meeting of the Association for Computational Linguistics, 2020, pp. 3105–3114. 

[22] Q. Xipeng, S. TianXiang, X. Yige, S. Yunfan, D. Ning, H. Xuanjing, Pre-trained 
models for natural language processing: a survey, Sci. China Technol. Sci. 63 
(2020) 1872–1897. 

[23] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, S. Bengio, Why does 
unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11 (2010) 
625–660. 

[24] J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C.H. So, J. Kang, BioBERT: a pre-trained 
biomedical language representation model for biomedical text mining, 
Bioinformatics 36 (4) (2020) 1234–1240. 

[25] E. Alsentzer, J. Murphy, W. Boag, W.-H. Weng, D. Jindi, T. Naumann, 
M. McDermott, Publicly available clinical BERT embeddings, in: Proceedings of the 
2nd Clinical Natural Language Processing Workshop, 2019, pp. 72–78. 

[26] A. Mulyar, E. Schumacher, M. Rouhizadeh, M. Dredze, Phenotyping of Clinical 
Notes with Improved Document Classification Models Using Contextualized Neural 
Language Models, arXiv preprint arXiv:1910.13664, 2019. 

[27] K. Huang, J. Altosaar, R. Ranganath, ClinicalBERT: Modeling Clinical Notes and 
Predicting Hospital Readmission, arXiv preprint arXiv:1904.05342, 2019. 
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