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Abstract 
 

Water is an essential resource for human society. Numerous approaches have been developed in 

order to assess the availability of water for our societies. Information on the availability of water 
is readily available from various databases, which, however, often come in spatial aggregation 

which is too coarse for detailed analysis or local use cases. In this research, we propose a 
Process-Aware Interpolation (PAI) technique based on previous research in advanced areal 

interpolation. In areal interpolation, the value of a variable from a source zone is reallocated 

among intersecting target zones. In PAI, ancillary information on process which causes the values 
being interpolated is used to improve the quality of interpolation.  

We test the PAI methodology in a surrogate modelling context by downscaling runoff outputs 

from the Community Water Model (CWatM) at 30 arc-minute resolution and compare the 

downscaled output to CWatM model runs at 5 arc-minute resolution. We develop two surrogate 
models – simplified models emulating a more complex one -  based on machine learning 

(Random Forest Regression) and classical statistical methods (Ordinary Least Squares 
Regression). The surrogate models are used within the PAI framework as the ancillary 

information guiding the interpolation. The quality of the interpolation is assessed against a full 
run of CWatM at 5 arc-minute resolution, and compared to the surrogate models outside of the 

PAI framework as well as two simpler PAI benchmarks – a constant ancillary variable (rainfall) 
and an expert-knowledge based model. 

We find that the developed surrogate models perform significantly better when used within the 
PAI framework than outside. Further, PAI with the simpler benchmarks can produce comparable 

quality interpolation to the PAI with surrogate models. The quality of the interpolation is, 
however, highly dependent on the quality of the source data.  
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1 Introduction 
The availability of timely and adequate quality data about water resources are crucial for efficient 

management of the water resource. Ideally, data should be collected at the location-of-interest, but 

environmental monitoring networks are sparse and such locally collected information may not be 

available. Researchers and practitioners have long turned to environmental and hydrological 

modelling to overcome the lack of observations at a certain location. Complex distributed 

environmental models, however, can be challenging to learn and operate, and depending on the type 

of the model, can be time-consuming to run 1,2. 

 

On the other hand, a large number of environmental datasets are freely available from various 

databases; for instance Lindersson et al.3 list and describe 124 free and open datasets useful in 

(socio-)hydrology. The global datasets, however, often come in mismatching spatial, or temporal 

aggregation which renders them suboptimal, particularly for local applications.  Areal interpolation 

methods have been developed to assess the spatial aggregation issue by reallocating data from 

source zones (areal units) to overlapping target zones 4–6. Simple areal interpolation – reallocation of 

source zone values based on the proportional overlapping areas with target zones – is a standard 

procedure in hydrology. Researchers working with population dynamics and small area estimation 

have further developed the method allowing the use of ancillary information in the interpolation    

step 4–7 in Dasymetric Mapping (DM).  In DM, the estimates from simple areal interpolation are 

refined using quantified ancillary data. Further, Tobler 8 developed Pycnophylactic Interpolation (PP) 

method to estimate the distribution of a variable within specified zones. Only a few studies have 

explored the advanced areal interpolation methods in hydrology: Kallio et al. 9,10 used them to 

downscale runoff, and Chen et al. 11 refined groundwater extraction estimates using DM.  

 

In this study, we extend the approach of Kallio et al. 9,10 to describe a Process-Aware Interpolation 

(PAI) method for downscaling hydrological variables. In PAI, DM is replaced with a Dasymetric 

Modelling (dasymetric modelling and mapping are used interchangeably hereafter) 12, where the 

ancillary information is provided by a model describing the process governs the variable under 

interpolation. In this context, the choice of the model is flexible and the aim of it is to reproduce the 

dynamical behaviour of the interpolated variable within source zones.  

 

We explore the PAI methodology through an experimental case study of the Upper Bhima Basin in 

Southern India. Community Water Model (CWatM) 13, a full physically based distributed hydrological 

model, is run in 30 arc-minute (0.5°; approximately 55 km at the equation) and in 5 arc-minute 

resolution. We downscale runoff output from CWatM30min to 5 arc-minute resolution using the PAI 

framework, and evaluate the quality of downscaling against the output of CWatM5min. This places our 

experiment in the context of surrogate modelling – simple(r) approximation of an expensive physical 

model. 

 

We develop a Random Forest Regression and Ordinary Least Squares surrogate models for CWatM 

and use them in PAI as the ancillary model. We further use to alternative ancillary models as points of 

comparison: non-dynamic, constant mean precipitation and an expert-knowledge based model.  

 

The following sections are organised as follows: in Section 2 we provide a brief descriptions to the 

areal interpolation methods used in PAI as well as an introduction to the case study. In Section 3 we 

provide the preliminary results in testing the performance of the PAI methodology, and Section 4 

gives our summary conclusions. 
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2 Materials and Methods 

In this section we first introduce the areal interpolation concepts in Section 2.1. The following Section 2.2 gives 
a description of the case study. For a more thorough introduction to areal interpolation and it’s applications 
we recommend Comber and Zheng 6. 

2.1 Areal interpolation methods 

2.1.1 Area Weighted Interpolation (AW) 

In areal interpolation, unknown  values at target zones are estimated based on values associated with 

overlapping source zone(s).4–6 At it’s simplest, the estimation is done based on the proportional 

overlapping areas (Area Weighted interpolation; AW), 

 

𝑉̂𝑡 = ∑ 𝑉𝑠
𝐴𝑡∩𝑠

𝐴𝑠
 𝑠∩𝑡

𝑠      (1) 

where 𝑉̂𝑡 is the estimated value V at target zone t, 𝑉𝑠 is the known value at source zone s, and A is 

area. AW preserves mass/volume in the values of the source zones, if the source zone is entirely 

covered by target zones. Thus, if V is extensive (i.e. density), it should first be converted to a count 

statistics (e.g. precipitation data expressed as depth per time unit, mm day-1, should be converted to 

volume, e.g. m3 day-1) prior to interpolation. 

 

 

Figure 1. One dimensional analogues for the advanced areal interpolation methods discussed in this study. Minimum 
required data are A) aggregated data, and C) a guiding variable or model output. B) shows disaggregation akin to 
Area Weighted Interpolation, while D) shows output using Dasymetric Mapping approach, E) showcases 
Pycnophylactic Interpolation, and F) a combined Pycnophylactic-Dasymetric Mapping.  



 

 

 

3 

Figure 1B shows a 1-dimensional example of AW, where an aggregated annual values are distributed 

to the 12 months of the year. Each target unit (month) receives the value of their parent because 

there is no temporal overlap over the source units (year). Figure 2B on the other hand shows an 

example in two dimensions, where the source data is interpolated to non-conforming target zones. 

Here, the target areas which transcend the source zone boundary have a different value compared to 

the target zones entirely within the source zone. 

 

 

Figure 2. A schematic spatial example visualizing the discussed methods. A) is showing the aggregated data in source zones 
while C) gives the non-conforming target zones and the ancillary variable for them. B) shows the output using Area 
Weighted Interpolation. Output of Dasymetric Mapping is given in D), and E) shows the output of Pycnophylactic 
Interpolation. F) gives the Pycnophylactic-Dasymetric Interpolation. Adapted from Kallio et al. 9 

 

2.1.2. Dasymetric Mapping (DM) and Modelling (DM) 

DM modifies the approach of AW by introducing an ancillary variable to guide distributing 𝑉𝑠 to target 

zones, 

𝑉̂𝑡 = ∑ 𝑉𝑠𝐴𝑠∩𝑡
𝐴𝑡∩𝑠𝑋𝑡

∑ 𝐴𝑡∩𝑠𝑋𝑡
𝑡∩𝑠
𝑡

 𝑠∩𝑡
𝑠    (2) 

where 𝑋𝑡  is the (finite and positive numberic) value of ancillary variable in target zone t. 𝑋𝑡 can be 

replaced with a model 𝑓(𝑋𝑡) in DM, where the aim of the model is to describe the distribution of V in 

target zones t. A common approach is to estimate the relationship between 𝑋𝑡 and 𝑉𝑠 using a linear 

model, or to employ expert knowledge14.  Many variants of the DM have been developed, for instance 
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Mennis 15 extends the dasymetric approach to spatio-temporal domain, and Nagle et al 12 develop a 

maximum entropy modelling-based approach able to account for uncertainties in the source and 

ancillary data. In this study we, however, concentrate on the simple DM shown in Eq. 2. 

The approach is visualized in Figure 1D, reduced to one dimension, and Figure 2D shows a 

visualization with spatial data for which the approach is originally developed. Comparing to AW, the 

inclusion of an ancillary variable enables estimation of the distribution of the interpolated quantity 

also for those target zones which are entirely within a single source zone. 

 

2.1.3 Pyncophylactic Interpolation (PP) 

Pycnophylactic Interpolation 8 (PP) is another type of areal interpolation method, which attempts to 

estimate the internal distribution of  𝑉𝑠 within the source zone s. Tobler’s original study 8 describes PP 

for gridded data, where the source zones are disaggregated using a higher-resolution grid, and a 

smooth surface is fitted so that the mass or volume of 𝑉𝑠 is preserved within the source zones. Rase 
16 describes PP for Triangulated Irregular Networks, while Kallio et al. 10 adapts PP for use with 

arbitrarily shaped polygon networks. Examples are shown for one dimension in Figure 1E and for 

spatial data in Figure 2E. 

 

2.1.4 Combined Pycnophylactic-Dasymetric Interpolation (PP-DM) 

Kallio et al. 9 combine the two areal interpolation approaches, PP and DM, into a combined 

Pycnophylactic-Dasymetric Interpolation (PP-DM). In this approach, rather than using AW as the basis 

for adjusting the distribution, PP-DM first estimates a smooth surface via PP, which’ values are then 

adjusted based on the ancillary variable(s), or a model. A visualization example can be seen in Figure 

1F and Figure 2F for one and two dimensional cases, respectively. It is noteworthy that the result is 

highly similar to DM when the smooth surface does not deviate much from AW (years 3 and 4 in 

Figure 1F), but significant difference can be seen where this deviation is large (end of year 1, start of 

year 2). 

 

 

2.2 Case study method 

In order to explore the capabilities of PAI, we perform a downscaling experiment for the Upper Bhima 

Basin in India in a surrogate modelling context. Community Water Model (CWatM) 13 outputs from a 

global modelling run at 30 arc-minute resolution are downscaled to 5 arc-minute grid (see Figure 3). 

We develop a surrogate ,pfrö for CWatM runoff output based on Random Forest (RF) , and use the 

outputs of the RF model at 5 minute resolution as the ancillary model in PAI. To evaluate the 

performance of PAI, it is compared to the output of CWatM run in the 5 arc-minute resolution, as well 

as to the RF surrogate model applied at the higher resolution. The following sections detail the case 

study area and data, and the surrogate models in more detail, followed by our choice of performance 

metrics. 

 

2.2.1 Upper Bhima Basin 

The study area is located in Southern India in the state of Maharashtra. The Bhima River is one of the 

main tributaries of the Krishna River flowing to the Indian Ocean. The basin has highly variable 

topography and rainfall distribution; to the west is the Ghats mountains which receives more than 

4000 mm rainfall per year, and is the source of the Bhima River. To the east is the plains of Deccan 

Plateau, which receives less than 500 mm rainfall per year. 17 The area is influenced by the Monsoon 

climate, leading to 80-90% of annual rainfall falling in the wet season from June to October. It is a 

heavily cultivated area with over 70% of land area under agricultural use 17. The study area 

topography is shown in Figure 1 along with the runoff outputs from CWatM in both resolutions. The 
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distribution of rainfall is nearly identical (Pearson correlation = 0.99) to the runoff shown in Figure 

3B,C.  

 

Figure 3. A) Upper Bhima Basin study area showing the CWatM model grids used in the study, B) mean runoff output 
between 2001 and 2010 from CWatM30min, and C) mean runoff output from CWatM5min for the same period.  In the case 
study, runoff from B) is downscaled with an aim to achieve the distribution shown in C). 

 

2.2.2 Surrogate models and comparison 

In response to the challenges posed by distributed environmental models, surrogate modelling can be 

employed. Surrogate models mimic a full-fledged high-fidelity (fidelity in this context refers to degree 

of realism) model by simplified representation 1,2 A surrogate model can thus be termed as a 

metamodel, or a model-of-model. Razavi et al. 2 divide surrogate modelling approaches to two broad 

categories: 1) response surface modelling, where a data-driven process is used to emulate the output 

of the original high-fidelity model, and 2) lower-fidelity modelling, where some components of the 

original model are left out, or simplified. For a more detailed treatise on surrogate modelling in 

hydrological context, we refer the reader to Asher et al 1, and Razavi et al 2. 

The surrogate modelling approach we use in this study is the function approximation approach, 

described in Razavi et al. 2, in which the surrogate model is trained using previously evaluated original 
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model at a number of data points. Kriging interpolation  is a common method used in relation to 

water resources 2, making other interpolation methods, like PAI, a viable alternative. We develop two 

surrogate models for CWatM based on Random Forest Regression 18 (RF) and Ordinary Least Squares 

Regression (LM). Both surrogate models are constructed by training and testing the model predicting 

runoff using 30 arc-minute resolution CWatM run. The model specification for both RF and LM is 

given in Equation 3;  

 

𝑅𝑢𝑛𝑜𝑓𝑓 = 𝑃𝑡 + 𝑃𝑡−1 + 𝑃𝑡−2 + 𝑃𝑡−3 + 𝐷𝑆𝑃 + 𝑆𝑀 +  𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 + 𝐷𝑈𝑁𝐸  (3) 

where P is precipitation, t is timestep, DSP stands for the number of Days Since previous Precipitation 

event, SM is soil moisture, and DUNE is the topographic index dissipation per unit length 19. DUNE 

was derived from the 15 arc-second HydroSHEDS 20 data, and both elevation and DUNE were 

aggregated to the CWatM resolutions. The lagged precipitation and DSP were derived from the daily 

precipitation data (see Table 1). Both, RF and LM, surrogate models perform well with the test data 

(30 arc-minutes; 27360 data points), as shown in Table 2. Because the ancillary variable in DM needs 

to be a finite positive value, the predictions made by RF or LM models need to be processed so that 

any negative values are eliminated. Here we choose to shift the RF and LM results so that 𝑅𝑢𝑛𝑜𝑓𝑓 =

𝑅𝑢𝑛𝑜𝑓𝑓 + min(𝑅𝑢𝑛𝑜𝑓𝑓). Both of the surrogate models are used in the PAI framework as the process 

model in DM and PP-DM. 

 

Table 1. Input data used in the case study. 

Variable   
Spatial 
Resolution Data source 

Precipitation (P)     
Input data for CWatM  21–24 
 
 
 
 
 
  

  Daily P 5min, 30min 

  Previous day P 5min, 30min 

  P two days ago 5min, 30min 

  P three days ago 5min, 30min 

  
Number of days since 
last P event 5min, 30min 

Soil Moisture (SM)   CWatM 

  Daily SM 5min, 30min 

Elevation     HydroSHEDS 20 

  Mean elevation 15s 

  Mean DUNE 15s 

Runoff     CWatM 

  Daily runoff 5min, 30min 

 

We further use two benchmarking process representations: a constant ancillary variable (CA) mean 

precipitation in the target zone over the entire study period 2001-2010, and a model based on expert 

knowledge, shown in Equation 4: 

 

𝑅𝑢𝑛𝑜𝑓𝑓 = 𝑎𝑃 +
𝑏

𝐷𝑈𝑁𝐸
+

𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛

𝑐
     (4) 
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where a = 5000, b = 10, and c = 20 are coefficients which were arbitrarily chosen by the author of 

this study. The aim of the expert model in the context of PAI is not to model the actual runoff values, 

but to estimate a map of potential runoff distribution which can be used within the PAI methodology 

to guide the interpolation.  

 

2.2.3 Performance evaluation 

The performance of PAI is examined through four metrics: 

 

1. Root Mean Square of Error (NRMSE) normalized to the mean of observations, 

2. Percent Bias (PBIAS), 

3. Pearson correlation coefficient (r), and 

4. Kling-Gupta Efficiency (KGE) 25. 

 

We find a 7.9 % positive bias in the CWatM30min runs compared to CWatM5min. Since the PAI methods 

described here are pycnophylactic – i.e. they preserve the interpolated quantity, it leads to a 

maximum theoretically attainable KGE being 0.921 in the case when r = 1, and α = 1 in Equation 4, 

 

𝐾𝐺𝐸 =  √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2     (4) 

 

where r is the Pearson correlation coefficient, α is a measure of variability error 
𝜎𝑠𝑖𝑚

𝜎𝑜𝑏𝑠
⁄ , and  𝛽 is 

the percent bias 
𝜇𝑠𝑖𝑚

𝜇𝑜𝑏𝑠
⁄ . 𝜎 stands for the standard deviation, and 𝜇 for the mean. Thus, KGE is an 

aggregated metric which covers bias, variability and dynamics. To further evaluate the quality of 

interpolation, we compute local KGE to gain additional insight on the spatial variablility of the 

performance. 

 

 

Table 2. Performance of the surrogate models (RF, LM) on the 30 minute resolution, their application to a 5 minute grid, 
and the performance of PAI methods (AI, DM, PP, PP-DM). The dasymetric approaches reported are temporally constant 
precipication (CA), Random Forest surrogate (RF), OLS surrogate (LM), and an expert knowledge-based model (expert). 
Metrics highlighted in bold perform as well as, or better than, either of the two surrogate models. 

      Performance 

  Model Set NRMSE % PBIAS % r KGE 

  RF 30min, test set 21.9 -0.1 0.98 0.94 

  LM 30min, test set 29.4 -0.4 0.96 0.93 

  RF 5min, benchmark 53.4 -2.7 0.90 0.58 

  LM 5min, benchmark 58.6 -33.1 0.82 0.61 

1 AI 5min 58.6 8.0 0.82 0.71 

2 DM (CA) 5min 41.6 7.9 0.91 0.80 

3 DM (RF) 5min 44.7 7.9 0.90 0.82 

4 DM (LM) 5min 42.0 7.9 0.91 0.81 

5 DM (expert) 5min 44.7 7.9 0.90 0.77 

6 PP 5min 47.8 7.9 0.88 0.77 

7 PP-DM (CA) 5min 41.9 7.9 0.91 0.85 

8 PP-DM (RF) 5min 47.7 7.8 0.88 0.85 

9 PP-DM (LM) 5min 43.8 7.8 0.90 0.85 

10 PP-DM (expert) 5min 42.1 7.9 0.91 0.83 
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3 Results and discussion 
We find that the global performance of the surrogate models against CWatM5min are significantly 

worse than the performance on the CWatM30min test set (Table 2) with the error growing to twice as 

large. The surrogate models also have larger bias, particularly with the LM surrogate, which grows 

from -0.4 % to -33.1%. This is largely because the linear model predicts negative runoff values, thus 

skewing the distribution of values. Correlation coefficient for both surrogate models, however, is good 

being 0.9 for RF and 0.82 for LM.  

 

 

Figure 4. Local R2 of the PAI estimated runoff to  the output of CWatM5min within a rolling 5x5 grid cell window. Column A) 
shows the surrogates, column B) the PAI methods based on Area Weighted Interpolation, and column C) PAI methods based 
on Pycnophylactic Interpolation. 
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It is particularly noteworthy that the surrogate model performance is enhanced when used with the 

PAI framework; error is reduced, correlation is similar, and KGE is considerably improved. Change in 

bias, however is not dependent on the particular PAI method or surrogate model; rather, it is 

determined by the bias in source data, which is not modified by the PAI framework based on 

redistribution of values.  

While the global performance metrics give favourable results for the PAI, the performance varies 

considerably in different parts of the Upper Bhima Basin. Figure 4 shows that KGE of all PAI methods 

perform well in the south-eastern, eastern and northern part of the basin, while performance is 

particularly poor in the central and south-western part. This is primarily due to the bias between the 

source (CWatM30min) and the target (CWatM5min) data, but differences in the hydrological conditions 

between these areas may also play part. This is evident when examining AW in Figure 4B shows the 

correlation of CWatM30min data against CWatM5min leading to a conclusion that the source runoff data 

is a poor approximation of the target data in the areas where PAI methods perform poorly.  We 

attribute this to the different meteorological forcing data the two different resolution CWatM runs use. 

It is, however, noteworthy that the PAI methods are able to attain relatively good KGE values in parts 

of the poorly correlated areas visible in Figure 4B (AW). Particularly encouraging for the PAI 

methodology is that the performance of the surrogate models is improved across the entire case 

study area. In fact, even the simple expert-knowledge based ancillary model performs better than 

either of the two surrogate models in most of the study area.  

Surrogate modelling is commonly used in order to reduce the computation times of complex models. 

We measured the computation times of our software implementation written in R language 26. In the 

case study area consisting of 28 source zones, 567 target zones and 3652 timesteps (10 years with 

daily timestep), AW and DM run through under 6 seconds with an Intel Core i7-6600 processor, while 

PP runs in approximately 5 minutes. As a comparison,  CWatM for the study area, over 10 years runs 

through in the same 5 arc-minute resolution takes approximately an hour. The current 

implementation based on native R code is therefore fast enough for the common motivation of 

reducing computation time in surrogate modelling. The developed technique has an additional 

surrogate-related benefit of considerably smaller high-resolution data procurement requirement than 

the full original CWatM model run needs (see the manual at https://cwatm.iiasa.ac.at/index.html). 

Further, the study stands as a proof-of-concept that the PAI methodology could be used in a 

surrogate modelling context.    

 

 

4 Conclusions 
Previous studies 9,10 dealing with hydrological variables in an advanced areal interpolation context 

have been conducted using constant ancillary variables. In this study, we extended this methodology 

to utilize spatio-temporal process models instead of constant ancillary information to improve the 

performance of the interpolations.  

 

The developed Process-Aware Interpolation were tested in a surrogate modelling case study in the 

Upper Bhima Basin in India where we approximate Community Water Model outputs at 5 arc-minute 

resolution by downscaling the same model outputs at 30 arc-minute resolution using the PAI 

methodology. Two surrogate models (Random Forest and Ordinary Least Squares) were trained with 

the 30 arc-minute CWatM input and output data, and evaluated in 5 arc-minute resolution. The two 

surrogates were used as the process model in PAI together with two more simple process 

representations; constant mean precipitation and an expert-knowledge based model. 

 

We find that the PAI methodology utilizing any of the four process representations can significantly 

increase the performance of runoff approximation compared to the two surrogates used outside PAI 

https://cwatm.iiasa.ac.at/index.html
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framework. However, it is evident that the methodology is highly sensitive to the quality of source 

data, and due to the mass preserving property of areal interpolation methods, the method is not able 

to correct poorly fitting source data unless more advanced versions of DM are used. While the 

method shows promise, properties of different choices of process modelling should be further 

explored. A software implementation of the developed PAI interpolation methods is under 

development as an R package called dasymetric.  
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