
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Lukkarinen, Aleksi; Lehtinen, Teemu; Haaranen, Lassi; Malmi, Lauri
An Event Listener or an Event Handler? Students Explain Event-drivenness in JavaScript

Published in:
Proceedings of 21st Koli Calling International Conference on Computing Education Research, Koli Calling 2021

DOI:
10.1145/3488042.3488051

Published: 17/11/2021

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Lukkarinen, A., Lehtinen, T., Haaranen, L., & Malmi, L. (2021). An Event Listener or an Event Handler? Students
Explain Event-drivenness in JavaScript. In O. Seppälä, & A. Petersen (Eds.), Proceedings of 21st Koli Calling
International Conference on Computing Education Research, Koli Calling 2021 (pp. 1-10). Article 23 ACM.
https://doi.org/10.1145/3488042.3488051

https://doi.org/10.1145/3488042.3488051
https://doi.org/10.1145/3488042.3488051

An Event Listener or an Event Handler?
Students Explain Event-drivenness in JavaScript

Aleksi Lukkarinen
Aalto University
Espoo, Finland

Teemu Lehtinen
Aalto University
Espoo, Finland

Lassi Haaranen
Aalto University
Espoo, Finland

Lauri Malmi
Aalto University
Espoo, Finland

ABSTRACT
When students in programming courses are taught event-driven
programming (EDP) for the first time, they face new terminology
and concepts that they should internalize. Moreover, they learn
a fully new approach for reasoning about program logic and exe-
cution order. However, there is a lack of research in students’ un-
derstanding of these concepts. In this paper, we describe a study, in
whichwe askedweb development students to explain their concep-
tion of EDP: what are the main concepts involved and how they in-
teract. Moreover, we asked them to explain the execution of a short
piece of JavaScript code that focuses on basic usage of events and
event listeners. The answers, which we requested as concept maps
and text, were analyzed using inductive content analysis. Our re-
sults clearly demonstrate shortcomings in the students’ learning
and illustrate various misunderstandings that they may have re-
garding EDP. Based on the findings, we give suggestions for im-
proving the teaching of EDP.

CCS CONCEPTS
• Social and professional topics → Computer science educa-
tion; • Software and its engineering→ Publish-subscribe / event-
based architectures.

KEYWORDS
event-oriented, event-based, JavaScript, conceptmap, computer sci-
ence education, programming education

ACM Reference Format:
Aleksi Lukkarinen, Teemu Lehtinen, Lassi Haaranen, and LauriMalmi. 2021.
An Event Listener or an EventHandler?: Students Explain Event-drivenness
in JavaScript. In 21st Koli Calling International Conference on Computing
Education Research (Koli Calling ’21), November 18–21, 2021, Joensuu, Fin-
land. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3488042.
3488051

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Koli Calling ’21, November 18–21, 2021, Joensuu, Finland
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8488-9/21/11…$15.00
https://doi.org/10.1145/3488042.3488051

1 INTRODUCTION
When using current web or mobile applications, students are fre-
quently using software which has been implemented using event-
driven programming1 (EDP) techniques. Interactive graphical user
interfaces (GUI) usually apply this technique, in addition to numer-
ous other software that react on events (e.g., various embedded
systems, services/servers, device drivers, and operating systems).
Compared to procedural or object-oriented programming, which
students often learn in introductory programming courses, EDP
has a fundamental difference: The execution order in the program
code is not anymore well-defined in the sense that if we know the
program state (variables, stack, heap), we could, in general, con-
clude how the program execution proceeds in a deterministic way.
Events triggered elsewhere are being dispatched to the listening
programs, which then proceed to execute code in event handlers.
Thus, the incoming event stream defines, at its own abstraction
level, the program’s behavior on each execution.

ACM and IEEE included EDP as a core topic within Program-
ming Fundamentals knowledge focus group in Computing Curric-
ula 2001 [24]. More recently, both Computer Science Curricula
2013 [23] and Computer Engineering Curricula 2016 [11] address
EDP under several knowledge areas. Furthermore, Computing Cur-
ricula 2020 [25], which moves from knowledge-based learning to
competencies, includes events as a draft competency of computer
science under Programming Languages area: “Write event handlers
for a web developer for use in reactive systems such as GUIs.”

Computer Science Curricula 2013 includes knowledge unit Fun-
damental Programming Concepts under knowledge area Software
Development Fundamentals, giving it the following description:

This knowledge unit builds the foundation for core concepts
in the Programming Languages Knowledge Area, most no-
tably in the paradigm-specific units: Object-Oriented Pro-
gramming, Functional Programming, and Event-Driven &
Reactive Programming.

Thus, the curricular guidelines treat EDP even as a programming
paradigm. Interestingly, Krishnamurthi and Fisler [14] challenge
this position. They remind that the concept of a programming par-
adigm is not clearly defined and define procedural, object-oriented,
and functional programming as organizational characteristics that
define the overarching method of arranging program code into
manageable units. On the contrary, event-drivenness is a behavior-
al characteristic, which makes it orthogonal to the organizational

1Sometimes known as “event-based programming” or “event-oriented programming.”

ACM Reference format:
Aleksi Lukkarinen, Teemu Lehtinen, Lassi Haaranen, and Lauri Malmi. 2021. An Event Listener or an Event Handler?: Students Explain Event-drivennessin JavaScript. In 21st Koli Calling International Conference on Computing Education Research (Koli Calling ’21), November 18–21, 2021, Joensuu, Finland. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3488042.3488051

Copyright © Aleksi Lukkarinen, Teemu Lehtinen, Lassi Haaranen, and Lauri Malmi 2021.
This is the authors' version ("final accepted manuscript") of the work. It is posted here for your personal use.

Not for redistribution. The formatting and the layout differ in the published version.
The definitive Version of Record was published in 21st Koli Calling International Conference on Computing Education Research

in November 2021 and is available at: https://doi.org/10.1145/3488042.3488051

https://doi.org/10.1145/3488042.3488051
https://doi.org/10.1145/3488042.3488051
https://doi.org/10.1145/3488042.3488051
https://doi.org/10.1145/3488042.3488051
https://doi.org/10.1145/3488042.3488051

Koli Calling ’21, November 18–21, 2021, Joensuu, Finland Lukkarinen, A., Lehtinen, T., Haaranen, L., & Malmi, L.

ones. Therefore, event-driven programming (EDP) is, by nature,
a different type of concept to teach and learn.

While students are likely to encounter examples and even sim-
ple exercises of EDP in the context of graphical user interfaces
(GUI), their conception of what happens under the hood during
program executionmay often remain obscure. For instance, adding
and activating a new button with a GUI programming framework,
such as Java Swing or JavaFX, is carried out by using some library
calls, following ormodifying some example code. Yet, the complete
picture of what actually happens remains too abstract. One may re-
alize this easily when debugging an event-driven program, which
requires understanding the code execution order carefully.

Despite the emphasis given to EDP in defining curricula and the
challenges students face in practice, there is surprisingly little re-
search carried out to investigate how students learn EDP. A recent
mapping review by Lukkarinen et al. [17] identified numerous pa-
pers that support teaching and learning EDP, for instance, by sim-
plifying existing graphics libraries. However, they found almost
no empirical research that would investigate how students learn
EDP and understand EDP concepts, or work that would evaluate
the impact of various educational tools and pedagogical practices
targeted to support learning EDP.

In this paper, we seek to address this research gap in a study that
focuses on students’ various understandings and misunderstand-
ings concerning EDP concepts and how EDP works. Our context
is an introduction to web development and programming course
that is offered as an open course for people who would like to fa-
miliarize themselves with building basic web applications using
JavaScript. The course has been given several times and the ex-
perience indicates that students face difficulties especially on the
exercise round concerning EDP. Our goal is to better understand
the background of these difficulties to enable us to design remedy-
ing actions or changes in course learning resources. Our research
questions are the following:
RQ1 What kinds of relations do students describe between

EDP-related concepts?
RQ2 What runtime behavior do students associate with EDP?
RQ3 What EDP-related misunderstandings do students have?

We start by presenting the central EDP concepts that concern our
study (Section 2), followed by a review of relevant literature in Sec-
tion 3. Next, in Section 4, we present the course context, learning
resources, and the exercises, from which we collected data. The
results for those exercises are presented in Section 5. Finally, we
discuss the implications of our findings in Section 6 and conclude
in Section 7 with some suggestions for programming teachers.

2 CONCEPTS OF EVENT-DRIVEN
PROGRAMMING

Whereas event-driven programming (EDP) has some fundamen-
tal ideas, the exact terminology and implementation details vary
between systems and development environments. Although the
course that is the context of this study (§ 4.1) also introduces server-
side programming, the development environment for the students
in our study is pure JavaScript inside the Internet browser. The
course material covers the basics of what is visible to the web
developer but only scratches the surface on what happens below

that level. Consequently, in this study we are naturally focused on
events and event handlers, whereas concepts related to dispatch-
ing events are of secondary importance. Below we present a brief
list of fundamental EDP concepts as they are related to this study
and intended to be understood in its compass.

• Event. (1) Any occurrence that is meaningful for an observer,
or (2) an object that implements the Event interface [26] to hold
information about such an occurrence and to represent it while
being passed around and processed in the computer. In other con-
texts, the second meaning is also known as a message.

• Event Listener. A callback function that (1) the programmer
writes and (2) is being called to respond to an event. In other con-
texts, it is also known as an event handler.

•Adding an Event Listener. Having an event listener2 added to
the event listener list of a node in a Document ObjectModel (DOM)
tree [26], so that it will be called when a specific type of event is
to be processed in relation to that node.

• Removing an Event Listener. Having an event listener removed
from the event listener list of a node in the DOM tree.

• Event Queue. A data structure that holds events. Often they
essentially resemble first-in-first-out lists, but some environments
might impose priorities and other special conditions on their han-
dling of events. Here, it refers to the JavaScript engine’s part that
holds events that are waiting to be processed.

• Event Loop. In general, a loop that waits for events to be avail-
able and then dispatches those events to be processed. Here, it
refers to the JavaScript engine’s part that reads events waiting in
the event queue and starts to process a new one after the previous
one has been fully processed (i.e., when the JavaScript call stack
is empty). In other contexts, it is also known as a message loop,
a message pump, and a main loop.

3 RELATEDWORK
Event-drivenness itself is widely present in contemporary com-
puterized applications, and, for instance, tools that are intended
for event-driven programming (EDP) and application development
are being researched. Also, in computing education, various tools
and pedagogical approaches have been presented to help teaching
and learning EDP. However, as found out by a recent mapping re-
view of Lukkarinen et al. [17], not many publications exist about
empirical research that would target teaching and learning EDP,
and even fewer of them are concerned with event-driven program-
ming directly instead of describing miscellaneous related results
while primarily focusing on something else. The few works that
contribute fragments to EDP-related knowledge based on empir-
ical data analysis mainly focus on visual block-based languages
such as Scratch, LaPlaya, and App Inventor [e.g., 5]. The other
works address topics such as computational thinking [7], oral met-
aphors and allegories in problem solving [8], and learning object
oriented programming [20].

A potential pitfall for novice programmers is fragile learning.
That is, the student is capable of writing programs that produce

2The Document Object Model application programming interface also gives the pos-
sibility to pass in an object that implements the EventListener interface [26], that is,
implements a handleEvent()method. However, this and the various options related
to adding event listeners were outside the scope of the course.

An Event Listener or an Event Handler? Koli Calling ’21, November 18–21, 2021, Joensuu, Finland

correct results and behave as expected while still having funda-
mental misconceptions or uncertainty regarding the programming
concepts used [12, 18]. One study demonstrating this in EDP con-
text is reported in [16].

Even though misconceptions are a broadly researched topic in
computing education [e.g., 22], there seems to exist a research gap
when it comes to misconceptions regarding EDP. In a recent in-
ventory of programming language misconceptions [2]—which in-
cludes misconceptions in JavaScript—no misconceptions related to
events are listed. At the time of writing, the accompanying site3
does not include any of the core concepts related to EDP, either.We
hope that our present work is a starting point for mapping out mis-
conceptions in EDP. However, until we have conducted research
focusing on the misconceptions themselves, we refer to issues in
students’ understanding of EDP as misunderstandings.

This study exploits concept mapping4 [e.g., 3, 4]—a method for
both presenting information [e.g., 10] and studying one’s under-
standing of a subject area. In addition to its numerous applications
in education and research in general, also computer science edu-
cators have tapped into its possibilities [e.g., 27, 28]. Particularly,
it has been used to boost and research on students’ understand-
ing of topics such as object-oriented programming [e.g., 1, 21] and
input&output regarding computer architecture [15]. In addition,
Keppens andHay [13] discuss methods for assessing concept maps,
and Hubwieser and Mühling [9] describe efforts towards identify-
ing sub-graphs from them.

4 STUDY ARRANGEMENTS
4.1 Course Context
The course where the study was conducted is called Introduction
to Web Development and Programming. The intended audience is
lifelong learners who wish to learn the basics of programming and
get familiar with web development.The course is taken by a varied
audience, some of whom have earlier programming experience in
another language, and some who are complete beginners. To com-
plete the course, students use a bespoke online learning manage-
ment system. The course material includes approximately 70 000
words of text, video explanations, interactive code visualizations,
and automatically graded exercises.

The course material is divided into eight rounds. The first four
cover the basics of browser programming including Hyper-Text
Markup Language, Cascading Style Sheets, and JavaScript. The lat-
ter four rounds introduce the students to server-side programming
with Node.js. Round 4 presents Document Object Model [26] and
event-driven programming in JavaScript, focusing on events and
event listeners (see § 2).

While completing the course, the students receive points from
automatically graded exercises. Some of the exercises are smaller
and solved within the browser, for example, multiple choice ques-
tions or coding exercises with few lines of code. In addition to the
browser exercises, there are larger exercises with file submissions.
The students complete them on their own computers, submit them
to the course platform for grading, and if the automated tests pass,
they are awarded points.The course has no final exam. Instead, the
3See: https://progmiscon.org/concepts/, accessed July 27, 2021.
4Not to be confused with group concept mapping [e.g., 19].

student needs to gather at least one third of the available points to
pass the course, and at least 80% to receive the best possible grade.

4.2 Data Collection and Analysis
During the course implementation of Spring 2021 (see § 4.1 above),
we tapped into the following four data sources to facilitate this
study: An enrollment survey (§ 4.2.1), a concept comprehension ex-
ercise (E1, § 4.2.2), a code comprehension exercise (E2, § 4.2.3), and
a course feedback questionnaire (§ 4.2.4). The two exercises were
located at the end of Round 4, were the only exercises we graded
manually, and awarded together about 2% of the total course points.

We analyzed the collected data using inductive content analy-
sis, where we built data-driven categories of students’ responses to
each task in the preliminary survey and exercises E1 and E2. The
categories were refined during the analysis, until their match with
the raw data was considered acceptable. Our primary goal for the
analysis is qualitative, i.e. identifying various types of understand-
ings. While we also report some numerical results of frequencies,
their role is descriptive only and we do not seek to present them
as generalizable results.

4.2.1 Enrollment Survey. To provide a context for the study, we
utilized an enrollment survey that students took when beginning
the course. It covered background information, such as students’
age, gender, previous education, and programming experience. For
this study, we added four questions (P1–P4) that addressed the stu-
dents’ preliminary knowledge in event-driven programming, pro-
viding data for RQ1 and RQ2. The first questions asked the student
to explain, in their own words, how they understand the concepts
event, in general (P1), event, in programming (P2), and event-driven
programming (P3). The last question (P4) asked them to explain, if
they could, the effects of the last line of the following code block
(syntax was not highlighted), after it has been executed:

var c = 0

function f(e) {c = c + 1}

const n = document.getElementById("box")

n.addEventListener("mouseenter", f)

We categorized the responses into small sets of qualitative cate-
gories using inductive content analysis. Two researchers carried
out the analysis until they reached a consensus on the categories
of each response.

4.2.2 Concept Comprehension Exercise (E1). The first exercise, E1,
requested students to explain (1) what concepts are related to event-
driven programming, (2) what do those concepts mean, (3) what
kinds of relations do they have with each other, and (4) what kinds
of activities do they perform alone and together. The exercise pro-
vided data for all of our three research questions. We accepted an-
swers including a textual description, a concept map, or both. We
allowed the students to draw the concept map by hand and submit
a photo of it. We also explained the basic idea of a concept map,
emphasized that it is not a mind map, and gave an example map
of 17 nodes and 27 described edges regarding university-related
concepts, such as various people and institutional units.

In our analysis, we produced various descriptive statistics, such
as answering method regarding diagram type and text, counts of
nodes and various types of edges (process flow, data flow, struc-
ture, and ambiguous), lengths of textual answers, and numbers of

https://progmiscon.org/concepts/

Koli Calling ’21, November 18–21, 2021, Joensuu, Finland Lukkarinen, A., Lehtinen, T., Haaranen, L., & Malmi, L.

concepts present. Furthermore, to eliminate noise and differences
in answering methods and thus make the answers easily compara-
ble, we normalized them into class and activity diagrams in Unified
Modeling Language (UML). We then analyzed those reductions
for various characteristics regarding the relationships between the
concepts as well as the process conveyed in the answer. For ana-
lyzing the process, we developed an analysis model regarding the
steps present in the answers.

We chose UML diagrams as the target medium for the normal-
izations, as it is a standardized and well-known as well as easily
capable to represent the necessary data. The normalization of stu-
dents’ answers happened on the basis of reducing them to the
essence that they seemed to be trying to convey about event-driven
programming (EDP). Because of the answers included both tex-
tual and diagrammatic expression as well as varying terminology,
this process and its results were imprecise and subjective to some
extent. To alleviate this uncertainty, another researcher reviewed
a part of the normalizations for correctness.

4.2.3 Code Comprehension Exercise (E2). To address RQ2 and RQ3
more comprehensively, we added the second exercise: E2. In it, we
presented the students with the program code in Listing 1 and
urged them to try it in a web browser themselves. Afterwards,
they were requested to describe, in their own words, (1) what the
JavaScript code does after a button on the web page is clicked, and
(2) what are the effects of a click of a button regarding the content
of that web page.

<div id="a"><button id="b">1</button ></div>
<script >

function a(b) {

let c = b.target;

c.removeEventListener("click", a);

let d = document.createElement("button");

d.innerText = parseInt(c.innerText) + 1;

d.addEventListener("click", a);

document.getElementById("a").appendChild(d);

}

document.getElementById("b")

.addEventListener("click", a);

</script >

Listing 1: The JavaScript code to be explained in E2 (see
§ 4.2.3). The surrounding boilerplate HTML code is omitted.

In our analysis, wemodeled the program execution steps follow-
ing a click of a button and how those steps are related to other pro-
gram elements. We examined which steps were present in answers
to either of the posed questions. We focus on what the included
steps communicate about students’ understanding of the program
code, its execution, and its design. Two researchers identified the
responses seeking for consensus how the steps were presented.

4.2.4 Course Feedback. In the hope of understanding the students’
perspectives about the usefulness of E1 (§ 4.2.2) and E2 (§ 4.2.3) “for
reviewing and deepening [their] understanding of event-driven
programming,”we augmented the course feedback formwith a free-
text answer field for both questions.

5 RESULTS
130 students enrolled in the course implementation, on which this
study was carried out (§ 4.1). Of them, 85 students (65%) completed
the enrollment survey, of which 74 students (57%) gave their re-
search consent and identified themselves as being over 18 years
old. This group contains all the students who answered to exer-
cises E1 (§ 4.2.2) and E2 (§ 4.2.3), and the results in § 5.1 concern
only it. Furthermore, 28 students answered at least one of E1 and
E2. One answer to E1 was completely off-topic, so we excluded it
from the study. After this we had 22 students, who answered to
both E1 and E2. Two students answered only to E1, and 4 only to
E2. Thus, the total number of answers was 24 for E1 and 26 for E2.

5.1 Enrollment Survey
As the course was targeted to life-long learners, the student back-
ground was quite different from a traditional CS1 or an introduc-
tion-to-web-technologies course. 38 (52%) of participants were fe-
males and 34 (46%) males; one student identified as “other” and one
did not respond. The age range was as wide as 19–69 years (three
did not respond), with a great majority (45) within the age range
of 26–35 years and most others (13) in 36–45 years. The highest
completed level of education varied as much: 2 had an elementary
school degree, 11 a high school degree, 3 vocational, 23 bachelor’s,
31 master’s, and finally, 1 had a doctoral degree.

Despite the generally high level of background education, the
programming experience was very limited. 57 students (77%) iden-
tified themselves as novice programmers and 15 (20%) as non-nov-
ices; 2 did not answer. On the other hand, 46 (62%) had taken some
programming course, and 24 (33%) had taken none. This obviously
reflects that most of them considered their programming skills ob-
solete. 26 students estimated that they had programmed less than
10 hours, and 20 estimated to have 11–100 hours of experience.

Based on the above information, we concluded that a great ma-
jority of participants could be considered novices. A substantial
minority did have some relevant programming skills, but appar-
ently not in JavaScript or in web development context.

Next, we investigated students’ responses to the four questions
on event-driven programming (see § 4.2.1). The first question (P1)
concerned explaining events, in general. 41 students responded to
this. Of those, 22 focused on something or some actions happening
without specifying any context, 14 on human activities, such as
social events, and 5 associated event with software.

The second question (P2) asked students to explain events, in
programming. Only 28 students responded to this, which reflects
that most students were novices. Of these, 10 responses focused
on something happening in code level (e.g., “a trigger for executing
a function”), 6 focused on user actions, such as mouse clicks, and
7 covered both code level and user action (e.g., “this is an event that
triggers certain actions, for example ‘click’ can calls a function which
closes a popup”). 5 responses did not identify any context for the
event (e.g., “something that happens after something triggers it?”).

The third question (P3) asked students to explain event-driven
programming.There were 17 responses with some understandable
content: Only 2 responses were fairly comprehensive, thus indicat-
ing a good level of understanding of event-driven programming.
4 responses focused on designing a program to respond to events,

An Event Listener or an Event Handler? Koli Calling ’21, November 18–21, 2021, Joensuu, Finland

7 on triggering some action in program, and 4 on triggering some
action without specifying relation to programming.

The final task (P4) concerned explaining the working of the code
snippet (§ 4.2.1). The correct answer would explain that the final
line adds an event listener to the box element and that each time
the mouse cursor hits the box, the counter variable is incremented.
There were 28 responses, of which only one was considered com-
plete. Three more were correct otherwise but did not explain the
role of the event listener. 10 responses explained that a function
call is carried out when the user does something with the mouse
(the cursor enters the box or a mouse button is clicked, the latter of
which is a wrong event). 8 responses were clearly incorrect, while
out of these, 4 were related to event listening.The rest, 6 responses,
were lacking a proper explanation or were clearly incorrect.

In summary, the responses in the enrollment survey indicate
that most students did not have any understanding of event-driven
programming, a small group had some vague understanding, and
only a few individuals demonstrated basic understanding of EDP.

5.2 Concept Comprehension Exercise (E1)
We present the results from the concept comprehension exercise
E1 in four parts: descriptive statistics (§ 5.2.1), structure (§ 5.2.2),
runtime behavior (§ 5.2.3), and special cases (§ 5.2.4).

5.2.1 Descriptive Statistics. From the 24 accepted answers that we
received to the concept comprehension exercise E1, five were un-
suitable for the same analysis as the others; we describe them sep-
arately in § 5.2.4 and have excluded them from other results. Of
the other 19 answers, 10 (53%) contained only a diagram, 6 (32%)
were textual, and 3 exploited both formats. Although we asked the
students for concept diagrams, 6 diagrams (46%) were practically
flow charts and only 7 (54%) resembled a concept diagram.

The lengths of the textual (parts of) answers varied approxi-
mately between 490 and 2600 characters, with the average of 980.
The diagrams had between 5 and 26 nodes with an average of 12,
and 4–35 edges (avg. 15). Most commonly, edges represented some
aspect of procedural flow: Ten diagrams contained such edges, and
they were the dominant edge type in five diagrams (38%), four of
which were practically flow charts. The next-common aspect for
the edges to describe was structure. These edges were present in
seven diagrams and the dominant type in three (23%). In addition,
three diagrams (23%) contained procedural and structural edges al-
most equally and thus did not have a single dominant edge type.
Three diagrams contained edges, whose meaning was ambiguous
or not given; they were dominant in two diagrams. Finally, only
one diagram contained edges that represent data flow.

Of the 19 answers, all but one (95%) mentioned both the con-
cepts of event and event handler ; 12 (63%) mentioned both event
handler and event listener. The occurrence that the event data rep-
resents was mentioned in 13 answers (68%). Both mouse (12; 63%)
and keyboard (10; 53%) as input channels were practically equally
frequent and were mentioned in a few answers that did not men-
tion the occurrence (above). Eight answers (42%) referenced to
nodes or elements of DocumentObjectModel. Seven answers (37%)
either mentioned or implied that an event loop exists or does some-
thing, and also seven answers listed specific mouse and keyboard

events. Finally, only one to three answers acknowledged such con-
cepts as an event queue, the document.readyState property, and
the methods setTimeout and setInterval.

5.2.2 Structure (RQ1). This section answers to our first research
question—the relationships that students identified between con-
cepts related to EDP. Our exploration will focus on the following
five areas: (1) Events, (2) Document ObjectModel (DOM), (3) the re-
lationships betweenDOMand event, listeners, and handlers, (4) the
relationships between events, event listeners, and event handlers,
and (5) event listeners/handlers.

DOM. A few answers touched on DOM. Most of these answers
only mentioned the document (Figure 1, A) or its elements (B)
alone without discussing them further. However, one answer con-
veyed that the document contains elements (C), two answers ex-
plained that DOM contains nodes that can contain objects or ele-
ments (D), and finally, one answer depicted the document as con-
taining elements that, in turn, contain properties (E).

Object /
Element

Document /
DOM

Document /
DOM

Object /
Element

Document /
DOM

Document /
DOM

Node Object /
Element

Element Property

A)

C)

B)

D)

E)

Figure 1: Representations of the Document Object Model in
students’ answers (see § 5.2.2).

On our course, DOM was discussed in the chapter preceding
event handling. It was introduced using a quote from MDN Web
Docs, which described it essentially as as a tree that consists of
nodes that contain objects. The rest of the chapter presented ways
to find, add, and remove elements, but did not discuss DOM’s tech-
nical details further. Considering this, it is not surprising that the
single-level descriptions (A and B) were the most common ones.

Event. One of the well-understood concepts was an event itself:
16 answers contained information representing a structure simi-
lar to Figure 2, part A, with at least one example. Most common
examples were mouse and keyboard actions, and some answers
also mentioned things such as changes on the web page, change of
the state of an object, and passed time. Two answers characterized
an event as a change of state (Figure 2, B).

A) B)

Example 1 Example 3Example 2 Event

Event Change of
State

Figure 2: The term event in students’ answers (see § 5.2.2).

As a contradicting example to the above, one respondent asso-
ciated term event with the observable result of handling an event

Koli Calling ’21, November 18–21, 2021, Joensuu, Finland Lukkarinen, A., Lehtinen, T., Haaranen, L., & Malmi, L.

A)

B)

C)

D)

E)

F)«is connected to»

«wakes up»

«is assigned to»«is assigned to»

«is associated with»

«is associated with»

«is attached to»
«is connected to»

«triggers»

«is attached to»«calls»Event
Handler

Event
Listener

Event
Listener

Event
Handler

DOM
Element

Object Event

DOM Element
Property

DOM
Node

DOM
Element

Event

Event Handler /
Event Listener

Event
Listener

DOM
Element

Event
Handler

Figure 3: Relationships between Document Object Model, event listener, and event handler in students’ answers (see § 5.2.2).

(i.e., the occurrence), that is, the side effects of executing the re-
lated event handler. To represent the occurrence that triggers the
process of handling itself, this respondent used term event trigger.

Whereas the term event was used mostly correctly, only few
answers implied the difference between the triggering occurrence
and the data chunk representing that occurrence in the computer;
most of the answers were ambiguous in this respect.

Event Listener and EventHandler.There seemed to be confu-
sion between the terms event listener and event handler, and most
of the answers used them without specifying what they actually
are. Six answers described handler as a subprogram (Figure 4, A),
one answer portrayed it as a callback that, in turn, is a subprogram,
and one answer described both handler and listener to be subpro-
grams (Figure 4, B). In general, the answers used some variant of
the term subprogram, such as function or method.

A) B) C)

«uses»

Sub-
program

Sub-
program

Sub-
program

Event
Handler

Event
Handler

Event
Listener

Event
Handler

Figure 4: The essence of the terms event handler and event
listener in students’ answers (see § 5.2.2).

Interestingly, seven answers could be interpreted to mean that
the subprogram to be executed in response to an event is neither
an event listener nor an event handler, but yet another level of
abstraction instead (Figure 4, C). Terms such as uses, executes (Fig-
ure 6, D), and activates (Figure 8) were used to describe the rela-
tionship between this subprogram and its parent.

DOM vs. Events, Listeners, and Handlers. The answers con-
nectedDOM to event-related concepts inmanyways; we give some
examples from individual answers. Our first three examples show
interpretations of a situation that contains both event listener and
event handler. The first interpretation was that an event listener is
attached to some object and calls an event handler (Figure 3, A);
another answer described the same attachment without the call
relationship from listener to handler. The second interpretation
(B) was that an event handler is attached to a DOM element, and
an event listener is connected to the handler as well as triggers it.
Naturally, the third interpretation (C) was that both listener and
handler are assigned to a DOM element.

A pair of answers described events to be associated with DOM
elements (D), whereas the other one had drawn this relationship

the other way around (E). Finally, one diagram contained a rela-
tionship from a DOM element property to an “event handler/lis-
tener” (F) but did not elaborate on the kind of that relationship.

Events vs. Listeners vs. Handlers. As with relationships con-
cerning Document Object Model above, there were many versions
of relationships between events, listeners, and handlers. The most
common characteristic, in seven responses, was that an event lis-
tener listens to events and calls, or wakes up, an event handler (Fig-
ure 5, A) when it detects an event.

B)

C)

D)

«is attached to»

«causes to
be executed»

«listens to»

«is associated to»

«triggers»

«is passed to»

«wakes up»

«calls»

«listens to»

EventEvent
Listener

Event
Handler

Event

EventA)
Event
Listener

Event
Handler

Event

Event
Handler

Event
Handler

Figure 5: Relationships between event, event listener, and
event handler as depicted in students’ answers (see § 5.2.2).

The second-most-common version was more abstract: an event
somehow triggers an event handler (Figure 5, B). One other an-
swer explained that an event causes a trigger to be fired, and that
the trigger causes an event handler to be executed. Other examples
include an event handler being associated to an event (Figure 5, C)
as well as the same as a more elaborated version with an event lis-
tener listening to an event and a recognized event causing an event
handler being executed (Figure 5, D).

5.2.3 Runtime Behavior (RQ2). The following discussion answers
our second research question—the runtime behavior that students
associate with EDP. Most of the answers described only runtime
behavior, but a few answers included development-time aspects as
well. Thus, we will hereafter use “process” as a more general term.
From the 19 answers included (§ 5.2.1) to the conceptual analysis,
1was too ambiguous for even inferring a sensible process, and 2 did
not present a clear order for all the steps of the process. 12 (63%)
conveyed a sequential process, of which 9 had two steps, 1 had
three steps, 1 had four, and 1 six steps; we give examples of these
in Figure 6. Finally, the last four (21%) processes had complexities,
such as loops and concurrency (e.g., Figures 7 and 8).

CORRECTION: The stricken-through sentence above should be as follows:A pair of answers described the relationship between events and DOM elements. One answer stated that eventsare associated with DOM elements (D), whereas the other one had drawn this association the other way around (E).

An Event Listener or an Event Handler? Koli Calling ’21, November 18–21, 2021, Joensuu, Finland

A)

B)

C)

Realized Processes in Students' Answers

Analysis Model for Simplified Event Handling Process
Development-time Runtime

D)

E)

Programming Occurring Sensing Listening Reacting

EvL waits for
an event

EvL calls
an EvH

EvL waits for
an event

Event executes
an EvH

EvL waits for
an event

Event causes an EvH
to be executed

The state of
an object changes

The change of state
fires an event

EvL waits for
an event

EvH executes
program code

Programmer
assigns EvLs and
EvHs to elements

User action
fires an event

EvL is
woken up

EvL wakes
up EvH

EvH checks
which event
was triggered

EvH runs the code
that corresponds the

triggered event

Figure 6: An analysis model and examples of realized simple process descriptions present in students’ answers (see § 5.2.3).
In the actions, EvL means event listener and EvHmeans event handler. Actions containing misunderstandings have a thicker
(red) border. The subject, where known, is emphasized for clarity.

When analysing the 16 answers that conveyed a clear step or-
der for the event-handling process, an analysis model (Figure 6,
top) emerged. It contains two stages: Development-time and Run-
time. Under them, there are five phases. The only phase in the
Development-time stage is Programming. The others, which be-
long to the Runtime stage, are Occurring, Sensing, Listening, and
Reacting. Under the model, the five example processes (A–E) illus-
trate (1) whole processes described in students’ answers, (2) the
positioning of the described process steps in relation to the analy-
sis model, and (3) the misunderstandings that were present in the
described processes. The first example essentially corresponds pro-
cesses of three answers; the others are from individual answers.

All the examples in Figure 6 demonstrate misunderstandings re-
lated to event listener: Examples A–D explicitly state that (instead
of an event loop) the listener would wait for events; in the last ex-
ample, the listener is woken up. Then, examples A and E state that
the listener would call or wake up an event handler ; in example
C, it is the event that somehow causes the handler to be executed,
and example B claims that the event itself directly executes the
event handler. Furthermore, the last example states that the pro-
grammer would assign both listeners and handlers (instead of just
one of them) to Document Object Model elements.The correctness
of the second step of example C is debatable. If the student were
to use (only) the term event handler, the description itself would
be correct. Still, they have also mentioned the listener in the first
step, which—despite the lack of an explicit causal relation from the
listener to the handler—arguably invalidates the second step.

A possible misunderstanding visible in examples D and E has
been mentioned earlier, namely that the event handler would not
be the final step of this simplified event-handling process and that
there would be yet another subprogram—a level of abstraction—
that is called by the event handler. This might be just a terminolog-
ical issue, or it might be a misunderstanding about, for instance,
the event-handling process or the entity that generally runs or ex-
ecutes program code (the processor).

Event Queue and Event Loop. Only one answer discussed
event queues by stating that events are placed into it after being
triggered, not elaborating on that. Event loop was present in seven
answers. These include an answer that did not use the term itself

[end process][otherwise]

Event loop waits
for events

The trigger causes an event
handler to be executed

A caught event causes
a trigger to be fired

Figure 7: A process from student’s answer that incorporates
the notion of event loop (see § 5.2.3).The effective event loop
is emphasized with thicker (red) arrows.

Running an Event-driven Application [wants
to quit]

[otherwise]

«external»
User Action

«external»
System Response

User
Action

Action triggers
an event

Event triggers
an event handler

Event handler activates
program code (function)

System
Response

Figure 8: A process froma student’s answer thatmodels both
the user’s interaction with the computer and the event han-
dling inside the computer (see § 5.2.3).

Koli Calling ’21, November 18–21, 2021, Joensuu, Finland Lukkarinen, A., Lehtinen, T., Haaranen, L., & Malmi, L.

but implied its existence by using a similar looping structure in
their diagram as in Figure 7. Thus, the student had understood the
idea of repeatedly waiting for events until a specified condition
occurs, although they failed to make its existence, function, and
relationships explicit in their answer. A variation of this was the
answer, whose process we show in Figure 7. In their diagram, the
student had both clearly stated that the event loop waits for events
(step 1) and used a loop with an ending condition. The diagrams
of both students were essentially flow diagrams, and the looping
process flow effectively becomes the true event loop.

In addition to the two cases above, one answer stated that the
event loop executes event handlers, and another one had specified
a dependency from event to event loop as well as from event loop
to user action, but did not elaborate further. The rest three answers
mentioned an event loop but without clear relationships to other
concepts. However, one of these three answers conveyed the best
general process description in this study (Figure 8). The diagram
was essentially a flow diagram, and while the exact process and
steps in it were ambiguous, it conveyed two concurrent looping
and partly overlapping processes: One for the user as an event pro-
ducer, and the other for the computer as an event consumer.

5.2.4 Special Cases. Unfortunately, not all of the answers suited
well for this study. Here we describe the five special cases (S1–S5)
that were excluded (§ 5.2.1) from the conceptual analysis.

To start with, two first paragraphs of one textual answer (S1)
were essentially plagiarized from a Wikipedia article after chang-
ing some words—hence the rejection from further study. Interest-
ingly, theWikipedia’s version was modified to reflect the student’s
misunderstanding about the terms event listener and event handler :
“– – main-loop, which listens for events, listener triggers a callback
function, known as an event handler which triggers function for ex-
ecuting desired actions.” Another similar case (S2) was a concept
map, drawn mainly based on the same text in Wikipedia. This con-
cept map contained a plain-language statement divided to a chain
of edges and nodes, as well as an event—event loop—callback chain
twice with different terms and one of them without explanations
for the relations between the terms.

In addition, three answers were more or less off-topic. The first
one of these (S3) was an exemplary process-oriented conceptmap—
quite similar to our example—but unfortunately about concepts re-
lated to movies. The second answer (S4) was submitted by a stu-
dent, who explained in the course feedback that they did not under-
stand the two assignments and consulted their spouse about them.
This resulted in an attempt to explain how the concept map we
presented as an examplewould be related to event-driven program-
ming.The third answer (S5) consisted of a simple concept map and
a textual explanation regarding dogs and their environment. This
answer was more about the essentials of object-oriented modeling,
although it contained the basic idea of reacting to events.

5.3 Code Comprehension Exercise (E2)
In total, 26 students wrote an explanation for what the code in
Listing 1 does once a button on the page is clicked. The answers
to the second question about effects on the page content provided
explanations comparable to those for the first question. Therefore,
we decided to merge answers for the two questions to one analysis.

1. References

2. Removes

3. Creates

4. Sets

5. Adds

6. Appends to DOM

The Last Button

Function a()

Inner Text

Event Listener

A New Button

Inner Text

Event Listener

«references»

«references»

Figure 9: The steps of executing function a() after the event
loop has received a click that the function was registered to
handle (see Listing 1 and § 5.3). The steps with thicker bor-
ders are most frequently included in students’ explanations.
Dashed lines mean removal, and dotted lines creation.

All students explained some code or features of function a().
Twelve explanations (46%) explicitly mentioned that the function
is executed to handle a click event, and sixmore explanations (69%)
imply towards handling an event.

Next, we examined program execution step by step (Figure 9).
6 explanations (23%) included all the steps, and 15 more explana-
tions (81%) skipped at most the first step, in which a reference is
acquired for the clicked button. All but three answers (88%) in-
cluded the execution steps that manage event listeners and create
a new button, presented with thicker borders in Figure 9.

Two short and severely limited explanations started from creat-
ing a new button and setting its text (steps 3 and 4 in Figure 9). The
second one additionally included appending the button to a par-
ent element (step 6). One more substantial explanation included
more (steps 2, 3, and 4), yet ignored adding an event listener to the
new button (step 5). We consider these explanations problematic
in that they do not support explaining and understanding how the
function a() relates to the buttons and how the behaviour of the
buttons changes over time.

A similar problem appeared also in the more complete answers
commented above. Four explanations did not explicitly link remov-
ing and adding event listener to a function in the program. How-
ever, 2 of those explanations, and in total 12 explanations (46%),
described that only the lastly added button remains clickable and
will repeat the same procedure when clicked. Additional four de-
scriptions (62%) implied to this behaviour with words such as pre-
vious, last, next, and newly created. When describing this program,
such argumentation supports the hypothesis that the student un-
derstands the execution and management of event handlers.

Some answers did simultaneously display understanding of how
the program works and confusion on how its execution internally
proceeds. Two of them argued that calling addEventListener()
waits for or detects clicks. A third one described that event lis-
tener returns the program back to function a(). A fourth one more
specifically described blocking behaviour in claiming that the func-
tion continues until the button is clicked.

Finally, one description stated that the repetition of the same
procedure when clicking a new button creates an event loop. It is
evident that this student did not understand the concept of an event
loop. Additionally, 8 explanations included a surplus description of

An Event Listener or an Event Handler? Koli Calling ’21, November 18–21, 2021, Joensuu, Finland

attaching the event handler for the first button when the program
starts, whereas the task itself included explaining the code and its
effects only after a button was clicked.

5.4 Course Feedback
14 students with research consent gave feedback (§ 4.2.4) about E1.
It was positive from nine students, neutral from two, and negative
from three. One student reflected about the usefulness of realizing
the incompleteness of their knowledge and having to think what
the concepts really mean: “I think it was useful, because you really
had to think about it and by doing so might realize that you don’t ac-
tually understand it (yet). I don’t LIKE doing these types of exercises,
but that doesn’t make them any less useful :)”

For E2, 11 students with research consent gave feedback: nine
positive answers as well as one neutral and one negative answer;
three students did not respond. One of the students thought the
same way as the above one did about E1: “Very useful as I noticed
that I wasn’t sure e.g. the terminology even if I thought I understood
the consepts.” Another student highlighted the importance of cor-
rect terminology and deep understanding in (professional) com-
munication: “It was good to have to do some own research here, it
enables a programmer to explain to a non-programmer some of the
logics going on behind the code.”

The negative and neutral feedback to these questions contained
complaints about the uselessness of these types of exercises com-
pared to coding and that the grading was not as transparent as in
exercises that were graded automatically.

6 DISCUSSION
6.1 Findings
The results of our study illustrate that the participating students
had fundamental confusions related to event-driven programming
(EDP). Below, we answer to our third research question by dis-
cussing the most apparent ones of them.

Event Listeners vs. Event Handlers. Our earlier study [16]
suggested that misunderstandings regarding the terms event lis-
tener and event handler could exist.The results of this study clearly
confirm this and demonstrate them. In general, an event listener
was overwhelmingly regarded as an active participant that listens
to orwaits for events as well as calls orwakes up a next subprogram.
An event handler, in turn, was generally perceived as a passive tar-
get or a callback function that needs to be started by the preced-
ing subprogram. Often the students used both terms and explained
that a listener calls a handler, as if they would have assigned the
listener to mean an event loop and then used event handler to pick
up the meaning of event listener.

The course material states that event listener and event handler
can be used synonymously.We hypothesize that a factor for the oc-
currence of themisunderstandingswas a paragraph that the course
material quoted fromMDNWebDocs; it claims that “strictly speak-
ing,” a listener and a handler differ from each other.

Registration and Execution of Event Listeners. The above
earlier study [16] also suggested that students might not under-
stand what it means to register an event listener as well as when
and by whom will the registered listeners be called. In addition to
the claims in E1 about the event listener calling the event handler,

four answers to E2 stated or implied that the addEventListener()
methodwouldwait for events instead of just adding the given func-
tion to the element’s event listener list and returning. In the earlier
study, a few students stated that the same method would call the
event listener given to it as an argument.

These findings support the hypothesis that students might be
confused about (1) both the idea and the internal details of regis-
tering an event listener as well as (2) exactly who is calling the lis-
teners, when, how the program execution proceeds after the code
of a listener has been executed, and how long the various parts of
the program and the framework are being executed. When com-
pared to a program that has no “dead code” and is executed from
the beginning to the end, the event listeners registered to Docu-
ment Object Model (DOM) elements appear as dead code, as the
student’s program itself does not call them. However, the fact that
they still are being called implies that the execution model of such
a program is different and thus the notional machine in the stu-
dent’smind should be aswell. Also, themisunderstandings suggest
that the students might have difficulties in applying their existing
notional machines to EDP, or in augmenting them for it.

Terminology. The terminology that the students used in their
answers was inconsistent in general (see also [16]) and the exact
meanings behind words were often debatable and open for inter-
pretation. As an example, some of the answers gave the impression
that the event listener, when listening events, would be actively
running in the same sense as the engine of a car might be idling
when the car is not being driven. In addition, an insufficient com-
mand of English might have influenced in some of the answers,
such as the special cases S3–S5 (§ 5.2.4).

6.2 Threats to Validity
The target population in our study differs significantly from typ-
ical university-level introductory programming courses, as it rep-
resents a wide range of age groups, educational backgrounds, and
programming experience. On the other hand, this work’s primary
approach is qualitative and we seeked to identify different types
of understandings, including misunderstandings of EDP concepts.
Such results shed light into this area regardless of the size and char-
acteristics of the target group.The numerical results of frequencies
should be considered describing this data set only and we do not
claim any generalization for them.

The categorization of the students’ answers is subject to inter-
pretation, as their use of terminology was not consistent and the
presentation of the answers varied. We addressed this challenge
by having another researcher to review the analysis of the primary
analyst, after which these two negotiated the unclear cases to find
a consensus concerning the categorization.

7 CONCLUSIONS
This study explores students’ misunderstandings when studying
the basics of event-driven programming (EDP). It contributes to CS
teachers’ knowledge of potential issues when teaching EDP and
also gives one example of analysing students’ understanding of
EDP-related concepts. In addition, we give suggestions below for
improving the teaching of EDP.

Koli Calling ’21, November 18–21, 2021, Joensuu, Finland Lukkarinen, A., Lehtinen, T., Haaranen, L., & Malmi, L.

Based on the misunderstandings and varying terms in students’
answers, we conclude that the choice of terminology is important.
The already-familiar meanings of descriptive words such as listener
and handler affect students’ self-explaining and understanding of
new material. For each concept, only one term should be used;
synonyms should not be mixed. Supposedly, a factor contribut-
ing to the misunderstandings related to listeners and handlers was
the term listener in the addEventListener() method, while the
course material used both handler and listener interchangeably.

Students’ programming experience fromdifferent environments
might further the emergence of misunderstandings. For instance,
the concepts and technical details of event handling might differ
in comparison to the course’s chosen programming environment.
When the earlier programming environments of the course’s pop-
ulation are known, it might be useful to offer points of comparison
and spell out the differences between similar concepts of the envi-
ronments, possibly as optional info boxes for those who have used
a specific environment earlier.

When quoting external sources or referring to them, it should be
evaluated if the students have enough knowledge to properly un-
derstand them and set them into a proper context. These sources—
“definitive” or not—might contain unfamiliar jargon and unneces-
sary details, which might make them unsuitable for novices. Such
sources can confuse students and contribute to the emergence of
misunderstandings. While learning to understand technical docu-
mentation is an essential task for novices, the question is, how can
we best prepare the students for it.

Our results show that the concept of an event in general is well
understood, but the difference between the occurrence and its rep-
resentation in computer should be made clear. Furthermore, other
concepts in § 2, including their activities and relationships with
their environment, should be explicitly explained while clarifying
and reinforcing the correct ways of thinking. Concept maps might
help in clarifying and helping students to remember the substance.
The essence of the Observer design pattern [6] should be explained
to clarify the idea of manipulating event listener lists. Potentially
confusing points, such as the fact that at a specific time during the
program’s execution, not a single line of the code that the student
wrote is necessarily being executed, should be explicitly clarified
with examples. All in all, the teaching should try to proactively
ensure that known misunderstandings do not happen.

REFERENCES
[1] Marc Berges, Andreas Mühling, and Peter Hubwieser. 2012. The Gap between

Knowledge and Ability. In Proc 12th Koli Calling (Koli, FI). ACM, New York, NY,
USA, 126–134. https://doi.org/10.1145/2401796.2401812

[2] Luca Chiodini, Igor Moreno Santos, Andrea Gallidabino, Anya Tafliovich, et al.
2021. A Curated Inventory of Programming Language Misconceptions. In Proc
26th ITiCSE (Virtual Event, Germany). ACM, New York, NY, USA, 380–386.
https://doi.org/10.1145/3430665.3456343

[3] Martin Davies. 2011. Concept Mapping, MindMapping and Argument Mapping:
What Are the Differences and Do They Matter? High Educ 62 (2011), 279–301.
https://doi.org/10.1007/s10734-010-9387-6

[4] Martin J. Eppler. 2006. A Comparison between Concept Maps, Mind Maps, Con-
ceptual Diagrams, and Visual Metaphors as Complementary Tools for Knowl-
edge Construction and Sharing. Inf Vis 5, 3 (2006), 202–210. https://doi.org/10.
1057/palgrave.ivs.9500131

[5] Diana M. Franklin, Charlotte Hill, Hilary A. Dwyer, et al. 2016. Initialization in
Scratch: Seeking Knowledge Transfer. In Proc 47th SIGCSE (Memphis, TN, USA).
ACM, New York, NY, USA, 217–222. https://doi.org/10.1145/2839509.2844569

[6] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design
Patterns: Elements of Reusable Obj-Or. Sw. Addison-Wesley, Boston, MA, USA.

[7] Yu Guo, Aditi Wagh, Corey Brady, et al. 2016. Frogs to Think with: Improving
Students’ Computational Thinking and Understanding of Evolution in a Code-
First Learning Environment. In Proc 15th IDC (Manchester, UK). ACM, NewYork,
NY, USA, 246–254. https://doi.org/10.1145/2930674.2930724

[8] Jeisson Hidalgo-Céspedes, Gabriela Marín-Raventós, Vladimir Lara-Villagrán,
et al. 2018. Effects of oral metaphors and allegories on programming problem
solving. Comput Appl Eng Educ 26, 4 (2018), 852–871. https://doi.org/10.1002/
cae.21927

[9] Peter Hubwieser and Andreas Mühling. 2011. Knowpats: Patterns of Declarative
Knowledge – Searching Frequent Knowledge Patterns about Object-orientation.
In Proc 3rd KDIR (IC3K). INSTICC, SciTePress, Setúbal, PT, 350–356. https://doi.
org/10.5220/0003689203580364

[10] Iyolita Islam, Kazi Md. Munim, Shahrima Jannat Oishwee, et al. 2020. A Critical
Review of Concepts, Benefits, and Pitfalls of Blockchain Technology Using Con-
cept Map. IEEE Access 8 (2020), 68333–68341. https://doi.org/10.1109/ACCESS.
2020.2985647

[11] Joint Task Group on Computer Engineering Curricula, ACM, and IEEE-CS. 2016.
Computer Engineering Curricula 2016: Curriculum Guidelines for Undergraduate
Degree Programs in Computer Engineering. ACM, New York, NY, USA. Retrieved
July 16, 2021 from https://www.acm.org/education/curricula-recommendations

[12] Cazembe Kennedy and Eileen T. Kraemer. 2019. Qualitative Observations of Stu-
dent Reasoning: Coding in the Wild. In Proc 24th ITiCSE (Aberdeen, UK). ACM,
New York, NY, USA, 224–230. https://doi.org/10.1145/3304221.3319751

[13] Jeroen Keppens and David Hay. 2008. Concept Map Assessment for Teaching
Computer Programming. Comput Sci Educ 18, 1 (2008), 31–42. https://doi.org/
10.1080/08993400701864880

[14] Shriram Krishnamurthi and Kathi Fisler. 2019. Programming Paradigms and
Beyond. In The Cambridge Handbook of Computing Education Research, Sally A.
Fincher and Anthony V. Robins (Eds.). Cambridge University Press, Cambridge,
UK, Chapter 13, 377–413. https://doi.org/10.1017/9781108654555.014

[15] Edurne Larraza-Mendiluze and Nestor Garay-Vitoria. 2013. Use of Concept
Maps to Analyze Students’ Understanding of the I/O Subsystem. In Proc 13th
Koli Calling (Koli, FI). ACM, New York, NY, USA, 67–76. https://doi.org/10.
1145/2526968.2526976

[16] Teemu Lehtinen, Aleksi Lukkarinen, and Lassi Haaranen. 2021. Students Strug-
gle to ExplainTheir Own Program Code. In Proc 26th ITiCSE (Virtual Event, DE).
ACM, New York, NY, USA, 206–212. https://doi.org/10.1145/3430665.3456322

[17] Aleksi Lukkarinen, Lauri Malmi, and Lassi Haaranen. 2021. Event-driven Pro-
gramming in Programming Education: A Mapping Review. ACM Trans Comput
Educ 21, 1, Article 1 (March 2021), 31 pages. https://doi.org/10.1145/3423956

[18] Sandra Madison and James Gifford. 2002. Modular Programming: Novice Mis-
conceptions. J Res Technol Educ 34, 3 (2002), 217–229. https://doi.org/10.1080/
15391523.2002.10782346

[19] Scott R. Rosas. 2016. Group Concept Mapping Methodology: Toward an Episte-
mology of Group Conceptualization, Complexity, and Emergence. Qual Quant
51, 3 (April 2016), 1403–1416. https://doi.org/10.1007/s11135-016-0340-3

[20] Steven D. Sheetz, Gretchen Irwin, David P. Tegarden, et al. 1997. Exploring
the Difficulties of Learning Object-Oriented Techniques. J Manag Inf Syst 14, 2
(1997), 103–131. https://doi.org/10.1080/07421222.1997.11518167

[21] Ven Yu Sien. 2010. Implementation of the Concept-Driven Approach in an
Object-Oriented Analysis and Design Course. In Proc MODELS’10 (Oslo, NO).
Springer-Verlag, Berlin, Heidelberg, DE, 55–69. Retrieved July 19, 2021 from
https://dl.acm.org/doi/10.5555/2008503.2008511

[22] Juha Sorva. 2012. Visual Program Simulation in Introductory Programming Edu-
cation. Ph.D. Dissertation. Dept. of Comput. Sci. and Eng., Aalto U., Espoo, FI.
Retrieved July 29, 2021 from http://urn.fi/URN:ISBN:978-952-60-4626-6

[23] The Joint Task Force on Computing Curricula, ACM, and IEEE-CS. 2013. Com-
puter Science Curricula 2013: CurriculumGuidelines for Undergraduate Degree Pro-
grams in Computer Science. ACM, New York, NY, USA. Retrieved July 16, 2021
from https://www.acm.org/education/curricula-recommendations

[24] The Joint Task Force on Computing Curricula, IEEE-CS, and ACM. 2001. Com-
puting Curricula 2001 Computer Science: Final Report. ACM, New York, NY,
USA. Retrieved July 16, 2021 from https://www.acm.org/education/curricula-
recommendations

[25] The Joint Task Force on Computing Curricula, IEEE-CS, and ACM. 2020. Com-
puting Curricula 2020: Paradigms for Global Computing Education. ACM, New
York, NY, USA. Retrieved July 16, 2021 from https://www.acm.org/education/
curricula-recommendations

[26] Web Hypertext Application Technology Working Group. 2021. DOM Living
Standard. Retrieved Jul. 13, 2020 from https://dom.spec.whatwg.org/

[27] Wei Wei and Kwok-Bun Yue. 2017. Concept Mapping in Computer Science Edu-
cation. J Comput Sci Coll 32, 4 (April 2017), 13–20. Retrieved July 16, 2021 from
https://dl.acm.org/doi/abs/10.5555/3055338.3055341

[28] Xudong Yu and Steve Klein. 2008. Enhancing Student Learning Using Concept
Mapping and Learning by Teaching Environment. J Comput Sci Coll 23, 4 (April
2008), 271–278. Retrieved July 16, 2021 from https://dl.acm.org/doi/10.5555/
1352079.1352129

https://doi.org/10.1145/2401796.2401812
https://doi.org/10.1145/3430665.3456343
https://doi.org/10.1007/s10734-010-9387-6
https://doi.org/10.1057/palgrave.ivs.9500131
https://doi.org/10.1057/palgrave.ivs.9500131
https://doi.org/10.1145/2839509.2844569
https://doi.org/10.1145/2930674.2930724
https://doi.org/10.1002/cae.21927
https://doi.org/10.1002/cae.21927
https://doi.org/10.5220/0003689203580364
https://doi.org/10.5220/0003689203580364
https://doi.org/10.1109/ACCESS.2020.2985647
https://doi.org/10.1109/ACCESS.2020.2985647
https://www.acm.org/education/curricula-recommendations
https://doi.org/10.1145/3304221.3319751
https://doi.org/10.1080/08993400701864880
https://doi.org/10.1080/08993400701864880
https://doi.org/10.1017/9781108654555.014
https://doi.org/10.1145/2526968.2526976
https://doi.org/10.1145/2526968.2526976
https://doi.org/10.1145/3430665.3456322
https://doi.org/10.1145/3423956
https://doi.org/10.1080/15391523.2002.10782346
https://doi.org/10.1080/15391523.2002.10782346
https://doi.org/10.1007/s11135-016-0340-3
https://doi.org/10.1080/07421222.1997.11518167
https://dl.acm.org/doi/10.5555/2008503.2008511
http://urn.fi/URN:ISBN:978-952-60-4626-6
https://www.acm.org/education/curricula-recommendations
https://www.acm.org/education/curricula-recommendations
https://www.acm.org/education/curricula-recommendations
https://www.acm.org/education/curricula-recommendations
https://www.acm.org/education/curricula-recommendations
https://dom.spec.whatwg.org/
https://dl.acm.org/doi/abs/10.5555/3055338.3055341
https://dl.acm.org/doi/10.5555/1352079.1352129
https://dl.acm.org/doi/10.5555/1352079.1352129

	Abstract
	1 Introduction
	2 Concepts of Event-Driven Programming
	3 Related Work
	4 Study Arrangements
	4.1 Course Context
	4.2 Data Collection and Analysis

	5 Results
	5.1 Enrollment Survey
	5.2 Concept Comprehension Exercise (E1)
	5.3 Code Comprehension Exercise (E2)
	5.4 Course Feedback

	6 Discussion
	6.1 Findings
	6.2 Threats to Validity

	7 Conclusions
	References

