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Multi-surfaced elasto-plastic wood material model in material point method 
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A B S T R A C T   

Wood is a naturally occurring material widely used for construction. Due to its natural origin, wood properties 
vary and its behaviour is complex. This paper shows an implementation of a multi-surface elasto-plastic 
constitutive material model for wood into a custom explicit material point method code. The constitutive model 
chosen is one proposed by Schmidt & Kaliske with minor modifications to ensure better internal consistency. The 
model parameters are chosen based on literature data for spruce. The paper presents two Convected Particle 
Domain Interpolation Material Point Method simulations of experiments, both performed with the previously 
established model parameters. The first simulation replicates a compression test of a spruce specimen perpen-
dicular to grain direction, carried out at the Department of Civil Engineering, Aalto University. The second 
simulation replicates an experiment from literature, in which a spruce specimen with knots is tensioned until 
failure. The numerical simulations successfully replicate the experimental outcomes qualitatively in terms of the 
deformation and load-displacement curves. Simulations of the three knotted specimens under tension, with 
introduced slight variation in wood grain direction, replicate different failure patterns with a similar failure load, 
resembling the behaviour of natural wooden structural elements. Additionally, one of the obtained failure pat-
terns replicates that of the experiment well.   

1. Introduction 

1.1. Wood material 

Wood has been used as a construction material for centuries. With 
growing concern on improving sustainability and lowering the envi-
ronmental impact, wood has become even more appealing due to its 
renewability and often low carbon footprint of the overall production 
process. Yet, wood behaviour is complex as it is best approximated by an 
orthotropic material model where the mechanical properties such as 
strength and stiffness vary depending on grain and loading directions. 
Furthermore, wood is relatively brittle in tension as opposed to the 
significant ductility in compression. Finally, wood behaviour is affected 
by, among others, temperature, moisture content, and heterogeneity. 

Until the mid-1980s, wood testing comprised mainly of uniaxial 
loading. The mixed loading scenarios were introduced by e.g. Hemmer 
(Hemmer, 1985), Ehlbeck (Ehlbeck, 1986), and Spengler (Spengler, 
1986), and later, Eberhardsteiner et al. (Eberhardsteiner et al., 1999), 
Eberhardsteiner (Eberhardsteiner, 2002), and many others evaluated 
wood strength under various biaxial loading conditions and showed that 
the tensile loading beyond the wood tensile strength results in an 

instantaneous loss of strength at the macroscopic level. Yet, at the 
microscopic level, Faessel et al. (1999) discovered the gradual strain 
softening behaviour during tensile failure. Subsequently, Mackenzie- 
Helnwein et al. (2003) suggested a connection between the energy 
dissipated by this mechanism and the mode I fracture energy, both for 
the longitudinal and radial directions. Further fracture tests on all 
possible orthogonal crack propagation directions were conducted by 
King et al. (1999), who comprehensively experimented on fracture 
toughness of pines. Other similar studies for spruce and pines are also 
available, i.e. (Aicher, 1994; Stanzl-Tschegg et al., 1995; Reiterer et al., 
2002; Dourado et al., 2008; Tukiainen and Hughes, 2013; Tukiainen and 
Hughes, 2016). On the other hand, compression in the transverse di-
rection beyond the compressive strength results in a significant pla-
teauing followed by an increase in stiffness, a phenomenon called 
densification. Compression in the longitudinal direction ultimately leads 
to an inelastic response - initial softening due to grain buckling is fol-
lowed by a longer plateau and densification afterwards (see Adalian and 
Morlier, 2001; Adalian and Morlier, 2002 for the experimental results). 
Therefore, while the tensile failure results in a quasi-brittle behaviour, 
the compressive failure exhibits a significant strain-hardening and 
ductility. 
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Numerical modelling of the anisotropic material failure is chal-
lenging under multi-axial loading because of the interaction between the 
stress components in the orthogonal directions. The historical effort by 
Tsai and Wu (1971) to model such material utilizes an elliptical failure 
surface, which at some point was tried on wood (Eberhardsteiner, 2002). 
However, as wood failure modes are easy to identify, a multi-surface 
approach, in which each yield surface is associated with a failure 
mode is an attractive approach with a clear physical interpretation. Such 
multi-surface plasticity constitutive model for wood is conceptually 
similar to the models of Tresca and Mohr-Coulomb, both featuring six 
surfaces representing all permutations of 2 out of 3 principal stresses. 
Discussions on Tresca and Mohr-Coulomb are widely available in many 
solid mechanics or computational plasticity textbooks, e.g. (Simo and 
Hughes, 1998; de Souza Neto et al., 2011; David and Zdravkovic, 1999). 
For wood, the multi-surface approach has been used e.g. by Mackenzie- 
Helnwein et al. (2001). The additional yield surfaces allow for defining 
different nonlinear behaviour for the radial and longitudinal failures. 
Mackenzie-Helnwein et al. (2003) then implemented more surfaces to 
account for failure phenomena in the radial and the longitudinal 
compression and tension. Schmidt and Kaliske (2006, 2009) developed 
the multi-surface concept further for a three-dimensional case. They 
introduced two additional surfaces for tension and compression in the 
tangential direction, and another surface exclusively for the shear fail-
ure. The equations were generalized, practically allowing the same set of 
expressions to describe all seven surfaces, differentiated by different 
parameters. 

Considering the wood inherent orthotropic behaviour and the 
different failure behaviours when subjected to loading, the material 
model by Schmidt and Kaliske (2006, 2009) seems to be the most 
capable for the task. Unfortunately, the numerical implementation 
quickly revealed that the model produced an inconsistent stress incre-
ment for an elasto-plastic deformation when different units were used. 
In this paper, we identify the dimensional inconsistency in the model 
formulation of Schmidt and Kaliske (2006, 2009) (Appendix A) and 
present a necessary modification, following the established principles of 
the material model (Appendix B). The proposed material model also 
utilises an additional algorithm to tackle the issue of severe softening, 
potentially arising from the highly-brittle failures (Appendix C). In this 
paper, we assume a constant moisture content and temperature and take 
wood as a homogenous material. Simulating the effects of changing 
temperature and moisture remains an open possibility for future studies. 

1.2. Material Point Method 

In this work, numerical simulations utilize Convected Particle Domain 
Interpolation (CPDI) (Sadeghirad et al., 2011) Material Point Method 
(MPM). In Material Point Method, originally introduced by Sulsky et al. 
(1994), the computational domain is discretized by particles cast over a 
background grid. Particles store all kinematics and internal variables, 
while the equations of motion are solved at the background grid. 
Interpolation functions, similar to shape functions in Finite Element 
Method (FEM), map the variables between the particles and the grid. The 
particles move during the computations, while the background grid 
remains undeformed between timesteps. 

Compared to FEM, MPM performs better when involving problems 
with large deformations, as large element distortions in FEM may result 
in ill-conditioned Jacobian matrices (see e.g. Więckowski, 2004; Beuth 
et al., 2011). Nonetheless, the original MPM formulation leads to errors 
when particle crosses cell boundaries (known as cell crossing noise). The 
problem is significantly reduced by introducing domains to the material 
points, which was first proposed by Bardenhagen and Kober (2004) in 
Generalized Interpolation Material Point Method. Sadeghirad et al. (2011) 
later proposed the Convected Particle Domain Interpolation, which 
featured basis function approximation with deformable parallelogram- 
shaped particle domain (parallelepiped for 3D). The approximation 
usually introduces insignificant amount of error, although the 

inaccuracy might turn substantial in some special cases. Nonetheless, 
CPDI shows superior performance over MPM with static particle domain 
(Kamojjala et al., 2015). While shear-deformability may cause severe 
particle domain distortion, such occurrence does not degrade accuracy 
as element distortion does to FEM. Regardless of particle domain, the 
weak form of the equation of motion still integrates over the undeformed 
cells of the background grid. 

This paper chooses CPDI MPM with Euler-forward time integration 
as the discretization method, which implementation follows the 
description in (Sadeghirad et al., 2011). After initial discretization of the 
material into particles with square domains, the algorithm of CPDI in-
volves 3 phases in each time step: particle-to-node mapping, nodal 
calculation, and particle update from nodal solution. In the first phase, 
CPDI basis function maps particle kinematics and internal variables into 
nodal values. For example, nodal mass, momentum, and internal force 
calculations follow: 

p→t
i =

∑np

p=1
mp v→ t

p ϕapp
ip

mt
i =

∑np

p=1
mpϕapp

ip

, (1)  

where p = particle number, i = node number, np = number of particles, t 
= time, p→ t

i = nodal momentum, mp = particle mass, v→ t
p = particle 

velocity, and ϕapp
ip = CPDI-approximated grid basis function described as 

(see Sadeghirad et al., 2011 for derivation): 

ϕapp
ip =

1
4

(

Si

(

x→p
1

)

+ Si

(

x→p
2

)

+ Si

(

x→p
3

)

+ Si

(

x→p
4

) )

, (2)  

where x→p
1 to x→p

4 denotes the positions of the 4 corners of the particle 
domain, and Si = standard grid basis function (i.e. standard MPM basis 
function). 

Mapping other variables such as nodal acceleration, body force, and 
traction follow similar way (see Sadeghirad et al., 2011; Sulsky et al., 
1994 for more details) 

Nodal solution for the next time step is then calculated in the second 
phase. For instance, nodal momentum update (see Sadeghirad et al., 
2011; Sulsky et al., 1994 for other variables) is calculated as: 

p→t+Δt
i = p→t

i +

(

f
→int

i + f
→ext

i

)

Δt, (3)  

where f
→int

i and f
→ext

i are nodal internal and external forces, and Δt =

time-step size. 
Finally, particle update from nodal solution takes place in the third 

phase. The update of e.g. particle position follows: 

x→ t+Δt
p = x→ t

p + Δt
∑ni

i=1

p→ t+Δt
i ϕapp

ip

mt
i

, (4)  

where x→ t
p = particle position, and ni = number of nodes. Node-to- 

particle mapping of other variables follow similar procedure depend-
ing on the governing equations (see Sadeghirad et al., 2011; Sulsky et al., 
1994 for the mapping procedures of other variables). 

Afterwards, we go back to the first phase to solve the next time step. 
Throughout the simulation, particle domain changes shape as 

parallelogram, following material deformation according to: 

r→t
1,p = Ft

p⋅ r→0
1,p

r→t
2,p = Ft

p⋅ r→0
2,p

, (5)  

where p = particle number, r→t
1,p and r→t

1,p are the two vectors defining 

the parallelogram at the current configuration, r→0
1,p and r→0

1,p are those 
at initial configuration, and Ft

p is deformation gradient of current 
configuration. Such approach naturally allows domain elongation, 
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shearing, and rigid-body rotation. 
MPM simulation involving wood material has been relatively 

numerous (e.g. Nairn, 2007; Nairn, 2007; Matsumoto and Nairn, 2012; 
Nairn, 2015; Nairn, 2016; Aimene and Nairn, 2015). Nonetheless, unlike 
the mentioned contributions, the simulations presented in this paper 
utilise CPDI Material Point Method, which is more accurate numerically. 
The paper reports on the implementation of the wood material model 
into a custom dynamic explicit CPDI MPM code following the formu-
lation described in (Sadeghirad et al., 2011). Our solver is yet to include 
implicit time integration, as MPM is most beneficial for fully dynamic 
cases while current state of the art implementations of MPM with 
explicit time integration are more robust. Additionaly, our future works 
require the implementation of the wood material model in conjunction 
with dynamic fracture. Unfortunately, suitable dynamic validation cases 
for wood are scarce, therefore our simulations attempt to replicate 
quasi-static cases instead. The first validation test case involves a novel 

asymmetric compression experiment of spruce perpendicular to the 
grain direction. We also demonstrate the capability to reproduce the 
tensile failure of spruce beam with knots in our second validation test 
case. 

2. Schmidt’s and Kaliske’s model 

2.1. Overview 

This section reviews the wood material model by Schmidt and 
Kaliske (2006). Several minor modifications are introduced into the 
implementation of the material model, elaborated in Appendices A-C. 
Nonetheless, the principles stay true to the original model. 

The model assumes orthotropic linear elasticity in radial (R), 
tangential (T), and longitudinal (L) (see Fig. 1), and seven yield criteria: 
for tensile and compressive failures in the three orthogonal directions 
and for a failure in shear. A unique hardening function accompanies 
each yield surface. The hardening function for each tensile failure sur-
face simulates the brittle response (Eberhardsteiner et al., 1999; Eber-
hardsteiner, 2002), with the total plastic work taken equal to the 
fracture energy of the relevant loading direction (Aicher, 1994; Dourado 
et al., 2008). Meanwhile, the hardening function for the compression 
failure simulates plateauing and densification as observed in experi-
ments (Adalian and Morlier, 2001; Adalian and Morlier, 2002). 

Due to the orthotropic nature of wood, Young’s moduli, shear 
moduli, and Poisson’s ratios vary for the R, T, and L directions, which 
are reflected in the elastic constitutive tensor (see Lekhnitskii et al., 
1964). For simplicity, this paper utilises Voigt’s notation with order the 
same as that in (Schmidt and Kaliske, 2006). For example, the order of 
components of stress tensor σ and strain tensor ε are as follows: 

{σ}
T

= { σrr σtt σll σrt σtl σrl }
T
; {ε}

T

= { εrr εtt εll εrt εtl εrl }
T (6)  

2.2. Yield criteria 

The seven yield criteria are given by a generic equation: 

Fm = a(m) : σ + σ : b(m) : σ + qm − 1⩽0 (7)  

m = 1
m = 2
m = 3
m = 4
m = 5
m = 6
m = 7

:

:

:

:

:

:

:

radial tension
radial compression
tangential tension

tangential compression
longitudinal tension

longitudinal compression
shear  

where qm is the hardening function for failure mode m; a(m) and b(m) are 
2nd and 4th order tensors defining the yield surface for failure mode m, 
given by Schmidt and Kaliske (2006). 

In Voight’s notation, the 2nd order tensors am are given by: 

Fig. 1. Orthotropic directions of wood.  

Table 1 
Components of b tensor.  

m  b(m)

ii  

i =

1  
i = 2  i = 3  i = 4  i = 5  i = 6  

1 0  0.5
f2
ct  

−
0.25
fclftl  

0.5
f2
vrt  

0.33
f2
vtl  

0.33
f2
vrl  

2 0  0.4
f2
ct  

−
0.25
fclftl  

0.4
f2
vrt  

0.33
f2
vtl  

0.33
f2
vrl  

3 0.5
f2
cr  

0  
−

0.25
fclftl  

0.4
f2
vrt  

0.33
f2
vtl  

0.33
f2
vrl  

4 0.4
f2
cr  

0  
−

0.25
fclftl  

0.4
f2
vrt  

0.33
f2
vtl  

0.33
f2
vrl  

5 0.2
f2
cr  

0.2
f2
ct  

0  0.1
f2
vrt  

0.1
f2
vtl  

0.1
f2
vrl  

6 0.33
f2
cr  

0.33
f2
ct  

0  0.25
f2
vrt  

0.25
f2
vtl  

0.25
f2
vrl  

7 0.25
f2
cr  

0.25
f2
ct  

−
0.1
fclftl  

1
f2
vrt  

1
f2
vtl  

1
f2
vrl    

a(1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
ftr

0

0

0

0

0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

; a(2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
fcr

0

0

0

0

0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

; a(3) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
1
ftt

0

0

0

0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

; a(4) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
1
fct

0

0

0

0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

; a(5) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

0
1
ftl

0

0

0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

; a(6) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

0
1
fcl

0

0

0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

; a(7) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
0.2
fcr

−
0.2
fct

−
0.05
fcl

0

0

0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8)   
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The 4th order tensors b(m) are defined as diagonal matrices in Voigt’s 
notation. For 1⩽m⩽7, the components of b(m) are given in Table 1 

where ftr, ftt , and ftl are the tensile strengths in the radial, the 
tangential, and the longitudinal direction, respectibely; fcr, fct, and fcl are 
the compressive strengths in the radial, the tangential, and the longi-
tudinal direction, respectively; fvrt , fvtl, and fvrl are the shear strengths in 
the radial-tangential, the tangential-longitudinal, and the radial- 
longitudinal direction, respectively. 

2.3. Tensile hardening functions 

For every m, the hardening function qm from Eq. (7) is independently 
controlled by its own hardening parameter αm, 1⩽m⩽7: 

qm = qm(αm) (9) 

The model assumes an associated flow rule: 
{

ε̇p

}

= λ̇
{

∂Fm

∂σ

}

(10)  

α̇m = λ̇
∂Fm

∂qm
; where

∂Fm

∂qm
=

∂
∂qm

(
a(m) : σ + σ : b(m) : σ + qm − 1

)
= 1 ⇒ α̇m

= λ̇
(11)  

where λ is a plastic multiplier, which is not dimensionless (see Appendix 
A for the full derivation). 

Hardening for the tensile yield criterion simulates a brittle failure. 
The hardening function is then defined as: 

qm = (1 − κm)(1 − exp( − ηαm) ) (12)  

where: 

η =
fmℓc

G(f )
m

m = 1, 3, 5 (13)  

where lc is the characteristic length, fm stands for the tensile strength 
associated with surface m, G(f)

m corresponds to the fracture energy 
associated with surface m failure, and κm is the relative residual strength. 
The correct value of the relative residual strength is zero, but in the 
simulation it may be taken as a value close to zero for numerical reasons. 
The idealization of the tensile failure in Eqs. (12) and (13) is shown in 
Fig. 2 (see Appendix C for stress–strain curve derivation in up to equa-
tion C5). 

The characteristic length ℓc is represented as the element size in the 
numerical discretization, and cannot be larger than a critical value: 

Fig. 2. Hardening regime and resulting stress–strain curve for tensile failure in 
radial (R), tangential (T), and longitudinal (L) directions (m = 1,3,5). 

Fig. 3. Stress–strain curve of uniaxial compression in L (a) and T (b) directions (Adalian and Morlier, 2002).  

Fig. 4. Hardening regime and resulting stress–strain curve for compression 
failure in L direction (m = 6). 
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ℓc < ℓc,crit =
EmG(f )

m

(fm)
2 (14)  

2.4. Compression hardening functions 

Unlike tension, compression failure exhibits a significant amount of 
ductility. Experiments by Adalian and Morlier (2001, 2002) shows a 
significant plateauing after a compression failure, followed by a rapid 
increase in the compressive strength due to densification. Fig. 3 shows 
the typical stress–strain curve of a wood sample under compression in 
the L and T directions. To take it into account, the hardening function is 
described as follows: 

qm =

⎧
⎪⎪⎨

⎪⎪⎩

(1 − κm)(1 − exp( − ηαm) ) for αm⩽αm,d

(1 − κm)(1 − exp( − ηαm) ) − ζm

(
αm − αm,d

)2

(
αm,max − αm

) for αm > αm,d

(15)  

where αm,d and αm,max marks the start and end of the densification phase. 
The value of κm should be selected to be approximately 1 in order to 
simulate a plateau. For a declining plateau (L compression; m = 6), κm 
should be taken less than 1, which results in an idealized stress–strain 
curve shown in Fig. 4. Otherwise, for an inclined plateau (R and T 
compressions and shear; m = 2,4,7) κm is set to be larger than 1, resulting 
in the curve shown in Fig. 5. 

The shear failure follows the same hardening function described in 
Eq. (15) with  greater than 1κm. 

2.5. Re-derivation of the hardening parameter evolution 

The original material model assumes the amount of plastic work 
throughout uniaxial tensile failure to be equal to the fracture energy: 

ℓc

∫ εp=∞

εp=0
σdεp = G(f ) (16) 

Based on the generalized Eq. (16), we show in Appendix B that the 
increment of the hardening parameter on the active yield surface is 
linked with the scalar plastic multiplier by the relationship: 

α̇ =
1
ft

λ̇, (17)  

where ft is the tensile strength for the appropriate failure surface. In 

further calculations, Eq. (17) replaces Eq. (11), allowing for a consis-
tently dimensionless hardening parameter α while maintaining the 
intended original hardening mechanism. Therefore, the model used in 
this paper follows the hardening rule: 
{

ε̇p

}

= λ̇
{

∂F
∂σ

}

= α̇ft

{
∂F
∂σ

}

(18) 

Three sets of Eq. (18) exist, one for each tensile failure surface and 
relevant when said failure surface is active in an elasto-plastic 
deformation. 

3. Implementation 

3.1. Material parameters 

The material model requires experimental results to select elastic 
parameters, material strengths (tension, compression, shear), fracture 
energy, and compression load–displacement curves, in all orthogonal 
directions for each wood material. Despite the modifications, the pre-
sented material model requires the same number of parameters as the 
previous material model (Schmidt and Kaliske, 2006), which is 41 pa-
rameters. Such a high number of parameters is necessary due to repe-
titions for all 3 orthogonal directions and 7 failure surfaces, as each 
surface requires its own hardening parameter. The first 9 parameters 
determine the orthotropic elastic behaviour, which values are taken as 
follows (Schmidt and Kaliske, 2009): 

Er = 820 N/mm2Grt = 40 N/mm2νrt = 0.24
Et = 430 N/mm2Gtl = 730 N/mm2νtl = 0.45

El = 13200 N/mm2Grl = 660 N/mm2νrl = 0.45
(19) 

The next 9 parameters involve material strengths in terms of tension, 
compression, and shear in each direction (Schmidt and Kaliske, 2006; 
Miksic et al., 2013): 

ftl = 65.5 N/mm2fcl = −50.3 N/mm2fvrt = 1.83 N/mm2

ftr = 3.75 N/mm2fcr = −2.75 N/mm2fvtl = 5.34 N/mm2

ftt = 2.79 N/mm2fct = −5 N/mm2fvrl = 6.34 N/mm2
(20) 

Another 3 parameters determine fracture energy for tensile failures 
in the 3 orthogonal directions, with physical meaning in the context of 
the proposed material model explained in subsection 2.3 and further in 
Appendix B.1. 

GI
f ,tl = 1.65 N/mm

GI
f ,tr = 0.3 N/mm

GI
f ,tt = 0.3 N/mm

(21) 

The remaining 20 parameters determine the densification curves in 
each direction, matching the stress–strain curves from experiments in T, 
L and R directions. Subsection 2.4 discusses the physical meanings 
behind the parameters. The taken parameters in the calculations 
correspond to those for Norwegian Spruce at 12% moisture content 
(Mackenzie-Helnwein et al., 2003), aimed to match experimental result 
in (Adalian and Morlier, 2001; Adalian and Morlier, 2002). 

GI
f ,cr = 9.09 N/mm ζcr = 0.7273 αl,d = 0.5

GI
f ,tt = 0.3 N/mm ζct = 0.4000 αl,max = 0.75

GI
f ,ct = 9.09 N/mm ζcl = 0.2982 αr,d = 0.1

GII = 0.3 N/mm ζv = 0.7273 αr,max = 0.75
κcr = 1.2 αt,d = 0.1
κct = 1.2 αt,max = 0.75
κcl = 0.7 αv,d = 1
κv = 1 αv,max = 1.5

(22) 

Additionally, wood is a natural material, with significant spatial 
variability. This study has not implemented any variability of material 

Fig. 5. Hardening regime and resulting stress–strain curve for R and T 
compression and shear failures (m = 2,4,7). 
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properties, beyond the change of the grain direction around the knots. 
Introducing random variation of material parameters and performing 
large number of Monte-Carlo simulations would likely result in a better 
representation of real wood behaviour. However, getting data to justify 
the parameters variation would likely be challenging, hence the intro-
duced parameters random distributions would likely be judged as 
arbitrary. 

3.2. MPM implementation 

Verification cases presented in this paper utilizes the in-house dy-
namic-explicit CPDI MPM code built at Aalto University programmed 
with the proposed material model. For the MPM simulations, total strain 
increment is defined as (Sulsky et al., 1994): 

ε̇ =
1
2

(

∇
→ u̇→˙

+
(

∇
→ u̇→˙

)T
)

, (23)  

which assumes a small strain increment between the timesteps while 
representing a finite strain for a large number of timesteps. We assume 
total strain is split additively into elastic strain and plastic strain: 

ε = εe + εp, (24)  

where εe = elastic strain, and εp = plastic strain. Naturally, the following 
relationship applies: 

σ = D : εe, (25)  

where D = the elastic orthotropic stiffness tensor, while σ = stress 
tensor. The stress increment is a function f of material parameters P , 
strain increment ε̇ , and hardening parameter α 

σ̇ = f (P, ε̇, α) (26) 

To calculate stress increment σ̇ during elasto-plastic deformation, we 
use of 2nd order explicit stress integration (derivation in Appendix D), 
with implicit-explicit hybrid integration for when snapback due to rapid 
softening occurs (derivation in Appendix C). 

In a given time step total strain update bases on the velocity gradient 
and leads to logarithmic strain over the course of the simulation: 

Δε =
1
2

(
L + (L)

T )
Δt, (27)  

where 

Lij =
∂vi

∂xj
, (28) 

Additionally, the rotation of the material points is calculated via 
polar decomposition, the same way as e.g. (Biswajit, 2006; Yarahmadi 
et al., 2013). 

Fig. 6. Compression test setup (a), specimens 1 (b), 2 (c), and 3 (d).  

Fig. 7. Experimental result of spruce compression test specimen 1 at 8 mm (a), 12 mm (b), 17 mm (c), and 20 mm (d) of displacements.  
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4. Verification cases 

4.1. Compression test 

A compression test of a wood specimen with the grain orientation 
perpendicular to the compression direction is carried out with a Uni-
versal Testing Machine (UTM), which provides a displacement- 
controlled compression, along with the output of the acting compres-
sive force and displacement throughout time. The specimens used in the 
compression test have their growth ring centre located around one edge. 
Fig. 6a shows the orientation of the test specimen’s wood grains. The 
specimens are situated on a hemispherical knee joint to avoid inducing 
bending. The knee joint is adjusted and then locked after a preload is 
applied. The loading rate is set at 0.5 mm/minute, so that failure ac-
cording to 1% offset method happens at around 300 s (5 min) of loading 
(Finnish Standard Association, 2012). 

Three specimens are tested, shown in Fig. 6b to d. The loading pro-
cesses of specimens 1 and 2 are video-recorded. The recording device, 

unfortunately, failed while recording the loading of specimen 3, though 
the load and displacement data are still recorded by the UTM. 

The key results of the experiment with specimen 1 are shown in 
Fig. 7. At 8 mm vertical displacement, a curved shape is observed. At 12 
mm displacement, small shear cracks start to appear at the bottom-right 
corner of the specimen, getting more visible at 17 mm displacement. At 
the end of the loading process, a large crack formed on the right side of 
the specimen. 

The experiment is replicated with CPDI MPM under 2D plane strain 
assumption. For specimen 1, the simulation was carried out using two 
mesh densities, i.e. spatial resolutions. Fig. 8a, 8b, and 8c show the 
schematic of the 2D representation and the MPM initial configuration 
for two mesh densities (the red lines represent the orientation of the 
material’s tangential direction). The particles are spread evenly with 4 
particle-per-cell arrangement at the initial configuration. The coarser 
setup involves 176 particles occupying 44 cells, while the finer mesh 
density includes 704 particles within 176 cells at the start of the simu-
lation. The wood sample is fixed at the bottom. The steel plate moves 

Fig. 8. Simulation schematics (a) and MPM models of the spruce compression test with coarser (b) and denser (c) meshes.  

Fig. 9. Maximum plastic shear strain of spurce compression specimen 1 simulation with coarser mesh at 8 mm (a) and 20 mm (b) of steel plate displacement.  

T. Adibaskoro et al.                                                                                                                                                                                                                            



International Journal of Solids and Structures 236–237 (2022) 111333

8

with the velocity of 1 mm/s, with the fixed velocity boundary initially 
set at the grid nodes at the bottom of the steel plate. The thickness of the 
steel plate is exactly the same as the target displacement of 20 mm, 
hence at the end of the simulation, the top of the steel plate coincides 
with the location of the fixed-velocity boundary. Such arrangement is 
necessary as the used MPM code is yet to feature displacement control at 
the particles. Fig. 8b and 8c represent the steel plate as blue circles 
without a red line and show the positioning of the steel plate in the MPM 
initial configuration. 

The material parameters chosen for the simulation reflect those of 
Norwegian Spruce at 12% moisture content, see section 3.1 based on 
(Mackenzie-Helnwein et al., 2003; Schmidt and Kaliske, 2006; Schmidt 
and Kaliske, 2009; Miksic et al., 2013). 

The choice of timestep follows the requirement of Courant stability 
condition for Euler-forward explicit time integration: 

Δt < Δtcr =
Δx
c

, (29)  

where Δt = time-step size, Δtcr = critical time-step size, Δx = cell size, 
and c = the speed of elastic wave propagation calculated as: 

c =

̅̅̅̅
E
ρ

√

, (30)  

where E = elastic modulus, and ρ = material density. 
The time-step size chosen in the presented simulations are half of the 

critical value, i.e. Δt = 0.5(Δx/c). 
We define the steel material for the steel plate with elastic modulus 

of Es = 200 GPa, Poisson’s ratio of ν = 0.3, and density of ρs =

7600 kg/m3. Such assumption causes the steel material to be the 
determining critical time-step size. Anyhow, the resulting critical time- 
step size would be prohibitive to our simulation in terms of computa-
tional cost, therefore we introduce mass scaling into our simulation. 

Artifically increasing material density through mass scaling allows 
quasi-static simulation to run at higher critical time-step limit. An in-
crease by a factor β increases the critical time-step size by 

̅̅̅
β

√
. Ceccato 

et al. (2016) implemented the concept in MPM with quasi-static case, 
which reported insignificant deviation with mass scaling factor up to 
400. MPM simulations in e.g. (Martinelli and Galavi, 2021; Mishra et al., 
2019) employ the same approach, while other examples besides MPM 
include the applications in e.g. (Kim et al., 2003; van den Boogaard and 
Huétink, 2006; Wang et al., 2007). Our simulations in this paper uses 
mass scaling factor of 100. The arrangement resolves into Δt = 1.479 ×

10−4 s as the chosen time-step size for the denser mesh simulation and 
Δt = 2.958 × 10−4 s for the coarser counterpart. 

Fig. 9a and b display the result of the MPM simulation of specimen 1 
with a coarser mesh, and Fig. 10a and b with a denser mesh. A com-
parison between the resulting load–displacement curves is shown in 
Fig. 11. Calculations with both mesh densities show similar deformed- 
shape outlines and load–displacement curves. However, as expected, 
the result with the finer mesh resembles the experimental result better, 
therefore is taken for further discussion. Additionally, the simulations of 
specimens 2 and 3 use the finer mesh density only. 

At 8 mm of displacement, the outline of the specimen starts to curve 
similar to the experimental result. The plastic deformations start to 

Fig. 10. Maximum logarithmic plastic shear strain (unit [-]) of spruce compression specimen 1 simulation with denser mesh at 8 mm (a) and 20 mm (b) of steel plate 
displacement. 

Fig. 11. Load-displacement curves of MPM results of specimen 1 with coarser 
and finer meshes. 
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concentrate at the top and the bottom right corners. After further 
loading, the maximum plastic shear strain in Fig. 10b shows a shear- 
band-like pattern forming from the centre of the annual ring diago-
nally towards the top and bottom right corner of the specimen which 

Fig. 12. Spruce compression test specimen 1, experiment vs MPM results overlay with maximum principal plastic shear strain at 0 mm (a), 8 mm (b), 12 mm (c), 17 
mm (d), and 20 mm (e) of displacements. 

Fig. 13. Spruce compression test specimen 2, experiment vs MPM results overlay with maximum principal plastic shear strain at 0 mm (a), 8 mm (b), 12 mm (c), 13 
mm (d), and 20 mm (e) of displacements. 

Fig. 14. Load-displacement curves of experimental and MPM results of spruce 
compression tests. 

Fig. 15. Tensile test specimen by Fink et al. (Fink et al., 2012) (a) and the MPM 
model (b). 
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goes diagonally from the top left towards the bottom right. 
For a better comparison, the MPM result is overlaid on top of the 

experimental results in Fig. 12. The numerical and the experimental 
results are in very good agreement up to around 8 mm of displacement. 
Some deviation starts to appear at around 12 mm displacement. At 17 
mm the deviation of the MPM result is significant, while the large crack 
that starts to form in the experiment is not replicated. This is likely 
because the current CPDI-MPM implementation does not include 
discontinuity or fracture. Similar behaviour is observed in specimen 2, 
as shown in Fig. 13. Nonetheless, Fig. 14 shows a good qualitative 
agreement between the load–displacement curves produced by the ex-
periments and the MPM simulations. The simulation aims for qualitative 
replication, though quantitative comparison shows that the displace-
ment at yield is captured accurately, while the load at yield are under-
predicted by 11% 

4.2. Tensile test with knots 

At a structural element level, the presence of imperfections such as 
knots adds to the complexity of the behaviour of wood material. Fink 
et al. (2012) and Fink and Kohler (2012) investigated the effect of the 
knot clusters in structural elements in tensile tests. The specimens tested 
were 44x126x4000 mm3 spruce beams with a knot or a knot cluster, 

while the observed area was 126x150 mm2 for each beam. The study 
concentrated mainly on the strain distribution around the knot, which 
was acquired via digital image correlation. Several specimens were 
tensioned up to the failure with crack patterns recorded. MPM simula-
tion attempts to replicate one of the crack patterns in the form of a 
smeared crack indicated by the accumulation of the plastic strain. The 
material model uses the same material parameters as those described in 
subsection 3.1. 

Let us consider a tensile test in the y direction. There are three as-
pects considered in representing the knots in a simulation (Fink et al., 
2012). First, most of the tensile stress in y-direction flows around the 
knots, which makes the knots themselves structurally insignificant in 
transmitting that load. Second, the knots are compressed in the x di-
rection and, in this case, provide significant resistance. Last, the grain 
direction becomes irregular around the knots, commonly showing a 
pattern where the wood grains are seemingly going around those knots. 
Thus, in MPM the knots are represented by an elastic material with 
elastic modulus Ey close to zero and Ex equal to 1.5 times Er, while the 

Fig. 16. The 2nd (a) and 3rd (b) approaches to simulate grain direction distribution around the knots of tensile test specimen.  

Fig. 17. Illustration of the failure path of the tensile specimen (Fink 
et al., 2012). 

Fig. 18. MPM simulation results for the 1st (a), 2nd (b), and 3rd (c) grain 
direction distribution modelling approaches of the tensile test specimen. 
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simulation setup takes into account the variation of the wood grain 
orientation around it. 

Fig. 15 shows the MPM model representing the tensioned beam and 
illustrates the observed area of the particular specimen to be replicated 
(see Fink et al., 2012 for further details). There are two oval regions in 
the clear wood which are replaced by the anisotropic elastic material 
described earlier to simulate the two knots in the specimen. The orien-
tation of the material points representing the wood material is adjusted 
to simulate the variation of the grain direction in the clear wood around 
the knots, with the longitudinal direction indicated in the figures by the 
lines plotted over the material points. The MPM model does not simulate 
the whole 4000 mm length of the beam. Instead, two 125 mm zones are 
added at the top and bottom of the observed area of 150 × 125 mm2 to 
minimise the influence of the supports. Other approaches to replicate 
the distribution of the grain direction in the MPM model are shown in 
Fig. 16. The grain direction in the immediate area around the top-left 
knot goes around in a more circular manner than in the second case 
(Fig. 16a), while in the third case (Fig. 16b) this approximation also 
applies to the bottom-right knot. 

The properties of the steel material attached to the top of the wood 
specimen, boundary condition, and calculation of time-step size are the 
same as those in the previous test case (subsection 4.1). The difference in 
cell size results in time-step size of Δt = 2.4650 × 10−4 s. The different 
geometry necessitates adjustment of loading rate to 5 mm/s. 

The tensile failure path of the experiment is illustrated in Fig. 17. 
From the left side, the crack goes through the top knot, then down, and 
through/over the bottom knot before finishing off with a horizontal 
crack to the right side. Crack as a result of the tensile failure is indicated 
in the MPM simulation by a band of high plastic strain concentration. 
This particular pattern is replicated well by the MPM simulation with the 
1st approach of the grain direction distribution modelling, shown in 
Fig. 18a. However, a slight change of the grain direction distribution 
leads to significantly different crack patterns. The different modelling 
approaches of what is principally the same grain direction distribution 
results in very different crack patterns, shown in Fig. 18b and c. 
Nevertheless, this phenomenon is also observed in the actual experi-
ments. As a natural material, wood features an inherent variability 
throughout a specimen or element. This variability results in 
qualitatively-varying possible failure modes, some of which can be 
realized by experiment replication, while the failure loads remain 
similar. The MPM simulation replicates this behaviour: three failure 
patterns are shown (one of which matches that of the original experi-
ment), while the failure loads remain constant at around 100 kN, as 
shown in Fig. 19. 

The actual failure load of the lab specimen is 140 kN, higher than the 
result from the simulation. Although a qualitative replication is 

achieved, the quantitative agreement could be perhaps reached with 
material parameters obtained from laboratory tests of the specific wood 
used in the test, instead of taken from the literature. 

5. Conclusions and future work 

This paper presents simulations of wood failure with a CPDI Material 
Point Method. First, we show an implementation of a constitutive ma-
terial model for wood by Schmidt and Kaliske (2006), augmented with a 
modified relation between the hardening parameter and the corre-
sponding scalar plastic multiplier. The modification solves the dimen-
sional inconsistency of the original model and provides better robustness 
in the case of severe softening. 

We simulated two sets of experiments of Norway Spruce. In the 
experiment with compression perpendicular to the grain direction, the 
simulation has shown a good qualitative agreement with the experi-
mental deformation until the point where a large crack opening starts to 
occur in the experiment. The load–displacement curves are well repli-
cated before the yield, while the yield-loads are underpredicted by 11%. 
In the simulations of the tensile test, where a specimen with knots was 
loaded in the direction parallel to the grain, the simulation achieved 
good qualitative agreement, with the failure load within 29% of the peak 
load from the experiment. 

Quantitative differences between the simulation and the experiment 
in the two cases most likely arise from the values of material properties 
utilised in the simulations – they were taken from literature and are not 
fully accurate for the woods in the experiments. In future studies, testing 
of the mechanical properties of the same wood as used in the experi-
ments, as well as incorporating the natural variability of wood material 
in a probabilistic manner may improve the quantitative agreement be-
tween the simulation and experimental results. We also work on adding 
a capability to model discrete cracks. Additionally, simulation of the 
timber beams with knots under tension could utilise a contact law be-
tween the knots and the clear wood, therefore allowing separation under 
tension while load transfer under compression remains possible. 

Future works within the same project, aimed towards wood cracking 
simulation at high temperature, will further discuss the aforementioned 
material property changes due to moisture and temperature, alongside 
the effect of thermal degradation, i.e. charring. Said degradation poses a 
particular challenge to the use of timber in construction. Charring pro-
duces a protective barrier preventing further degradation, yet the for-
mation of cracks and fissures partially counter this effect. The capability 
of simulating such complex processes will lead to better understanding 
and improving the safety of timber structures. 

Fig. 19. Load-displacement curves of the 1st (a), 2nd (b), and 3rd (c) tensile test modelling approaches.  
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Appendix A. Dimension Analysis 

In the original model formulation, the evolution of state variables, for the given computation point loaded with a certain strain increment, vary 
depending on the chosen units of the material parameters. A simple dimensional analysis presented in this appendix shows the inconsistency within 
the formulations of the material model. 

To cover the base units, L, M, and T represent dimensions of length, mass, and time respectively. For the derived units, F and E represent force and 
energy respectively, which are equivalent to: 

F = M⋅L⋅T - 2 ; E = M⋅L2⋅T - 2 = F⋅L (A1) 

First, we identify the dimension of αm from Eqs. (11), (12), and (13). The dimensions of Eq. (13) are as follows: 

[η] =
[fm]⋅[lc]
[
G(f )

m
] =

(
F⋅L−2)

⋅(L)
(
E⋅L−2) =

(
F⋅L−2)

⋅(L)
(
F⋅L⋅L−2) = [−], (A2)  

an indication that η is dimensionless. Since ηαm has to be dimensionless for exp( − ηαm) in Eq. (12), αm is also dimensionless. 

[αm] =
1

[η]
= [−] (A3) 

Secondly, we identify the dimension of αm from Eqs. (7), (10), and (11). The dimensions of the variables in Eq. (10) are as follows: 
[

ε̇p

]

=
[
λ̇
]
⋅
[

∂Fm

∂σ

]

=
[
λ̇
]
⋅
[Fm]

[σ]
(A4) 

Plastic strain εp is dimensionless, therefore its first derivative against time ε̇p is in the dimension of T−1 . Also by inspecting Eq. (7), Fm is 
dimensionless. Substituting these back to Eq. A(4) gives us: 

T−1 =
[
λ̇
]
⋅

1
F⋅L−2 ⇒

[
λ̇
]

= F⋅L−2⋅T−1 ⇒ [λ] = F⋅L−2, (A5) 

The relationship between λ and α from Eq. (11) allows the calculation of the dimension of αm : 
[
α̇m

]
=

[
λ̇
]

= F⋅L−2⋅T−1 ⇒ [αm] = F⋅L−2, (A6)  

which concludes in αm having the dimension of F⋅L−2, inconsistent with Eq. A(3). 

Appendix B:. Tension Hardening Modification 

To solve the dimensional inconsistency (see Appendix A), we revisit the intended amount of energy dissipation for tensile failure. 

B.1. Tensile failure energy dissipation 

The amount of the dissipated energy per unit area D under axial tension until failure is as follows: 

D = ℓc

∫ εp=∞

εp=0
σdεp (B1)  

where ℓc is the characteristic length and εp is the plastic strain. 
During plasticity, taking Eq. (7) with F = 0 for the uniaxial tension, we get: 

F =
σ
ft

+ q − 1 = 0 ⇒ σ = ft(1 − q) = ftexp( − ηα) (B2) 

Therefore, the change of elastic strain during plasticity is: 

dεe =
1
E

dσ =
1
E

d
dα (ftexp( − ηα) )dα = −

ft

E
ηe−ηαdα (B3) 

Expanding dF = 0 results in (see Eq. C(1) for 3D case, or see e.g. (Simo and Hughes, 1998): 

dF =
∂F
∂σ dσ +

∂F
∂q

dq =
∂F
∂σ E

(

dε − dλ
∂F
∂σ

)

+
∂F
∂q

∂q
∂α dα = E

∂F
∂σ

(

dε −
dλ
dα

∂F
∂σ dα

)

+
∂F
∂α dα = 0 (B4)  
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⇒dε =

⎛

⎜
⎝

∂F
∂σ

dλ
dα −

∂F
∂α

E ∂F
∂σ

⎞

⎟
⎠dα =

(
1
ft

dλ
dα −

ft

E
ηe−ηα

)

dα = dεp + dεe (B5) 

Substituting Eq. B(3) to equation B(5): 
(

1
ft

dλ
dα −

ft

E
ηe−ηα

)

dα = dεp −
ft

E
ηe−ηαdα (B6)  

⇒dεp =

(
1
ft

dλ
dα

)

dα (B7) 

Substituting Eqs. B(2) and B(7) to equation B(1) gives: 

D = ℓc

∫ εp=∞

εp=0
ftexp( − ηα)

(
1
ft

dλ
dα

)

dα = ℓc

( ∫ α=∞

α=0
λ

′

(α)e−ηαdα
)

(B8) 

By using integration by parts, equation B(8) becomes: 

D = ℓc

([

− λ
′

(α)
1
ηe−ηα

]∞

0
+

∫ ∞

0
λ′′(α)

1
ηe−ηαdα

)

(B9)  

⇒D = ℓc

([

− λ
′

(α)
1
ηe−ηα − λ′′(α)

1
η2e−ηα

]∞

0
+

∫ ∞

0
λ

′′′

(α)
1
η2e−ηαdα

)

(B10)  

⇒D = ℓc

([

− λ
′

(α)
1
ηe−ηα − λ′′(α)

1
η2e−ηα − λ

′′′

(α)
1
η3e−ηα

]∞

0
+

∫ ∞

0
λ

′′′

(α)
1
η3e−ηαdα

)

(B11) 

By going on for arbitrary N times, equation B(8) becomes: 

D = ℓc

([

−
∑N

i=1

1
ηi

diλ
dαie

−ηα

]∞

0

+

∫ ∞

0

1
ηN

dN+1λ
dαN+1e−ηαdα

)

= ℓc

([
∑N

i=1

1
ηi

diλ
dαi

⃒
⃒
⃒
⃒

α=0

]∞

0

+

∫ ∞

0

dN+1λ
dαN+1

1
ηNe−ηαdα

)

(B12) 

Many λ(α) functions can fit into equation B12, including polynomial functions of any order. The original model takes 1st order polynomial (linear) 
function of λ(α), therefore the 2nd derivative of λ(α) and higher vanishes from equation B12. Additionally, λ(α) being 1st order polynomial implies 
constant 1st derivative. therefore: 

D = ℓc

(
1
η

dλ
dα

⃒
⃒
⃒
⃒

α=0

)

= ℓc

(
1
η

dλ
dα

)

(B13) 

From the original model, the amount of dissipated energy is taken as equal to the fracture energy1 in the same loading direction. 

D = ℓc

(
1
η

dλ
dα

)

= G(f ) (B14) 

The decay rate η is defined in Eq. (13), thus Eq. (B14) becomes: 

D = ℓc

(
G(f )

ftℓc

dλ
dα

)

= G(f )⇒
dλ
dα = ft (B15)  

⇒λ̇ = ftα̇, (B16)  

and equation B16 replaces equation 11 from the original model: 

α̇ = λ̇, (from eq. 11)

which is already proven dimensionally inconsistent in equation A(6). 
Consequently, the following relationship from the original model: 

{

ε̇p

}

= λ̇
{

∂F
∂σ

}

= α̇
{

∂F
∂σ

}

(from eqs. 10 and 11)

is replaced with: 
{

ε̇p

}

= λ̇
{

∂F
∂σ

}

= α̇ft

{
∂F
∂σ

}

(B17) 

Eqs. (B18) and (B19) restate equation B17 in a different way, necessary for further calculations. 

dεp =
∂F
∂σ dλ =

∂F
∂σftdα (B18) 

1 Note that the model only takes fracture energy as the amount of energy dissipation instead of incorporating Griffith theory of fracture. See e.g. (Zehnder et al., 
2013) for the definition of fracture energy and its role in linear elastic fracture mechanics. 
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⇒
dα
dεp =

1
ft

∂F
∂σ , (B19)  

B.2. Critical Characteristic Length 

The concept of critical characteristic length is to prevent snapback due to sudden softening (Carpinteri, 1989). For this particular case, let us first 
rearrange equation B(7): 

dα
dε =

1
1
ft

dλ
dα − ft

E ηe−ηα
=

1

1 −
f 2
t ℓc

EG(f )
m

e
−

fmℓc
G(f )

m
α

(B20) 

To prevent dα/dε from going towards infinity or negative at the most extreme case of α = 0, the following needs to be satisfied: 

1 −
f 2
t ℓc

EG(f )
m

> 0 ⇒ ℓc <
EG(f )

(ft)
2 = ℓc,crit (B21) 

Inequality B21 establishes the critical characteristic length, the same expression as reported in (Carpinteri, 1989; Mackenzie-Helnwein et al., 2001; 
Schmidt and Kaliske, 2009). 

Appendix C:. Stress Integration 

C.1. Explicit stress integration 

The previous material model (Schmidt and Kaliske, 2006) recommends the use of implicit stress integration described in (Simo and Hughes, 1998). 
Due to the independent hardening, an implicit stress integration may converge towards multiple solutions that cannot be proven incorrect. Therefore, 
this paper proposes implementation with explicit stress integration (unless under special circumstances), which always resolves into a unique solution. 
The explicit integration employs the Modified Euler algorithm with error control (Sloan, 1987). 

The explicit stress integration algorithm follows the algorithm given in (Sloan, 1987), which in principle keeps the stress state on the yield surface 
by keeping dF = 0 (see dF = 0 expansion in e.g. (Simo and Hughes, 1998): 

dF =
∂F

∂〈σ〉
d{σ} +

∂F
∂q

dq =

〈
∂F
∂σ

〉

[D]

(

{dε} −

{
∂F
∂σ

}

dλ
)

+

〈
∂F
∂q

〉[
∂q
∂α

]{
∂α
∂λ

}

dλ = 0 (C1) 

Because of the independent hardening, derivatives on the last term of equation C(1) are all scalars. Additionally, due to how each yield surface is 
defined, ∂F/∂q = 1 . 

dF =

〈
∂F
∂σ

〉

[D]{dε} −

〈
∂F
∂σ

〉

[D]

{
∂F
∂σ

}

dλ +
∂q
∂α

∂α
∂λ

dλ = 0 (C2)  

⇒ΔF =

〈
∂F
∂σ

〉

[D]{Δε} −

〈
∂F
∂σ

〉

[D]

{
∂F
∂σ

}

Δλ +
∂q
∂α

∂α
∂λ

Δλ = 0 (C3) 

Solving equation C(3) for Δλ gives us the standard equation for explicit stress integration: 

Δλ =

〈
∂F
∂σ

〉

[D]{Δε}

〈
∂F
∂σ

〉

[D]

{
∂F
∂σ

}

− ∂q
∂α

∂α
∂λ

=

〈
∂F
∂σ

〉

{Δσe}ΔT
〈

∂F
∂σ

〉

[D]

{
∂F
∂σ

}

− ∂q
∂α

∂α
∂λ

(C4) 

where [D] = elastic constitutive matrix; T = dimensionless time, which is 0 at the beginning of the current elastoplastic timestep and 1 at the end. 
The method follows the Modified Euler integration with error control (Sloan, 1987) and drift correction (Sołowski and Sloan, 2016). 

Fig. C1. Stress-strain curve with the incorrect Δλ < 0 due to severe softening.  
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C.2. Severe Softening Special Case 

Let us first establish an analytical stress-strain curve during plasticity via parametric function. By integrating equation B(5) and combining 
equation B(2), we have: 

(ε(α), σ(α) ) =

(

α +
ft

E
exp

(

−
ftℓc

G(f )
α

)

, ftexp
(

−
ftℓc

G(f )
α

) )

(C5) 

Let us then revisit equation C(4). Large enough ∂q/∂α may cause the Δλ < 0, clearly an incorrect result. Fig. C1 compares numerical solution to that 
from the analytical expression in equation C(5). The analytical path exhibits a snap-back behaviour as observed in (Carpinteri, 1989). In the case of 
highly brittle material, this problem may not be avoidable. 

Considering 1st order explicit stress integration fails in this condition, this paper introduces 2nd order explicit stress integration, allowing for the 
correct identification of Δλ > 0 . One-step implicit stress correction then follows the stress integration, guaranteed to converge towards state variables 
with Δλ > 0 by adjusting the initial guess. 

C.2.1. Yield surface second derivative 
During severe softening, 2nd order approximation of Δλ is as follows: 

Δλ1,2 =

⎛

⎜
⎜
⎜
⎝

〈

D ∂F
∂σ

〉[
∂2F
∂σ2

]

{Δσe} ± Q
2

̅̅
R

√

〈

D ∂F
∂σ

〉[
∂2F
∂σ2

]{

D ∂F
∂σ

}

+ ∂2q
∂α2

⎞

⎟
⎟
⎟
⎠

ΔT, where : (C6)  

Q = 2
〈

D
∂F
∂σ

〉[
∂2F
∂σ2

]

{Δσe}

(〈
∂F
∂σ

〉{

D
∂F
∂σ

}

−
∂q
∂α

)

+

(

− 2
〈

D
∂F
∂σ

〉[
∂2F
∂σ2

]{

D
∂F
∂σ

}

− 2
∂2q
∂α2

)〈
∂F
∂σ

〉

{Δσe}

R =

(

−

〈
∂F
∂σ

〉{

D
∂F
∂σ

}

+
∂q
∂α

)2

+

(

− 2
〈

D
∂F
∂σ

〉[
∂2F
∂σ2

]{

D
∂F
∂σ

}

− 2
∂2q
∂α2

)

F(σ, α)

The derivation of equation C6 is written in Appendix D. 
There are two solutions of Δλ, and the one with positive value is taken. With this Δλ from equation C6, a new stress state {σn+0.5} is calculated. 
Although the equation results in positive Δλ, the resulting drift is considerably large. A one-step implicit stress integration then follows, nudged 

towards the correct solution of state variables with Δλ > 0 by having more favourable initial guess via λ-iteration. 

C.2.2. λ-iteration 
An implicit method is utilized for correcting the current stress state {σn+0.5}, which is implemented after equation C6. The implicit correction will 

result in a new stress state and an additional Δλ . Due to the severe softening, the implicit iteration may converge into a solution with Δλ > 0 (the 
correct solution), or with Δλ < 0 (the incorrect solution). 

To assure the convergence towards the correct solution, the algorithm shifts the initial guess so that the initial stress state at the beginning of the 
implicit solving process is inside the yield surface. This paper utilises a simple iterative procedure to calculate the appropriate Δλ and the stress state 
for the initial guess, which – for the ease of referencing – will be called λ-iteration. 

In the beginning, we assume that the whole applied strain increment in the current time step {Δεe} contributes towards the plastic strain 
increment. It is not possible to be exact, as the direction of plastic strain increment is determined by the direction of the yield surface. Nonetheless, the 
plastic strain multiplier Δλ can be estimated in the following way: 

{Δεe} = Δλ
{

∂F
∂σ

}

⇒
〈

∂F
∂σ

〉

{Δεe} = Δλ
〈

∂F
∂σ

〉{
∂F
∂σ

}

⇒Δλ =

〈
∂F
∂σ

〉

{Δεe}

〈
∂F
∂σ

〉{
∂F
∂σ

} (C7) 

With this Δλ, the initial guess of the stress state and the hardening parameter for the implicit solver are: 

{
σguess

}
= {σn+0.5} − Δλ[D]

{
∂F
∂σ

}

σn+0.5

(C8)  

αguess = αn+0.5 + Δλ (C9)  

F = F
(
σguess, αguess

)
10) 

If F > 0 (meaning 
{

σguess
}

falls outside the yield surface), Δλ is multiplied by two and Eqs. (C8) –(C10) are revisited with the new Δλ . This process is 
repeated until Δλ results in F < 0, in which case the most recent 

{
σguess

}
and αguess is passed on to the implicit solver as the initial guess. Fig. C2 shows 

λ-iteration algorithm in a more procedural manner. 
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Afterwards, a one-step implicit stress integration is carried out with the closest point projection (Simo and Hughes, 1998). Be noted that 
{

σguess
}

is 
not a valid stress state that satisfies the plasticity rules laid out in the previous sections, but rather just an initial guess for the implicit solver. The trial 
stress for this implicit stress integration is still {σn+0.5} . 

Following the proposed method allows the material model to work within reasonable stress increment output, useful when the material is highly 
brittle. However, the energy dissipation may no longer be accurate. If one desires to recover the accurate energy dissipation, keeping mesh size below 
ℓc with some safety factor is advised. Fig. C3 shows the resulting stress-strain path when the algorithm is followed. 

Appendix D. 2nd order Taylor approximation of explicit stress integration 

In our 2nd order approximation, the aim is to satisfy: 

F + dF +
1
2

d2F = 0 (D1) 

Fig. C2. Flowchart of the λ-iteration algorithm for finding initial guess to avoid convergence towards the wrong solution from the implicit solver.  

Fig. C3. The resulting stress-strain curve for uniaxial tension under severe softening with the proposed integration scheme.  
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dF =

〈
∂F
∂σ

〉

{dσ} +
∂F
∂α dα (D2)  

dσ = Cdεe = D(dε − dεp) = D
(

dε − dλ
dF
dσ

)

= {Ddε} −

{

Ddλ
dF
dσ

}

(D3) 

Substituting equation D(3) to D(2) gives us: 

dF =

〈
∂F
∂σ

〉{

{Ddε} −

{

Ddλ
dF
dσ

} }

+
∂F
∂α dα = dλ

(

−

〈
∂F
∂σ

〉{

D
dF
dσ

}

+
∂F
∂α

∂α
∂λ

)

+

(〈
∂F
∂σ

〉

{Ddε}

)

(D4) 

Calculating the 2nd derivative of F: 

d2F = 〈dσ〉

[
∂2F
∂σ2

]

{dσ} +

〈
∂2F

∂σ∂α

〉

{dσ}dα +

〈
∂2F

∂α∂σ

〉

dα{dσ} +
1
2

∂2F
∂α2 dα2 (D5) 

Substituting Eqs. D(3), (D4), and (D5) to equation D(1) gives us: 
F + dF + 1

2d
2F = Adλ2 + Bdλ + C = 0, where: (D6) 

A =
1
2

〈

D
dF
dσ

〉[
∂2F
∂σ2

]{

D
dF
dσ

}

−

〈
∂2F

∂σ∂α

〉{

D
dF
dσ

}
∂α
∂λ

+
1
2

∂2F
∂α2

(
∂α
∂λ

)2

(D7)  

B = −

〈
∂F
∂σ

〉{

D
dF
dσ

}

+
∂F
∂α

∂α
∂λ

−
1
2

〈

D
dF
dσ

〉[
∂2F
∂σ2

]

{Ddε}

−
1
2

〈Ddε〉

[
∂2F
∂σ2

]{

D
dF
dσ

}

+

〈
∂2F

∂σ∂α

〉

{Ddε}
∂α
∂λ

(D8)  

C = F(σ, α) +

〈
∂F
∂σ

〉

{Ddε} +
1
2

〈Ddε〉

[
∂2F
∂σ2

]

{Ddε} (D9) 

And to represent one substep of explicit stress integration, we substitute dλ with Δλ and {Ddε} with {dσeΔT} . Thus, we rewrite Eqs. (D6), (D7), 
(D8), and (D9) into: 

A(Δλ)
2

+ BΔλ + C = 0, where : (D10)  

A =
1
2

〈

D
∂F
∂σ

〉[
∂2F
∂σ2

]{

D
∂F
∂σ

}
∂α
∂λ

+
1
2

∂2q
∂α2

(
∂α
∂λ

)2

(D11)  

B = −

〈
∂F
∂σ

〉{

D
∂F
∂σ

}

+
∂q
∂α

∂α
∂λ

−
1
2

〈

D
∂F
∂σ

〉[
∂2F
∂σ2

]

{dσeΔT} −
1
2

〈dσeΔT〉

[
∂2F
∂σ2

]{

D
∂F
∂σ

}

(D12)  

C = F(σ, α) +

〈
∂F
∂σ

〉

{dσeΔT} +
1
2

〈dσeΔT〉

[
∂2F
∂σ2

]

{dσeΔT} (D13) 

Therefore, the solution for Δλ is: 

Δλ1,2 =
−B ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
B2 − 4AC

√

2A
(D14) 

In order to get a practical formula out of equation D14, 2nd order Taylor approximation is used, resulting in: 

Δλ1,2(ΔT) = Δλ1,2(ΔT = 0) +
∂λ
∂T

ΔT +
1
2

∂2λ
∂T2 ΔT2

≈ ΔT2

⎛

⎜
⎜
⎝

±

(
P

2
̅̅̅
R

√ −
Q2

8R
̅̅̅
R

√

)

2A

⎞

⎟
⎟
⎠ + ΔT

⎛

⎜
⎜
⎜
⎝

〈

C
∂F
∂σ

〉[
∂2F
∂σ2

]

{dσe} ±
Q

2
̅̅̅
R

√

2A

⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎝

〈
∂F
∂σ

〉{

C
∂F
∂σ

}

−
∂q
∂α ±

̅̅̅
R

√

2A

⎞

⎟
⎟
⎠

(D15)  

where 

P =

(

−

〈

D
∂F
∂σ

〉[
∂2F
∂σ2

]

{dσe}

)2

+

(

− 2
〈

D
∂F
∂σ

〉[
∂2F
∂σ2

]{

D
∂F
∂σ

}

− 2
∂2q
∂α2

(
∂α
∂λ

)2
)

1
2

〈dσe〉

[
∂2F
∂σ2

]

{dσe}

(D16) 
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Q = 2
〈

C
∂F
∂σ

〉[
∂2F
∂σ2

]

{dσe}

(〈
∂F
∂σ

〉{

D
∂F
∂σ

}

−
∂q
∂α

∂α
∂λ

)

+

(

− 2
〈

D
∂F
∂σ

〉[
∂2F
∂σ2

]{

D
∂F
∂σ

}

− 2
∂2q
∂α2

(
∂α
∂λ

)2
)〈

∂F
∂σ

〉

{dσe}

(D17)  

R =

(

−

〈
∂F
∂σ

〉{

D
∂F
∂σ

}

+
∂q
∂α

∂α
∂λ

)2

+

(

− 2
〈

D
∂F
∂σ

〉[
∂2F
∂σ2

]{

D
∂F
∂σ

}

− 2
∂2q
∂α2

(
∂α
∂λ

)2
)

F(σ, α)

(D18) 

Since ΔT is very small, the 1st term of equation D15 (the one with ΔT2 multiplier) is relatively much smaller, thus neglegible. Also, the 3rd term of 
equation D15 does not have ΔT as multiplier in it, which will cause problem with the error control algorithm within the explicit stress integration 
procedure (see Sloan, 1987). Therefore, the 3rd term is also ignored for calculating Δλ at this stage. The resulting error is dealt with by the drift 
correction scheme employed afterwards. Equation D15 is then reduced into: 

Δλ1,2 =

〈

D ∂F
∂σ

〉[
∂2F
∂σ2

]

{dσe} ± Q
2

̅̅
R

√

〈

D ∂F
∂σ

〉[
∂2F
∂σ2

]{

D ∂F
∂σ

}

+ ∂2q
∂α2

(
∂α
∂λ

)2 ΔT (D19) 

where Q and R are defined in Eqs. (D17) and (D18) respectively. 
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