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Devices fabricated from Soft Magnetic Composites (SMCs) are gaining popularity in research and application. The multiscale
characteristics require special attention. Solving the quasi-statics Maxwell’s equations on such devices consumes huge time and
memory if the granular scale of SMCs is resolved. We have proposed a Localized Orthogonal Decomposition (LOD) homogenization
strategy which allows us to compute the problem on a middle scale while retrieving the material dimension. The LOD projector
has a localization property so that it can be accurately approximated on a local patch. In this work, we explore the localization
characteristic further to show that the projector can be reused at different time steps. The requirement for computational time
and memory can be greatly reduced. A numerical example in two dimensions is provided to show the feasibility and advantage of
this approach. This technique is applied to a domain of SMCs with randomly distributed polygon-shaped granules. Finally, error
analysis is provided to show the validation of the LOD projector.

Index Terms—Eddy current problem, Finite Element Method, homogenization, multiscale, orthogonal function space.

I. INTRODUCTION

MULTISCALE electromagnetic behavior is usually ob-
served in electric devices. This is the case in a trans-

former manufactured from soft magnetic composite (SMCs)
that is the motivation for this article. As the characteristic
length scale of SMCs is much different from the device
dimension, their modeling needs special attention. At low
frequency regime the devices are modeled using the time-
dependent eddy current approximation by vector potential
together with the appropriate boundary and gauging conditions
[1]. Generally, magnetic behavior and loss characteristics are
the fundamental concerns. Devices are sometimes simplified
into a two dimensional scenario for numerical calculations,
which provides a satisfactory description. Commonly for lam-
inated steel in motors or transformers, a perpendicular vector
potential is formulated to determine the magnetic field in the
studied domain. The vector potential becomes a scalar.

Homogenization studies on SMCs have been carried out an-
alytically, semi-analytically, and numerically [2], [3], [4], [5].
Numerical homogenization has enjoyed a significant advance-
ment in time-dependent magnetism [6], [7], [8]. The develop-
ments in the field of SMCs further boost its development [9],
[10]. Most strategies assume that the lamination or SMCs have
a periodic structure. To extend the numerical homogenization
over the constraint of periodicity, a Localized Orthogonal
Decomposition (LOD) method is proposed [11], [12]. The
problem was solved on a coarse mesh with modified basis
functions which contain information on micro-scale material
properties. The LOD projector can be accurately approximated
on a local patch. The LOD method has been under active
study in the mathematics community, but it is seldom applied
to homogenization problems in electromechanics. We have
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introduced LOD to solve multiscale eddy current problems
in [13], where numerical tests on a domain of SMCs with
spatially periodic inclusions are conducted. Another difficulty
of modeling SMCs lies in the material property contrast
between the two phases of the composite. The initial design of
the LOD projector was affected heavily by the permeability
contrast. We have improved the projector from [13] to rely
trivially on the property contrast and carried out computational
examples on SMCs with randomly distributed inclusions [14].

The LOD method has been applied to solve time-dependent
problems in [15], where error analysis and initial numerical
examples are given. The projector can be calculated as in a
stationary problem and remains invariable. Thus, it can be
recycled across different time steps. Recycling the projector
causes an error whose propagation needs to be delicately
handled. The upper bound for this error has been derived using
perturbation analysis. We study the potential applicability
of this method to the simulation of electrical machines by
conducting numerical tests on simplified SMC geometry with
realistic dimensions and parameter values.

The paper is organized as follows. The LOD method is
briefly explained in Section II. In Section III, a randomly
distributed SMCs domain is calculated with the LOD strategy
in the time domain. Error analyses with regard to the time are
provided. Finally, conclusions are drawn for the efficiency of
the LOD projector.

II. LOCALIZED ORTHOGONAL DECOMPOSITION

We study the SMCs domain, denoted Ω, as shown in Fig.
1(b). The problem is solved by introducing a transient vector
potential normal to the domain, A = A(x, y, t)ez where
ez represents the unit vector in the z direction. Under this
assumption the eddy current problem reduces to a problem
for A(x, y, t) that we denote by u. On each time-step the
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(a) (b)

Fig. 1. (a) Sketch of a transformer composed of SMCs; (b) Micrograph of
SMCs structure [16].

solution is searched in the Sobolev function space W 1,2(Ω)
where the function and its first weak derivative are properly
defined. Assuming there is no source of current density, the
time-dependent eddy current problem writes in the weak form
as follows:

a (u, v) = 0 ∀v ∈W 1,2
0 (Ω)

u|t=0 = 0 in Ω

u = uD(x, y, t) on ΓD

 (1)

with
a (u, v) :=

(
1

µ
∇u,∇v

)
+ (σ∂tu, v) (2)

where ΓD represents the Dirichlet boundary where the tran-
sient vector potential is imposed and uD is a given time-
dependent boundary data. The space W 1,2

0 is the subspace
of W 1,2 with zero boundary trace on ΓD. Observe that a
homogeneous Neumann boundary condition is posed on the
remaining part of the boundary ΓN = ∂Ω \ ΓD. The brackets
denote standard L2(Ω) inner product, (u, v) :=

∫
uv dΩ.

A. LOD in time domain

Let the domain Ω be triangulated into nested partitions TH
and Th, and denote the corresponding Finite Element (FE)
spaces by VH and Vh. As the two partitions are nested, VH ⊂
Vh. The mesh parameter h is chosen to be sufficiently small
so that the FE discretization can capture relevant features of
the solution, whereas the triangulation TH is much coarser and
has a similar scale with the domain Ω, i.e., h < ε� H, where
ε represents the characteristic length scale of the material. The
parameter ε is a measure for the size of heterogeneity of the
composite.

The LOD method solves (1) without the excessive com-
putational cost related to the direct FE simulation. This is
achieved by splitting the solution into large- and micro-
scale components and posing a problem only for the large-
scale component. In LOD, such a splitting is expressed by
decomposing the FE space Vh as Vh := VH ⊕ Vf where Vf
is the space of rapidly-oscillating functions containing micro-
scale solution component concerning the characteristic length
scale of the material that can not be observed in VH.

We assume that the Dirichlet data uD has only large-scale
features so that the condition u = uD on ΓD can be imposed

to the coarse solution component uH. We use notation VD and
V0 when boundary condition u = uD or u = 0 on ΓD is
imposed to space V , respectively.

a) LOD in stationary case: First, consider application
of LOD to a stationary problem: find u ∈ VhD satisfying
( 1
µ∇u,∇v) = (f, v) for all v ∈ Vh0. Decompose u =
uHD + uf0 for uHD ∈ VHD and uf0 ∈ Vf0. The problem
for the large-scale solution component uH is posed using
the orthogonal projection operator P : Vh → Vf0 so that
for given w ∈ Vh, P satisfies the orthogonality relationship(

1
µ∇(I− P)w,∇v

)
= 0 ∀v ∈ Vf0, where I is the identity

matrix. Define Q := I− P. Thus, choosing QvH0 for some
vH0 ∈ VH0 as a test function gives

(
1

µ
∇uHD,∇QvH0) = (f,QvH0). (3)

The micro-scale solution component is recovered as uf ≈
−PuHD leading to the LOD approximation u ≈ QuHD. The
error in this approximation depends on the loading function
f . If f ∈ VH, the LOD solution coincides with the exact one.
Otherwise, the LOD approximation error is related to the mesh
size H.

b) LOD in time domain: Decompose the solution to (1)
as u = uHD + uf0 for uHD(·, t) ∈ VHD and uf0(·, t) ∈ Vf0.
Choosing the test function QvH0 in (1) and using orthogonality
of P gives

(
1

µ
∇uHD,∇QvH0) + (σ∂tu,QvH0) = 0 (4)

Observe that the orthogonality of P cannot be used to eliminate
uf0 from the term (σ∂tu, v). However, intuitively speaking, the
amplitude of the micro-scale solution component uf0 tends to
zero when ε → 0. This motivates the approximation ∂tu ≈
∂tQuHD leading to the perturbed problem

(
1

µ
∇ûHD,∇QvH0) + (σ∂tQûHD,QvH0) = 0. (5)

The error uHD − ûHD resulting from this can be bounded by
the perturbation argument. Observe that the problem for ûHD

is posed on VHD and its solution does not require the recovery
of the solution u. The solution u is obtained as u ≈ QûHD.
The accuracy of this approximation is studied in [12].

c) Implementation: Solution of (5) using Backward Eu-
ler method requires assembly of matrices BH and MH,
with entries (BH)ij = ( 1

µ∇ϕ
H
i ,∇QϕH

j ) and (MH)ij =

(σQϕH
i ,Qϕ

H
j ). Here ϕH

i are the basis functions of VH0. The
exact projection PϕH

i is expensive to calculate. It has been
proven in [12] that PϕH

i decays rapidly when moving away
from the node associated with ϕH

i , as illustrated in Fig. 2.
This property is called as localization, and it allows us to
accurately approximate PϕH

i while keeping the computational
cost small. Let ωi ⊂ Ω be a local patch associated to the
basis function ϕH

i , and Vf0(ωi) the space of rapidly oscillat-
ing functions on ωi with zero Dirichlet boundary value on
∂ωi \ΓN. Different size local patches constructed from layers
of elements as shown in Fig. 3 can be used. The function PϕH

i

is approximated as PϕH
i ≈ zi, where zi ∈ Vf0(ωi) satisfies(

1

µ
∇zi,∇v

)
=

(
1

µ
∇ϕH

i ,∇v
)
∀v ∈ Vf0(ωi). (6)
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There exists another, more accurate method for approximating
PϕH

i , see [12].

Fig. 2. The normalized function log
(∇PϕH)T (∇PϕH)

max[(∇PϕH)T (∇PϕH)]
. The basis

function ϕH is related to the center node of the square.

1 2 3 4 5

Fig. 3. An illustration of the patch size related to triangles in the center of
the square used for computation of P. The k-patch is obtained by finding all
triangles sharing a node with (k − 1)-patch.

III. NUMERICAL STUDY

The numerical studies are carried out on a square SMCs
domain of size L = 720 µm, as shown in Fig. 4. Inclusions
are modeled by randomly distributed polygonal shapes.

L

L0

Γbottom

ΓrightΓleft

Γtop

Fig. 4. SMCs structure with randomly distributed polygon-shaped inclusions.

The magnetic and highly conductive ferromagnetic inclu-
sions in Fig. 1 have a typical dimension of approximately
60 µm. The coating matrix between these inclusions is
electrically insulating which ensures a high global electrical
resistance in SMCs. Nevertheless, the coating matrix is usually
non-magnetic. The material properties of SMCs components
used in our numerical tests are listed in Tab. I. The working
frequency is fixed at f = 50 Hz. The time step for the

backward Euler method is chosen as ∆t = 1
100f = 0.2 ms.

To avoid the material interpolation over the boundaries, an
air margin is augmented over the SMCs domain. The study
domain becomes a square of length L0, as illustrated in
Fig. 4. A homogeneous Dirichlet boundary condition is set to
Γbottom. On Γtop, the harmonic vector potential is imposed as
uD = α sin(2πft), where α is the crest value. The value of α
is chosen such that the magnetic flux density averaged over the
geometric domain is B0 = 1 T along the horizontal direction.
The corresponding vector potential magnitude is α = B0L0.
We impose the homogeneous Neumann boundary condition to
the left and right edges, ΓN := Γleft ∪ Γright.

TABLE I
MATERIAL PROPERTIES OF SMCS

Inclusion Coating matrix

Electric conductivity 1 × 107S/m 0

Magnetic permeability 50µ0 µ0

Volume fraction 56.25% -

To investigate the effect of LOD method parameters on the
accuracy of the LOD solution, we generate the computational
meshes as follows. First, an initial triangulation T 0

H is gen-
erated for the domain Ω. The coarse mesh is obtained from
T 0
H by n-refinements, and the fine mesh Th by 5-refinements.

In this way, the fine mesh stays always the same and the
parameter H can be varied by choosing different n.

We use the FEM solution computed on the fine grid,
u, as the reference solution. On the other hand, LOD ho-
mogenization results are solved on the coarse grid, ukLOD,
using an approximation for LOD-projector P computed on
k-neighborhood patches.

We are interested in the relative error between ukLOD and the
reference solution in the norm,

χ =


(

1
µ∇

(
u− ukLOD

)
,∇
(
u− ukLOD

))(
1
µ∇u,∇u

)
1/2

× 100%, (7)

which is a function of time.
Series of numerical experiments are carried out by means

of control variable while the material properties are invariable.
First, we investigate the effect of mesh size H by varying
the number of coarse grid mesh refinements as n = 0, 1, 2.
The neighborhood size k = 3 is used. It is worth pointing
out that the refinement of TH does not attain the resolution
of the fine grid Th. Second, the patch size k alters while
material properties are fixed as in Tab. I and coarse mesh
with one refinement is kept fixed. In both tests, there are 100
temporal samples for each magnetic wave period, and one
period is computed. All computations are performed using a
Linux workstation with an Intel i7 8-core processor and 16G
memory. Computing P constitutes the main computational
cost of LOD, for TH = T 0

H and k = 3, the evaluation of P
took approximately 75 seconds and computing 100-time steps
using standard first order finite element method approximately
1.7 seconds. Nevertheless, taking one time step using LOD
with these parameters was in average approximately 50 times
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Fig. 5. In sub-figures (a) and (b), the relative error as a function of time with regard to mesh refinement and patch size. In sub-figure (c), the absolute error
with regard to patch size.

faster compared to direct FE-solution. We conclude that LOD
becomes attractive when the calculation is repeated sufficiently
many times. The relative error as a function of time with
respect to the number of coarse mesh refinements and neigh-
borhood sizes are drawn in Fig. 5.

We observe from Fig. 5 that the relative errors are mainly
below 3%, a level that is usually considered negligible in the
engineering community. There are certain peaks in the error
curves because, at certain time steps, the magnetic field is
trivial when the imposing vector potential is zero. In Fig. 5
(a) the error increases after 2 refinements, but remains still
small. We believe that this phenomenon is related to the
approximation of P. Observe that the local patch consists of
element layers, as depicted in Fig. 3, hence, the diameter of ωi
decreases with coarse grid mesh size. For large H, several local
patches intersect with the boundary ∂Ω. When this happens,
the auxiliary problems (6) have accurate boundary conditions
on a large part of boundary ∂ω that may cause the localization
error to be unrealistically small. This phenomenon vanishes
for small H, possibly causing the total error to increase. The
effect of neighborhood size to error is depicted in Fig. 5 (b)
and Fig. 5 (c). The errors converge to zero when k grows, also
supporting our hypothesis for the unexpected error behavior in
Fig.5 (a). The values k = 1, 2 do not yield acceptable accuracy.
For k = 3, 4 the error, neglecting the peaks, is under 2%. We
regard the value k = 3 as a good choice, as it yields reasonable
error with small computational cost compared to larger k.

IV. CONCLUSION

A multiscale time-dependent eddy current problem is ho-
mogenized by a localized orthogonal decomposition method.
Although the projector takes time to calculate, it can be
approximated on a local patch. The LOD homogenization
algorithm is applied to a domain of SMCs. The recyclable
characteristics of the LOD confirm its advantages in the time
domain. After the projector has been computed, time is saved
for each time-step in transient problems. Since the projector is
highly coupled with material properties, the proposed approach
is currently feasible for linear materials only. Its application
with nonlinear materials will be investigated in future work.

REFERENCES

[1] R. Touzani and J. Rappaz, Mathematical Models for Eddy Currents and
Magnetostatics: With Selected Applications, ser. Scientific Computation.
Springer Netherlands, 2014.

[2] O. de la Barrière, M. LoBue, and F. Mazaleyrat, “Semianalytical and
analytical formulas for the classical loss in granular materials with rect-
angular and elliptical grain shapes,” IEEE Transactions on Magnetics,
vol. 50, no. 10, p. 1–8, Oct 2014.

[3] X. Ren, R. Corcolle, and L. Daniel, “Bounds and estimates on eddy
current losses in soft magnetic composites,” Journal of Applied Physics,
vol. 123, no. 23, p. 235109, jun 2018.

[4] A. Maruo and H. Igarashi, “Analysis of magnetic properties of soft
magnetic composite using discrete element method,” IEEE Transactions
on Magnetics, vol. 55, no. 6, pp. 1–5, Jun 2019.

[5] J. Vesa and P. Rasilo, “Permeability estimations of smc material par-
ticles,” IEEE Transactions on Magnetics, vol. 56, no. 9, pp. 1–7, Sep
2020.

[6] P. Henning and A. Persson, “Computational homogenization of time-
harmonic maxwell’s equations,” SIAM Journal on Scientific Computing,
vol. 42, no. 3, pp. B581–B607, Jan 2020.
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