
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Lyu, Tuojian; Blech, Jan Olaf; Vyatkin, Valeriy
SMT-based deployment calculation for IEC 61499 control applications

Published in:
Proceedings of 4th IEEE International Conference on Industrial Cyber-Physical Systems, ICPS 2021

DOI:
10.1109/ICPS49255.2021.9468194

Published: 05/07/2021

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Lyu, T., Blech, J. O., & Vyatkin, V. (2021). SMT-based deployment calculation for IEC 61499 control
applications. In Proceedings of 4th IEEE International Conference on Industrial Cyber-Physical Systems, ICPS
2021 (pp. 172-178). Article 9468194 IEEE. https://doi.org/10.1109/ICPS49255.2021.9468194

https://doi.org/10.1109/ICPS49255.2021.9468194
https://doi.org/10.1109/ICPS49255.2021.9468194

© 2021 IEEE. This is the author’s version of an article that has been published by IEEE.
Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

SMT-Based Deployment Calculation for IEC 61499
Control Applications

Tuojian Lyu∗, Jan Olaf Blech∗ † , Valeriy Vyatkin∗∗∗
∗Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland

∗∗Department of Computer Science, Computer and Space Engineering, Lulea Tekniska Universitet, Sweden

Email: {tuojian.lyu}@aalto.fi, vyatkin@ieee.org

Abstract—The dynamic and flexible deployment optimization
of industrial control applications is essential for achieving the
goals of Smart Factories and Industry 4.0. In this paper, we are
studying distributed IEC 61499 control applications. To achieve
the required efficiency and flexibility of the control application
deployment, we propose using a Satisfiability Modulo Theories
(SMT) solver to solve the underlying redeployment model con-
straints. In our work the Z3 solver is used for this purpose.
The proposed redeployment models represent the redeployment
problem and allow the Z3 solver to efficiently and quickly
calculate the optimization result. Furthermore, based on the Z3
solver APIs, several critical components of the redeployment
architecture (Monitor, Parser, Generator, etc.) are implemented in
Java applications. The experiment results indicate that, based on
our implemented Z3-based software and redeployment models,
the deployment optimization results can be quickly obtained for
simple IEC 61499 applications.

Index Terms—IEC 61499, containerization, flexible redeploy-
ment, smart factory, satisfiability modulo theories

I. INTRODUCTION

Traditional manufacturing systems are designed and devel-
oped for static production processes and did not consider the
dynamics [1] of their environment. As a result, the function-
ality of traditional systems cannot meet the requirements of
trends such as the Smart Factory and Industry 4.0. These
initiatives require efficiency and flexibility to reconfigure and
optimize industrial systems [2]. As more consumers demand
rapid and personalized products and services, the demand for
these two critical features in industrial automation systems
increases significantly. However, there are several difficulties
in achieving efficiency and flexibility for current factories.
One of the difficulties is the increasing number of Software
Components (SWCs) and Hardware Components (HWCs) in
manufacturing systems, which makes it challenging to find
a widely applicable redeployment architecture and runtime
optimization methodology [3]. For more complex control
systems and applications, runtime deployment optimization
is often more challenging to achieve. Failure to calculate
optimized redeployment dynamically and quickly can sig-
nificantly degrade the performance of the Smart Factory. In
addition to the increasing complexity of control applications,
the external environment becomes increasingly complex and
dynamic. Current control applications and systems are now

† Deceased

required to have the ability to be dynamically processed and
flexibly configured according to the environment dynamics
[4]. The increasing complexity of applications and the highly
dynamic environment make the optimization of redeployment
increasingly difficult. This is why runtime redeployment has
been a long-standing research issue for the Smart Factory in
Industry 4.0.

The IEC 61499 standard [5], [6] is gaining popularity as
an enabler of Industry 4.0 due to its support of distributed
automation architectures, in which control applications, pre-
sented as networks of communicating software components
(a.k.a. function blocks (FB)) that can be easily deployed to
various computational nodes, called in the standard devices,
and redeployed in one click without affecting the application
logic. However, different mappings of function blocks to
devices can clearly affect the overall system performance.
Therefore, optimization of the FB deployment becomes an
important problem in the IEC 61499 development context.
Finding an optimal deployment is challenging due to the
increasing number of function blocks in control applications.
To find an optimization solution, the optimization problem
needs to be formulated mathematically, better in the form of
a known mathematical problem, for solving which a software
tool (solver) would exist. The SMT [7] solver is one such tool.

Containerization is now widely accepted as a powerful
technology in software engineering due to its features, such
as lightweight nature, flexibility, scalability, and shorter time-
to-market. While originating in the IT world, the technology
has recently gained some interest in embedded systems (e.g.,
[8]). Container technologies can also be potentially applied in
the industrial automation domain as an enabler of the Smart
Factory and Industry 4.0 discussed by [9], [10] and [11].
For example, containerization can be used to create flexible
control systems, scale up current control applications, simulate
controllers’ legacy engines, and shorten the time between
development and (re)deployment. In the IEC 61499 context,
containerization can be applied to the device model, or even
to the resource model (resource is a finer-grain execution
container in IEC 61499, a device can contain one or several
independently executed resources). Containerization of IEC
61499 devices (resources) could provide the possibility to
dynamically scale up runtime containers if the redeployment
result is not satisfied.

In this paper, we investigate the problem of optimal de-
ployment of IEC 61499 function block applications to the
compliant devices. The method can be applied to both the
traditional and containerized implementation of devices. Fur-
ther in the paper, we refer to such devices as containers and
assume them to be capable of hosting the IEC 61499 runtime
(RT) environment, receiving FBs, and managing computational
resources (CPUs, memory, and network) for FBs. Moreover,
we propose new redeployment models of constraints and
objectives for the redeployment problems. We also implement
a supporting tool framework consisting of four components:
Monitor, Coordinator, Parser, and Generator, implemented as
Java applications. The Z3 [12] solver is used in our experiment
as an efficient SMT solver tool. The role of the Generator
is to translate redeployment models of the redeployment
problems into formulas that the Z3 solver can understand
and process. The Z3 solver then automatically calculates
these SMT formulas based on proposed redeployment models.
4diac [13] is used as the IEC 61499 IDE for the control
applications development due to its supported reconfiguration
and redeployment mechanism.

The contributions of our research are the following four
aspects: 1) a tool framework is implemented, consisting of
Monitor, Coordinator, Parser, and Generator, to automate the
translation of the deployment problem to the Z3 solver, 2)
new redeployment models of the redeployment problems are
proposed and analyzed, 3) applying Forte containers as the
distributed 4diac runtime environment to receive FBs, 4)
for control applications with various complexity levels, we
present the redeployment calculation time based on the same
architecture and the redeployment models.

The outline of this paper is as follows. Section II presents
the related works regarding the industrial optimization and
redeployment with Design Space Exploration (DSE), SMT,
and agent-based technologies. Section III shows the archi-
tecture of the implemented Z3-based redeployment software
and explains the functionalities of several components. Section
IV provides details about the redeployment models we pro-
posed to solve the redeployment problem with constraints and
objectives. Section V presents the measuring results for our
redeployment models and implemented tool framework and
compares the latency results between two scenarios. Finally,
VI concludes the performance of our work on the industrial
IEC 61499-based redeployment problem and gives our plan
for future work.

II. RELATED WORK

The optimization deployment problem is essentially a part
of the architecture optimization problem [14]. The software
optimization problem in the automotive domain has been
widely discussed and studied. Therefore, some software op-
timization approaches in the automotive domain can be ap-
plied to the architecture optimization of industrial control
applications. Some studies [15], [16], [17] discuss software
optimization problems in the automotive domain using a
combination of DSE and Model-based Design (MbD) with

an SMT solver or linear programming to solve the related
optimization problems. However, it is necessary to present
research problems and research methods related to archi-
tectural optimization problems in the industrial domain. We
study control applications based on the IEC 61499 standard
for industrial control applications because this standard can
sufficiently support the need for dynamic redeployment at
runtime. Therefore, we discuss and study the optimization
problem based on DSE and IEC 61499 dedicated industrial
control applications for deployment.

Previous studies [18], [19], [20], [21] and [22] proposed the
use of agent-based technologies in industrial control systems
and applications. In particular, [23] introduced the idea of
dynamic redeployment of automation agents encapsulated in
IEC 61499 function blocks, which strongly motivates our
current research. We use the framework of the general multi-
agent system in our Z3-based software development, i.e., the
components (Monitor, Parser, Generator, etc.) of the imple-
mented software follow the multi-agent system architecture.

In [24], Goldschmidt et al. present an abstract architec-
ture based on container virtualization technology. Based on
container concepts, their proposed architecture addresses two
concerns that are legacy emulation for controllers and flexible
function deployment. Their work offers the possibility of
applying container virtualization technology in the industrial
automation domain. Due to containerization’s efficient or-
chestration capability, containers can be dynamically started,
scaled, redeployed, and deleted by simple commands provided
by containerization tools (Docker/Kubernetes). On the other
hand, manually configuring a significant number of devices
with necessary RT, libraries and dependencies requires in-
tensive engineering work and degrades the flexibility and
efficiency of control systems.

Sinha et al. [25] propose a method to calculate optimal
configurations that satisfy evolving control system require-
ments. An SMT solver is used to calculate the deployment
based on SMT constraints in these evolving control system
requirements. They conducted experiments on their proposed
method based on a real-world airport baggage handling sys-
tem. The performance of the incremental and compositional
methods was compared based on the experiments, and better
performance was achieved by applying the incremental method
to the case of slight changes in the system. To improve the
reliability of the distributed control application, a redundancy
strategy was used, i.e., one to five copies of each function
block. Thus, although only the affected components configu-
rations need to be recalculated, there is a potential problem
that all FBs may need to be redeployed due to additional
constraints or objectives. For example, usually, optimization
objectives are conflicting with each other, i.e., the order or
weights of multiple objectives should be defined to avoid
conflicts. Therefore, the newly introduced objectives may
lead to potential problems with the current configuration of
distributed FBs, i.e., all FBs may need to be redeployed due
to different objectives.

Terzimehic et al. [26] present the DSE application to find

the optimal deployment of IEC 61499-based control applica-
tions. Besides, they show the applicability of the constraints,
objectives, and annotations to the deployment problem. In
experiments, they combine the DSE method with the IEC
61499 model and conclude that the method is well suited
for Industry 4.0 and can be used for fault recovery without
downtime. However, there is no concrete method proposed
to achieve the optimization calculation based on the DSE
automatically.

In their later study [27], based on the proposed framework
and DSE, two objectives (functional coupling and end-to-
end latency) are presented and created using redeployment
models. Moreover, the Z3 solver results can prove the validity
of these redeployment models. At the same time, they show
that the SMT solver can be well applied to redeployment
calculation based on IEC 61499 control applications. However,
the redeployment process is still semi-automatic and does not
discuss the possibility of using the Z3 solver to solve other
objectives and constraints with more complex redeployment
models. Also, the scalability of this approach is not inves-
tigated. For simple scenarios with only a few FBs, good
results can be obtained in the appropriate time. However, more
complex scenarios with dozens of FBs lead to unacceptable
long processing latency. This long latency is not suitable
for dynamic auto-redeployment scenarios that require runtime
capability. Also, the workflow of their proposed architecture is
still semi-automatic. The specific implementation of the SMT
solver and the automatic processing of 4diac’s .sys file is not
explicitly given.

Our research focuses on further automating the entire re-
deployment calculation process and proposing new rational
redeployment models to represent the redeployment prob-
lem. Specifically, firstly, two new components are introduced,
namely, Coordinator and Parser, which can increase the effi-
ciency, flexibility, and automation of the framework. Secondly,
we propose new redeployment models. These redeployment
models can be well applied to the Z3 solver to calculate the
optimal deployment solution that is more reasonable and fast.
It is also shown that the proposed redeployment models are
highly scalable to other more complex redeployment problems.

III. PROPOSED FRAMEWORK

The architecture proposed in our work follows ideas from
the automatic software systems [28]. In IBM’s proposed ar-
chitecture, the self-management capability of a control system
enables the system’s functionality to change in response to
perceived changes in the environment. The automation capa-
bility is based on a control loop that collects information about
the system and reacts accordingly. Based on the architecture
proposed by IBM, we implemented the Java application as the
Z3-based calculation software and its architecture is shown in
Fig. 1. The Java application of Z3-based calculation incorpo-
rates container virtualization technology to deploy IEC 61499-
based FBs to distributed containers. Since this paper focuses
on proposing redeployment models for redeployment calcu-
lation and calculating these models in the implemented rede-

ployment software, only Coordinator, Generator and Parser are
introduced in detail.

Fig. 1. The architecture of the redeployment software based on the Z3 solver.

A. Coordinator

The Coordinator receives and processes monitoring mes-
sages from the Monitor and provides feedback based on the
monitoring information results, e.g., to initiate a redeployment
request if the CPU or memory usage of a container exceeds
a limit. There are two types of messages received in the
Coordinator: the status of underlying devices (PLCs) and the
containers running on the device. These two types of status
information provide a bigger picture of the current control
system and control application running on the device and the
container. If an abnormal condition occurs in a container or
device, the Coordinator can react quickly and appropriately
based on the current conditions.

B. Generator

The Generator receives the redeployment request from the
Coordinator and initiates a redeployment calculation process.
A redeployment consists of three steps: Extracting the required
redeployment models for the current devices and containers.
Converting the adopted redeployment models into a format
that can be processed by the Z3 solver. Invoking the Z3
solver to calculate the optimal redeployment based on the
initialized conditions and selected objectives. Extracting the
redeployment models is the most important of these three
steps. This step requires multiple mathematical variables to
represent each function block, and each redeployment model
needs to be applied and constructed for each function block.
The information for creating the redeployment models comes
from Monitor’s metrics and the initialized constraints of the
current control application returned by Parser. Different rede-
ployment models need to be constructed for various constraints
and objectives, such as the constraint not having more than

five FBs per container or the objective minimizing the delay
from the start to the end of an event. Until all reconfigurations
are correctly represented in the redeployment models, the
Z3 solver can understand and find the optimal deployment
solution required.

C. Parser

The Parser is used to process the .sys file for the IEC 61499-
based control application from 4diac. The .sys file is an XML
file format that exhibits the current deployment of the control
application, such as the number of FBs, the number of PLCs,
and the data connections.

The metadata, e.g., the number of FBs, devices and data
connections, is required by the Generator to initiate a rede-
ployment calculation. For obtaining such metadata, the Parser
is used to process the XML file (.sys file) and automatically
retrieve and pass the metadata to the Generator. It should
be noticed that the Parser will only be called when there
is a change to the configuration of the control application,
i.e., if there is no modification to the application, there will
not be any metadata sent to the Generator. In other words,
the Parser and Generator will remain idle if there is no
redeployment request for the control application. This request-
based parsing mechanism greatly increases the efficiency of
the redeployment calculation.

IV. PROPOSED REDEPLOYMENT MODELS

Previous research has proposed a method that uses DSE
and SMT solvers to solve the optimal redeployment scheme.
We propose new redeployment models based on the con-
straints and objectives based on the work [27]. We argue
that different redeployment models for the same constraint
or objective can significantly influence the final optimization
results and scalability. Redeployment models that have not
been properly designed have poor scalability, resulting in a
redeployment architecture that can only be used for simple
control applications. A well-designed redeployment model can
produce highly accurate results and improve the scalability
and automation of the entire architecture. A total of four
redeployment models have been designed to investigate four
different requirements for redeployment. The four conditions
are:

• A finite number of available IEC 61499 runtime docker
containers.

• A maximum number of FBs per container.
• Minimizing data connections across containers.
• Matching the required skills, e.g., I/O capability, of FBs

with the supported skills of containers. The configuration
of container skills is initialized via equations (7), (8) and
(9) as meta information.

For each function block, a variable xi is created, and
the value of each variable represents the container tag
(1, 2, ..., ContainerNum). For example, deploying function
block xi to container with tag ”1” indicates xi = 1. Finally,
the redeployment result calculated with the Z3 solver is an
assignment to all FBs xi in a control application. Therefore,

the assigned value for each function block should not be
greater than ContainerNum. The redeployment model for
this constraint is shown in (1).

∀xi ∈ FunctionBlocks,

1 ≤ xi ≤ ContainerNum (1)

In addition to the fact that the assignment to each function
block variable cannot exceed the number of containers, we
impose a second constraint. This restriction is that there is an
upper limit to the number of FBs that each container can hold,
i.e., the number of variables assigned the same value cannot
exceed this limit. The redeployment model for this limit is
shown in (2). For example, if the upper limit is two FBs per
container, then any three control application variables should
not have the same value assigned. If three variables are equal,
three FBs are running in the same container, i.e., the upper
limit is exceeded.

MaxFBs ∗ ContainerNum ≥ TotalFBs,

∀xi0 , xi1 . . . xiMaxFBs ∈ FunctionBlocks⇒
(xi0 = xi1) ∧ . . . ∧ (xi0 = xiMaxFBs) 6= true (2)

The third formula (3) expresses the optimization objective
rather than the constraints. Once the number of FBs, the
number of available containers, and the limit for each container
are known, a new optimization objective is proposed. This
optimization is how to allocate the FBs so that the total number
of cross-container data connections is minimized, based on
all the above constraints. Suppose two FBs that need to
communicate are assigned to two different containers. In that
case, they need to be externally communicated via additional
service interface FBs. Therefore, an intensity matrix is used
to represent external communication stress. This matrix refers
to the number of data connections between each pair of FBs.
So what the third formula means is to minimize the sum of
all FBs external data communications.

∀xi, xj ∈ FunctionBlocks,

min
∑

xi 6=xj

intensity [i] [j] (3)

The fourth formula (4) indicates that the skills required for
each FB should match the skills supported by the assigned
container. The swSkill and hwSkill are artifacts/variables
representing the hardware required by FBs and hardware
supported by assigned containers/devices. In this paper, we
define that swSkill (xi) = 1 indicates the xi needs to access
the I/O to work properly. Likewise, hwSkill (1) = 1 means
container1 supports I/O reading and writing for FBs running
on it.

For example, an FB that requires Input/Output(I/O) support
needs to be deployed to a container with I/O support. Oth-
erwise, FB can not read or write data using the container’s
I/O successfully. Equations 1, 2, and 3 illustrate how to min-
imize data communication across devices on top of existing
infrastructure. The introduction of the fourth formula further

enhances the rationale for the entire redeployment. We have
to consider the relationship between FB and the container or
device when recalculating the optimal deployment. This is the
only way to ensure the automation, reliability, and efficiency
of the entire redeployment process.

∀xi ∈ FunctionBlocks

Containers(1, 2, 3) support I/O skill,

(swSkill (xi) > 0)⇒
(((xi = 1)&& (swSkill (xi) = hwSkill (1)) = true) ||
((xi = 2)&& (swSkill (xi) = hwSkill (2)) = true) ||
((xi = 3)&& (swSkill (xi) = hwSkill (3)) = true)) (4)

V. EVALUATION

A. TEST CASE

Fig. 2 shows the test case used in this experiment. The ten
FBs make up a simple application. This control application
implements a parallel FlipFlop function where the signals
received by IX from pin 2 of I/O are passed to output I/O ports
1, 3, 5, and 7 of QX, QX1, QX2, and QX3, respectively. The
test case is initially deployed with all the FBs deployed on the
same container or device. We then assume that the application
is now distributed across multiple available containers, using
the constraints and optimization objectives mentioned earlier.
Based on these constraints, we propose two optimization
objectives. The first objective is to minimize communication
across all containers, thereby reducing processing latency and
device communication pressure. The second objective is to
deploy FBs into containers that meet the requirements, e.g., if
a particular FB requires the container’s I/O functionality, how
to meet this requirement on top of satisfying all the constraints.

For the second optimization objective, compatibility be-
tween optimization objectives must be considered when more
than one optimization objective needs to be satisfied at the
same time. An example of such compatibility is considering
the priority of the optimization objectives when both objectives

Fig. 2. A simple FlipFlop 4diac application.

need to be satisfied. When different priorities are applied
to different cases, we will get different optimization results.
For these two optimization objectives (minimizing external
communication and satisfying the skill demand of FBs), the
priority is to satisfy the skill demand of FBs first, i.e., to
allocate the I/O-demanding FBs (IX and QX FBs) first and
then to allocate the other FBs. The redeployment calculation
experiment is based on a computer with the 2.6GHz Intel Core
i7 processor and 8GB RAM.

B. INITIALIZATION

In order to perform the optimization calculation, besides
metadata of the control applications, some constraints should
also be initialized with developer-defined values. The number
of containers and the maximum number of FBs each container
can support is not the metadata obtained by the Parser from
the .sys file. Therefore, the value of these two constraints is
defined by the developer.

Equations (5) and (6) specify that the number of currently
available containers is five, and the maximum capacity of
each container is five. Equations (7), (8) and (9) indicate
that among the five containers only container 1, 2 and 3
support I/O functionality, while the rest of the containers
have hwSkill(container∗) = 0. Similar to hwSkill(), there
is a similar FBs hashMap, which is swSkill(). If there is
FB x1, and there is a demand for I/O skill, then there is
swSkill(x1) = 1.

numMaxFBs = 5 (5)
numOfContainers = 5 (6)
hwskill (container1) = 1 (7)
hwskill (container2) = 1 (8)
hwskill (container3) = 1 (9)

C. RESULTS

As shown in Fig. 2, there are ten FBs in total, and five of
them require the I/O functionality of the containers. Therefore,
redeployment should first satisfy the needs of these five
FBs for the underlying skill requirement because deploying
any of them to a container that does not support I/O is
unreasonable, and the application will not work properly. For
the experiment, we expect a redeployment that minimizes
external data connections between the FBs based on the
fact that all five FBs can be assigned to containers that
support I/O functionality. Fig. 3 shows the current optimal
redeployment results calculated by the Z3 solver for the above
optimization models. The result shows that a value from 1
to 3 out of 5 is assigned for each FB, which indicates the
container label to which the FB should be deployed. From
this result, it can be seen that FBs (E SR, QX, QX 1, QX 2,
and E SWITCH 1) are recommended to be deployed in the
same container (container3). Since there are data connections
between E SR and each QX* and E SWITCH 1, respectively,
these six FBs should be deployed in the same container to
minimize the device-crossing data connections. However, since
redeployment sets a limit of five FBXs per container, one of

Fig. 3. The result from the Z3 solver for minimizing the sum of external
data connections.

these six FBXs must be deployed to another container (QX 3
is deployed to container2 indicated by the result). Therefore,
it can be seen that, based on the initial constraints, Eq. (5) (6)
(7) (8) (9), Z3 solver gives the result shown in Fig. 3 as the
current optimal redeployment result.

D. DEPLOYMENT

Fig. 4. The deployment for FBs from 4Diac to containers.

Once the deployment optimization results are obtained from
the Z3 solver, all FBs need to be deployed to the corresponding
containers. The first step in deployment is to containerize the
4Diac runtime (Forte). By deploying the runtime containers,
the FBs can work properly inside containers. After the required
number of runtime containers are built, the corresponding
devices should be created in the 4Diac IDE. These devices
should be mapped to the created runtime containers through

TABLE I
THE EXECUTION TIME OF TWO SCENARIOS IN ms.

#execs. Scenario1 Scenario2
10FBs 15FBs 20FBs 10FBs 15FBs 20FBs

1 155 814 541872 150 782 26431
2 152 729 542383 150 747 26268
3 159 750 515431 151 761 26566
4 158 756 527317 150 740 24361
5 158 744 546159 153 735 24128
6 162 781 543024 168 793 24685
7 161 966 587496 160 770 26527
8 153 788 548589 171 755 24133
9 154 779 548789 157 767 29667

10 154 790 558473 162 770 25743
Avg 156.6 789.7 545953.3 157.2 762 25850.9

IP address and port number. The Fig. 4 gives the deployment
method for FBs.

E. SCALABILITY

For the control application is shown in Figure 1 with
only 10 FBs, the proposed redeployment models and imple-
mentation of the redeployment framework can achieve the
optimal redeployment results. However, for the redeployment
problem, in addition to the optimality of the result, the runtime
capability should be considered. Therefore, we conducted a
controlled experiment for different complexity applications
to compare the impact of a varying number of FBs on
the redeployment execution delay. The system can run up
to 25 FBs (numMaxFBs*numOfContainers) while still using
the previous initialization constraints, but we will keep the
maximum number as 20 FBs.

Using the same initial constraints and the same redeploy-
ment models, the redeployment calculation for four different
applications can be performed to obtain their respective cal-
culation delays. In addition to the first application shown in
Figure 1, the other two applications are obtained by increasing
the number of QX and non-I/O required FBs (scenario1 and
scenario2), respectively.
Table I compares the calculation delay for two scenarios. It
can be seen that as the number of QXs increases (scenario1),
the time spent on redeployment will increase dramatically.
This significant increment is because increasing the number
of QXs leads to significantly increasing the time it takes to
match between swSkill() and hwSkill(). However, when
increasing the number of other FBs (scenario2) that do not
require I/O, the execution time increases slowly compared to
the scenario1 due to less calculation in the skill-matching step
with the equation (4).

VI. CONCLUSION AND FUTURE WORK

Flexible and dynamic redeployment has always been a
crucial and challenging topic. With the increasing demand
for smart factories and customized services, the ability to
dynamically reconfigure will largely determine the cost of
failure recovery and the ability to plan multi-product dy-
namics. Based on our implemented Z3-based redeployment
software and redeployment models, redeployment optimization

results can be obtained in almost runtime for simple control
applications. We also present experiment results for scalability
to more complex applications with measurement of execution
delay. The proposed architecture and redeployment models are
more scalable than the results obtained in other related studies.

In future research, more redeployment models will be
presented to describe more complex redeployment problems.
We will also apply upgraded Z3 solver on more complex
and IEC 61499-relevant applications. In addition, the Z3-
based redeployment software needs to be further optimized
together with the redeployment models to improve the runtime
performance and flexibility of the redeployment calculation.

REFERENCES

[1] X. Wei, S. Yuan, and Y. Ye. Optimizing facility layout planning for
reconfigurable manufacturing system based on chaos genetic algorithm.
Production & Manufacturing Research, 7(1):109–124, 2019.

[2] G. Büchi, M. Cugno, and R. Castagnoli. Smart factory performance and
industry 4.0. Technological Forecasting and Social Change, 150:119790,
2020.

[3] T. Terzimehić. Optimization and reconfiguration of iec 61499-based soft-
ware architectures. In Proceedings of the 21st ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems:
Companion Proceedings, pages 180–185, 2018.

[4] Z. Zhang, X. Wang, X. Wang, F. Cui, and H. Cheng. A simulation-
based approach for plant layout design and production planning. Journal
of Ambient Intelligence and Humanized Computing, 10(3):1217–1230,
2019.

[5] IEC 61499. Function blocks–Part 1: architecture, second edition.
International Electrotechnical Commission, Geneva, Switzerland, 2012.

[6] V. Vyatkin. Iec 61499 function blocks for embedded and distributed
control systems design. 2015. 3rd edition.

[7] C. Barrett, R. Sebastiani, S. A Seshia, and C. Tinelli. Satisfiability
modulo theories.

[8] H. Manninen, V. Jääskeläinen, and J. O. Blech. Performance evaluation
of containerization platforms for control and monitoring devices. In 25th
IEEE International Conference on Emerging Technologies and Factory
Automation, ETFA 2020, Vienna, Austria, September 8-11, 2020, pages
1061–1064. IEEE, 2020.

[9] S. Kugele, D. Hettler, and J. Peter. Data-centric communication and
containerization for future automotive software architectures. In 2018
IEEE International Conference on Software Architecture (ICSA), pages
65–6509. IEEE, 2018.

[10] S. Sarkar, G. Vashi, and P. Abdulla. Towards transforming an industrial
automation system from monolithic to microservices. In 2018 IEEE
23rd International Conference on Emerging Technologies and Factory
Automation (ETFA), volume 1, pages 1256–1259. IEEE, 2018.

[11] N. Nikolakis, R. Senington, K. Sipsas, A. Syberfeldt, and S. Makris.
On a containerized approach for the dynamic planning and control of
a cyber-physical production system. Robotics and Computer-Integrated
Manufacturing, 64, 2020.

[12] L. De M. and N. Bjørner. Z3: An efficient smt solver. In International
conference on Tools and Algorithms for the Construction and Analysis
of Systems, pages 337–340. Springer, 2008.

[13] T. Strasser, M. Rooker, G. Ebenhofer, A. Zoitl, C. Sunder, A. Valentini,
and A. Martel. Framework for distributed industrial automation and
control (4diac). In 2008 6th IEEE International Conference on Industrial
Informatics, pages 283–288. IEEE, 2008.

[14] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I. Meedeniya.
Software architecture optimization methods: A systematic literature
review. IEEE Transactions on Software Engineering, 39(5):658–683,
2012.

[15] S. Zverlov, M. Khalil, and M. Chaudhary. Pareto-efficient deployment
synthesis for safety-critical applications in seamless model-based devel-
opment. 2016.

[16] J. Eder, S. Zverlov, S. Voss, M. Khalil, and A. Ipatiov. Bringing dse
to life: exploring the design space of an industrial automotive use case.
In 2017 ACM/IEEE 20th International Conference on Model Driven
Engineering Languages and Systems (MODELS), pages 270–280. IEEE,
2017.

[17] A. Diewald, S. Voss, and S. Barner. A lightweight design space
exploration and optimization language. In Proceedings of the 19th
International Workshop on Software and Compilers for Embedded
Systems, pages 190–193, 2016.

[18] V. Marik and D. McFarlane. Industrial adoption of agent-based tech-
nologies. IEEE Intelligent Systems, 20(1):27–35, 2005.

[19] P. Leitão. Agent-based distributed manufacturing control: A state-
of-the-art survey. Engineering Applications of Artificial Intelligence,
22(7):979–991, 2009.

[20] P. Leitão, A. W. Colombo, and S. Karnouskos. Industrial automation
based on cyber-physical systems technologies: Prototype implementa-
tions and challenges. Computers in industry, 81:11–25, 2016.

[21] C. Savaglio, M. Ganzha, M. Paprzycki, C. Bădică, M. Ivanović, and
G. Fortino. Agent-based internet of things: State-of-the-art and research
challenges. Future Generation Computer Systems, 102:1038–1053,
2020.

[22] S. Karnouskos, P. Leitao, L. Ribeiro, and A. W. Colombo. Industrial
agents as a key enabler for realizing industrial cyber-physical systems:
Multiagent systems entering industry 4.0. IEEE Industrial Electronics
Magazine, 14(3):18–32, 2020.

[23] J. Yan, C.g Pang, C. Yang, and V. Vyatkin. Adaptable software
components: Towards digital ecosystems and software evolution in the
industrial automation domain. In IECON 2014-40th Annual Conference
of the IEEE Industrial Electronics Society, pages 2512–2518. IEEE,
2014.

[24] T. Goldschmidt, S. Hauck-Stattelmann, S. Malakuti, and S. Grüner.
Container-based architecture for flexible industrial control applications.
Journal of Systems Architecture, 84:28–36, 2018.

[25] R. Sinha, K. Johnson, and R. Calinescu. A scalable approach for re-
configuring evolving industrial control systems. In Proceedings of the
2014 IEEE Emerging Technology and Factory Automation (ETFA), pages
1–8. IEEE, 2014.

[26] T. Terzimehic, S. Voss, and M. Wenger. Using design space exploration
to calculate deployment configurations of iec 61499-based systems. In
2018 IEEE 14th International Conference on Automation Science and
Engineering (CASE), pages 881–886. IEEE, 2018.

[27] T. Terzimehić, M. Wenger, S. Voss, S. Grüner, and H. Elfaham. Smt-
based deployment calculation in industrial automation domain. In 2019
24th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA), pages 290–297. IEEE, 2019.

[28] P. Dehraj and A. Sharma. A review on architecture and models
for autonomic software systems. The Journal of Supercomputing,
77(1):388–417, 2021.

