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Abstract—The capabilities of dynamicity, flexibility and agile
production are enablers to Smart Factory and Industry 4.0. One
critical feature to achieve these capabilities is to achieve efficient
deployment optimization for automation control applications.
However, many factories have used control applications imple-
mented using IEC 61131 rather than IEC 61499, even though
IEC 61499 standard supports Smart Factory better than IEC
61131 standard with distribution and event-driven features.

In this paper, we are studying a control application, named
HotWaterTank, implemented via IEC 61499. This application can
control a hot water tank via several buttons, such as inlet, outlet
and heating buttons. Three steps are carried out to deployment
optimization with this application that are 1) Flattening, 2)
Penalty matrix calculation, and 3) SMT solver calculation.

Finally, from the experimental results, we prove that the
deployment formulas we proposed can help achieve deployment
optimization results while reducing the execution time of the SMT
solver. Besides, we also discuss the parameter-related impact on
the execution time and optimization results. Our contribution is
to investigate the possibilities and difficulties of introducing the
SMT solver and containerization technology to the IEC 61499-
based application deployment optimization.

Index Terms—IEC 61499, satisfiability modulo theories, de-
ployment optimization, flexible deployment, containerization

I. INTRODUCTION
Smart Factory, as the core of Industry 4.0, introduces the

need to adjust product type and manufacturing capacity in real
time [1]. However, one noteworthy fact is that there are still
many production systems developed for static environments
that do not consider the increasing complexity and dynamicity
of the production environment and extreme mass customiza-
tion needs [2]. One example is that the centralized language,
IEC 61131 [3], is still the dominant language for industrial
automation application development, while the IEC 61499
[4] standard, with its distribution and event-driven features,
is not widely used in industrial automation development [5].
Therefore, the traditional control systems based on IEC 61131
cannot sufficiently support agile production requirements, dy-
namic configuration, and deployment optimization for achiev-
ing Smart Factory. An essential capability in Smart Factory’s
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vision is agile deployment optimization, and this requirement
can be well supported by IEC 61499-based applications rather
than IEC 61131 [6]. Therefore, the case used in our study is
an IEC 61499 application that is to control a hot water tank.

Some difficulties are preventing current factories from
achieving efficient and agile deployment systems as smart
factories. One of the difficulties is the increasing number
of software components (SWCs), and hardware components
(HWCs) in manufacturing systems, which makes it challeng-
ing to find a widely applicable deployment mechanism and
runtime optimization approach [7]. For large-scale control
systems, implementing runtime deployment optimization is
challenging because complex applications also have complex
internal implementation. For example, the application used in
our study has only five composite FBs, but the total number of
basic FBs is 42. These internal FBs are called component FBs
in IEC 61499 [8]. Since this paper is about the case study of
the SMT solver applied in deployment optimization instead
of introducing a complete flattening method, the execution
model is the transparent container model, which means the
event/data association and input sampling are not considered
in our flattening process. According to the challenge of the
internal complexity of current IEC 61499 applications, one
of our goals is to reduce the execution time of optimization
calculation.

The second difficulty is that the external environment tends
to be more dynamic. Current control applications have been
expected to perform dynamic processing and flexible config-
urations according to environment uncertainties [9] [10]. The
highly dynamic environment makes deployment optimization
more challenging. Therefore, deployment optimization is a
long-standing research topic in Smart Factory and Industry
4.0.

Due to the advantages of the IEC 61499 standard, the
application used in our study is implemented via IEC 61499.
The IEC 61499 standard is gaining popularity as an enabler of
Industry 4.0 due to its support for distribution, where control
applications, presented as a network of communication soft-
ware components, also known as FBs, can be easily deployed
to different computing nodes, invoked in standard devices, and978-1-7281-9023-5/21/$31.00 © 2021 IEEE



redeployed with a single click without affecting the application
logic. Depending on various application complexities, the
operations, such as adding, replacing or removing FBs, could
be performed by means of the standard-defined management
commands. Moreover, except for the management commands,
there is no built-in feature of IEC 61499 to enable FBs
migration, e.g., from one PLC1 to another PLC2 if PLC1 is
down. This is also a motivation for us to propose the SMT
solver to optimize the IEC 61499-based applications.

We will discuss the possibility of utilizing containerization
technology as an enabler to improve deployment optimization
calculation efficiency. Containerization technology will be
applied in conjunction with SMT solver [11]. Specifically, by
using the containerized IEC 61499 runtime, a large number
of runtimes can be quickly extended to various devices with
a single command. Containerization is now widely accepted
as a powerful technology in software engineering due to its
lightweight, flexibility, scalability, and short time-to-market.
Although the technology originated in the IT world, it has
recently gained some attention in embedded systems (e.g.,
[12]). Container technology can also potentially be used in
industrial automation as an enabler for Smart Factory and
Industry 4.0, as discussed by [13], [14], and [15]. In the
context of IEC 61499, containerization can be applied to the
device model and even to the resource model (resources are
more fine-grained execution containers in IEC 61499, where
a device can contain one or more independently executing
resources).

In this paper, we address the difficulties (flattening compos-
ite FBs and FBs deployment optimization) as our scopes to test
the proposed flattening method and SMT solver while reducing
the execution time via introducing the containerization. The
SMT solver is one such tool. To reduce the execution time,
the runtime processes of IEC 61499 should be created and
deleted dynamically, automatically and quickly.

The outline of this paper is as follows. Section II gives
the details of a hot-water-control application developed based
on IEC 61499 and describes the flattening pre-processing of
the FBs. Section IV presents the mathematical model of the
deployment optimization problem based on the SMT solver.
Section V gives the experimental results based on the use
case using our proposed SMT solver. Finally, section VI
summarizes the performance of our work on the deployment
problem based on the industrial IEC 61499 application and
gives our plans for future work.

II. USE CASE: HOT WATER TANK

The control application is a model to control the inlet, outlet
and temperature of a hot water tank. The model has six FBs,
as shown in Fig. 1. These FBs control the water level and
the water temperature via corresponding buttons. For example,
the InFast button controls the fast inlet valve of the water
tank; by turning this valve on, the water level in the tank will
rise quickly. The FB, HotWaterTankModel, is a more complex
FB that simulates the entire water tank, including an accurate
reflection of the impact of fast/slow water inlet and outlet and

Fig. 1: The Hot Water Tank application in nxtStudio.

heater. With this model, the water tank operator can quickly
observe water volume changes and temperature changes via
Human Machine Interface (HMI) and control these changes in
time to avoid hazards such as tank rupture and heater-broken.

Fig. 2: The hierarchical viewpoint of the HotWaterTank appli-
cation.

Fig. 1 shows the model in its most concise form, i.e.,
the internal complexity is abstracted through composite FBs.
The composite FBs can also contain other composite FBs.
Hence the whole model is implemented in a nested style. The
hierarchical view of the model is shown in Fig. 2. Composite
FBs is an essential type of FB in the IEC 61499 standard.
Composite FBs provide a way to build more complex FBs
from multiple basic FBs, finer composite FBs, or service
interface FBs. Data connections and event connections for
both input and output of composite FBs can be found within
the corresponding connected component FBs. To optimize
the deployment of internal basic FBs, this HotWaterTank
application should be first flattened to obtain all the internal
basic FBs and then perform the optimization to these flattened
FBs rather than composite FBs.



Fig. 3: The UML diagram of TreeNode and FB classes.

III. FUNCTION BLOCKS FLATTENING

The structure of many IEC 61499-based applications is
similar to this HotWaterTank model, i.e., applications are im-
plemented via a few simple and concise composite FBs. This
design pattern enables developers to create more complex IEC
61499-based applications quickly because composite FBs only
provide necessary interfaces to external FBs while abstracting
the internal complexity.

However, when it comes to optimizing FBs deployment,
these composite FBs make this requirement more challenging
due to its abstraction. Because each composite FB has many
component FBs inside, the internal configuration and imple-
mentation details should be provided from the application
deployment perspective. Even though the use of many compos-
ite FBs simplifies the model and reduces the implementation
complexity to a certain extent, it makes it more challenging
to implement a deployment optimization mechanism for all
FBs. For the deployment optimization of FBs, the granularity
of FBs should be much finer to obtain a better performance.

Fine-grained optimization provides better resource alloca-
tion and management for the interests of basic FBs. Moreover,
fine-grained deployment optimization allocates the resources
of the devices more rationally to improve the performance of
the entire application and system.

Therefore, an algorithm that flattens all the composite FBs
is applied to obtain all the underlying FBs before proceeding
with the deployment optimization using the SMT solver. We
implement the flattening algorithm via a Java application.
Specifically, we build a class FB in the java application,
and this FB class in Java is the counterpart of FB in IEC
61499. On the other hand, a tree-node structure containing
the FB class is introduced into the flattening application, i.e.,
each FB at a different hierarchical level has a node instance
corresponding to it. The node instance contains an FB instance
representing the FB with attributes such as FB name, FB type
and connections. The UML diagram of the tree structure and
the FB classes is shown in Fig. 3.

On the other hand, work [16] suggests using the data
valves when flattening the hierarchical applications because

the correct way to flatten the application should also consider
the event-data associations. However, in this case, study, we
only focus on the performance and results of the SMT solver
and related deployment models/mathematical formulas instead
of giving a complete flattening method. Therefore, in this
paper, we will not go further on the topic of FBs flattening.

All the composite and flattened basic FBs of this HotWa-
terTank model are presented in Fig. 4. These blue FBs are the
flattened basic FBs and do not contain the composite program
blocks. When the whole HotWaterTank model is flattened with
our flattening Java application, 42 basic FBs are essentially
obtained to represent the whole system as the same as those
composite FBs. These FBs will be used in the final deployment
optimization algorithm. The deployment optimization result
will suggest these 42 basic FBs for the destination of the
device/container to where they should be deployed.

IV. DEPLOYMENT OPTIMIZATION MODEL

Referring to optimize the deployment, we propose a new
deployment model (mathematical formulas) for three con-
straints and one objective. We argue that different deploy-
ment models/mathematical formulas for the same meaning of
constraint or objective can significantly affect the execution
time, optimization results and scalability. Deployment models
that are not properly designed are less scalable, so they
can only be used for simple control applications and are
difficult to be applied to real complex control applications,
e.g., the HotWaterTank application with 42 basic FBs. A
well-designed deployment model can produce highly accurate
results and improve the scalability and automation of the entire
deployment process. Four deployment models are proposed to
investigate four different deployment requirements. These four
models are

- Constraint 1: A finite number of IEC 61499 runtime
docker containers (variable n).

- Constraint 2: Maximum number of FBs per container
(variable m).

- Constraint 3: Match the skills required for FBs (e.g., I/O
capabilities) with the supported skills of the containers.

- Objective 1: Reduce the penalty scores by introducing the
penalty matrix (matrix Penalty).

A. CONSTRAINT 1

For each FB, a variable xi is created, and the
value of each variable represents the container tag
(1, 2, ..., ContainerNum). For example, deploying FB xi to
container with tag ”1” indicates xi = 1. Finally, the deploy-
ment result calculated with the SMT solver is an assignment
to all FBs xi in a control application. Therefore, the assigned
value for each FB should not be greater than ContainerNum.
The deployment model for this constraint is shown in (1).

∀xi ∈ FunctionBlocks,

1 ≤ xi ≤ ContainerNum (1)



Fig. 4: The hierarchy of all FBs from the HotWaterTank model.

B. CONSTRAINT 2
The second constraint is that there is an upper limit to the

number of FBs that is the maximum number of FBs each
container can hold. The deployment model for this limit is
shown in (2). For example, if the upper limit is two, then
any three control application variables should not have the
same value assigned. If three variables are equal, three FBs are
running in the same container, i.e., the upper limit is exceeded.

MaxFBs ∗ ContainerNum ≥ TotalFBs,

∀xi0 , xi1 . . . xiMaxFBs ∈ FunctionBlocks⇒
(xi0 = xi1) ∧ . . . ∧ (xi0 = xiMaxFBs) 6= true (2)

C. CONSTRAINT 3
The third constraint (3) indicates that the skill required for

each FB should match the skill supported by the assigned
container. For example, a FB that requires temperature sensor
support needs to be deployed to a container with a temperature
sensor via proper I/O ports. Otherwise, this FB can not read or
write temperature data using the container’s I/O successfully.
The introduction of this formula further enhances the rationale
for the entire deployment. The supporting skills should be con-
sidered before deploying FBs to destinations. The deployment
results can be used to deploy FBs to containers while ensuring
them working well as expected.

∀xi ∈ FunctionBlocks

Containers(1, 2, 3) support I/O skill,

(swSkill (xi) > 0)⇒
(((xi = 1)&& (swSkill (xi) = hwSkill (1)) = true) ||
((xi = 2)&& (swSkill (xi) = hwSkill (2)) = true) ||
((xi = 3)&& (swSkill (xi) = hwSkill (3)) = true)) (3)

D. OBJECTIVE 1
The fourth formula (4) presents the optimization objective

rather than the constraints. Once the number of FBs, the

Fig. 5: An example of the process to obtain the penalty matrix.

number of available containers, and the limit for each container
are known, a new optimization objective is proposed. This
optimization is how to allocate the FBs to minimize the total
penalty scores based on all the above constraints.

This penalty matrix we proposed indicates how much im-
portant it that two FBs should be deployed to the same con-
tainer/device. The Penalty matrix is achieved by calculating
the data and events intensity with the proximity requirements
of all basic FBs. An example of the method to obtain the
Penalty matrix is shown in Fig. 5. The process to calculate
the final penalty matrix is that the data connections and events
connections will be added together to get the communication



intensity matrix. After that, the normalized intensity matrix
can be obtained from the intensity matrix. The last step is to
add the proximity matrix to the normalized intensity matrix
so that the penalty matrix can finally be calculated.

There are many advantages of utilizing the penalty matrix
instead of using data/event intensity directly. One of the
advantages is that utilizing the data/event intensity matrix is
shallow because more data/event connections do not mean
more intensive or frequent communications between FBs.
Suppose two FBs that need to communicate are assigned to
two separate containers. In that case, they need to be exter-
nally communicated via additional service interface FBs. Our
solution is that a weighted intensity matrix is used to represent
external communication stress. This weighted intensity matrix
refers to the number of data connections and event connections
between each pair of FBs with different weights. Another
advantage is that, depends on different cases, some FBs may
be better deployed based on customized needs. For example,
the Outlet button FB should be deployed with the Outlet valve
FB as close as possible to reduce events transmission latency.

∀xi, xj ∈ FunctionBlocks,

min
∑

xi 6=xj

Penalty [i] [j] (4)

V. EVALUATION

To optimize the deployment of all basic FBs of this
HotWaterTankModel application, the model should first be
flattened. The flattening process will help to get all basic FBs.
Redeploying a model means optimizing the deployment of all
basic FBs instead of the composite FBs. Therefore, flattening
all the composite FBs is the first step in the deployment
optimization calculation before using the STM solver. The
second step is to obtain a penalty matrix based on all the
flattened FBs by calculating the weighted data connections,
event connections and proximity matrix. Finally, based on this
penalty matrix and the SMT solver application, the deployment
optimization results are obtained.

A. FLATTENING RESULTS

Fig. 6 shows the results obtained after flattening the com-
posite FBs of the HotWaterTank model by using a Java
application. Each tree node contains a FB class representing
the name, type, data connections and event connections of
the corresponding FB. For example, the name of the FB
of this node (28th tree node) is ”RootHotWaterTankMod-
elFB1FB2FB5”, and the type is ”LimiterTemp.” The naming
rule in this flattening application follows the absolute path
of this FB. For example, the flattened FB with the name
”RootHotWaterTankModelFB1FB2FB5” indicates a FB (FB5)
inside the composite FBs that are FB2, FB1 and HotWater-
TankModel. Besides, it is known that this FB has three data
connections and two event connections. Using HashMap, it is
possible to match the source and destination for both event and
data connections. Since there are 42 basic FBs, we will not list
and analyze each final FB one by one. However, by analyzing

Fig. 6: The FBs-flattening results by using the Java application.

them against the model in nxtStudio, it is proved that the
flattening algorithm and the Java application we implemented
are correct to pre-process all the composite FBs in the model.

B. PENALTY MATRIX

Fig. 7: The heat map of the penalty matrix obtained from the
HotWaterTank model.

Once all the non-composite blocks are obtained, the penalty
matrix can be obtained by calculating from the data connec-
tions, the event connections and the proximity matrix. Fig. 7
displays the penalty matrix of this HotWaterTank model using
a heat map. The deep color block indicates that the two cor-
responding FBs should be deployed preferentially in the same
container/device. As can be seen from this penalty matrix,



FB30 (RootHotWaterTankModelFB1FB2FB2) has communi-
cation with seven other FBs, so there are seven colored blocks
on the heat map. Since it has three data connections and
one event connection with the FB28 (RootHotWaterTankMod-
elFB1FB2IThis), the total number of connections is the biggest
among other connected FBs, and the weight is 1, so the color
of this block is the one in dark blue.

C. DEPLOYMENT OPTIMIZATION RESULTS

Fig. 8: The execution time of SMT solver according to
different parameters.

Different parameter settings for the SMT solver and the
corresponding mathematical formulas significantly affect the
experimental results and execution time. Fig. 8 shows a
significant difference in the execution time of the deployment
optimization obtained for various parameters, such as the
number of containers and the maximum FBs per container
can support. For example, for the same number of containers
of 90, the execution time is 45297ms and 8055853ms when
the container capacity is three and six, respectively, because a
better combination of parameters can significantly increase the
execution efficiency of the SMT solver. For complex industrial
control applications, efficient deployment optimization can
better meet the requirements of the Smart Factory and Industry
4.0 for agile manufacturing. These experiments help us find
the optimal parameter combinations for our SMT solver and
deployment mathematical formulas in future work.

VI. CONCLUSION AND FUTURE WORK

As production environments become more complex and dy-
namic, Industry 4.0 demands more advanced agile production
capabilities for achieving Smart Factory. To help traditional
manufacturing factories upgrade to smart factories, improving
the deployment performance is a critical step and capability.
If an industrial control system cannot support distributed and
agile production requirements, the upgrade to Smart Factory
will be challenging. For this purpose, we analyze the deploy-
ment optimization of a control application (HotWaterTank)
developed using IEC 61499 by using the SMT solver and the
designed deployment optimization formulas.

We designed and implemented the flattening algorithm
that flattens all-composite FBs from this application. The
flattening application performs well in experiments, i.e., it
provides accurate and detailed information to the SMT solver.
Moreover, we also give mathematical formulas for the SMT
solver and design, where different parameter combinations
lead to different calculation results and execution time. Based
on our experimental results, a more suitable combination of
parameters can be obtained to research related problems.

We plan to improve further this SMT solver-based deploy-
ment optimization model for future work while introducing
more deployment syntax. The attempt is to improve the
flexibility with customized needs of the optimization while
further reducing the execution time. Introducing more syntax
for FBs deployment and designing the mathematical models
are the main focus of future research.
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