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Abstract. This work addresses the time-dependent response
of 3m× 6m floating edge-cracked rectangular plates of
columnar freshwater S2 ice by conducting load control (LC)
mode I fracture tests in the Aalto Ice Tank of Aalto Univer-
sity. The thickness of the ice plates was about 0.4 m and the
temperature at the top surface about −0.3 ◦C. The loading
was applied in the direction normal to the columnar grains
and consisted of creep/cyclic-recovery sequences followed
by a monotonic ramp to fracture. The LC test results were
compared with previous monotonically loaded displacement
control (DC) experiments of the same ice, and the effect of
creep and cyclic sequences on the fracture properties were
discussed. To characterize the nonlinear displacement–load
relation, Schapery’s constitutive model of nonlinear thermo-
dynamics was applied to analyze the experimental data. A
numerical optimization procedure using Nelder–Mead’s (N-
M) method was implemented to evaluate the model functions
by matching the displacement record generated by the model
and measured by the experiment. The accuracy of the consti-
tutive model is checked and validated against the experimen-
tal response at the crack mouth. Under the testing conditions,
the creep phases were dominated by a steady phase, and the
ice response was overall elastic–viscoplastic; no significant
viscoelasticity or major recovery was detected. In addition,
there was no clear effect of the creep loading on the frac-
ture properties at crack growth initiation: the failure load and
crack opening displacements.

1 Introduction

Understanding the deformation and fracture processes of
columnar freshwater ice is important in many engineering
problems. For example, freshwater ice sheets fracture when

in contact with ships, river ice fractures during interaction
with bridge piers, and thermal cracks form in lakes and reser-
voirs. Deformation and fracture processes of freshwater ice
are highly dependent on temperature, strain rate, sample size,
grain type, and grain size. Qualitatively, high temperature
and low strain rate lead to viscous behavior and ductile frac-
ture; low temperature and high strain rate lead to elastic be-
havior and brittle fracture (Gharamti et al., 2021). However,
quantitatively these relations are not well known.

As the response of freshwater ice is time-dependent, a
general constitutive model should incorporate elastic (im-
mediate and recoverable), viscoelastic (or delayed elastic,
time-dependent, and recoverable), and viscoplastic (time-
dependent and unrecoverable) components (Jellinek and
Brill, 1956; Sinha, 1978). The importance of each compo-
nent depends on the problem studied. For example, thermal
deformations of ice in dams can have a timescale of a few
days and creep behavior dominates. In ice–structure inter-
action problems, the timescale of interest is often seconds
and hours, so all three components of deformation need to be
modeled.

This paper reports results from laboratory experiments
which were conducted to study the time-dependent response
and fracture of columnar freshwater ice. The work is directly
relevant to a number of practical problems (Ashton, 1986)
but has also general relevance in ice research by studying the
coupled creep and fracture in a quasi-brittle material. Un-
less just short timescales are involved, where only elastic re-
sponse is relevant, the creep deformations must be modeled
to obtain the true fracture behavior. In materials with time-
dependent properties, the fracture and creep responses are
coexistent.

The time-dependent behavior of freshwater ice has been
addressed with great attention, and several constitutive mod-
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els were developed (Michel, 1978; Sinha, 1978; Le Gac and
Duval, 1980; Ashby and Duval, 1985; Sunder and Wu, 1989;
Mellor and Cole, 1983; Cole, 1990; Duval et al., 1991; Sun-
der and Wu, 1990; Abdel-Tawab and Rodin, 1997; Santaoja,
1990). Constitutive laws can be phenomenological or mi-
cromechanical. Micromechanical modeling in ice faces chal-
lenges because the characterization of the microscopic mech-
anisms of ice deformation is still inadequate (Abdel-Tawab
and Rodin, 1997).

Phenomenological laws are classified into two groups.
The first group is empirically based relations (Sinha, 1978;
Schapery, 1969). Their equations relate macroscopic vari-
ables: stress/load, strain/displacement, and time. They do not
contain state variables that describe the internal state of the
material and are valid only for constant stress/load. The func-
tions in these models can be easily calibrated to simulate the
experiments. The second group of phenomenological mod-
els starts from physically based models involving internal
state variables (dislocation density, internal stresses reflect-
ing hardening, etc.); they develop differential equations for
the evolution of these variables with time and quantify the
dependence of these variables on stress, temperature, and
strain (Le Gac and Duval, 1980; Sunder and Wu, 1989, 1990;
Abdel-Tawab and Rodin, 1997). These models provide in-
sights into the microscopic mechanisms taking place, and the
state variables describe the deformation resistance offered
by changes in the microstructure of the material. However,
they require a proper identification of the deformation mech-
anisms.

The effect of time-dependent loading on the strength of
freshwater ice has been examined in the literature. Subjecting
freshwater ice to cyclic loading apparently leads to a signif-
icant increase in the tensile, compressive, flexural strength,
and fracture toughness of that ice (Murdza et al., 2020; Ili-
escu et al., 2017; Iliescu and Schulson, 2002; Jorgen and
Picu, 1998; Rist et al., 1996; Cole, 1990). On the other hand,
no detailed investigation of the effect of creep and cyclic
loading on the fracture properties of freshwater ice has been
conducted in the past.

Laboratory experiments were conducted to measure the
time-dependent response and fracture behavior of 3 m× 6m
floating edge-cracked rectangular plates of columnar fresh-
water S2 ice, loaded in the direction normal to the colum-
nar grains. The ice studied was warm, and the tempera-
ture at the top surface of the samples was about −0.3 ◦C.
Compared to earlier studies with freshwater ice, the sam-
ples were large (3 m× 6m) and very warm. A program of
five load control (LC) mode I fracture tests was completed
in the test basin (40 m square and 2.8 m deep) at Aalto Uni-
versity. Creep/cyclic-recovery sequences were applied below
the failure loads, followed by monotonic ramps leading to
complete fracture of the specimen. The LC results were com-
pared with the fracture results of monotonically loaded dis-
placement control (DC) tests of the same ice (Gharamti et al.,

Figure 1. Specimen geometry. Edge-cracked rectangular plate of
length L, width H , and crack length A0.

2021), and the effects of the creep and cyclic sequences on
the fracture properties were analyzed.

The constitutive modeling used in this paper was presented
by Schapery (1969) and applied to polymers. Schapery’s
model belongs to the first phenomenological group and orig-
inates from the theory of nonlinear thermodynamics. This
study presents the first attempt to use Schapery’s model for
freshwater ice. The choice of this model for freshwater ice
is motivated by the fact that the model was successfully ap-
plied to saline ice (Schapery, 1997; Adamson and Dempsey,
1998; LeClair et al., 1999, 1996) with encouraging results.
The model accurately described the deformation response
during load/unload applications over varying load profiles.

The experiments in this study aim to assess the time-
dependent nature of warm columnar freshwater S2 ice. In
particular, the study aims to examine (1) the extent to which
the elastic, viscoelastic, and viscoplastic components con-
tribute to the ice deformation as defined through the crack
mouth opening displacement; (2) the effects of the test-
ing conditions on the creep stages (primary/transient and
steady state/secondary) present in the ice; (3) the effects that
creep and cyclic sequences have on the fracture properties
– i.e., failure load and crack growth initiation displacements;
and (4) the ability of Schapery’s nonlinear constitutive model
to predict the experimental response.

The rest of the paper is structured as follows. In Sect. 2, a
description of the experimental setup, testing conditions, and
the applied loading profile is presented. Section 3 introduces
Schapery’s model, which is used to analyze the experiments.
In Sect. 4, the experimental and model results are summa-
rized and analyzed. Section 5 concludes the paper.

2 Creep-recovery fracture experiments

2.1 Experimental details

The ice specimens tested were 3m× 6m rectangular plates,
cut from a 40m×40m parent sheet, with a thickness of 340–
410 mm, and instrumented as shown in Fig. 1. The experi-
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Figure 2. (a) Temperature profile. Each data point represents the average of measurements taken at the same depth of different ice cores
throughout the 1-month duration of the test program. (b) Grain size distribution. Each data point is measured from one thin section.

ments were conducted at an ambient temperature of −2 ◦C.
The ice was columnar freshwater S2 ice having a mean grain
size of 6.5 mm (Fig. 2b). The temperature at the top surface
was about −0.3 ◦C, as shown in Fig. 2a. An edge crack of
length A0 (A0 ≈ 0.7 L) was cut and tip-sharpened in each
ice specimen. The response of the ice was monitored by us-
ing a number of surface-mounted linear variable differen-
tial transducers (LVDTs). LVDTs were placed at five differ-
ent locations along the crack to measure directly the crack
opening displacements. Figure 1 labels these positions as
CMOD, COD, NCOD1, NCOD2, and NCOD3 for the crack
mouth, intermediate crack, 10 cm behind the initially sharp-
ened tip, 10 cm ahead of the tip, and 20 cm ahead of it, re-
spectively. A hydraulically operated device was inserted in
the mouth of the pre-crack to load the specimen horizontally,
in the direction normal to the columnar grains, with a con-
tact loading length of 150 mm, denoted by D in Fig. 1. The
tests were load controlled by a computer-operated closed-
loop system that also recorded the displacement measure-
ments. Creep/cyclic-recovery sequences were applied below
the failure loads, followed by monotonic ramps leading to
complete fracture of the specimen. The loading rate used
is similar to that used in earlier sea ice studies (LeClair
et al., 1999; Adamson and Dempsey, 1998) and thus al-
lows for comparison of these two materials. The global be-
havior of the crack propagation was straight through the
gauges. Detailed description of the experimental setup, ice
growth, microstructure, and fractographic analysis is pro-
vided in Gharamti et al. (2021).

2.2 Creep-recovery and monotonic loading profile

In two tests, ice specimens were subjected to creep-recovery
loading followed by a monotonic fracture ramp. The creep-
recovery sequences consisted of four constant load ap-
plications, separated by zero-load-recovery periods. Each
sequence was composed of alternating load/hold and re-
lease/recovery periods. Creep phases were applied at load
levels of 0.4, 0.8, 1.2, and 0.4 kN, as given by the loading

signal in Fig. 3a. The loads were chosen low enough to avoid
crack propagation and failure of the specimen. Each load–
hold–unload was applied in the form of a trapezoidal wave
function to avoid instantaneous load jump and drop; the load-
ing was applied in approximately 10 s and released in ap-
proximately 10 s. The slopes of the wave on loading and load
release were 0.04, 0.08, and 0.12 kN s−1 for the 0.4, 0.8, and
1.2 kN load levels, respectively.

Once at the desired hold level, the load was kept constant
for a predetermined time interval. The load intervals were
multiples of the hold interval for the 0.4 kN load level,1t1 =
126 s. For the 0.8 and 1.2 kN load levels, the time interval was
doubled and quadrupled: 21t1 = 252 s and 41t1 = 504 s,
respectively. The four zero-load-recovery periods, separat-
ing the creep load periods, were also a function of 1t1.
Three recovery periods were held at the zero-load level for
51t1 = 630 s, but the last recovery period was maintained
for a longer interval of 101t1 = 1260 s.

Immediately following the creep and recovery loading se-
quences, the specimen was loaded monotonically to failure
on a load-controlled linear ramp. The ramp up to the peak
load and unloading were each applied over an interval of1t1.

2.3 Cyclic-recovery and monotonic loading profile

In three tests, ice specimens were loaded with cyclic-
recovery sequences followed by a fracture ramp, as shown
in Fig. 3b. The cyclic-recovery loading consisted of three
sequences, with each being composed of four fluctuating
loads, at the levels of 0.4, 0.8, and 1.2 kN. Each cyclic se-
quence continued for a constant time interval 1t2 = 480 s.
The slopes of the wave on the loading and load release were
1/150, 1/75, and 1/50 kNs−1 for the 0.4, 0.8, and 1.2 kN
load levels, respectively. The 0.4, 0.8, and 1.2 kN cyclic
load periods were followed by zero-load-recovery periods of
1.251t2 = 600 s, 1.251t2 = 600 s, and 2.51t2 = 1200 s, re-
spectively.

At the completion of the cyclic-recovery loading se-
quences, the specimen was loaded to failure by a monotonic
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Figure 3. Loading consisting of (a) creep-recovery and (b) cyclic sequences followed by a monotonic fracture ramp. The number above each
segment indicates the duration in seconds.

linear ramp. The ramp up to the peak load and unloading
were each applied over an interval of 0.251t2 = 120 s.

3 Nonlinear time-dependent modeling of S2 columnar
freshwater ice

The model applied in this section to characterize the nonlin-
ear viscoelastic/viscoplastic response of S2 columnar fresh-
water ice was presented by Schapery; it was used to model
the time-dependent mechanical response of polymers in
the nonlinear range under uniaxial stress-strain histories
(Schapery, 1969). Schapery’s stress-strain constitutive equa-
tions are derived from nonlinear thermodynamic principles
and are very similar to the Boltzmann superposition integral
form of linear theory (Flügge, 1975). Schapery’s model rep-
resents the material as a system of an arbitrarily large number
of nonlinear springs and dashpots.

The equations in this section are presented in terms of load
and displacement instead of the original stress-strain rela-
tions. The notations of the original equations in Schapery
(1969) are modified to bring out similarity between all the
equations in the paper.

When the applied loads are low enough, the material re-
sponse is linear. For an arbitrary load input, P = P(t) ap-
plied at t = 0, Boltzmann’s law approximates the load by a
sum of a series of constant load inputs and describes the lin-
ear viscoelastic displacement response of the material using
the hereditary integral in a single integral constitutive equa-
tion. The Boltzmann superposition principle states that the
sum of the displacement outputs resulting from each load
step is the same as the displacement output resulting from
the whole load input. If the number of steps tends to infinity,
the total displacement is given as

δ(t)= C0P +

t∫
0

1C(t − τ)
dP
dτ

dτ, (1)

where C0 is the initial, time-independent compliance compo-
nent and 1C(t) is the transient, time-dependent component
of compliance.

Turning now to nonlinear viscoelastic response, Schapery
developed a simple single-integral constitutive equation from
nonlinear thermodynamic theory, with either stresses or
strains entering as independent variables (Schapery, 1969).
Using load as the independent variable, the displacement re-
sponse under isothermal and uniaxial loading takes the fol-
lowing form:

δ(t)= g0C0P + g1

t∫
0

1C(ψ −ψ ′)
d(g2P)

dτ
dτ, (2)

where C0 and 1C are the previously defined components of
the Boltzmann principle; ψ and ψ ′ are the so-called reduced
times defined by

ψ =

t∫
0

dt ′

aP [P(t ′)]
and ψ ′ = ψ(τ)=

τ∫
0

dt ′

aP [P(t ′)]
; (3)

and g0, g1, g2, and aP are nonlinear functions of the load.
Each of these functions represents a different nonlinear in-
fluence on the compliance: g0 models the elastic response,
g1 models the transient response, g2 models the loading
rate, and aP is a timescale shift factor. These load-dependent
properties have a thermodynamic origin. Changes in g0,g1,
and g2 reflect third- and higher-order stress dependence of
the Gibbs free energy, and changes in aP are due to sim-
ilar dependence of both entropy production and the free
energy. These functions can also be interpreted as modu-
lus and viscosity factors in a mechanical model representa-
tion. In the linear viscoelastic case, g0 = g1 = g2 = aP = 1,
and Schapery’s constitutive Eq. (2) reduces to Boltzmann’s
Eq. (1).

Equation (2) contains one time-dependent compliance
property, from linear viscoelasticity theory, 1C, and four
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nonlinear load-dependent functions, g0,g1,g2, and aP ,
which reflect the deviation from the linear viscoelastic re-
sponse, that need to be evaluated. Schapery’s model uses ex-
perimental data to evaluate the material property functions in
Eq. (2). Lou and Schapery outlined a combined graphical and
numerical procedure to evaluate these functions (Lou and
Schapery, 1971). In their work, a data-reduction method was
applied to evaluate the properties from the creep and recov-
ery data. Papanicolaou et al. proposed a method capable of
analytically evaluating the material functions using only lim-
iting values of the creep-recovery test (Papanicolaou et al.,
1999). Numerical methods are also employed and are the
most commonly used techniques; they are based on fitting the
experimental data to the constitutive equation (LeClair et al.,
1999). In the current study, a numerical-experimental proce-
dure is adopted. An optimization procedure is applied using
the Nelder–Mead (N-M) method (Nelder and Mead, 1965)
to back-calculate the values that achieve the best fit between
the model and the experimental data. To avoid multiple fitting
treatments of data and account for the mutual dependence of
the functions, the properties were determined from the full
data. This avoided errors that may result from separating the
data into parts and estimating the functions independently
from different parts.

Schapery later updated his formulation (Schapery, 1997).
He added a viscoplastic term to account for the viscoplastic
response of the material and stated that the total compliance
can be represented as the summation of elastic, viscoelas-
tic, and viscoplastic components. Adamson and Dempsey
applied Schapery’s updated constitutive equation to model
the crack mouth opening displacement of saline ice in an ex-
perimental setup similar to the current study (Adamson and
Dempsey, 1998). The theory represents the displacement at
the crack mouth (δCMOD) as the sum of elastic, viscoelastic,
and viscoplastic components:

δCMOD = δ
e
CMOD+ δ

ve
CMOD+ δ

vp
CMOD, (4)

where

δe
CMOD = g0CeP, (5)

δve
CMOD = g1

t∫
0

Cve(ψ −ψ
′)

d
(
g2P

)
dτ

dτ, (6)

δ
vp
CMOD = Cvp

t∫
0

g3Pdτ. (7)

In the above equations, ψ and ψ ′ are defined in Eq. (3).
g0, g1, g2, g3, and aP are nonlinear load functions to be
determined. The coefficients Ce, Cve, and Cvp are the elas-
tic, viscoelastic, and viscoplastic compliances, respectively.
Schapery’s equation has been developed for uniaxial loading.
The response of the test specimen is dominated by the nor-
mal stresses at the direction normal to the x axis, ahead of the

crack (Fig. 1). This stress state can be approximated as uni-
axial in the same way as in beam bending; the stress is uni-
axial tension at the crack tip and then changes linearly. Thus,
Schapery’s equations are used to analyze the experimental
data. Few assumptions are applied at this point and are based
on the choices made in Adamson and Dempsey (1998). For
ice, the elastic displacement is linear with load; this immedi-
ately leads to g0 = 1. Schapery stated that g1 = aP = 1 if the
instantaneous jump and drop in the displacement are equal
(Schapery, 1969). Examination of the current data shows that
this condition is not valid, and the functions need to be eval-
uated. Accordingly, the following approximations are em-
ployed:

g1 ∝ P
a
; g2 ∝ P

b−1
; g3 ∝ P

c−1
; aP ∝ P

d . (8)

From Eq. (3),

ψ −ψ ′ =

t∫
τ

dt ′

aP [P(t ′)]
. (9)

The viscoelastic compliance is assumed to follow a power
law in time with a fractional exponent n. This gives

Cve(β)≈ κβ
n. (10)

Incorporating each of these conditions, the total displace-
ment is expressed as

δCMOD = CeP + κP
a

t∫
0

 t∫
τ

dt ′

[P(t ′)]d

n

·
d[P(τ)]b

dτ
dτ +Cvp

t∫
0

P cdτ, (11)

where δCMOD, P , and t are in meters, newtons, and seconds,
respectively. It follows from Eq. (11) that two unknown pa-
rameters (Ce and Cvp), one unknown constant (κ), and five
unknown exponents (a, b, c, d, and n) need to be determined.
As previously mentioned, the problem is optimized through
the N-M technique, by minimizing the objective function F
given by the difference between the model and data, as shown
in Eq. (12). The components of the total displacement were
computed and optimized using MATLAB. A positive con-
straint was applied to the model variables. Initial guesses of
the exponents on the load and time functions were assumed
based on previous work on saline ice. The optimized values
were then obtained by comparing the model response and the
experimentally measured response over the full length of the
test up to crack growth initiation.

F = argminCe,Cvp,a,b,...

·

N∑
i=1

∥∥∥Mi(Ce,Cvp,κ,a,b,c,d,n)−Di

∥∥∥
2
, (12)
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where Mi and Di refer to the CMOD values given by the
model (11) and the experimental data, respectively. ‖.‖2 is
the Euclidean norm of a vector. N is the number of data
points (≈ 2× 106 points). This problem is typically called
a least-squares problem when using the Euclidean norm. It
is a convex problem because F is a convex function and the
feasible set is convex. Thus, the optimization algorithm will
converge to the global optimal solution.

As mentioned earlier, Schapery’s model originated from
the thermodynamic theory. The model is not physically
based, and its parameters are not linked to the microstructural
properties of the ice (dislocation density, grain size, etc.).
In addition, the analysis does not account for the formation
of a fracture process zone in the vicinity of the crack tip.
Schapery’s formulation models the experimental response
until crack growth initiation and does not account for crack
propagation.

4 Experimental and modeling results

This section presents the results measured and computed for
the LC tests. The current results are compared with the frac-
ture results of monotonically loaded DC tests of the same ice
and same specimen size (3m× 6m) (Gharamti et al., 2021).
The main aim is to elucidate the effect of creep and cyclic
sequences on the fracture properties.

4.1 Effect of the creep and cyclic sequences on the
fracture properties

Table 1 shows the measured and computed parameters for
the LC experiments. Pmax is the measured peak load, which
is also the failure load. tf represents the time to failure, com-
puted from the fracture ramp. CMOD is measured at crack
growth initiation. ˙CMOD indicates the displacement rate at
the crack mouth and is obtained by dividing CMOD by
the failure time. Similarly, NCOD1 (see Fig. 1) represents
the displacement at crack growth initiation near the initially
sharpened crack tip. ˙NCOD1 indicates the displacement rate
in the vicinity of the tip and is obtained by dividing NCOD1
by the failure time.

Figure 4 gives the results of the peak load Pmax, crack
mouth opening displacement CMOD, and near-crack-tip
opening displacement NCOD1 as a function of the loading
time for the DC tests (Gharamti et al., 2021) and the current
LC tests. In these subplots, first-order power-law fits were
applied to the data of the DC tests. The LC values lie above,
below, and along the DC fit. No clear effect of creep and
cyclic loading on the fracture properties was detected.

Figure 5a and b show the experimental load versus the
crack opening displacement at the crack mouth for the DC
and the LC tests, respectively. Figure 5c displays a magni-
fied view of the fracture ramp of the LC tests. Comparing
the failure loads of the DC and LC tests indicates that the

failure loads, of tests with comparable loading rates, were
similar. Therefore, in these experiments, the creep and cyclic
sequences had no influence on the failure load.

Table 1 presents several elastic moduli for each test. The
elastic moduli were calculated from the load–CMOD record
following Sect. 4 of Gharamti et al. (2021). For the creep
tests (RP15 and RP16), this procedure is repeated for the four
creep cycles, resulting in E1, E2, E3, and E4, and for the
fracture ramp, resulting in Ef. Similarly for the cyclic tests
(RP17, RP18, and RP19), the moduli calculation was done
for the last cycle of each cyclic sequence, giving steady-state
moduli E1, E2, and E3, and for the fracture ramp, resulting
in Ef. Some of the values are missing, caused by the fact that
the initial portion of the associated load–CMOD curve was
very noisy. The values of the elastic moduli calculation for
the creep/cyclic sequences and fracture ramps were similarly
linear upon load application, as shown by the loading slope
in Fig. 5c and Fig. 6a and b. This linearity justifies the choice
of g0 = 1 in the elastic CMOD component in Eq. (5).

Table 1 in Gharamti et al. (2021) presents the elastic mod-
ulus (ECMOD) calculated at the crack mouth for the DC tests;
ECMOD is similar toEf in Table 1 here; both values lie within
the same range. Therefore, the creep and cyclic sequences
preceding the fracture ramp did not affect the load–CMOD
prepeak behavior. However, the sequences affected the post-
peak response as can be distinguished from Fig. 5b, which
displays a longer decay behavior than Fig. 5a. The gradual
decay of the load portrays the time dependency in the behav-
ior of freshwater ice.

4.2 Ice response under the testing conditions

Figure 7 shows the experimental results for RP16: the ap-
plied load and the crack opening displacements at the crack
mouth (CMOD), halfway of the crack (COD), and 10 cm be-
hind the tip (NCOD1) (see Fig. 1). Similarly, Fig. 8 shows
the experimental response for RP17. The time-dependent na-
ture of the ice response is evident. A complete load–CMOD
curve was obtained during loading and unloading for each
test of Table 1, indicating stable crack growth.

It is clear from Figs. 7b and 8b that the CMOD, COD,
and NCOD1 displacements were composed mainly of elas-
tic and viscoplastic components. No significant viscoelas-
ticity was detected in the displacement–time records for all
the tests. The primary (transient) creep stage was almost
absent or instantaneous. The load sequences were charac-
terized by a non-decreasing displacement rate at all levels.
The displacement–time slope was linear and constant, in-
dicating that the secondary/steady-state creep regime dom-
inated during each load application. Although the recovery
time was longer than the loading time,≥ 1.251t1 (creep test,
Fig. 3a and Sect. 2.2) and ≥ 1.251t2 (cyclic test, Fig. 3b
and Sect. 2.3), the recovery (unload) phases consisted mainly
of an elastic recovery (instantaneous drop) and unrecovered
viscoplastic displacement. The behavior as observed resem-
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Table 1. Measured experimental data and computed results for the LC tests.

Test Type L H A0 h E1 E2 E3 E4 Ef Pmax tf CMOD ˙CMOD NCOD1 ˙NCOD1
(m) (m) (m) (mm) (GPa) (GPa) (GPa) (GPa) (GPa) (kN) (s) (µm) (µms−1) (µm) (µms−1)

RP15 creep 3 6 2.1 364 6.6 6.7 7.3 7.4 6.9 5.8 68.2 320.1 4.7 53.6 0.8
RP16 creep 3 6 2.1 385 5.6 5.8 7.6 – 6.0 3.8 42.8 228.2 5.3 49.1 1.1
RP17 cyclic 3 6 2.1 407 6.5 – 7.6 – 6.6 4.5 49.3 173.7 3.5 30.0 0.6
RP18 cyclic 3 6 2.1 408 – – – – 5.3 3.9 40.1 143.7 3.6 28.5 0.7
RP19 cyclic 3 6 2.1 412 – 7.0 6.6 – 6.3 6.3 52.5 221.4 4.2 44.0 0.8

Figure 4. Experimental results for the (a) peak load Pmax, (b) crack mouth opening displacement CMOD, and (c) near-crack-tip opening
displacement NCOD1 at crack growth initiation, as a function of time to failure tf for the monotonically loaded DC tests (Gharamti et al.,
2021) and the creep/cyclic and monotonically loaded LC tests.

bles the response of a Maxwell model composed of a se-
ries combination of a nonlinear spring and nonlinear dashpot
(Fig. 7c). There is no delayed elastic recovery, but there is
the elastic response and a permanent deformation.

Figure 6a and b support the same analysis. Unlike the vis-
coelastic response (Fig. 6c), which displays no residual dis-
placement in the loading and unloading hysteresis diagram,
the current load–CMOD plots showed large permanent dis-
placement after each loading cycle. This concludes that the
response of columnar freshwater S2 ice in these tests was
overall elastic–viscoplastic.

4.3 Nonlinear modeling analysis

The nonlinear theory, outlined in Sect. 3, was used to ana-
lyze the experiments. Modeling the viscoelastic term (sec-
ond term of Eq. 11) proved to be very challenging. Instead, a
simplified version was modeled by setting ap = g2 = 1. The
results of the initial optimization trials confirmed the previ-
ous analysis; the viscoelastic component δve

CMOD had no ef-
fect on the final fit between the data and the model. The op-
timization algorithm fine-tuned κ (Eq. 11) to a very small
number (10−18), indicating that the best model–data fit is at-
tained when the viscoelastic term goes to zero.

The final optimization runs were carried out by consid-
ering the elastic and viscoplastic components (first and last
terms of Eq. 11) only. This resulted in two parameters,Ce and
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Figure 5. Measured load versus CMOD for the (a) DC tests (Gharamti et al., 2021), (b) LC tests, and (c) LC tests up to the peak load.

Figure 6. Load versus CMOD over the (a) creep-recovery cycles for RP15 and the (b) cyclic-recovery sequences for RP17. (c) Schematic
illustration of the hysteresis load-displacement diagram. The whole of the hysteresis loop area is the energy loss per cycle. The dashed area
is the part of that total that is due to the viscoelastic mechanism and the rest is due to viscous processes.

Table 2. Optimization results computed using Schapery’s model.

Test tf Ce× 108 Cvp× 1010 c

(s) (mN−1) (mN−1 s−1)

RP15 68.2 3.330 1.061 1
RP16 42.8 3.845 0.974 1
RP17 49.3 2.637 0.512 1
RP18 40.1 1.861 0.209 1
RP19 52.5 2.775 0.938 1

Cvp, and one exponent, c, that need to be optimized. The opti-
mization converged results are given in Table 2: Ce, Cvp, and
c. For all the tests, the percent reduction of the objective func-
tion exceeded 95 %, and about 110 iterations were needed
to reach convergence. A value of c = 1 for the viscoplastic
load function provided the best fit between the model and
the experiment at all load levels over the total experimental
time up to the peak load. The final compliance values of the

elastic and viscoplastic components were in the ranges 1.8–
3.8×10−8 mN−1 and 0.2–1×10−10 mN−1 s−1. respectively.

Figures 9 and 10 give the model results, obtained us-
ing Eqs. (4)–(10), and the experimental results for experi-
ments RP16 and RP17, respectively. Figure 9a and b show
the measured load and the load applied to the model and
the measured CMOD–time record compared to the response
of the model, respectively, for RP16. Figure 10 shows simi-
lar plots for experiment RP17. Test RP17 showed an excel-
lent model–experiment fit for the three cyclic-recovery se-
quences over the load and unload periods. The model suc-
ceeded in following the increasing and decreasing load lev-
els and the corresponding recovery phases. The experimental
response for the creep-recovery test RP16 appeared to gen-
erally conform to the model results, but the model overes-
timated the recovery displacement in the first two cycles.
It is unclear to the authors why the model did a better job
in fitting the cyclic-recovery than the creep-recovery se-
quences. This probably hints at some mechanisms that took
place in the creep-recovery tests and are not accounted for
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Figure 7. Experimental results for RP16. (a) Load at the crack mouth; see Fig. 1. (b) Displacement–time records. (c) Load–displacement
record. (d) Typical response of a Maxwell model, consisting of a nonlinear spring and nonlinear dashpot, to a constant load step.

Figure 8. Experimental results for RP17. (a) Load at the crack mouth; see Fig. 1. (b) Displacement–time records. (c) Load–displacement
record.

by Schapery’s model. Schapery’s model has been tested for
creep-recovery sequences of saline ice with an increasing
load profile (Schapery, 1997; Adamson and Dempsey, 1998;
LeClair et al., 1999, 1996). This is the first application of the
model with a load profile of increasing and decreasing load
levels (Fig. 3).

Considering the fracture ramp, Schapery’s nonlinear equa-
tion succeeded in modeling the monotonic displacement re-
sponse up to crack growth initiation perfectly well for all the
tests. As previously mentioned, the model does not account
for crack propagation, so modeling was applied until the peak
load. The model was also successful in predicting the critical
crack opening displacement values at the failure load. Thus,
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Figure 9. Experimental and model results for RP16. (a) Load at the crack mouth; see Fig. 1. (b) CMOD–time records.

Figure 10. Experimental and model results for RP17. (a) Load at the crack mouth; see Fig. 1. (b) CMOD–time records.

the model gives a very close prediction of the experimental
data over the whole loading profile up to the failure load. The
other tests displayed the same experiment–model agreement.

In this study, Schapery’s constitutive model is tested
for the first time for freshwater ice. The match between
the model and the measured data, especially for the
cyclic-recovery tests, provides a firm support of the abil-
ity of Schapery’s constitutive model to describe the time-
dependent response of columnar freshwater S2 ice up to
crack growth initiation. Figure 11a and b show the contri-
bution of each individual model component, elastic and vis-
coplastic, to the total CMOD displacement, for RP16 and
RP17, respectively. As mentioned earlier, the elastic and vis-
coplastic components account for the total deformation. For
RP16, the viscoplastic component dominated over the elastic
component. For RP17, the elastic and viscoplastic compo-
nents contributed equally to the total displacement.

The applicability of the proposed model and the fitted pa-
rameters is limited to the studied ice type, geometry, speci-
men size, ice temperature, and the current testing conditions.

Variation in the operating conditions will change the domi-
nant deformation mechanisms and the ice behavior; and ac-
cordingly, new model parameters are needed to adapt to the
new response.

5 Discussion

Interestingly, the ice behavior in the current study differs
from previous experimental creep and cyclic work on fresh-
water ice. A large delayed elastic or recoverable component
has been previously observed. Several researchers performed
creep experiments on granular freshwater ice at lower tem-
peratures (Mellor and Cole, 1981, 1982, 1983; Cole, 1990;
Duval et al., 1991) and reported considerable recovery. Duval
conducted torsion creep tests on glacier ice at a similar test-
ing temperature of −1.5 ◦C (Duval, 1978). When unloaded,
the ice exhibited creep recovery. According to his analysis,
during loading, the internal stresses opposing the dislocation
motion increase; upon unloading, the movement of disloca-
tions produced the reversible deformation and is caused by
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Figure 11. Contribution of each individual model component to the total CMOD displacement for (a) RP16 and (b) RP17.

the relaxation of internal stresses. Sinha (1978, 1979) studied
columnar-grained freshwater ice and concluded that the high-
temperature creep is associated with grain boundary slid-
ing. Cole developed a physically based constitutive model in
terms of dislocation mechanics (Cole, 1995) and quantified
two mechanisms of anelasticity: dislocation and grain bound-
ary relaxations. He demonstrated that the increased temper-
ature sensitivity of the creep properties of ice within a few
degrees of the melting point is due to a thermally induced in-
crease in the dislocation density (Cole, 2020). The question
then arises as to why warm columnar freshwater ice tested
here showed no significant delayed elastic effect and why
the microstructural changes were mainly irreversible upon
unloading.

The measured ice response is a novel result for any type of
ice. It is important to emphasize that in comparison with ear-
lier freshwater ice studies, the tested samples are very warm
and large. Viscoelasticity normally happens due to the elas-
tically accommodated grain boundary sliding. Upon loading,
internal stresses build up at local stress concentrations in the
grain boundary geometry (triple points and grain boundary
ledges). Assuming there is no microcracking, the growing
stress impedes further grain boundary sliding and causes slid-
ing in the reverse direction, giving rise to the recoverable
component after unloading. However, in the present case, the
measurements showed that the grain boundary sliding pro-
duced permanent deformation. Several reasons can be dis-
cussed, related to the ice temperature, microstructure, and
nonlinear mechanisms in the process zone.

Concerning the effect of temperature: the warmer the tem-
perature, the more liquid on the grain boundary. The high
homologous test temperature (top ice surface ≈−0.3 ◦C)
causes liquidity on the gain boundaries (Dash et al., 2006).
The intergranular melt phase on the grain boundary renders
the ice as a two-phase polycrystal and significantly influences
the creep and recovery response. In fact, the grain boundary
sliding then consists theoretically of two processes: (1) the
sliding of grains over one another and (2) the squeezing

in/out of the liquid between adjacent grains (Muto and Sakai,
1998). The shear behavior of the liquid film is a function of
its properties (thickness and amount). The presence of this
liquid at the triple points and the boundary acted as a resist-
ing obstacle for the grains to shear and deform back to their
original form, causing the viscoplastic deformation.

The microstructure (grain size, crystalline texture) could
be another contributing factor. Sinha (1979) developed a non-
linear viscoelastic model, incorporating the grain size effect,
to describe the high-temperature creep of polycrystalline ma-
terials. He concluded that delayed elastic strain exhibits an
inverse proportionality with grain size. This suggests that the
grain size (3–10 mm, Fig. 2b) of the ice samples is coarse
enough not to produce any measurable viscoelastic defor-
mation under the testing conditions. It is also probable that
for this grain size, there were not enough local concentration
points to arrest the grain boundary sliding and drive the re-
coverable and reverse sliding. In addition, Gasdaska (1994)
discussed that regularly ordered and packed microstructures
limit the amount of sliding and rearrangement and lead to
less anelastic strain. The ice growth in the Aalto Ice Tank
was very controlled and resulted in homogeneous ice sheet.

Knauss presented a thorough review of the time-dependent
fracture models available to date (Knauss, 2015). The
essence of the models is based on modeling the behavior in a
finite cohesive/process zone which is attached to the traction-
free crack tip. The one-parameter fracture mechanics encom-
passed by the apparent fracture toughness is not applicable
(Dempsey et al., 2018). It is believed that the mechanisms
taking place in the process zone play an influencing role in
the current tests. The nonlinearity in the fracture zone re-
lieved the internal stresses that would ordinarily accommo-
date the grain boundary sliding and generate some viscoelas-
tic deformation upon unloading. Thus, any microstructural
damage that occurred during loading manifested as perma-
nent deformation at the end of the test.

It is noteworthy that the earlier studies used test sizes
which are smaller than the plate size used here. It was shown
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in the DC fracture tests (Gharamti et al., 2021) that scale had
an effect at the tested loading rates. It is probable that the
specimen size influenced the time-dependent deformation of
freshwater ice. The current tests suggest that for the large
sample size and the kind of ice studied (very warm freshwa-
ter ice) under the loading applied, viscoelasticity is not an
important deformation component. The experimental results
support this prediction, but more tests are needed to make
more general conclusions.

All the abovementioned factors might have contributed
to the measured elastic–viscoplastic response. However, the
question as to which factor influenced mostly the behavior is
an important research question that requires more testing pro-
grams. Testing the effect of each factor separately requires a
set of experiments that considers this factor while keeping all
the other conditions fixed.

6 Conclusions

In the present work, five 3m× 6m warm freshwater S2
ice specimens were tested under creep/cyclic-recovery se-
quences followed by a monotonic ramp. The temperature
at the top surface was about −0.3 ◦C. The tests were load
controlled and led to complete fracture of the specimen. The
purpose of this study was to examine the time-dependent be-
havior of freshwater ice using a joint experimental-modeling
approach.

In the experimental part, the tests aimed to (1) measure
and examine the time-dependent response of columnar fresh-
water S2 ice through the applied creep/cyclic-recovery se-
quences and (2) investigate the effect of creep and cyclic
sequences on the fracture parameters/behavior through the
fracture monotonic ramp. The current tests were compared
with other monotonically loaded tests of the same ice. The
results showed that the creep and cyclic sequences had no
clear effect on the failure load and the crack opening dis-
placements at crack growth initiation. The ice response at
the testing conditions was overall elastic–viscoplastic. The
loading phases displayed an instantaneous transformation
from the primary (transient) stage to the steady-state regime,
which resulted in permanent (unrecoverable) displacement.
The conducted experiments provided a novel observation for
the time-dependent behavior of freshwater ice. Though the
delayed elastic component has been reported as a major creep
component in freshwater ice, no significant viscoelasticity
was detected in this study. Several factors were discussed
as possibly contributing to the observed behavior: the very
warm columnar freshwater ice, liquidity on the grain bound-
ary, large sample size, coarse grain size, and nonlinear mech-
anisms in the fracture zone. Testing the effect of each factor
on the ice response requires a different set of experiments
that varies this factor only while keeping the other conditions
fixed.

In the modeling part, Schapery’s nonlinear constitutive
model was applied for the displacement response at the crack
mouth. The elastic–viscoplastic formulation succeeded in
predicting the experimental response of columnar freshwa-
ter S2 ice over the applied loading profile up to crack growth
initiation. The model parameters were obtained via an opti-
mization procedure using the N-M method by comparing the
model and experimental CMOD values.

The proposed model parameters are valid only for the stud-
ied ice type, geometry, specimen size, ice temperature, and
the range of applied load experienced in the experiments.
Schapery’s model was selected in this study, as it is able to
capture the sort of time-dependent behavior known to occur
in ice and produces a simple and expedient way to help un-
derstand the observed behavior. More thorough analysis with
a physically based approach is left to the future.
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