
HAIDER IFTIKHAR

TRANSPARENT INDIUM TIN OXIDE MICROELECTRODE
ARRAYS FOR MEASURING BEATING CARDIOMYOCYTES

Master of Science Thesis

Examiners:

Professor Jukka Lekkala
MSc. Tomi Ryynänen

Examiners and topic approved at
the council meeting of Faculty of
Natural Sciences on 30th May 2015



i

ABSTRACT

Tampere University of Technology
International Master’s degree in Science & Bioengineering
Haider Iftikhar: Transparent Indium Tin Oxide Microelectrode Arrays for Meas-
uring Beating Cardiomyocytes
Master of Science Thesis, 81 pages, 3 Appendix pages
December 2016
Major: Biomeasurements
Examiners: Professor Jukka Lekkala and MSc. Tomi Ryynänen

Keywords: MEA, ITO, Cardiomyocyte, Microfabrication, EB-PVD, RIE

This thesis study was made, to develop the microfabrication process for transparent mi-
croelectrode arrays (MEAs) using indium tin oxide (ITO). This was done in order to
measure bioelectrical data from cardiomyocytes (CMs), without owing any obscurities
due to electrodes, as it happens in the conventional MEAs. The study was carried out in
three tier (parts) fashion, wherein the 1st tier was dedicated in development of transpar-
ent ITO films. The 2nd tier involved with, the transparent ITO films that were developed
in the 1st tier, to be patterned into microstructures present in the MEAs. The 3rd and the
final tier dealt with two important tasks. The first including, optimizations needed in the
previous two tiers, in order to come up with a viable microfabrication process to devel-
op transparent ITO MEAs. The second task of the 3rd tier covered all the necessary test-
ing required to ensure for the best possible quality of measurements of the bioelectric
signals. The study showed that the ITO layers developed had very good transparencies
of more than 90% transmissions possible, with sheet resistances in the range of 13-46
Ω/sq. The results from cell experiments showed that the MEAs not only measured elec-
trical signals of cardiomyocytes aggregates but also owed no obscurities via micro-
scopes, in the process. The electrode impedance measurements showed that the elec-
trodes were comparable with commercially available ITO MEAs with mean values of
1200 kΩ. The measurements of noise levels were measured in reference to a commer-
cial titanium nitride (TiN) MEA and the noise levels were comparable. Data from other
literature studies was compared to ITO electrodes from this study to theirs, it was dis-
covered that noise levels from this study were much better than their ITO electrodes and
even certain gold (Au) electrodes.

The process for ITO layer deposition was done using electron beam physical vapour
deposition (EB-PVD), and later the annealing was made at temperatures from 300-500
°C. The MEA microfabrication of the ITO layers was done, by dry etching the ITO lay-
ers using reactive ion etching (RIE) device through argon. The insulation layer of sili-
con nitride was deposited using plasma enhanced chemical vapour deposition (PECVD)
process by the personnel at the Optoelectronic Research Centre (ORC) of Tampere Uni-
versity of Technology. The insulation layer was also patterned using dry etching, by the
same device. The beating cardiomyocyte and noise measurements were done at Bio-
MediTech.
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1. INTRODUCTION

There has been a lot of focus on the study of different type of cells within the human
body to gather a more updated knowledge of the proper functioning of different organs
of the body. In recent studies it has been discovered that a cluster of cells working to-
gether have an altogether different behaviour compared to an individual cell of the same
specie [1]. One of the ways to study cells individually has been through the help of
patch clamp technique; where the electrical data acquired is related to the physiological
activity of a particular cell. This signifies that there exists a meaningful relation between
the electrical activities of the ionic pumps within the cells to actual cellular activity
within their extra cellular matrix.

Though the patch clamp technique offers quite reliable data, it does so while destroying
the cell in the process or at the very least causing the cell to be under high stress, which
causes skewing of certain data points. In order to study cells in their residual state there
was a requirement for less intrusive methods and therefore it paved way for Microelec-
trode Arrays (MEAs), which became a more suitable alternative while being less intru-
sive and disruptive. Although MEAs seem as a better choice for cell study analysis, they
still need to be customized and tailored to acquire the necessary data without huge loss-
es, irregularities and drawbacks. Simply put, MEAs can be tailored uniquely according
to their use of application each time.

One of the most critical drawbacks in the conventional MEAs is that the cells often get
obscured by the opaque electrodes under the light microscopes, while still being record-
ed. This causes blockage in observatory field necessary to relate electrical data to the
physical changes of the cells. “Invention is the mother of necessity”, so this research
study was dedicated to address the challenge of fabricating customized MEAs that
could measure the electrical data without causing the obscurity of the cells under the
microscope. Thus, the main goal of this study was to develop in house customized
MEAs that could both, measure the electrical activity of beating Cardiomyocytes (CM)
while facilitating visual recording of the concurrent physiological changes without any
visual obstruction owing to the electrode opacity.

Commercially available conventional MEAs are fabricated using metals or highly con-
ductive compounds, usually which are opaque in nature, thus obscuring certain parts of
the cells when studied under optical microscopes. The exclusive requirement for trans-
parency in electrodes led the study to search for transparent compounds which also
needed to be decent conductors. Such conductors would also be required to be deposited
as thin conductive films (TCFs). Amongst all the TCFs the most suitable candidate
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known due to its immense popularity was Indium Tin Oxide (ITO), and was thus chosen
as the target material. ITO was already well known for its innate properties of low sheet
resistance, high conductivity and high transparency. These properties had already
earned huge commercial success for its application in touch screen technology for front
panel displays and touch screen displays of mobiles and tablet PCs. The other, more
important, reason for ITO’s selection was its feasibility of deposition over glass sub-
strate, which is possible by a number of processes. However, its possible deposition
with the facility available at our own department, the Electron Beam Physical Vapour
Deposition (EB-PVD) device, was also a deciding factor.

Apart from ITO being a wondrous material for providing transparency along with con-
duction, it was found to be conveniently biocompatible as well. Of course when study-
ing CMs and that too in viable beating state, it is imperative that the material used for
electrodes be inert and has neither degradative nor toxic effect over the cells intended to
be studied. Therefore, while considering for ITO as the material of choice, its biocom-
patibility was also researched and found to be comparable of that of gold. The biocom-
patibility of ITO is more thoroughly discussed in the following topics to come. Since
ITO was an exceptional material that fulfilled all the requirements to fabricate the kind
of electrodes required for this study and EB-PVD was the most convenient choice for
deposition, therefore not a lot of study was required to figure out alternative methods for
deposition and neither for materials alternative to ITO in general.

Even though the choices were predetermined, the execution of the study required recur-
sive experiments to figure out if the combination of the two were adequate for this
study. The deposition process of ITO with EB-PVD needs to be very precise in order to
deposit a thin film for optimal optical transmission as well as for electrical conduction.
Earlier results from the studies of ITO thin film deposition also helped confirm that EB-
PVD was fortunately a good choice for deposition as it is expected to be both, highly
economic and highly robust deposition technique at the same time [2]. EB-PVD is a
robust method that allows higher efficiency of material utilization compared to other
methods. It also has a decent variation for both low and high deposition rates, and since
it can support high deposition rates it has a lot of industrial application that relates to it
[2].

The thesis study was carried out in three tiers or phases and is therefore written accord-
ingly. The first tier of the study was, to be able to develop transparent thin films of ITO
which had low sheet resistances and good conduction. It was made possible with the
right combinations of the deposition rate and post annealing temperatures of the films.
Where EB-PVD is a suitable method to develop ITO thin film, it is still not commercial-
ly conventional or the optimal method that develops transparent and conductive films
right away. Therefore, choosing the right deposition rate and post deposition annealing
were required, to render the post deposited film of ITO to be both transparent and con-
ductive. Researching the right deposition rate was the most important challenge as it is
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the key component that determines the quality of the film. Temperature for annealing
was another integral part in the first tier and is discussed in more detail in the experi-
mentation part.

The second tier of the study included the fabrication of MEA patterns out of the ITO
thin films over glass substrates, to be finalized into a MEA configuration. The main
challenge of the second tier involved exhaustive experimentations of both wet and dry
etching processes for microfabrication of the ITO thin film into MEAs, which too was
successful eventually. Etching ITO on glass was the most difficult and time consuming
part of the study other than writing the thesis. It was learnt, that wet etching would not
work for this study. Plasma etching was necessary for maintaining the structural integri-
ty of the required MEA pattern in the micrometre dimensions.

The third tier included challenges involving, the testing and making measurements to
see if the prototypes were functional and able to achieve the set goal, which too was
successful. There were optimizations and customizations needed to come up with the
best results, and is discussed in detail in the upcoming topics.



4

2. ELECTRON BEAM PHYSICAL VAPOR DEPOSI-
TION

2.1 Introduction

Electron beam physical vapour deposition (EB-PVD) is a variant method of physical
vapour deposition, where an electron beam is generated by heating a tungsten filament
under high vacuum, to convert atoms of target material at anode into vapours that can
then be used to coat a substrate.

EB-PVD’s exclusive application in microfabrication processes involves thin film depo-
sition, a process un-foreign to the semiconductor industry, where it utilized to grow
electronic materials. It is employed in forming thermal and chemical barrier coatings in
the aerospace industry, to protect surfaces against corrosive environments. In the field
of optics its application brings forth desired reflective and transmissivity properties to a
substrate and elsewhere in the industry, EB-PVD modifies surfaces to achieve a variety
of desired properties.

2.2 Deposition Processes

When it comes to deposition process, it can be generally classified into physical vapour
deposition (PVD), chemical vapour deposition (CVD) and spray processes [3]. Each
process has further sub-classifications based on the source of energy used for the depo-
sition of coatings as illustrated in Table 1. Each of the mentioned processes has its own
advantages and disadvantages. The parameters of the deposited material such as the
composition, residual stresses, and microstructure (e.g. being amorphous, polycrystal-
line, epitaxial, and textured etc.) are all strongly affected by the chemical and physical
conditions during the deposition reaction. The precise process control for any deposition
requires the exact knowledge and effect of these conditions. Thus, the application of the
final product, coating thickness and other desired properties such as microstructure,
physical, and mechanical properties are the determinant of the coating process to be
used.
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Table 1. Different categories and classifications of deposition processes

2.2.1 Chemical Vapour Deposition

The process of chemical vapour deposition (CVD) makes use of a reactant gas mixture
which when passed through a high-temperature reactor can form a solid product in the
form of a thin film on the surface of the substrate. The CVD coating process requires
operational temperatures in the range of 800 and 1200 °C. As an advantage CVD pro-
cess provides dense, homogeneous and high quality films. These films can be of various
metallic and ceramic coatings (like oxides, carbides, and nitrides) which are able to be
deposited. The most obvious disadvantage of the CVD process include the often re-
quirement of high deposition temperatures which can be addressed by one of its variant,
Plasma Enhanced Chemical Vapour Deposition (PECVD), which was also utilized in
this study [3].

PECVD is mainly used to deposit dielectric and/or passivation films like silicon oxide
and nitride at low temperature. Unlike PVD, the necessary energy for the chemical reac-
tion is not introduced by heating, instead the whole reaction chamber is filled with heat-
ed gas or plasma. An RF generator is used to generate the plasma required in the reac-
tion chamber which also contains reactive ions and radicals. The intense bombardment
of the ion from the plasma on the substrate gives a good initial growth due to cleaning
of the surface. This eventually provides good adhesion and high growth rates as the pro-
cess progresses. The coated layers can be better influenced for their properties with
PECVD, since more process parameters can be varied in comparison to thermal deposi-
tion technique. Adjustment of adhesion, compressive and tensile stress causing warp-
age, hydrogen content and density, etchability, etch rate and selectivity in etching, step
coverage as well as stoichiometry (consistence) and cleanliness of the deposited layers,
which can be measured by the refractive index, are all important for PECVD process
[3].

.
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2.2.2 Physical Vapour Deposition

The term physical vapour deposition (PVD) refers to those vacuum deposition processes
wherein the coating material is made to evaporate by various mechanisms (resistance
heating, high-energy ionized gas bombardment, or electron gun) under vacuum. The
resulting vapour phase is directed on to the substrate, resulting into a thin coating
formed atom by atom or molecule by molecule. PVD is a process in which at-
oms/molecules travel to the substrate from the source material in a straight path and
therefore is termed as a line-of-sight process.  The PVD coating process can take place
at temperature up to 3500 °C. Amongst all the PVD processes sputtering is considered
one of the most versatile processes available for thin film preparation. Most metallic
and various ceramic coatings are able to be deposited using this process, typically at a
rate of a few um or less per hour [3]. Some of the shortcomings of the CVD process are
addressed by the PVD process. Unlike the CVD process, PVD processes are clean and
pollution free, unless the users contaminates the source material, substrates or the vacu-
um chamber. The main disadvantages of PVD processes include low deposition rates
and the difficulty in applying oxide coatings efficiently (with exception of EB-PVD
which have higher deposition rates and broader variety of materials to deposit compared
to rest of PVD processes) [3].

Even though PVD processes have advanced variants, however non-homogeneity in the
microstructure prevails, which is detrimental to the physical properties of the deposited
film. In sputtering processes, plasma of inert gas ions is produced by applying an elec-
tric field. These ions can then strike the cathode composed of the target material, upon
striking, the ions knock out atoms from the cathode. The ejected atoms from the target
material are finally deposited on the surface of the substrate. The disadvantage in this
case so happens to be, that sometimes the target atoms can also combine with reactive
gases just before deposition to form unwanted ceramic coatings [3]. The disadvantage
of the above mentioned PVD process can be addressed by the EB-PVD.

2.3 EB-PVD Phenomenon and Theory

The EB-PVD process has the ability to overcome some of the difficulties associated
with other deposition processes and is a better variant of PVD for high quality, resilient,
and robust coatings. Deposition by EB-PVD process focuses high energy electron
beams generated from electron guns, which are channelled to melt and evaporate ingots
or target materials in crucibles. There is also possibility of preheating the substrate in-
side the vacuum chamber during the deposition process. The vacuum chamber can also
be referred to as the deposition chamber, and requires to be depressurized to at least 7.5
x 10−5 Torr (10−2 Pa) to ensure unhindered emission of electrons from the electron gun.
This beam of emitted electrons causes the evaporation of the target material which can
be in the form of an ingot or rod [1]. In some modern EB-PVD systems an arc suppres-
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sion system is incorporated and can help operate at lower vacuum levels of 5.0 x 10−3

Torr. This gives the process a leg up and facilitates parallel use of magnetron sputtering
alongside [2]. The diversity of EB-PVD is that it can accommodate multiple types of
evaporation materials and multiple electron guns simultaneously, each ranging from
tens to hundreds of kW in power. The electron beams used to melt or sublimate the tar-
get material are generated by either, thermionic emission, field electron emission or the
anodic arc method. In either case, the electron beam generated is then accelerated to a
high enough kinetic energy as well as directed towards the evaporation material using
electrostatic mechanism. Once the beam is directed to the target material, the electrons
in the beam begin striking the evaporation material, causing the electrons to lose their
energy to the target material. The kinetic energy of the electrons is converted into other
forms; amongst them the thermal energy produced heats up the target material causing it
either to melt or to sublimate. The resulting vapour from the melted or sublimated target
at the appropriate temperature and pressure is then used to coat surfaces. The accelerat-
ing voltages are vital to the process and can vary between 3 kV – 40 kV. However, for
optimum conversion of the electron’s kinetic energy into thermal energy of the target
material the accelerating voltage is maintained between 20 kV – 25 kV and the beam
current is a few amperes. This results in an efficiency of 85 % conversion of the elec-
tron's kinetic energy into thermal energy. The 15 % deficit in the conversion efficiency
is due to the incident electron energy lost through the production of X-rays and second-
ary electron emissions.

EB-PVD exists in three configurations, electromagnetic alignment, electromagnetic
focusing and the pendant drop configuration, when it comes to evaporation material
utilization. In the electromagnetic alignment and electromagnetic focusing configura-
tions the evaporation material is utilized in the form of an ingot. However, the pendant
drop configuration utilizes a rod. Ingots are usually enclosed in a (copper or a graphite)
crucible or hearth, a rod on the other hand is usually mounted at one end in a socket
more or less. The crucible and socket both require cooling which is typically aided by
water circulation. Molten liquid can form on the surface of an ingot when metals are
being used, which can be kept constant by vertical displacement of the ingot. In which
case, evaporation rates may be on the order of 10−2 g/cm2 sec.

2.3.1 Material Evaporation Behaviour

Evaporation of different materials with EB-PVD is not always similar. Certain carbides
especially refractory carbides like titanium carbide and borides like titanium boride and
zirconium boride can evaporate without undergoing decomposition in the vapour phase.
Thus direct deposition by simple evaporation for such compounds is possible, in form
of compacted ingots. These compounds get evaporated in vacuum by focused high en-
ergy electron beam, causing direct condensation of vapours directly over the substrate.
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Alternatively certain refractory oxides and carbides fragment, while evaporating in the
process, causing in a stoichiometry of material over the substrate that is different from
the initial material. For example, In2O3, SnO2, InO, InO2 and SnO are formed during the
evaporation process during the EB-PVD when ITO is focused with the e-beam. Similar-
ly, some refractory carbides for instance, silicon carbide and tungsten carbide, upon
heating decompose resulting in dissociated elements that have different volatilities.
Such compounds need to be deposited over the substrate either by reactive evaporation
or by co-evaporation. The reactive evaporation process differs from conventional e-
beam, wherein the metal evaporated from the ingot by the electron beam is carried by
the reactive gas, which is oxygen in case of metal oxides and acetylene in case of metal
carbides. The film deposits in the proper stoichiometry, as a result of thermodynamic
reaction between the vapour and the gas in the vicinity of the substrate.

2.4 Advantages & Disadvantages

2.4.1  Advantages

The main advantages of EB-PVD process in thin film deposition include possibilities
for controlling variations in the structure and composition of the condensed materials.
For example, coatings comprised of alternating layers of different compositions can be
made. Also, it offers many desirable characteristics such as relatively high deposition
rates, dense coatings, controlled composition control and microstructure, low contami-
nation, and high thermal efficiency. The coatings produced by the EB-PVD process
usually have a good surface finish and a uniform microstructure, which is the most inte-
gral reason in thin film deposition such as ITO. The microstructure and composition of
the coating can be easily maintained or altered by manipulating the process parameters
and ingot compositions. Materials with low vapour pressure can readily evaporated by
this process. Thus, coatings such as ITO layers can be readily formed at relatively low
temperatures with lower deposition rates. Though they are amorphous, nonconductive
and opaque but that can also be treated [3-4].

With the attachment of an ion beam source to the EB-PVD system, additional benefits
such as forming dense coatings with improved microstructure, interfaces, and adhesion,
can be attained as well. In addition, textured coatings can also be obtained that are de-
sirable in many applications in microfabrication e.g. surfaces with nano-pillar etc. A
high-energy ion beam (as a source of energy) is quite often used to clean the surface of
the specimen inside the vacuum chamber prior to coating. The cleaning enhances the
bonding strength between the coating and the substrate. In case of ITO transparent con-
ductive coatings can be deposited at room temperature with the use of ion beams incor-
porated to EB-PVD process without post annealing [4].



9

2.4.2 Disadvantages

When performed at low pressures (< 10-4 Torr), EB-PVD strictly behaves as a line-of-
sight deposition process. The translational and rotational motion of the shaft helps for
coating the outer surface of complex geometries, but this process cannot be used to coat
the inner surface of complex geometries. However at higher pressures the inner surface
of the complex geometries can be coated. Another potential problem is that filament
degradation in the electron gun results in a non-uniform evaporation rate and high radi-
ant heat loads can also exist in the deposition system [4].
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3. INDIUM TIN OXIDE (ITO)

3.1 General Properties

In the field of thin conducting films (TCFs) and transparent conducting oxides (TCOs)
Indium tin oxide (ITO) enjoys the “gold standard”, it is the most widely used and manu-
factured of the TCOs for the application of TCFs [5].  Besides having numerous appli-
cations as thin films, the most common applications of ITO include transparent elec-
trodes for a range of display, photovoltaic and sensor applications for solar cells and
panels, EMI shielding, low e-windows, transparent heaters, and famously for transpar-
ent electronics. When considering TCOs or TCFs, they are supposed to comprise of a
combination of good visible transmittance and electrical conduction, amongst all ITO
generally leads the way. High quality ITO can have a resistivity as low as 2x10-4 Ωcm
compared to silver’s 1.8x10-6 Ωcm, electrical properties depended on carrier density [5].

3.1.1 Compositions

ITO is basically considered as indium (III) oxide In2O3 doped with tin (IV) oxide SnO2,
a mixture of In2O3 and SnO2. Typically In2O3 ranges from 95 % to 80 % and SnO2 rang-
es from 5 % to 20 % by weight in the composition of the film, according to its applica-
tion and usage [5-6]. In2O3 fundamentally is an n-type semiconductor material, it is
transparent and colourless in thin layers while in bulk form it appears to be yellowish to
grey. It acts as a metal-like mirror when exposed in infrared regions of light [6].

As the major two properties of the ITO for which it is famous for that are its conductivi-
ty and its transparency, the factors that improve these characteristics need to be under-
stood. Amongst all the factors that affect the transparency without decreasing the con-
ductivity is the ratio of In to Sn. The tested and optimized percentage weight of Sn in
the mixture is actually found out to be 20 %, at which the electron mobility, resistivity
and visible transmittance all are optimized [5]. Below this percentage, the electrical
properties are determined basically through doping concentration as well as scattering
off oxygen vacancies for higher levels of Sn. At this doping level, the internal transmit-
tance is 91 %, which does not include the transmittance of the substrate and the mobility
is 40 cm2/Vs. Figure 3.1 better elaborates the dependency of the Sn levels to the men-
tioned three properties [5].
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3.1.2 Optical Properties

The refractive index and extinction coefficient of ITO depends largely on the deposition
process, the amount of Sn content, and oxygen vacancies, and no one set of n and k val-
ues can represent all films. However, in general, the refractive index is found to lie in
the range of 1.8 – 1.9 for most films and the extinction coefficient for transmissions of
ITO is less than 0.01 at visible wavelengths [5].  Figure 3.2, elaborates the dependence
of transmittance on resistivity, where it exhibits a metal-like behaviour with decreased
resistivity. These spectra demonstrate that conductive films with excellent visible
transmittance can be deposited, but visible transmittance generally decreases and NIR –
IR reflectance increases with decreasing resistivity, as predicted by Drude model. Final-
ly, good ITO is completely clear. If too much Sn is added the films become tan and
dark, and the films turn pale green and yellow as scattering from oxygen vacancies in-
creases.

.

Figure 3.1: Dependence of sheet resistance (A), visible transmittance (B), and electron
mobility (C) on Sn content for magnetron sputtered ITO [5].

Figure 3.2: Dependence of the transmittance of magnetron sputtered ITO at 1000 nm
wavelength on sheet resistance [5].
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3.1.3 Electrical Properties

Since the resistivity of the films depends on electron conduction, defects and grain
boundaries, thus the goal of the deposition processes is to produce films with the largest
possible grain size. Having a larger grain size also causes an increase in the Hall mobili-
ty. This can be accomplished by heating the substrate during the process of deposition
[7]. Films are often heat treated after deposition. Post deposition heat treatment is gen-
erally not an option for films on plastic substrates.

ITO when deposited as thin film can be extremely tricky as it follows a “Goldilock’s
principle” where all the parameters have to be just right during the deposition process
and during the post deposition process as well. The reason is because the composition of
the ITO varies in both the deposition and at the time of annealing. During deposition the
ITO tends to sublimate rather than melting down first conventionally, in doing so it also
disintegrates into sub molecular species. The disintegration tends to be higher at higher
deposition rates and significantly less at lower deposition rate. During annealing the
oxygen scattering off for higher Sn levels can change causing more oxygen to be ad-
sorbed in the film. The variation of the ITO’s composition to its electro-optical proper-
ties can be better understood by the illustration in Figure 3.3.

Figure 3.3: Resistivity well of ITO owing to its physical composition on In, Sn and O
[5].

3.2 ITO Film Deposition

Thin films of indium tin oxide are deposited by various techniques of PVD; amongst
them most common are Magnetron sputtering and RF sputtering. However, the later are
more famous commercially, EB-PVD has also been used quite extensively for deposi-
tion of ITO, especially in the fields of academic research [8-10, 19]. As already men-
tioned in Chapter 2, the main focus revolves around EB-PVD due to its availability,
thus the intention of discussing the parameters involving ITO deposition by EB-PVD.
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From the economical point of view, obtaining ITO films with low resistivity and high
visible transparency produced at a significantly lower substrate temperature during the
deposition process is very important and thus the reason of choice as well [8]. Low sub-
strate temperature depositions do not require a substrate heater to be installed in the
metallization device, these are costly to install and they consume higher energy than
otherwise already high energy consuming depositions. Though the electron beam evap-
oration is not a conventional technique to deposit ITO films, it was another research
innovation to explore the possibilities of deposition by this method.

3.2.1 Substrate Considerations

When depositing ITO a few things need to be taken into account, prior to deposition.
The first and the foremost parameter to consider, is to understand what substrate is go-
ing to be used for deposition. The substrates can range from glass, metal, semiconduc-
tors and even polymers. The method of deposition for each substrate type, though is
more or less the same in each deposition methodology varying slightly for plastics and
polymers substrates, however the pre-treatment and post-treatment of the substrate to
the deposition can vastly differ. One example that can give a better understanding of the
point in discussion is, when solely ITO is deposited at room temperature without any
ion source or ion assisted deposition, the ITO layer is dark and opaque [8]. This dark
and opaque layer is also high in sheet resistance until the film is annealed at high tem-
peratures mainly ranging from 300-600 °C the film does not turn transparent and de-
creases in sheet resistance without the annealing [6]. In such cases plastic or polymers
cannot be the materials of choice for the substrate. According to the literature, polymers
or plastics can be used as substrates in Ion Beam Assisted Deposition (IAD or IBAD).
In which one or more ion sources can be installed with the deposition equipment to sup-
port the insufficiency of particular ions during deposition process [8]. In case of glass
the varieties are widespread, the deposition process does not require to be implemented
at room temperature, post deposition annealing temperature can be as high as 550 °C,
higher temperature annealing values do not have any more significant results [9-10].
Stricter cleaning protocols can be implied e.g. use of strong acids and bases etc. this
study shows very good results of post annealing of ITO deposited glass substrates,
which will be discussed in detail in chapter 7.

3.2.2 Deposition Rate

The most important parameter to consider during ITO’s deposition is its deposition rate.
As mentioned earlier in Chapter 2 that certain materials undergo fragmentation in the
process of evaporation by the electron beam, resulting in a different chemical composi-
tion from the initial material. ITO is one such material which disintegrates into different
constituents during the deposition process, especially in case of the EB-PVD. Literature
studies for such materials suggest a very low deposition rate [8]. The reason for which
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is, that higher deposition rates involve higher beam current or power to bring the mate-
rial into its molten state before evaporation. ITO is also a bit unique compared to con-
ventional metallic materials, in the sense that it does not melt before evaporation for
deposition, this helps understand that it is a volatile solid and needs little and very pre-
cise powers for evaporation [8-9]. Literature study suggested different deposition rates
ranging from 0.05 nm/s to 0.25 nm/s, and related results to these depositions were also
studied and applied. The best result claimed in the literature amongst the mentioned
range was for the 0.05 nm/s. At this deposition rate it was learnt that the sheet resistance
was least and the transparency was optimum [8-9]. Figures 3.4 and 3.5 helped to illus-
trate the dependence of resistivity and the optical transparency upon the deposition rate
from the literature accordingly, which helped in deciding the best deposition rate for
this application. The final thickness required for the film is dependent on the rate of
deposition, in a way that thicker layers are hard to implement with very slow deposition
rate. Not only more time is required but also vigilance and personal monitoring is need-
ed during the deposition.

Figure 3.4: The resistivity of ITO thin film as a function of the deposition rate [8].
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Figure 3.5: The optical transparency of ITO thin film as a function of the deposition
rate [8].

3.2.3 Post Deposition

Thus the suitable deposition rate, once chosen helps to improve the odds of the film
quality. During the coating process in the evaporation chamber if the heating and other
ion sources are not used then for sure there needs to be post treatment of the film and
substrate. The post treatment is done to optimize the film’s structural and chemical in-
sufficiencies. The most usual treatment is the heat treatment in presence of oxygen [8-
9]. There are chemical treatments as well but they are to actually provide a better sur-
face look for commercial purposes [10]. The post heat treatment of the film allows for it
to achieve an optimized or decreased grain size and lattice constant, a better structural
configuration in terms of phase composition, increase in the mobility and/or carrier den-
sity lower band gap energy and the films are crystalline having a (2 2 2) preferred orien-
tation, in contradistinction to as-deposited films, which turn out to be amorphous. These
improvements result in the films to be optically better transparent and electrically con-
ductive or with lower sheet resistances. Figures 3.6, 3.7 and 3.8 can provide a better
evidence of necessity of post annealing to deposition.
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3.3 Biocompatibility of ITO

Since ITO has to be used to make MEAs, that will directly measure the electrical im-
pulses from the cells it is of prime concern that the question of its biocompatibility is
properly researched upon and understood. The literature study gave very promising evi-
dence suggesting that ITO is highly biocompatible with quite extraordinary properties in
terms of its cytotoxicity and protein adsorption capabilities.

Microelectrodes have the potential to become useful tools for recording from and or
stimulating cells of the nervous system and heart for the purpose of medical innovations
and studies. The electrodes are expected to remain functional for many weeks after a
culture has been exposed over them; therefore, the material of the electrode must be
compatible within their biological environment, so as to minimize complications and
contaminations. In one of the studies, the biocompatibility of materials for electrode
sites was investigated taking into account of two measures: a) cytotoxicity and b) pro-
tein adsorption. The cytotoxic effects of material on the cells were investigated using
neutral red assay, and adsorption of proteins onto materials has been investigated using
atomic force microscopy and ellipsometry [11].

The investigative study of materials for biocompatibility and bio inertness included gold
(Au), platinum (Pt), iridium (Ir), ITO and titanium (Ti). Ti was chosen as a reference
material since it is a long established implant material [9]. According to the literature
after 72 hours of exposure to fibroblast cells, Au, ITO, and Ir showed no inhibitory ef-
fects on cell growth, whereas Pt and Ti showed greater amounts of growth inhibition.
Likewise, protein adsorption to different materials showed a steady growth following
the initial adsorption pattern, however 24 hours later of exposure to plasma, Ti had the
thickest and ITO had the thinnest layer of adsorbed protein [11].
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4. MICROELECTRODE ARRAYS

4.1 Introduction and Usage

The electrical activity of cells such as neurons and cardiomyocytes provide precise, de-
tailed and fundamental insight, relating to their physiological and pathophysiological
functions. Despite the well-known properties of these cells working in concerted fash-
ion as tissues, organs and systems, details of single cell physiology and pathophysiology
is still in its infancy. A lot of research is being done in order to seek a multi-channel
approach, which could eventually bridge the gap for understanding the properties of
single-cells alone, and in cellular networks. Thus the electrical activities of these cells
need to be studied in both the modes, as single-cells and in networks (tissues). The
study of the electrical activities can therefore be made, either through intracellular or by
extracellular methods. The intracellular technique utilizes electrodes which are clamped
or inserted inside the cell to measure the electric flux across the membrane. Extracellu-
lar measurement technique on the other hand makes use of external electrodes (mostly
planar) that measure ionic concentration outside the cell membrane. Both the methods
are capable of detecting simultaneous and inter-dependant activity of the cells, in re-
sponse to environmental and/or contextual stimuli, which is crucial for cellular signal-
ling. Consequently, when the need arises to simultaneously study the characteristics of
cells in a network or as single-cells, at a high spatial resolution, microelectrode arrays
will be required [12].

4.1.1 Definition and Applications

A microelectrode array (MEA) is a sensor, with an arrangement of probes (electrodes)
in shape of plates or shanks, allowing passage of electrical signals from several sites in
parallel of an electrogenic cell or a network, for either extracellular recording or stimu-
lation. They serve more or less as interfaces that connect cells of body to electronic cir-
cuitry [12-14].

Excitable or electrogenic cells create ion currents upon excitation, causing a change in
transmembrane potential. The electrodes present on a MEA transduce the change in
voltage from the cell to electronic voltage which is measured by amplifiers and recorded
(in vitro measurements). In general, MEAs are categorized in two categories: implanta-
ble MEAs, used in vivo, and non-implantable MEAs, used in vitro. Since this study ad-
dresses in vitro measurements in vivo MEAs or implantable MEAs will not be dis-
cussed. MEAs can be used to study almost all electrogenic cells and/or tissues for extra-
cellular recording in vitro, for example, central or peripheral neurons, cardiac myocytes,
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whole-heart preparations, or retina etc. [14]. The applications for MEAs in the fields of
neurobiology and cardiac electrophysiology are numerous. Some of the main field neu-
robiological applications involve: Ion channel screening, drug testing, safety pharma-
cology studies, current source density analysis, paired-pulse facilitation (PPF), long
term potentiation (LTP) and depression (LTD), input/output (I/O) relationship of
evoked responses, circadian rhythm, neuro-regeneration, developmental biology, micro
electroencephalograms (μEEG), and micro-electroretinograms (μERG). Similarly, some
of the core main field applications in the cardiac electrophysiology involved are: Acti-
vation and excitation mapping, the measuring of the conduction velocity, the long term
characterizations of cell types (especially stem cells), culture pacing, drug testing, safety
pharmacology studies, monitoring of QT-related prolongation and arrhythmias, co-
cultures and disease / implantation model etc. [14].

4.1.2 MEA Components and Usage

Initially, in vitro MEAs were fabricated using Au as the electrode material, which were
platinized to reduce the high impedance and improve the signal to noise ratio. However,
MEAs with such electrodes proved to be unstable over prolonged periods of usage, due
to the surface Pt degradation, which eventually required to be re-platinized again in or-
der to be used again. Standard MEAs today are fabricated with electrodes made up of
Au, Ti Pt black and TiN (titanium nitride). TiN is the most famous and most desired
amongst the rest for its good material properties and low cost. The insulation layers
used can be either Si3N4 or SiO2 of which Si3N4 is more common. The culture rings can
be either plastic, glass or polydimethylsiloxane (PDMS), of which PDMS rings are pre-
ferred more as they are detachable and provide better cleaning after use  [13].

Figure 4.1: Standard 8 x 8 MEA with a glass ring to hold the culture from Multi Chan-
nel Systems [14].

PDMS RingContact Pads

Track wires

Microelectrodes in 8x8 pattern

Glass Substrate
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A standard MEA generally consist of a transparent substrate, microelectrodes, track
wires, contact pad, and insulation. The substrate material for a standard MEA from
Multi Channel Systems  (MCS) is generally glass or plastic with dimensions 49 x 49 x 1
mm (W x D x H) [15]. The standard MEA parameters explained in this section mostly
refer from MCS, there can be different parameters for standard MEAs from other com-
panies as well. Since MCS MEAs are used as standards for this study, thus MCS is dis-
cussed with special focus. The diameter of the standard microelectrodes can range from
10, 20, 30 μm, with the separations of 100, 200 or 500 μm [15]. The material with
which, microelectrodes are generally made up of include TiN, ITO, Pt black, Pt, Au, Ti
etc. [15]. However, MCS focusses only on TiN electrodes. The track wires connect the
microelectrodes to the contact pads and are fabricated using ITO or Ti mostly [15] but
other metals can also be considered. The contact pads provide an interface between the
circuitry of the recording system and the microelectrodes. They are made of the same
metal as the track wires but other metals can also be used. The insulation, which is used
to isolate the track wires from each other and the buffer medium of the cell/tissue cul-
ture, is usually made of Si3N4 [14]. Figure 4.1 shows all the components of a standard 8
x 8 MEA very clearly, except the insulation layer as it envelops the MEA on the top
surface leaving only the electrodes and the contact pads exposed.

Cultivation of cell lines or primary cell preparations can be done directly onto the MEA.
Both acute recordings using freshly prepared slices or organotypic cultures can be culti-
vated on the MEA, however both require a culture medium which is usually provides
buffering and nutrition for the culture. The culture medium solution also stabilizes the
electrode tissue interface and stabilizes the impedance thereby lowering noise in the
recorded signal. When the recording is begun, the signals are first amplified by a filter
amplifier which is relayed to the data acquisition unit converting it to digital signals and
then sent to the computer [14].

4.2 Types of MEA Layouts

There are several MEA layouts according to the number of electrodes and their ar-
rangement. Different layouts facilitate different types of applications for recording. In-
creased demands for a specific biological need has increased development of more cus-
tomized and unique layouts. A few of the conventional layouts are discussed in the sub-
sections below.

4.2.1 Standard Line of MEAs

Standard MEAs available commercially, come in pattern of 8 × 8 or 6 × 10 electrodes
with 60 electrodes. The characteristics of standard 8 x 8 MEAs are already mentioned
quite elaborately in Section 4.1.2 and seen in Figure 4.1. However, 6 x 10 layout has not
been focussed upon, it is sometimes referred to 6 Well 60 MEA as well. The 60 elec-
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trode, 6 well MEA contains 6 wells that resemble distinct electrode chambers, with nine
electrodes in each, positioned in a 3 × 3 grid. However, an internal reference electrode
is present in each well making a total of 10 electrodes in each well altogether, therefore
referred to as 6 x 10 as well as 6 well layouts. Figure 4.2 provides an illustration of what
6 well layout looks like. The diameter of the electrodes is 30 µm, and the inter-electrode
separation distance is 200 µm for this arrangement.

Both the standard types of MEAs are used to study acute brain slices, single-cell cul-
tures, and organotypic prepared cultures. An important fact about standard MEAs is that
versions with an optional internal reference electrode along with different culture
rings/chambers are available by manufacturers. This is assumed to accommodate sepa-
rately individual needs either for acute recordings or long-term cultures, or even com-
bining patch/intracellular approaches with MEA recordings. [13-14].

Figure 4.2: a) Layout of electrodes in a 6 well or 6 x 10 MEA. b) Corresponding choic-
es of PDMS rings to hold culture and culture media upon the electrode re-
gions [15].

4.2.2 Thin MEAs

When imaging needs to be combined, with MEA recordings, an introduction to “Thin”-
MEAs become a necessary. Whenever, high-power objectives with high numerical aper-
tures are in question, they usually end up having a very low working distance on the
order of only some hundred micrometres. Thus the high-powered lenses of inverted
microscopes are not able to image through the standard MEA due to the 1 mm thickness
of the substrate. The solution to this problem can be addressed by fabricating MEAs that
have been constructed using cover slip glass. Thus the name, “Thin”-MEA which has
thickness of no more than 180 µm. Due to the fragile nature of the Thin-MEA it is
mounted on a ceramic support to prevent breakage, while being used with high-powered
objectives. The conductive leads and contact outer pads of a Thin-MEA are manufac-
tured using ITO, Figure 4.3 shows a picture of Thin-MEA [13-15].
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Figure 4.3: A picture of a Thin-MEA from Multi Channel Systems with transparent ITO
tracks and contact pads [15].

4.2.3 2 x 30 MEAs

The requirement to study the local responses of two specimens of cells or tissue cultures
side by side, at high spatial resolution gives way to 2 x 30 MEA layouts. There are 60
electrodes of 10 μm diameter in this layout and are arranged into 2 groups of 6 x 5 elec-
trode pattern. The two groups of electrodes are 500 μm apart from each other, and 30
μm of inter-electrode spacing is present within each group. This arrangement of elec-
trodes allows an unparalleled insight into local connectivity and interconnectivity over a
wide range of 500 µm. Thus these MEAs are being used to record multi-unit activity, of
a retinal neuron as a two-dimensional multitrode sensor, giving rise to improved spike
separation. More than one electrode of the MEA can pick up the activity of this single
neuron due to the small inter-electrode distances. Since electrodes vary slightly in dis-
tance for the same neuron, each electrode records a slightly different waveform from at
the same time point. Thus a better and more precise study of a single cell is possible in a
multi-dimensional fingerprint-like pattern, rather than one-dimensional waveform based
conventional spike sorting analysis [13-15].

Figure 4.4: A layout of 2 x 30 MEA with flat round electrodes made of TiN, tracks and
contact pads made of transparent ITO and insulation material is Si3N4 from
Multi Channel Systems [15].
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4.2.4 High Density MEA

When spatial resolution is of utmost importance, and conduction velocity or synaptic
delays are to be studied precisely over prolonged distances “High Density” (HD)-MEA
are used. They compose of the high density of electrodes for instance up to 256, with
the diameters of 30 or 10 μm covering a large area of 2.8 x 2.8 mm2, with inter-
electrode separations of 30, 60, 100 or 200 μm. Thus, providing the necessary high
enough spatial resolution over large distances. They are used mainly for unique studies
such as the delayed synaptic response in ganglia. Figure 4.5 shows the picture of an HD
MEA with its 16 x 16 layout of electrodes [13-15].

There are other layouts available as well, both commercially and under scientific devel-
opment by research scientists for unique applications. However, the most common ones
which were related to the thesis study are discussed here.

Figure 4.5: Picture of an HD-MEA with 256 electrodes made of TiN, wires and contact
pads made of ITO and insulation of Si3N4 from Multi Channel Systems [15].

4.3 MEA Fabrication and Evaluation Concepts

4.3.1 Fabrication Conceptualization

Ideally speaking, microfabrication techniques employed should be such as to allow pro-
duction of MEA biochips with significant cost reduction due to smaller MEA chip di-
mensions. However, this is just impossible at present, due to insufficient technological
advancement to turn MEA biochips into single-use disposables. Nevertheless, there are
still technological improvements underway that can be done in order to achieve this
goal in the near future. Till that time, compromises need to be made in order to produce
high quality MEAs which if not disposable, are at least reusable for a sound number of
times. Conventional techniques for microfabrications commercially at least, have
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stretched to the border of compromise ensuring production of high quality MEA by the
least possible cost using automation and bulk productions.

For research and development, the in house fabrication of MEAs in the research facili-
ties of academic institutions, the costs are higher as here the man hours utilized for pro-
duction of limited quantity owes the most cost. Though the processes in the commercial
production and research facilities are more or less the same, the large scale production
in parallel and automation brings all the difference.

4.3.2 Fabrication Techniques and Material Evaluation

For manufacturing MEAs in general the techniques needed are more or less the same in
most cases. The possible techniques used for manufacturing typical MEAs are

1. Metal or Electrode Material Deposition
2. Photolithography
3. Etching Processes: Wet, Dry and/or Liftoff
4. Cleaning Protocols

These are the major categories of technologies used, sometimes not all are necessary
and at other time all are employed in different combinations and iterations.

The most essential concern for evaluating MEAs during manufacturing and after it is, to
consider all the component materials that will be used in the fabrication and their re-
spective evaluations individually along with final evaluation as MEA. The materials to
be considered in MEA fabrication involve materials of;

1. Substrate
2. Electrodes
3. Track wires or Leads
4. Contact pads
5. Insulation
6. Culture Chamber or Containment Rings

All these parts must be thought through before beginning the fabrication process. The
consideration for these materials depends on the application for which the MEA will be
used, for quality and longevity of use and the biocompatibility. It is therefore absolutely
necessary to evaluate MEA on the basis of material properties and characteristics.

The biocompatibility is extremely important for all the materials that will be in contact
with the cell culture or tissue, to show no toxic effects, nor affect the cell’s “well-being”
during the entire experimentation. Furthermore, the materials should allow a good adhe-
sion of the biological preparations. Biocompatibility should be examined experimental-
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ly for unknown substances, however today almost all materials that are related to MEAs
have been studied [13-15].

Good electrode characteristics of the electrodes should allow the measurements of small
signal amplitudes with a good signal-to-noise ratio. Therefore, the impedance testing
and noise measurement of electrodes after manufacturing is extremely important. The
lower the impedance, the lower the basal noise for voltage measurements. The sheet
resistance of the electrode material should also be measured after a deposition process
[13-15].

The MEA biochip should be as transparent as possible in order to enhance observation
using an inverted microscope. Furthermore, if the electrodes are made from transparent
material, optical (potentiometric dyes) and electrical measurement can be combined in
one single experiment. Otherwise plain transmittance measurements using spectrometer
can be done for analysis [13-15].

Material testing of MEAs includes: studying the hysteresis of electrodes due to tempera-
ture changes and PH changes of buffer. The topological studies of electrodes using
Scanning Electron Microscope (SEM), Atomic Force Microscope (AFM) measurements
of surface roughness, X-ray diffraction crystallography to ensure the material crystal
orientations are as they are supposed to be etc. [13-15].
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5. PHOTOLITHOGRAPHY AND ETCHING PRO-
CESS

5.1 Basics

Photolithography is one of the key the processes used in microfabrication to pattern
precise geometric parts of a thin film or the bulk of a substrate; it is also referred to as
optical lithography or UV lithography from time to time. The basic principle of photoli-
thography utilizes light to transfer a geometric pattern from a photomask to a light-
sensitive chemical called photoresist (sometimes also referred to as resist), on a sub-
strate of interest. Using different chemical or physical processes can then engrave the
exposure pattern into the substrate or the bulk material, or in other cases facilitate depo-
sition of a new material in the desired pattern upon the thin film/bulk material under-
neath the photo resist. The process is repeatable to form as many patterns needed over
as many successive layers of thin films. As an example, modern integrated circuitry
could utilize the process up to 50 cycles or more, just for the microfabrication of a sim-
ple CMOS chip [16].

Like photography, photolithography depends on the same fundamental principle where
the pattern in the etching resist is created by exposing it to light. The exposure can be
done either directly, without using a mask or with an image projected using an optical
mask. It can also be compared to a more specific and precision version of the method
used to make printed circuit boards, where the subsequent stages of the process have
more to do with etching than with lithographic printing. The hallmark of the process is
that it can create extremely small patterns, which can have geometric dimensions as
small as tens of nanometres in size. It not only facilitates a very precise resolution in
geometry but also affords exact control over the shape and size of the objects needed to
be created. This process is also accredited for creating patterns over an entire surface
cost-effectively. Though it stands out in many other areas like precision and small di-
mensions, photolithography has a lacking that it requires a flat substrate to start with; it
lacks effectiveness when it comes to creating shapes that are not flat, and often requires
extremely clean operating conditions [16].

Photolithography process is most extensively used for transferring geometric shapes on
a mask to the surface of a silicon wafer, but it can also utilize other substrates commer-
cially and academically. The steps involved in the photolithographic process include
wafer cleaning, barrier layer formation (specifically for silicon substrate), photoresist
application, soft baking, mask alignment, exposure and development, and hard-baking
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[16]. Thus a single iteration of photolithography can combine all the mentioned steps or
some of them in sequence. Modern cleanrooms can be fully automated or semi-
automated, utilizing robotic wafer track systems to coordinate the process. The proce-
dure mentioned, however do not review other advanced treatments, such as thinning
agents or edge-bead removal etc. [16]

5.2 Cleaning

Usually organic or inorganic or both contaminations are almost always present on the
wafer’s surface, and needed to be removed by wet chemical treatment, RCA clean pro-
cedure is a good example of chemical treatment as it utilizes solutions containing hy-
drogen peroxide. Other cleaning protocols and solutions can also be used that include
trichloroethylene, acetone, methanol or ethanol. Cleaning protocols can vary according
to the substrate type, however protocols are usually generic and can be the same for
similar type of materials e.g. all glass substrate can use the same cleaning protocol [17].

5.3 Preparation

The preparation of the wafer requires some initial heating to a temperature sufficient to
eliminate any moisture that could result after the cleaning procedure or storage, a tem-
perature of 150 °C for ten minutes is sufficient for that matter. Stored wafers for pro-
longed periods of times absolutely require cleaning procedures before preparation to
apply photoresist. Adhesion promoters either liquid or gaseous can be applied such as,
Bis(trimethylsilyl)amine hexamethyldisilazane, (HMDS). When applied to the surface it
promotes adhesion of the photoresist to the wafer. The Silicon dioxide surface layer of a
silicon wafer reacts with HMDS to form a highly water repellent layer by forming a
compound tri-methylated silicon-dioxide on the surface. This water repellent layer helps
during the developing stage, when it prevents the penetration of the aqueous developer
between the photoresist layer and the wafer's surface, thereby preventing the so-called
lifting of small photoresist structures present in the (developing) pattern. Ensuring a
better development of the image requires that, the promoter layer is best covered by the
surface of the wafer and then placed over a hot plate to dry while at a stabilizing tem-
perature of around 120 °C approximately. The application of a promoter layer such as
HMDS isn’t always necessary, for instance for developing over glass slides using good
quality photoresist might not require us to go through this step at all. Instead it has to be
ensured that the glass is absolutely clean and if possible to be treated by oxygen plasma
to provide decontamination for organic contaminants as we all making the glass surface
hydrophobic, which more or less also gets the job done just as well [17]. In the research
work for this study the latter was done over using the HMDS.
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5.4 Photoresist application

Once the cleaning and preparation of the wafer is done the next step is to cover the sur-
face with photoresist, which is done by spin coating. Photoresist is generally very vis-
cous; the solution of photoresist is therefore dispensed over the wafer and then spun at
high speed ensuring a uniformly thick layer over the entire surface of the wafer. The
spin coating typically utilizes speeds between 1000 to 6000 rpm for a duration of 30 to
60 seconds, which in turn is able to form a layer that can vary from less than 100 nm to
tens of micrometres in thickness. Once the resist is applied after spin coating the resist
coated wafer is subjected to a session of prebaking to drive off any excess photoresist
solvent, usually the temperature is set between 80 to 150 °C for a short interval ranging
from 1 to 3.5 minutes on a hotplate or tens of minutes in oven depending upon the re-
sists instruction for usage. [17]

5.5 Photoresists, Exposure and Developing

After the application of photoresist and prebaking, the resist is exposed to intense light
almost always following a very precise pattern. This exposure due to light causes a
chemical change in the photo resist that allows part of the photoresist to be removed
when placed in a special solution, called developer, just as in the case of a photographic
developer. The light for exposure is usually exposed as a pattern which uses the photo-
mask or the sometimes also referred as mask. Photomasks are usually opaque plates
having holes or transparencies that give passage to through the light in a defined pattern.
As for the photoresists, they comprise of two types; a positive resist and a negative re-
sist both have opposite reactions upon exposure to the light. A positive photoresist be-
comes soluble in the developer when exposed, there by leaving an impression of the
unexposed resist after developing. Contrarily, a negative photoresist remains undis-
solved upon exposure; in fact the unexposed regions are soluble in the developer, thus
leaving the impression of the exposed part. [17]

5.6 Photomasks

A photomask (or simply mask), is a plate with optical transparencies that allows light to
shine through in a defined pattern, in order to provide projection over a photoresist.
Masks in photolithography are used to provide pattern over the photoresist that needs to
be patterned by etching, following the developing process. The pattern on the mask var-
ies for the types of resist used, for a positive mask the geometry projected will be totally
opposite in comparison to a negative resist. Therefore, the pattern of the mask is gov-
erned according to the type of resist used. The pattern for the mask is designed from a
computer program a data file. This is then converted into series of polygons and written
either, onto a square of fused quartz substrate covered with chromium or over PET
(Polyethylene terephthalate) film as base material. For chrome masks the fused quartz
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substrate is covered with a chromium layer using photolithographic process. A beam of
laser or electrons is used to expose the pattern defined by the data file and travels over
the surface of the substrate. The photoresist on the mask at the area of the pattern is ex-
posed, the chrome is then etched away, leaving a clear path for the illumination light in
the exposure and alignment system to travel through.

The film masks utilize the PET film and the computerized data file with the pattern is
simply printed with a high definition laser jet printer with opaque ink. The printed part
on the mask is opaque and attenuates the exposure through illumination light of the ex-
posure and alignment system [17-18].

5.7 Etching

Etching is the process, where the chemical agents help in removing the uppermost layer
of a particular substrate, precisely from the regions that are unprotected by a photoresist.
There are two types of etching processes used in the lithographic process, wet etching
and dry etching. In wet etching liquids are used to etch the upper and unprotected sur-
faces of the substrate, whereas, a gas of ions (usually plasma and reactive gases) is used
in dry etching to achieve a similar effect. Wet etching processes generally result in iso-
tropic etching of the surface, which is often vitally important for microelectromechani-
cal systems, where suspended structures are required to be patterned from the underly-
ing layer. However, dry etching techniques are generally an isotropic in nature, and are
use so, to avoid significant undercutting of the photoresist pattern. It is especially uti-
lized when the width of the geometric features needed are defined as similar to or less in
magnitude than the thickness of the substrate layer being etched [17].

Furthermore, ever-smaller and precise geometric features defined photolithographically
using the resist are transferrable to the substrate material. These geometric features are
being patterned in the semiconductor technology by the development of low-defectivity
anisotropic dry-etch process [17].

5.8 Photoresist removal

Once the etching process is done, the photoresist is no longer needed and must be re-
moved or stripped from the substrate. This usually requires a liquid resist stripper,
which chemically changes the resist so as to, that it no longer adheres to the substrate.
Photoresist can also be removed by a plasma containing oxygen, which actually oxidiz-
es the resist. This is called the ashing process, and resembles dry etching. Some resist
strippers dissolve the hardened resists, e.g. use of 1-Methyl-2-pyrrolidone (NMP) sol-
vent is one such example. Acetone is also known to be a universal solvent and is many a
times used to dissolve positive and negative photoresists alike. It is also cheaper than
many other resist strippers to use and often preferred as an economical alternative [17].
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6. TIER I: ITO FILM DEPOSITION

 Once the theoretical knowledge was reviewed and acquired for the thesis, the practical
part was planned in a 3 tier plan, the 1st tier included the formation of transparent ITO
thin layer on glass substrate, the 2nd tier of the thesis involved in the patterning of the
same transparent thin ITO layer into microstructures needed in MEAs and the 3rd tier
involved the optimizations of step for final Standard 8 x 8 ITO MEA fabrication. In the
first tier of the thesis the experimentation involved in the processes of coating thin lay-
ers of the ITO over microscope glass slides using different deposition rates from the
EB-PVD device at our disposal in the lab, baking (annealing) the coated slide at high
temperatures ranging from 300 to 550 °C and studying the transparencies and the sheet
resistance of the ITO layer. In the second tier, experimentations related to techniques for
patterning the films of ITO on glass substrate were studied. The aim was to fabricate
microstructure small enough, which are present on MEAs is described, and that in-
volved in wet and dry etching experiments of ITO. This took the longest time in the
thesis study other than the writing part of course. In the third and the last tier successful
mixes of the first and the second tiers were used and microfabrication of MEAs with
optimization of microfabrication processes according to ITO manipulation was done.
Finally, in the end, a design of eight prototypes of standard 8 x 8 30/200 (30 μm diame-
ter and 200 μm spacing) MEAs was possible.

6.1 EB-PVD and Metallization Device Usage

The practical plan in the beginning was supposed to involve deposition of ITO using an
ion source with the EB-PVD device present in our lab which we also refer to as the
“metallization device”, but due to the unavailability of the ion source it had to be re-
vised, the methodology, in a way so that the deposition wouldn’t require the use of the
ion source. Instead a strong literature evidence suggested that the ITO’s two main quali-
ties of interest from the perspective of making MEAs mainly, the transparency and the
sheet resistance were affected by deposition rate of the metallization device and the post
heat treatment or annealing of the glass substrate and the ITO film [80]. In the literature
it was stated that the best result for the deposition rate was observed at 0.05 nm/s and
similarly the best result in terms of annealing was observed at 550 °C. The very first
experimentation carried out for that matter was intended to utilize these two starting
parameters as guides. The researchers of the literature used a furnace for annealing their
samples but due to the unavailability of a furnace in our lab a hot plate that operated at
400 °C initially was used, which resulted in the first good result. However in later ex-
periments the annealing was carried out using a furnace with temperatures up to 550 °C.
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Further explanation is provided in the following subsections of this chapter. In order to
begin the work for Tier I, a thorough training to use the EB-PVD device was acquired
from Mr. Tomi Ryynänen who demonstrated both, the use of the device and also trou-
bleshooting general problems. Ability of using the metallization device is one the core
steps in the processing of microfabrication of this study.

Metallization device can be used to deposit quite a few materials such as metals and
certain compounds including ITO into thin films as explained in the previous chapter
related to EB-PVD of the thesis. However, in the case of ITO it needs special attention
and constant diligence since ITO needs very slow deposition rate and normally it takes
from 4 to7 hours of deposition depending upon the thickness of the film.

6.1.1 The Literature Study for ITO Deposition

The experimental study initiated with the Tier 1 that is ITO deposition and ensuring that
the film becomes transparent. Previously some work was done in this regard but the
results were not all that successful. So the very first challenge at hand for this study was
to make our ITO transparent. The literature search that was made mostly involved use
of ion sources for transparent deposition of ITO or heated substrate deposition to obtain
transparent ITO films on substrates. Fortunately, then two articles from the same au-
thors on ITO deposition using EB-PVD and post heat treatment were referred to and
immediately experimented practically [8-9]. ITO deposition isn’t usually done using
EB-PVD in fact magnetron sputtering and RF sputtering are usually the choices of dep-
osition for ITO [14]. The information in the two articles discussed mainly of the struc-
tural, electrical and optical properties of indium tin oxide thin films annealed for 1 h at
the temperature range from 350 to 550 °C in air and at low deposition rate of 0.05 nm/s.
Their results showed relatively high electrical conductivity such as 7x10-4 Ω cm and
high visible transmittance (above 93 %) obtained using electron beam evaporation tech-
nique, just as was needed in this study. Their XRD results also included in the literature
mentioned that the crystallinity of ITO thin films was improved with annealing thin
films with 37 nm in diameter grain size obtained at 550 °C, which was a much needed
thing since the ITO granule used to deposit ITO films in our metallization device are
amorphous and for MEAs the electrodes and the tracks should be crystalline for long
term and robust use as in crystalline form ITO is reported to have better characteristics
[8-9,19]. Particularly, both the grain size and the optical band gap decreased with in-
creasing deposition rate, while the lattice constant increased [8-10]. The results showed
that by decreasing the deposition rate, the conductance of the ITO thin films was in-
creased [8]. The DC conductivity in the ITO thin films is also well observed in the 350–
550 °C range as well. Their results also showed that by increasing annealing tempera-
ture, the conductance in ITO thin films was increased, which is again another plus point
when we need to design electrodes. Further, from their results it was concluded that the
deposition rate and annealing temperature plays a major role in controlling the electrical
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6.1.3 Operating the Metallization Device

The EB-PVD device in our Lab, shown in Figure 6.2 has a large chamber where the
EB-PVD process takes place, within the same chamber there is a crucible control unit
that has a capability to hold six crucible liners with the material required for deposition.
The crucible control unit is rotatable only in one direction that is clockwise by the help
of a controller panel in the operational rack of the device. The crucible rotor rotates via
motor and chain driven system. The crucible rotation rotates at various speeds as well
and can be operated automatically by automatic control that is assigned for a material to
be used every now and then. The control rack of the EB-PVD device has a CPU and an
LCD with Windows XP and touch screen LCD and a peripheral keyboard and mouse.
Apart from that it has connections to all the sensors in the device. The control rack apart
from the CPU, touch screen and keyboard has multiple controlling panels amongst
which is the panel for crucible control and rotation, another panel for high voltage trans-
former and controller that powers the transformer to generate 12 kV of potential differ-
ence for operation. A TT controller for setting the beam current and anode voltage dur-
ing the deposition that affects the deposition rate. Apart from that there are two more
panels but for our understanding and operation these panels suffice our job for getting
the deposition done.

Figure 6.2: EB-PVD Device also known as Metallization device.

The deposition can either be done manually or by automatic programming for a particu-
lar material. Same is the case of pumping vacuum and nitrogen before and after every
deposition run. I personally have used both and prefer the automatic pumping as well as
automatic deposition program. The reason to prefer automatic pumping in my case is
that it involve less human intervention so less human error or chance to fumble. In case
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of using an automatic programing for deposition that too helps in getting a more stable
film with a uniform and smoother surface. In the manual mode the beam current needs
to be adjusted every now and then to maintain a stable deposition rate. Whereas it re-
mains controlled by a crystal feedback system in the automatic program thus giving us
the freedom to observe and maintain the beam shape and orientation during deposition.

6.1.4 Setting-up Automatic Programing for Deposition

In the automatic programing, the program is set for a different material or film with in-
formation of the material like the density of material, rate of deposition, maximum
power of beam, minimum power of beam, z ratio of the material, pocket of the crucible
with the material, etc. All these variables are to be punched in before using the automat-
ic program. It is of extreme importance that the person who is setting up the program is
well-versed to the material properties of the material for which the program is being set.
It is also advisable that the user also knows the safety limits of the device’s working
range to avoid damaging the samples as well as the metallization device. With all the
necessary material and device details punched in, to make an automatic program, the
program is finally ready to be used.

6.1.5 Considerations of Beam Focusing

As the automatic program is being run the operator must be vigilant that the beam is
focused onto the crucible and that it covers the whole crucible. Otherwise a beam con-
centration on a very small area of the crucible can cause the beam power to penetrate all
the way to the end of crucible. This may cause to eat the graphite of the crucible or any
metal if the crucible is metallic rather than a graphite one.  A severe contamination of
graphite onto the film is thus very much possible. To avoid this during the experimenta-
tions for ITO depositions, it was necessary to re-orient the beam placement and concen-
tration after every 50 μm thickness increased for the ITO film on the substrate. It helped
to make sure that the deposited film was never getting contaminated, and with that, the
deposition rate also doesn’t falter after the ITO granules kept on evaporating from the
crucible uniformly. It is worth understanding that, a material like ITO that directly sub-
limates or evaporates without melting, the power of the beam for it, needs to lower
gradually with the process. However, if a stable deposition rate was to be maintained, it
was better to keep on shifting slightly the focus of the beam on crucible in a way that
the evaporation of the ITO granules in the crucible remained uniform rather than in the
middle alone. The ITO granules in the middle of the crucible evaporate much faster, if
the beam is not shifted regularly around the crucible span. This was one of the most
crucial points of the training, as this problem seldom occurs when metals are deposited.
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6.1.6 Considerations for Substrate Loading

Another important consideration when using the metallization device for ITO deposi-
tion was that the glass substrates were always loaded on the circumference of the sub-
strate holder. The reason for that was learnt when loading the substrate on the substrate
holder for the first run, Tomi Ryynänen (the supervisor) suggested not only to load the
test microscope slides in the middle of the substrate holder (plate), but also to load some
substrates on the circumference of the substrate holder. At the time that seemed point-
less owing to no prior experience in deposition. It was just a means of precautionary
observation to notice any difference due variance in radial distance on the plate. When
the deposition run was complete the ITO coated on the glass slides appeared shiny black
and completely opaque. There seemed no difference between slides mounted in the
middle of the plate compared to the ones loaded on the circumference. For reference
purpose it is also important to mention here that just plain deposited ITO film on glass
substrate or any other substrate for that fact, using EB-PVD is also termed as as-
deposited and the figure 6.3 shows the result of our first as-deposited 100 nm film of
ITO on glass slides. It should be also understood that as-deposited ITO film is before
heat treatment and that there was no heating also during the deposition, neither was any
ion source or ion exposure was present [8-10]. From here onwards as-deposited film
must be understood as simple and pure deposition of ITO with the metallization device.
These as-deposited samples were then annealed for an hour at 400 °C at which point
they were no more as-deposited sample but annealed transparent ITO films over glass
slides. At that time, it was observed that some slides were completely transparent com-
pared to others which had some black cloudy blotches over their surfaces. The initial
observation led to the hypothesis that the cleaning procedure might not have been as
impeccable as it should have been. After a couple of more deposition it was conceived
that the cleaning protocol wasn’t the only reason of the sample with the black cloudy
blotches instead it was the samples in the middle that had the most blotches then the
ones between the middle and the circumference of the substrate holder. However, the
samples on the very circumference of the substrate holder were all completely transpar-
ent. Here the wisdom of loading a few sample on the circumference and adhering to an
experienced advice paid off. After that it was always done so that the samples were
loaded only on the circumference of the substrate holder.

It was also a mystery why there were blotches on the samples mounted in the middle of
the plate compared to the samples mounted on the circumference of the plate. The lit-
erature review gave an elaborate overview that the structural orientation of the ITO film
needs to be (222) at the lattice level and their observation of XRD (X-Ray Diffraction)
analysis showed peaks at (222) for the crystalline ITO after annealing. Glance angle
deposition is another form of EB-PVD where the substrate is held at an angle to assist in
rough and porous films [20-22]. Thus this explained mystery of mounting the substrate
on the circumference of the plate instead of mounting it on the middle.
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ing nor is it a thorough one. As a result, the slide that was mounted on the circumfer-
ence did not also have the best result as in the case of 2 attempts. From this it was un-
derstood that the cleaning of the substrate was of prime importance and needs to be tak-
en care off in the best possible manner. Thus came our glass cleaning protocol from a
mixture of protocols.

The cleaning protocol was refined compared to just wiping the glass wafer with IPA
soaked napkins. The new cleaning protocol still included IPA since it was abundantly
available in our lab rather than ethanol which is another alternative, and an inclusion of
acetone was made prior to IPA and as last part of keeping the clean slide under oxygen
plasma for 5 minutes as the final step was decided. The oxygen plasma was produced in
reactive ion etching device present in our lab. The oxygen plasma not only cleans any
unseen organic or inorganic material of the glass surface but also helps activate the sur-
face of the glass slides and made them more adhesive to the ITO atoms during the
evaporation. Thus the refined cleaning protocol was finalized as follows;

1. First the glass slides were immersed in acetone reservoir of the ultrasonic bath
for 5 minutes.

2. Then they were ultrasonically cleaned in IPA for 5 minutes.
3. Next they were rinsed with distilled water.
4. Then they were dried off  using clean nitrogen blasts
5. Finally the dried glass slides were subjected to oxygen plasma for 5 minutes.

The same protocol will be used not only before the ITO coating of the glass slides but
also in many cleaning steps in the microfabrication of MEAs. However, the final step of
oxygen plasma will not be used in photolithographic processes and other time when
cleaning is required for the glass wafers or MEAs. The final cleaning step of our micro-
fabrication will again utilize the oxygen plasma as after that the MEAs will be formed
and ready to be handed to the heart group to measure and analyse them.

6.3 Annealing & Heat treatment of As-deposited Films

Once the usage of the metallization device and the cleaning protocols were perfected the
next logical step was to test the annealing temperature effects on ITO thin film which
were needed to study and experimented with. By this time, it was conclusive that this
deposition rate of 0.05 nm/s will remain fixed for all my depositions as it already
showed the desired results in the first couple of pilot runs. It was only logical to keep
the thickness of the film also constant for all deposition here onwards till further study
could deduce which temperature yielded the best results for theses experimentations.

  To study the annealing effects on the as-deposited ITO thin film the initial plan ac-
cording to the availability was to use a hot plate in the lab that could reach temperatures
as high as 450 °C. Even though according the literature search 550 °C should yield the



highest transparency as well as the least sheet resistance, but due to unavailability of a
device to yield that high temperature it was decide
°C span.
and the range was studied for entire 550

Two initial experiments were conducted to start the study of annealing of ITO as
deposited 350
slide
tory in [
cleaned properly using the cleaning protocol so thoroughly explained in the last subse
tion. The result of the first annealing ex
fig

The purpose of this first experiment was to actually find out if both our deposition and
annealing worked even to the slightest extent. Previously IT
mented with in our research group but had not yielded much luck after annealing at 300
350
case of the slide that was mounted on the circumference of the

Figure

With this result it was safe to assume that the literature source was valid for both dep
sition rate as well as the annealing to some extent. Even
good, for which
hot plate and the cleanliness of the glass substrate
surface of this particular hot plate was in reality n
distribution also varied, at some close observation it was seen that the glass slide wasn’t
even in contact with the surface from certain places. This only made more sense after
the hour of annealing ended and the resu
To get a better understanding
on the circumference of the plate was the part where the slide wasn’t in proper contact
with the h
side did not have the same temperature as in the middle of the slide that was in better
contact of the hot plate,

highest transparency as well as the least sheet resistance, but due to unavailability of a
device to yield that high temperature it was decide
C span.

and the range was studied for entire 550

Two initial experiments were conducted to start the study of annealing of ITO as
deposited 350
slide
tory in [
cleaned properly using the cleaning protocol so thoroughly explained in the last subse
tion. The result of the first annealing ex
figure

The purpose of this first experiment was to actually find out if both our deposition and
annealing worked even to the slightest extent. Previously IT
mented with in our research group but had not yielded much luck after annealing at 300
350
case of the slide that was mounted on the circumference of the

Figure

With this result it was safe to assume that the literature source was valid for both dep
sition rate as well as the annealing to some extent. Even
good, for which
hot plate and the cleanliness of the glass substrate
surface of this particular hot plate was in reality n
distribution also varied, at some close observation it was seen that the glass slide wasn’t
even in contact with the surface from certain places. This only made more sense after
the hour of annealing ended and the resu

o get a better understanding
on the circumference of the plate was the part where the slide wasn’t in proper contact
with the h
side did not have the same temperature as in the middle of the slide that was in better
contact of the hot plate,

highest transparency as well as the least sheet resistance, but due to unavailability of a
device to yield that high temperature it was decide
C span.

and the range was studied for entire 550

Two initial experiments were conducted to start the study of annealing of ITO as
deposited 350
slide was placed on a hotplate
tory in [
cleaned properly using the cleaning protocol so thoroughly explained in the last subse
tion. The result of the first annealing ex

ure 6

The purpose of this first experiment was to actually find out if both our deposition and
annealing worked even to the slightest extent. Previously IT
mented with in our research group but had not yielded much luck after annealing at 300

°C. Luckily the first experiment showed very promising results especially in the
case of the slide that was mounted on the circumference of the

Figure

With this result it was safe to assume that the literature source was valid for both dep
sition rate as well as the annealing to some extent. Even
good, for which
hot plate and the cleanliness of the glass substrate
surface of this particular hot plate was in reality n
distribution also varied, at some close observation it was seen that the glass slide wasn’t
even in contact with the surface from certain places. This only made more sense after
the hour of annealing ended and the resu

o get a better understanding
on the circumference of the plate was the part where the slide wasn’t in proper contact
with the h
side did not have the same temperature as in the middle of the slide that was in better
contact of the hot plate,

highest transparency as well as the least sheet resistance, but due to unavailability of a
device to yield that high temperature it was decide
C span. Later on a furnace with temperatures higher than

and the range was studied for entire 550

Two initial experiments were conducted to start the study of annealing of ITO as
deposited 350

was placed on a hotplate
tory in [8]. However
cleaned properly using the cleaning protocol so thoroughly explained in the last subse
tion. The result of the first annealing ex

6.5

The purpose of this first experiment was to actually find out if both our deposition and
annealing worked even to the slightest extent. Previously IT
mented with in our research group but had not yielded much luck after annealing at 300

C. Luckily the first experiment showed very promising results especially in the
case of the slide that was mounted on the circumference of the

Figure 6.5:

With this result it was safe to assume that the literature source was valid for both dep
sition rate as well as the annealing to some extent. Even
good, for which
hot plate and the cleanliness of the glass substrate
surface of this particular hot plate was in reality n
distribution also varied, at some close observation it was seen that the glass slide wasn’t
even in contact with the surface from certain places. This only made more sense after
the hour of annealing ended and the resu

o get a better understanding
on the circumference of the plate was the part where the slide wasn’t in proper contact
with the h
side did not have the same temperature as in the middle of the slide that was in better
contact of the hot plate,

highest transparency as well as the least sheet resistance, but due to unavailability of a
device to yield that high temperature it was decide

Later on a furnace with temperatures higher than
and the range was studied for entire 550

Two initial experiments were conducted to start the study of annealing of ITO as
deposited 350

was placed on a hotplate
]. However

cleaned properly using the cleaning protocol so thoroughly explained in the last subse
tion. The result of the first annealing ex

below.

The purpose of this first experiment was to actually find out if both our deposition and
annealing worked even to the slightest extent. Previously IT
mented with in our research group but had not yielded much luck after annealing at 300

C. Luckily the first experiment showed very promising results especially in the
case of the slide that was mounted on the circumference of the

.5:

With this result it was safe to assume that the literature source was valid for both dep
sition rate as well as the annealing to some extent. Even
good, for which
hot plate and the cleanliness of the glass substrate
surface of this particular hot plate was in reality n
distribution also varied, at some close observation it was seen that the glass slide wasn’t
even in contact with the surface from certain places. This only made more sense after
the hour of annealing ended and the resu

o get a better understanding
on the circumference of the plate was the part where the slide wasn’t in proper contact
with the hot plate
side did not have the same temperature as in the middle of the slide that was in better
contact of the hot plate,

highest transparency as well as the least sheet resistance, but due to unavailability of a
device to yield that high temperature it was decide

Later on a furnace with temperatures higher than
and the range was studied for entire 550

Two initial experiments were conducted to start the study of annealing of ITO as
deposited 350 nm

was placed on a hotplate
]. However

cleaned properly using the cleaning protocol so thoroughly explained in the last subse
tion. The result of the first annealing ex

below.

The purpose of this first experiment was to actually find out if both our deposition and
annealing worked even to the slightest extent. Previously IT
mented with in our research group but had not yielded much luck after annealing at 300

C. Luckily the first experiment showed very promising results especially in the
case of the slide that was mounted on the circumference of the

.5: Pilot run experiment for deposition rate and annealing for unclean
slide

With this result it was safe to assume that the literature source was valid for both dep
sition rate as well as the annealing to some extent. Even
good, for which
hot plate and the cleanliness of the glass substrate
surface of this particular hot plate was in reality n
distribution also varied, at some close observation it was seen that the glass slide wasn’t
even in contact with the surface from certain places. This only made more sense after
the hour of annealing ended and the resu

o get a better understanding
on the circumference of the plate was the part where the slide wasn’t in proper contact

ot plate
side did not have the same temperature as in the middle of the slide that was in better
contact of the hot plate,

highest transparency as well as the least sheet resistance, but due to unavailability of a
device to yield that high temperature it was decide

Later on a furnace with temperatures higher than
and the range was studied for entire 550

Two initial experiments were conducted to start the study of annealing of ITO as
nm

was placed on a hotplate
]. However

cleaned properly using the cleaning protocol so thoroughly explained in the last subse
tion. The result of the first annealing ex

below.

The purpose of this first experiment was to actually find out if both our deposition and
annealing worked even to the slightest extent. Previously IT
mented with in our research group but had not yielded much luck after annealing at 300

C. Luckily the first experiment showed very promising results especially in the
case of the slide that was mounted on the circumference of the

Pilot run experiment for deposition rate and annealing for unclean
slide.

With this result it was safe to assume that the literature source was valid for both dep
sition rate as well as the annealing to some extent. Even
good, for which there
hot plate and the cleanliness of the glass substrate
surface of this particular hot plate was in reality n
distribution also varied, at some close observation it was seen that the glass slide wasn’t
even in contact with the surface from certain places. This only made more sense after
the hour of annealing ended and the resu

o get a better understanding
on the circumference of the plate was the part where the slide wasn’t in proper contact

ot plate
side did not have the same temperature as in the middle of the slide that was in better
contact of the hot plate,

highest transparency as well as the least sheet resistance, but due to unavailability of a
device to yield that high temperature it was decide

Later on a furnace with temperatures higher than
and the range was studied for entire 550

Two initial experiments were conducted to start the study of annealing of ITO as
thin films. In the first experiment

was placed on a hotplate
]. However,

cleaned properly using the cleaning protocol so thoroughly explained in the last subse
tion. The result of the first annealing ex

The purpose of this first experiment was to actually find out if both our deposition and
annealing worked even to the slightest extent. Previously IT
mented with in our research group but had not yielded much luck after annealing at 300

C. Luckily the first experiment showed very promising results especially in the
case of the slide that was mounted on the circumference of the

Pilot run experiment for deposition rate and annealing for unclean
.

With this result it was safe to assume that the literature source was valid for both dep
sition rate as well as the annealing to some extent. Even

there
hot plate and the cleanliness of the glass substrate
surface of this particular hot plate was in reality n
distribution also varied, at some close observation it was seen that the glass slide wasn’t
even in contact with the surface from certain places. This only made more sense after
the hour of annealing ended and the resu

o get a better understanding
on the circumference of the plate was the part where the slide wasn’t in proper contact

during annea
side did not have the same temperature as in the middle of the slide that was in better
contact of the hot plate,

highest transparency as well as the least sheet resistance, but due to unavailability of a
device to yield that high temperature it was decide

Later on a furnace with temperatures higher than
and the range was studied for entire 550

Two initial experiments were conducted to start the study of annealing of ITO as
thin films. In the first experiment

was placed on a hotplate
, the very first experiment also included glass slides that were not

cleaned properly using the cleaning protocol so thoroughly explained in the last subse
tion. The result of the first annealing ex

The purpose of this first experiment was to actually find out if both our deposition and
annealing worked even to the slightest extent. Previously IT
mented with in our research group but had not yielded much luck after annealing at 300

C. Luckily the first experiment showed very promising results especially in the
case of the slide that was mounted on the circumference of the

Pilot run experiment for deposition rate and annealing for unclean

With this result it was safe to assume that the literature source was valid for both dep
sition rate as well as the annealing to some extent. Even

there were more than a few reasons,
hot plate and the cleanliness of the glass substrate
surface of this particular hot plate was in reality n
distribution also varied, at some close observation it was seen that the glass slide wasn’t
even in contact with the surface from certain places. This only made more sense after
the hour of annealing ended and the resu

o get a better understanding
on the circumference of the plate was the part where the slide wasn’t in proper contact

during annea
side did not have the same temperature as in the middle of the slide that was in better
contact of the hot plate,

highest transparency as well as the least sheet resistance, but due to unavailability of a
device to yield that high temperature it was decide

Later on a furnace with temperatures higher than
and the range was studied for entire 550

Two initial experiments were conducted to start the study of annealing of ITO as
thin films. In the first experiment

was placed on a hotplate
the very first experiment also included glass slides that were not

cleaned properly using the cleaning protocol so thoroughly explained in the last subse
tion. The result of the first annealing ex

The purpose of this first experiment was to actually find out if both our deposition and
annealing worked even to the slightest extent. Previously IT
mented with in our research group but had not yielded much luck after annealing at 300

C. Luckily the first experiment showed very promising results especially in the
case of the slide that was mounted on the circumference of the

Pilot run experiment for deposition rate and annealing for unclean

With this result it was safe to assume that the literature source was valid for both dep
sition rate as well as the annealing to some extent. Even

were more than a few reasons,
hot plate and the cleanliness of the glass substrate
surface of this particular hot plate was in reality n
distribution also varied, at some close observation it was seen that the glass slide wasn’t
even in contact with the surface from certain places. This only made more sense after
the hour of annealing ended and the resu

o get a better understanding
on the circumference of the plate was the part where the slide wasn’t in proper contact

during annea
side did not have the same temperature as in the middle of the slide that was in better

refer to the

highest transparency as well as the least sheet resistance, but due to unavailability of a
device to yield that high temperature it was decide

Later on a furnace with temperatures higher than
and the range was studied for entire 550

Two initial experiments were conducted to start the study of annealing of ITO as
thin films. In the first experiment

was placed on a hotplate
the very first experiment also included glass slides that were not

cleaned properly using the cleaning protocol so thoroughly explained in the last subse
tion. The result of the first annealing ex

The purpose of this first experiment was to actually find out if both our deposition and
annealing worked even to the slightest extent. Previously IT
mented with in our research group but had not yielded much luck after annealing at 300

C. Luckily the first experiment showed very promising results especially in the
case of the slide that was mounted on the circumference of the

Pilot run experiment for deposition rate and annealing for unclean

With this result it was safe to assume that the literature source was valid for both dep
sition rate as well as the annealing to some extent. Even

were more than a few reasons,
hot plate and the cleanliness of the glass substrate
surface of this particular hot plate was in reality n
distribution also varied, at some close observation it was seen that the glass slide wasn’t
even in contact with the surface from certain places. This only made more sense after
the hour of annealing ended and the resu

o get a better understanding
on the circumference of the plate was the part where the slide wasn’t in proper contact

during annea
side did not have the same temperature as in the middle of the slide that was in better

refer to the

highest transparency as well as the least sheet resistance, but due to unavailability of a
device to yield that high temperature it was decide

Later on a furnace with temperatures higher than
and the range was studied for entire 550

Two initial experiments were conducted to start the study of annealing of ITO as
thin films. In the first experiment

was placed on a hotplate at 400
the very first experiment also included glass slides that were not

cleaned properly using the cleaning protocol so thoroughly explained in the last subse
tion. The result of the first annealing ex

The purpose of this first experiment was to actually find out if both our deposition and
annealing worked even to the slightest extent. Previously IT
mented with in our research group but had not yielded much luck after annealing at 300

C. Luckily the first experiment showed very promising results especially in the
case of the slide that was mounted on the circumference of the

Pilot run experiment for deposition rate and annealing for unclean

With this result it was safe to assume that the literature source was valid for both dep
sition rate as well as the annealing to some extent. Even

were more than a few reasons,
hot plate and the cleanliness of the glass substrate
surface of this particular hot plate was in reality n
distribution also varied, at some close observation it was seen that the glass slide wasn’t
even in contact with the surface from certain places. This only made more sense after
the hour of annealing ended and the resu

o get a better understanding of the right hand side
on the circumference of the plate was the part where the slide wasn’t in proper contact

during annealing. Thus the non
side did not have the same temperature as in the middle of the slide that was in better

refer to the

highest transparency as well as the least sheet resistance, but due to unavailability of a
device to yield that high temperature it was decide

Later on a furnace with temperatures higher than
and the range was studied for entire 550

Two initial experiments were conducted to start the study of annealing of ITO as
thin films. In the first experiment

at 400
the very first experiment also included glass slides that were not

cleaned properly using the cleaning protocol so thoroughly explained in the last subse
tion. The result of the first annealing ex

The purpose of this first experiment was to actually find out if both our deposition and
annealing worked even to the slightest extent. Previously IT
mented with in our research group but had not yielded much luck after annealing at 300

C. Luckily the first experiment showed very promising results especially in the
case of the slide that was mounted on the circumference of the

Pilot run experiment for deposition rate and annealing for unclean

With this result it was safe to assume that the literature source was valid for both dep
sition rate as well as the annealing to some extent. Even

were more than a few reasons,
hot plate and the cleanliness of the glass substrate
surface of this particular hot plate was in reality n
distribution also varied, at some close observation it was seen that the glass slide wasn’t
even in contact with the surface from certain places. This only made more sense after
the hour of annealing ended and the resu

of the right hand side
on the circumference of the plate was the part where the slide wasn’t in proper contact

ling. Thus the non
side did not have the same temperature as in the middle of the slide that was in better

refer to the

highest transparency as well as the least sheet resistance, but due to unavailability of a
device to yield that high temperature it was decide

Later on a furnace with temperatures higher than
and the range was studied for entire 550

Two initial experiments were conducted to start the study of annealing of ITO as
thin films. In the first experiment

at 400
the very first experiment also included glass slides that were not

cleaned properly using the cleaning protocol so thoroughly explained in the last subse
tion. The result of the first annealing ex

The purpose of this first experiment was to actually find out if both our deposition and
annealing worked even to the slightest extent. Previously IT
mented with in our research group but had not yielded much luck after annealing at 300

C. Luckily the first experiment showed very promising results especially in the
case of the slide that was mounted on the circumference of the

Pilot run experiment for deposition rate and annealing for unclean

With this result it was safe to assume that the literature source was valid for both dep
sition rate as well as the annealing to some extent. Even

were more than a few reasons,
hot plate and the cleanliness of the glass substrate
surface of this particular hot plate was in reality n
distribution also varied, at some close observation it was seen that the glass slide wasn’t
even in contact with the surface from certain places. This only made more sense after
the hour of annealing ended and the resu

of the right hand side
on the circumference of the plate was the part where the slide wasn’t in proper contact

ling. Thus the non
side did not have the same temperature as in the middle of the slide that was in better

refer to the Figure

highest transparency as well as the least sheet resistance, but due to unavailability of a
device to yield that high temperature it was decide

Later on a furnace with temperatures higher than
and the range was studied for entire 550 °

Two initial experiments were conducted to start the study of annealing of ITO as
thin films. In the first experiment

°C for an hour, since 400
the very first experiment also included glass slides that were not

cleaned properly using the cleaning protocol so thoroughly explained in the last subse
tion. The result of the first annealing ex

The purpose of this first experiment was to actually find out if both our deposition and
annealing worked even to the slightest extent. Previously IT
mented with in our research group but had not yielded much luck after annealing at 300

C. Luckily the first experiment showed very promising results especially in the
case of the slide that was mounted on the circumference of the

Pilot run experiment for deposition rate and annealing for unclean

With this result it was safe to assume that the literature source was valid for both dep
sition rate as well as the annealing to some extent. Even

were more than a few reasons,
hot plate and the cleanliness of the glass substrate
surface of this particular hot plate was in reality n
distribution also varied, at some close observation it was seen that the glass slide wasn’t
even in contact with the surface from certain places. This only made more sense after
the hour of annealing ended and the resu

of the right hand side
on the circumference of the plate was the part where the slide wasn’t in proper contact

ling. Thus the non
side did not have the same temperature as in the middle of the slide that was in better

Figure

highest transparency as well as the least sheet resistance, but due to unavailability of a
device to yield that high temperature it was decide

Later on a furnace with temperatures higher than
°C range.

Two initial experiments were conducted to start the study of annealing of ITO as
thin films. In the first experiment

C for an hour, since 400
the very first experiment also included glass slides that were not

cleaned properly using the cleaning protocol so thoroughly explained in the last subse
tion. The result of the first annealing experiment is shown in figure

The purpose of this first experiment was to actually find out if both our deposition and
annealing worked even to the slightest extent. Previously IT
mented with in our research group but had not yielded much luck after annealing at 300

C. Luckily the first experiment showed very promising results especially in the
case of the slide that was mounted on the circumference of the

Pilot run experiment for deposition rate and annealing for unclean

With this result it was safe to assume that the literature source was valid for both dep
sition rate as well as the annealing to some extent. Even

were more than a few reasons,
hot plate and the cleanliness of the glass substrate
surface of this particular hot plate was in reality n
distribution also varied, at some close observation it was seen that the glass slide wasn’t
even in contact with the surface from certain places. This only made more sense after
the hour of annealing ended and the result of annealing

of the right hand side
on the circumference of the plate was the part where the slide wasn’t in proper contact

ling. Thus the non
side did not have the same temperature as in the middle of the slide that was in better

Figure 6

highest transparency as well as the least sheet resistance, but due to unavailability of a
device to yield that high temperature it was decide

Later on a furnace with temperatures higher than
C range.

Two initial experiments were conducted to start the study of annealing of ITO as
thin films. In the first experiment

C for an hour, since 400
the very first experiment also included glass slides that were not

cleaned properly using the cleaning protocol so thoroughly explained in the last subse
periment is shown in figure

The purpose of this first experiment was to actually find out if both our deposition and
annealing worked even to the slightest extent. Previously IT
mented with in our research group but had not yielded much luck after annealing at 300

C. Luckily the first experiment showed very promising results especially in the
case of the slide that was mounted on the circumference of the

Pilot run experiment for deposition rate and annealing for unclean

With this result it was safe to assume that the literature source was valid for both dep
sition rate as well as the annealing to some extent. Even

were more than a few reasons,
hot plate and the cleanliness of the glass substrate
surface of this particular hot plate was in reality n
distribution also varied, at some close observation it was seen that the glass slide wasn’t
even in contact with the surface from certain places. This only made more sense after

lt of annealing
of the right hand side

on the circumference of the plate was the part where the slide wasn’t in proper contact
ling. Thus the non

side did not have the same temperature as in the middle of the slide that was in better
6.6

highest transparency as well as the least sheet resistance, but due to unavailability of a
device to yield that high temperature it was decide

Later on a furnace with temperatures higher than
C range.

Two initial experiments were conducted to start the study of annealing of ITO as
thin films. In the first experiment

C for an hour, since 400
the very first experiment also included glass slides that were not

cleaned properly using the cleaning protocol so thoroughly explained in the last subse
periment is shown in figure

The purpose of this first experiment was to actually find out if both our deposition and
annealing worked even to the slightest extent. Previously IT
mented with in our research group but had not yielded much luck after annealing at 300

C. Luckily the first experiment showed very promising results especially in the
case of the slide that was mounted on the circumference of the

Pilot run experiment for deposition rate and annealing for unclean

With this result it was safe to assume that the literature source was valid for both dep
sition rate as well as the annealing to some extent. Even

were more than a few reasons,
hot plate and the cleanliness of the glass substrate
surface of this particular hot plate was in reality n
distribution also varied, at some close observation it was seen that the glass slide wasn’t
even in contact with the surface from certain places. This only made more sense after

lt of annealing
of the right hand side

on the circumference of the plate was the part where the slide wasn’t in proper contact
ling. Thus the non

side did not have the same temperature as in the middle of the slide that was in better
below.

highest transparency as well as the least sheet resistance, but due to unavailability of a
device to yield that high temperature it was decided

Later on a furnace with temperatures higher than
C range.

Two initial experiments were conducted to start the study of annealing of ITO as
thin films. In the first experiment

C for an hour, since 400
the very first experiment also included glass slides that were not

cleaned properly using the cleaning protocol so thoroughly explained in the last subse
periment is shown in figure

The purpose of this first experiment was to actually find out if both our deposition and
annealing worked even to the slightest extent. Previously IT
mented with in our research group but had not yielded much luck after annealing at 300

C. Luckily the first experiment showed very promising results especially in the
case of the slide that was mounted on the circumference of the

Pilot run experiment for deposition rate and annealing for unclean

With this result it was safe to assume that the literature source was valid for both dep
sition rate as well as the annealing to some extent. Even

were more than a few reasons,
hot plate and the cleanliness of the glass substrate
surface of this particular hot plate was in reality not very smooth and even thus the heat
distribution also varied, at some close observation it was seen that the glass slide wasn’t
even in contact with the surface from certain places. This only made more sense after

lt of annealing
of the right hand side

on the circumference of the plate was the part where the slide wasn’t in proper contact
ling. Thus the non-uniformity in transparency since that

side did not have the same temperature as in the middle of the slide that was in better
below.

highest transparency as well as the least sheet resistance, but due to unavailability of a
d to limit the study plan to 300

Later on a furnace with temperatures higher than

Two initial experiments were conducted to start the study of annealing of ITO as
thin films. In the first experiment, a 100

C for an hour, since 400
the very first experiment also included glass slides that were not

cleaned properly using the cleaning protocol so thoroughly explained in the last subse
periment is shown in figure

The purpose of this first experiment was to actually find out if both our deposition and
annealing worked even to the slightest extent. Previously IT
mented with in our research group but had not yielded much luck after annealing at 300

C. Luckily the first experiment showed very promising results especially in the
case of the slide that was mounted on the circumference of the

Pilot run experiment for deposition rate and annealing for unclean

With this result it was safe to assume that the literature source was valid for both dep
sition rate as well as the annealing to some extent. Even

were more than a few reasons,
hot plate and the cleanliness of the glass substrate was one of the prime reasons. The

ot very smooth and even thus the heat
distribution also varied, at some close observation it was seen that the glass slide wasn’t
even in contact with the surface from certain places. This only made more sense after

lt of annealing
of the right hand side black blotch

on the circumference of the plate was the part where the slide wasn’t in proper contact
uniformity in transparency since that

side did not have the same temperature as in the middle of the slide that was in better
below.

highest transparency as well as the least sheet resistance, but due to unavailability of a
to limit the study plan to 300

Later on a furnace with temperatures higher than

Two initial experiments were conducted to start the study of annealing of ITO as
a 100

C for an hour, since 400
the very first experiment also included glass slides that were not

cleaned properly using the cleaning protocol so thoroughly explained in the last subse
periment is shown in figure

The purpose of this first experiment was to actually find out if both our deposition and
annealing worked even to the slightest extent. Previously IT
mented with in our research group but had not yielded much luck after annealing at 300

C. Luckily the first experiment showed very promising results especially in the
case of the slide that was mounted on the circumference of the

Pilot run experiment for deposition rate and annealing for unclean

With this result it was safe to assume that the literature source was valid for both dep
sition rate as well as the annealing to some extent. Even

amongst which the quality of the
was one of the prime reasons. The

ot very smooth and even thus the heat
distribution also varied, at some close observation it was seen that the glass slide wasn’t
even in contact with the surface from certain places. This only made more sense after

lt of annealing was observed in the
black blotch

on the circumference of the plate was the part where the slide wasn’t in proper contact
uniformity in transparency since that

side did not have the same temperature as in the middle of the slide that was in better

highest transparency as well as the least sheet resistance, but due to unavailability of a
to limit the study plan to 300

Later on a furnace with temperatures higher than 800

Two initial experiments were conducted to start the study of annealing of ITO as
a 100

C for an hour, since 400
the very first experiment also included glass slides that were not

cleaned properly using the cleaning protocol so thoroughly explained in the last subse
periment is shown in figure

The purpose of this first experiment was to actually find out if both our deposition and
annealing worked even to the slightest extent. Previously IT
mented with in our research group but had not yielded much luck after annealing at 300

C. Luckily the first experiment showed very promising results especially in the
case of the slide that was mounted on the circumference of the

Pilot run experiment for deposition rate and annealing for unclean

With this result it was safe to assume that the literature source was valid for both dep
sition rate as well as the annealing to some extent. Even though the result wasn’

amongst which the quality of the
was one of the prime reasons. The

ot very smooth and even thus the heat
distribution also varied, at some close observation it was seen that the glass slide wasn’t
even in contact with the surface from certain places. This only made more sense after

was observed in the
black blotch

on the circumference of the plate was the part where the slide wasn’t in proper contact
uniformity in transparency since that

side did not have the same temperature as in the middle of the slide that was in better

highest transparency as well as the least sheet resistance, but due to unavailability of a
to limit the study plan to 300

800

Two initial experiments were conducted to start the study of annealing of ITO as
nm

C for an hour, since 400
the very first experiment also included glass slides that were not

cleaned properly using the cleaning protocol so thoroughly explained in the last subse
periment is shown in figure

The purpose of this first experiment was to actually find out if both our deposition and
annealing worked even to the slightest extent. Previously IT
mented with in our research group but had not yielded much luck after annealing at 300

C. Luckily the first experiment showed very promising results especially in the
case of the slide that was mounted on the circumference of the substrate holder.

Pilot run experiment for deposition rate and annealing for unclean

With this result it was safe to assume that the literature source was valid for both dep
though the result wasn’

amongst which the quality of the
was one of the prime reasons. The

ot very smooth and even thus the heat
distribution also varied, at some close observation it was seen that the glass slide wasn’t
even in contact with the surface from certain places. This only made more sense after

was observed in the
black blotch

on the circumference of the plate was the part where the slide wasn’t in proper contact
uniformity in transparency since that

side did not have the same temperature as in the middle of the slide that was in better

highest transparency as well as the least sheet resistance, but due to unavailability of a
to limit the study plan to 300

800 °C

Two initial experiments were conducted to start the study of annealing of ITO as
nm ITO as

C for an hour, since 400 °C had a successful hi
the very first experiment also included glass slides that were not

cleaned properly using the cleaning protocol so thoroughly explained in the last subse
periment is shown in figure

The purpose of this first experiment was to actually find out if both our deposition and
annealing worked even to the slightest extent. Previously ITO has been also exper
mented with in our research group but had not yielded much luck after annealing at 300

C. Luckily the first experiment showed very promising results especially in the
substrate holder.

Pilot run experiment for deposition rate and annealing for unclean

With this result it was safe to assume that the literature source was valid for both dep
though the result wasn’

amongst which the quality of the
was one of the prime reasons. The

ot very smooth and even thus the heat
distribution also varied, at some close observation it was seen that the glass slide wasn’t
even in contact with the surface from certain places. This only made more sense after

was observed in the
black blotches

on the circumference of the plate was the part where the slide wasn’t in proper contact
uniformity in transparency since that

side did not have the same temperature as in the middle of the slide that was in better

highest transparency as well as the least sheet resistance, but due to unavailability of a
to limit the study plan to 300

C was made available,

Two initial experiments were conducted to start the study of annealing of ITO as
ITO as
C had a successful hi

the very first experiment also included glass slides that were not
cleaned properly using the cleaning protocol so thoroughly explained in the last subse

periment is shown in figure

The purpose of this first experiment was to actually find out if both our deposition and
O has been also exper

mented with in our research group but had not yielded much luck after annealing at 300
C. Luckily the first experiment showed very promising results especially in the

substrate holder.

Pilot run experiment for deposition rate and annealing for unclean

With this result it was safe to assume that the literature source was valid for both dep
though the result wasn’

amongst which the quality of the
was one of the prime reasons. The

ot very smooth and even thus the heat
distribution also varied, at some close observation it was seen that the glass slide wasn’t
even in contact with the surface from certain places. This only made more sense after

was observed in the
es on the slide mounted

on the circumference of the plate was the part where the slide wasn’t in proper contact
uniformity in transparency since that

side did not have the same temperature as in the middle of the slide that was in better

highest transparency as well as the least sheet resistance, but due to unavailability of a
to limit the study plan to 300

was made available,

Two initial experiments were conducted to start the study of annealing of ITO as
ITO as
C had a successful hi

the very first experiment also included glass slides that were not
cleaned properly using the cleaning protocol so thoroughly explained in the last subse

periment is shown in figure 6

The purpose of this first experiment was to actually find out if both our deposition and
O has been also exper

mented with in our research group but had not yielded much luck after annealing at 300
C. Luckily the first experiment showed very promising results especially in the

substrate holder.

Pilot run experiment for deposition rate and annealing for unclean

With this result it was safe to assume that the literature source was valid for both dep
though the result wasn’

amongst which the quality of the
was one of the prime reasons. The

ot very smooth and even thus the heat
distribution also varied, at some close observation it was seen that the glass slide wasn’t
even in contact with the surface from certain places. This only made more sense after

was observed in the
on the slide mounted

on the circumference of the plate was the part where the slide wasn’t in proper contact
uniformity in transparency since that

side did not have the same temperature as in the middle of the slide that was in better

highest transparency as well as the least sheet resistance, but due to unavailability of a
to limit the study plan to 300

was made available,

Two initial experiments were conducted to start the study of annealing of ITO as
ITO as-deposited
C had a successful hi

the very first experiment also included glass slides that were not
cleaned properly using the cleaning protocol so thoroughly explained in the last subse

6.4

The purpose of this first experiment was to actually find out if both our deposition and
O has been also exper

mented with in our research group but had not yielded much luck after annealing at 300
C. Luckily the first experiment showed very promising results especially in the

substrate holder.

Pilot run experiment for deposition rate and annealing for unclean

With this result it was safe to assume that the literature source was valid for both dep
though the result wasn’

amongst which the quality of the
was one of the prime reasons. The

ot very smooth and even thus the heat
distribution also varied, at some close observation it was seen that the glass slide wasn’t
even in contact with the surface from certain places. This only made more sense after

was observed in the
on the slide mounted

on the circumference of the plate was the part where the slide wasn’t in proper contact
uniformity in transparency since that

side did not have the same temperature as in the middle of the slide that was in better

highest transparency as well as the least sheet resistance, but due to unavailability of a
to limit the study plan to 300

was made available,

Two initial experiments were conducted to start the study of annealing of ITO as
deposited

C had a successful hi
the very first experiment also included glass slides that were not

cleaned properly using the cleaning protocol so thoroughly explained in the last subse
.4 and better in

The purpose of this first experiment was to actually find out if both our deposition and
O has been also exper

mented with in our research group but had not yielded much luck after annealing at 300
C. Luckily the first experiment showed very promising results especially in the

substrate holder.

Pilot run experiment for deposition rate and annealing for unclean

With this result it was safe to assume that the literature source was valid for both dep
though the result wasn’

amongst which the quality of the
was one of the prime reasons. The

ot very smooth and even thus the heat
distribution also varied, at some close observation it was seen that the glass slide wasn’t
even in contact with the surface from certain places. This only made more sense after

was observed in the
on the slide mounted

on the circumference of the plate was the part where the slide wasn’t in proper contact
uniformity in transparency since that

side did not have the same temperature as in the middle of the slide that was in better

highest transparency as well as the least sheet resistance, but due to unavailability of a
to limit the study plan to 300

was made available,

Two initial experiments were conducted to start the study of annealing of ITO as
deposited

C had a successful hi
the very first experiment also included glass slides that were not

cleaned properly using the cleaning protocol so thoroughly explained in the last subse
and better in

The purpose of this first experiment was to actually find out if both our deposition and
O has been also exper

mented with in our research group but had not yielded much luck after annealing at 300
C. Luckily the first experiment showed very promising results especially in the

substrate holder.

Pilot run experiment for deposition rate and annealing for unclean

With this result it was safe to assume that the literature source was valid for both dep
though the result wasn’

amongst which the quality of the
was one of the prime reasons. The

ot very smooth and even thus the heat
distribution also varied, at some close observation it was seen that the glass slide wasn’t
even in contact with the surface from certain places. This only made more sense after

was observed in the Figure
on the slide mounted

on the circumference of the plate was the part where the slide wasn’t in proper contact
uniformity in transparency since that

side did not have the same temperature as in the middle of the slide that was in better

highest transparency as well as the least sheet resistance, but due to unavailability of a
to limit the study plan to 300

was made available,

Two initial experiments were conducted to start the study of annealing of ITO as
deposited

C had a successful hi
the very first experiment also included glass slides that were not

cleaned properly using the cleaning protocol so thoroughly explained in the last subse
and better in

The purpose of this first experiment was to actually find out if both our deposition and
O has been also exper

mented with in our research group but had not yielded much luck after annealing at 300
C. Luckily the first experiment showed very promising results especially in the

Pilot run experiment for deposition rate and annealing for unclean

With this result it was safe to assume that the literature source was valid for both dep
though the result wasn’t very

amongst which the quality of the
was one of the prime reasons. The

ot very smooth and even thus the heat
distribution also varied, at some close observation it was seen that the glass slide wasn’t
even in contact with the surface from certain places. This only made more sense after

Figure
on the slide mounted

on the circumference of the plate was the part where the slide wasn’t in proper contact
uniformity in transparency since that

side did not have the same temperature as in the middle of the slide that was in better

highest transparency as well as the least sheet resistance, but due to unavailability of a
to limit the study plan to 300-450

was made available,

Two initial experiments were conducted to start the study of annealing of ITO as
glass

C had a successful hi
the very first experiment also included glass slides that were not

cleaned properly using the cleaning protocol so thoroughly explained in the last subse
and better in

The purpose of this first experiment was to actually find out if both our deposition and
O has been also exper

mented with in our research group but had not yielded much luck after annealing at 300
C. Luckily the first experiment showed very promising results especially in the

Pilot run experiment for deposition rate and annealing for uncleans

With this result it was safe to assume that the literature source was valid for both dep
t very

amongst which the quality of the
was one of the prime reasons. The

ot very smooth and even thus the heat
distribution also varied, at some close observation it was seen that the glass slide wasn’t
even in contact with the surface from certain places. This only made more sense after

Figure 6
on the slide mounted

on the circumference of the plate was the part where the slide wasn’t in proper contact
uniformity in transparency since that

side did not have the same temperature as in the middle of the slide that was in better

38

highest transparency as well as the least sheet resistance, but due to unavailability of a
450

was made available,

Two initial experiments were conducted to start the study of annealing of ITO as-
lass

C had a successful his-
the very first experiment also included glass slides that were not

cleaned properly using the cleaning protocol so thoroughly explained in the last subsec-
and better in

The purpose of this first experiment was to actually find out if both our deposition and
O has been also experi-

mented with in our research group but had not yielded much luck after annealing at 300-
C. Luckily the first experiment showed very promising results especially in the

sed

With this result it was safe to assume that the literature source was valid for both depo-
t very

amongst which the quality of the
was one of the prime reasons. The

ot very smooth and even thus the heat
distribution also varied, at some close observation it was seen that the glass slide wasn’t
even in contact with the surface from certain places. This only made more sense after

6.5.
on the slide mounted

on the circumference of the plate was the part where the slide wasn’t in proper contact
uniformity in transparency since that

side did not have the same temperature as in the middle of the slide that was in better

38

highest transparency as well as the least sheet resistance, but due to unavailability of a
450

was made available,

-
lass

s-
the very first experiment also included glass slides that were not

c-
and better in

The purpose of this first experiment was to actually find out if both our deposition and
i-
-

C. Luckily the first experiment showed very promising results especially in the

ed

o-
t very

amongst which the quality of the
was one of the prime reasons. The

ot very smooth and even thus the heat
distribution also varied, at some close observation it was seen that the glass slide wasn’t
even in contact with the surface from certain places. This only made more sense after

.5.
on the slide mounted

on the circumference of the plate was the part where the slide wasn’t in proper contact
uniformity in transparency since that

side did not have the same temperature as in the middle of the slide that was in better



In the second experiment
cleaning proto
0.05
hotplate was used, a better one
tempera
better
was, for the first
in the transparency by increasing the black semi
in th
annealing a sample of as
plate were exposed to oxygen plasma
done
ITO, for
to

Apparently oxygen plasma treatment didn’t really have any significant effect on the
transparency on the first look after annealing. However
40
Figure
the literature;
use the tempera

Figure

In the second experiment
cleaning proto
0.05
hotplate was used, a better one
tempera
better
was, for the first
in the transparency by increasing the black semi
in th
annealing a sample of as
plate were exposed to oxygen plasma
done
ITO, for
to oxygen ions or

Figure

Apparently oxygen plasma treatment didn’t really have any significant effect on the
transparency on the first look after annealing. However
400
Figure
the literature;
use the tempera

Figure

In the second experiment
cleaning proto

nm
hotplate was used, a better one
tempera
better re
was, for the first
in the transparency by increasing the black semi
in the pilot run.
annealing a sample of as
plate were exposed to oxygen plasma
done to see if there was any effect of the o
ITO, for

oxygen ions or

Figure

Apparently oxygen plasma treatment didn’t really have any significant effect on the
transparency on the first look after annealing. However

°C and the
Figure
the literature;
use the tempera

Figure

In the second experiment
cleaning proto

nm/s and the thickness
hotplate was used, a better one
temperature span.

results
was, for the first
in the transparency by increasing the black semi

e pilot run.
annealing a sample of as
plate were exposed to oxygen plasma

to see if there was any effect of the o
ITO, for im

oxygen ions or

Figure 6

Apparently oxygen plasma treatment didn’t really have any significant effect on the
transparency on the first look after annealing. However

C and the
Figure 6.7
the literature;
use the tempera

Figure 6.6:

In the second experiment
cleaning proto

/s and the thickness
hotplate was used, a better one

ture span.
sults

was, for the first
in the transparency by increasing the black semi

e pilot run.
annealing a sample of as
plate were exposed to oxygen plasma

to see if there was any effect of the o
improving

oxygen ions or

6.7:

Apparently oxygen plasma treatment didn’t really have any significant effect on the
transparency on the first look after annealing. However

C and the
.7. The

the literature;
use the tempera

.6: Non uniform blotches in the annealed

In the second experiment
cleaning protocol mentioned in subsection 6.2

/s and the thickness
hotplate was used, a better one

ture span.
sults. The

was, for the first
in the transparency by increasing the black semi

e pilot run.
annealing a sample of as
plate were exposed to oxygen plasma

to see if there was any effect of the o
proving

oxygen ions or

.7: Second run with cleaning protocol, deposition rate and annealing at 400

Apparently oxygen plasma treatment didn’t really have any significant effect on the
transparency on the first look after annealing. However

C and the
. The

the literature; the strategy to implement the selected deposition rate of 0.05
use the tempera

Non uniform blotches in the annealed

In the second experiment
col mentioned in subsection 6.2

/s and the thickness
hotplate was used, a better one

ture span.
The

was, for the first experiment
in the transparency by increasing the black semi

e pilot run. Another small deviation was also tried in the second experiment
annealing a sample of as
plate were exposed to oxygen plasma

to see if there was any effect of the o
proving

oxygen ions or allow

Second run with cleaning protocol, deposition rate and annealing at 400

Apparently oxygen plasma treatment didn’t really have any significant effect on the
transparency on the first look after annealing. However

one
. The result

the strategy to implement the selected deposition rate of 0.05
use the temperature of

Non uniform blotches in the annealed

In the second experiment
col mentioned in subsection 6.2

/s and the thickness
hotplate was used, a better one

ture span. The annealing temperature howev
The thickness was set twice as much from the last time, the

experiment
in the transparency by increasing the black semi

nother small deviation was also tried in the second experiment
annealing a sample of as
plate were exposed to oxygen plasma

to see if there was any effect of the o
proving the transpare

allow

Second run with cleaning protocol, deposition rate and annealing at 400

Apparently oxygen plasma treatment didn’t really have any significant effect on the
transparency on the first look after annealing. However

one hour time gave a very good apparent result, w
result

the strategy to implement the selected deposition rate of 0.05
ture of

Non uniform blotches in the annealed

In the second experiment
col mentioned in subsection 6.2

/s and the thickness
hotplate was used, a better one

The annealing temperature howev
thickness was set twice as much from the last time, the

experiment
in the transparency by increasing the black semi

nother small deviation was also tried in the second experiment
annealing a sample of as
plate were exposed to oxygen plasma

to see if there was any effect of the o
the transpare

allow

Second run with cleaning protocol, deposition rate and annealing at 400

Apparently oxygen plasma treatment didn’t really have any significant effect on the
transparency on the first look after annealing. However

hour time gave a very good apparent result, w
results were

the strategy to implement the selected deposition rate of 0.05
ture of 400

Non uniform blotches in the annealed

In the second experiment, the glass slides w
col mentioned in subsection 6.2

/s and the thickness
hotplate was used, a better one

The annealing temperature howev
thickness was set twice as much from the last time, the

experiment
in the transparency by increasing the black semi

nother small deviation was also tried in the second experiment
annealing a sample of as-deposited slides from the middle and the circumference of the
plate were exposed to oxygen plasma

to see if there was any effect of the o
the transpare

allow deposi

Second run with cleaning protocol, deposition rate and annealing at 400

Apparently oxygen plasma treatment didn’t really have any significant effect on the
transparency on the first look after annealing. However

hour time gave a very good apparent result, w
s were

the strategy to implement the selected deposition rate of 0.05
400

Non uniform blotches in the annealed

the glass slides w
col mentioned in subsection 6.2

/s and the thickness was maintained at
hotplate was used, a better one

The annealing temperature howev
thickness was set twice as much from the last time, the

experiments
in the transparency by increasing the black semi

nother small deviation was also tried in the second experiment
deposited slides from the middle and the circumference of the

plate were exposed to oxygen plasma
to see if there was any effect of the o

the transpare
deposi

Second run with cleaning protocol, deposition rate and annealing at 400

Apparently oxygen plasma treatment didn’t really have any significant effect on the
transparency on the first look after annealing. However

hour time gave a very good apparent result, w
s were

the strategy to implement the selected deposition rate of 0.05
400 °C for 1 hour was a good head start for the fabricating ITO

Non uniform blotches in the annealed

the glass slides w
col mentioned in subsection 6.2

was maintained at
hotplate was used, a better one, both in terms of surface quality and with slightly higher

The annealing temperature howev
thickness was set twice as much from the last time, the

s it wasn’t clear if increasing the thickness would decrease
in the transparency by increasing the black semi

nother small deviation was also tried in the second experiment
deposited slides from the middle and the circumference of the

plate were exposed to oxygen plasma
to see if there was any effect of the o

the transpare
deposition

Second run with cleaning protocol, deposition rate and annealing at 400

Apparently oxygen plasma treatment didn’t really have any significant effect on the
transparency on the first look after annealing. However

hour time gave a very good apparent result, w
good enough to

the strategy to implement the selected deposition rate of 0.05
C for 1 hour was a good head start for the fabricating ITO

Non uniform blotches in the annealed

the glass slides w
col mentioned in subsection 6.2

was maintained at
both in terms of surface quality and with slightly higher

The annealing temperature howev
thickness was set twice as much from the last time, the

it wasn’t clear if increasing the thickness would decrease
in the transparency by increasing the black semi

nother small deviation was also tried in the second experiment
deposited slides from the middle and the circumference of the

plate were exposed to oxygen plasma
to see if there was any effect of the o

the transparency of the samples, it is beneficial
tion

Second run with cleaning protocol, deposition rate and annealing at 400

Apparently oxygen plasma treatment didn’t really have any significant effect on the
transparency on the first look after annealing. However

hour time gave a very good apparent result, w
good enough to

the strategy to implement the selected deposition rate of 0.05
C for 1 hour was a good head start for the fabricating ITO

Non uniform blotches in the annealed

the glass slides w
col mentioned in subsection 6.2

was maintained at
both in terms of surface quality and with slightly higher

The annealing temperature howev
thickness was set twice as much from the last time, the

it wasn’t clear if increasing the thickness would decrease
in the transparency by increasing the black semi

nother small deviation was also tried in the second experiment
deposited slides from the middle and the circumference of the

plate were exposed to oxygen plasma
to see if there was any effect of the o

ncy of the samples, it is beneficial
in the presence of oxygen at certain pres

Second run with cleaning protocol, deposition rate and annealing at 400

Apparently oxygen plasma treatment didn’t really have any significant effect on the
transparency on the first look after annealing. However

hour time gave a very good apparent result, w
good enough to

the strategy to implement the selected deposition rate of 0.05
C for 1 hour was a good head start for the fabricating ITO

Non uniform blotches in the annealed

the glass slides w
col mentioned in subsection 6.2

was maintained at
both in terms of surface quality and with slightly higher

The annealing temperature howev
thickness was set twice as much from the last time, the

it wasn’t clear if increasing the thickness would decrease
in the transparency by increasing the black semi

nother small deviation was also tried in the second experiment
deposited slides from the middle and the circumference of the

plate were exposed to oxygen plasma up to
to see if there was any effect of the o

ncy of the samples, it is beneficial
in the presence of oxygen at certain pres

Second run with cleaning protocol, deposition rate and annealing at 400

Apparently oxygen plasma treatment didn’t really have any significant effect on the
transparency on the first look after annealing. However

hour time gave a very good apparent result, w
good enough to

the strategy to implement the selected deposition rate of 0.05
C for 1 hour was a good head start for the fabricating ITO

Non uniform blotches in the annealed

the glass slides w
col mentioned in subsection 6.2

was maintained at
both in terms of surface quality and with slightly higher

The annealing temperature howev
thickness was set twice as much from the last time, the

it wasn’t clear if increasing the thickness would decrease
in the transparency by increasing the black semi

nother small deviation was also tried in the second experiment
deposited slides from the middle and the circumference of the

up to
to see if there was any effect of the o

ncy of the samples, it is beneficial
in the presence of oxygen at certain pres

Second run with cleaning protocol, deposition rate and annealing at 400
°

Apparently oxygen plasma treatment didn’t really have any significant effect on the
transparency on the first look after annealing. However

hour time gave a very good apparent result, w
good enough to

the strategy to implement the selected deposition rate of 0.05
C for 1 hour was a good head start for the fabricating ITO

Non uniform blotches in the annealed

the glass slides were
col mentioned in subsection 6.2.

was maintained at
both in terms of surface quality and with slightly higher

The annealing temperature howev
thickness was set twice as much from the last time, the

it wasn’t clear if increasing the thickness would decrease
in the transparency by increasing the black semi

nother small deviation was also tried in the second experiment
deposited slides from the middle and the circumference of the

up to 5 minutes.
to see if there was any effect of the oxygen plasma prior to annealing. In case of

ncy of the samples, it is beneficial
in the presence of oxygen at certain pres

Second run with cleaning protocol, deposition rate and annealing at 400
°C.

Apparently oxygen plasma treatment didn’t really have any significant effect on the
transparency on the first look after annealing. However

hour time gave a very good apparent result, w
good enough to

the strategy to implement the selected deposition rate of 0.05
C for 1 hour was a good head start for the fabricating ITO

Non uniform blotches in the annealed

ere pre
. The ITO deposi

was maintained at 200
both in terms of surface quality and with slightly higher

The annealing temperature howev
thickness was set twice as much from the last time, the

it wasn’t clear if increasing the thickness would decrease
in the transparency by increasing the black semi-transparent blotches that were observed

nother small deviation was also tried in the second experiment
deposited slides from the middle and the circumference of the

5 minutes.
xygen plasma prior to annealing. In case of

ncy of the samples, it is beneficial
in the presence of oxygen at certain pres

Second run with cleaning protocol, deposition rate and annealing at 400

Apparently oxygen plasma treatment didn’t really have any significant effect on the
transparency on the first look after annealing. However

hour time gave a very good apparent result, w
good enough to authenticate the parameters mentioned in

the strategy to implement the selected deposition rate of 0.05
C for 1 hour was a good head start for the fabricating ITO

Non uniform blotches in the annealed

pre-
The ITO deposi
200

both in terms of surface quality and with slightly higher
The annealing temperature howev
thickness was set twice as much from the last time, the

it wasn’t clear if increasing the thickness would decrease
transparent blotches that were observed

nother small deviation was also tried in the second experiment
deposited slides from the middle and the circumference of the

5 minutes.
xygen plasma prior to annealing. In case of

ncy of the samples, it is beneficial
in the presence of oxygen at certain pres

Second run with cleaning protocol, deposition rate and annealing at 400

Apparently oxygen plasma treatment didn’t really have any significant effect on the
transparency on the first look after annealing. However

hour time gave a very good apparent result, w
authenticate the parameters mentioned in

the strategy to implement the selected deposition rate of 0.05
C for 1 hour was a good head start for the fabricating ITO

Non uniform blotches in the annealed ITO film on the right hand side

-treated
The ITO deposi

nm
both in terms of surface quality and with slightly higher

The annealing temperature however was
thickness was set twice as much from the last time, the

it wasn’t clear if increasing the thickness would decrease
transparent blotches that were observed

nother small deviation was also tried in the second experiment
deposited slides from the middle and the circumference of the

5 minutes.
xygen plasma prior to annealing. In case of

ncy of the samples, it is beneficial
in the presence of oxygen at certain pres

Second run with cleaning protocol, deposition rate and annealing at 400

Apparently oxygen plasma treatment didn’t really have any significant effect on the
transparency on the first look after annealing. However

hour time gave a very good apparent result, w
authenticate the parameters mentioned in

the strategy to implement the selected deposition rate of 0.05
C for 1 hour was a good head start for the fabricating ITO

ITO film on the right hand side

treated
The ITO deposi

nm. For annealing this time another
both in terms of surface quality and with slightly higher

er was
thickness was set twice as much from the last time, the

it wasn’t clear if increasing the thickness would decrease
transparent blotches that were observed

nother small deviation was also tried in the second experiment
deposited slides from the middle and the circumference of the

This small additional process w
xygen plasma prior to annealing. In case of

ncy of the samples, it is beneficial
in the presence of oxygen at certain pres

Second run with cleaning protocol, deposition rate and annealing at 400

Apparently oxygen plasma treatment didn’t really have any significant effect on the
transparency on the first look after annealing. However,

hour time gave a very good apparent result, w
authenticate the parameters mentioned in

the strategy to implement the selected deposition rate of 0.05
C for 1 hour was a good head start for the fabricating ITO

ITO film on the right hand side

treated and
The ITO deposi

. For annealing this time another
both in terms of surface quality and with slightly higher

er was
thickness was set twice as much from the last time, the

it wasn’t clear if increasing the thickness would decrease
transparent blotches that were observed

nother small deviation was also tried in the second experiment
deposited slides from the middle and the circumference of the

This small additional process w
xygen plasma prior to annealing. In case of

ncy of the samples, it is beneficial
in the presence of oxygen at certain pres

Second run with cleaning protocol, deposition rate and annealing at 400

Apparently oxygen plasma treatment didn’t really have any significant effect on the
, the annealin

hour time gave a very good apparent result, w
authenticate the parameters mentioned in

the strategy to implement the selected deposition rate of 0.05
C for 1 hour was a good head start for the fabricating ITO

ITO film on the right hand side

and
The ITO deposi

. For annealing this time another
both in terms of surface quality and with slightly higher

er was set for 400
thickness was set twice as much from the last time, the

it wasn’t clear if increasing the thickness would decrease
transparent blotches that were observed

nother small deviation was also tried in the second experiment
deposited slides from the middle and the circumference of the

This small additional process w
xygen plasma prior to annealing. In case of

ncy of the samples, it is beneficial
in the presence of oxygen at certain pres

Second run with cleaning protocol, deposition rate and annealing at 400

Apparently oxygen plasma treatment didn’t really have any significant effect on the
the annealin

hour time gave a very good apparent result, w
authenticate the parameters mentioned in

the strategy to implement the selected deposition rate of 0.05
C for 1 hour was a good head start for the fabricating ITO

ITO film on the right hand side

and cleaned
The ITO deposition was

. For annealing this time another
both in terms of surface quality and with slightly higher

set for 400
thickness was set twice as much from the last time, the

it wasn’t clear if increasing the thickness would decrease
transparent blotches that were observed

nother small deviation was also tried in the second experiment
deposited slides from the middle and the circumference of the

This small additional process w
xygen plasma prior to annealing. In case of

ncy of the samples, it is beneficial
in the presence of oxygen at certain pres

Second run with cleaning protocol, deposition rate and annealing at 400

Apparently oxygen plasma treatment didn’t really have any significant effect on the
the annealin

hour time gave a very good apparent result, w
authenticate the parameters mentioned in

the strategy to implement the selected deposition rate of 0.05
C for 1 hour was a good head start for the fabricating ITO

ITO film on the right hand side

cleaned
tion was

. For annealing this time another
both in terms of surface quality and with slightly higher

set for 400
thickness was set twice as much from the last time, the

it wasn’t clear if increasing the thickness would decrease
transparent blotches that were observed

nother small deviation was also tried in the second experiment
deposited slides from the middle and the circumference of the

This small additional process w
xygen plasma prior to annealing. In case of

ncy of the samples, it is beneficial
in the presence of oxygen at certain pres

Second run with cleaning protocol, deposition rate and annealing at 400

Apparently oxygen plasma treatment didn’t really have any significant effect on the
the annealin

hour time gave a very good apparent result, which has been seen in
authenticate the parameters mentioned in

the strategy to implement the selected deposition rate of 0.05
C for 1 hour was a good head start for the fabricating ITO

ITO film on the right hand side

cleaned
tion was

. For annealing this time another
both in terms of surface quality and with slightly higher

set for 400
thickness was set twice as much from the last time, the

it wasn’t clear if increasing the thickness would decrease
transparent blotches that were observed

nother small deviation was also tried in the second experiment
deposited slides from the middle and the circumference of the

This small additional process w
xygen plasma prior to annealing. In case of

ncy of the samples, it is beneficial to
in the presence of oxygen at certain pres

Second run with cleaning protocol, deposition rate and annealing at 400

Apparently oxygen plasma treatment didn’t really have any significant effect on the
the annealing temperature

hich has been seen in
authenticate the parameters mentioned in

the strategy to implement the selected deposition rate of 0.05
C for 1 hour was a good head start for the fabricating ITO

ITO film on the right hand side

cleaned according to the
tion was done

. For annealing this time another
both in terms of surface quality and with slightly higher

set for 400 °
thickness was set twice as much from the last time, the rea

it wasn’t clear if increasing the thickness would decrease
transparent blotches that were observed

nother small deviation was also tried in the second experiment
deposited slides from the middle and the circumference of the

This small additional process w
xygen plasma prior to annealing. In case of

to expose
in the presence of oxygen at certain pres

Second run with cleaning protocol, deposition rate and annealing at 400

Apparently oxygen plasma treatment didn’t really have any significant effect on the
g temperature

hich has been seen in
authenticate the parameters mentioned in

the strategy to implement the selected deposition rate of 0.05
C for 1 hour was a good head start for the fabricating ITO

ITO film on the right hand side

according to the
done

. For annealing this time another
both in terms of surface quality and with slightly higher

°C, to ob
reason for that

it wasn’t clear if increasing the thickness would decrease
transparent blotches that were observed

nother small deviation was also tried in the second experiment
deposited slides from the middle and the circumference of the

This small additional process w
xygen plasma prior to annealing. In case of

expose
in the presence of oxygen at certain pressures

Second run with cleaning protocol, deposition rate and annealing at 400

Apparently oxygen plasma treatment didn’t really have any significant effect on the
g temperature

hich has been seen in
authenticate the parameters mentioned in

the strategy to implement the selected deposition rate of 0.05 nm/s and to
C for 1 hour was a good head start for the fabricating ITO

ITO film on the right hand side

according to the
done at a rate of

. For annealing this time another
both in terms of surface quality and with slightly higher

C, to ob
son for that

it wasn’t clear if increasing the thickness would decrease
transparent blotches that were observed

nother small deviation was also tried in the second experiment
deposited slides from the middle and the circumference of the

This small additional process w
xygen plasma prior to annealing. In case of

expose t
ures

Second run with cleaning protocol, deposition rate and annealing at 400

Apparently oxygen plasma treatment didn’t really have any significant effect on the
g temperature

hich has been seen in
authenticate the parameters mentioned in

nm/s and to
C for 1 hour was a good head start for the fabricating ITO

ITO film on the right hand side

according to the
at a rate of

. For annealing this time another
both in terms of surface quality and with slightly higher

C, to ob
son for that

it wasn’t clear if increasing the thickness would decrease
transparent blotches that were observed

nother small deviation was also tried in the second experiment, b
deposited slides from the middle and the circumference of the

This small additional process w
xygen plasma prior to annealing. In case of

the
ures [8

Second run with cleaning protocol, deposition rate and annealing at 400

Apparently oxygen plasma treatment didn’t really have any significant effect on the
g temperature

hich has been seen in
authenticate the parameters mentioned in

nm/s and to
C for 1 hour was a good head start for the fabricating ITO

ITO film on the right hand side.

according to the
at a rate of

. For annealing this time another
both in terms of surface quality and with slightly higher

C, to observe
son for that

it wasn’t clear if increasing the thickness would decrease
transparent blotches that were observed

, before
deposited slides from the middle and the circumference of the

This small additional process w
xygen plasma prior to annealing. In case of

films
8-9].

Second run with cleaning protocol, deposition rate and annealing at 400

Apparently oxygen plasma treatment didn’t really have any significant effect on the
g temperature

hich has been seen in
authenticate the parameters mentioned in

nm/s and to
C for 1 hour was a good head start for the fabricating ITO

39

according to the
at a rate of

. For annealing this time another
both in terms of surface quality and with slightly higher

serve
son for that

it wasn’t clear if increasing the thickness would decrease
transparent blotches that were observed

efore
deposited slides from the middle and the circumference of the

This small additional process was
xygen plasma prior to annealing. In case of

films
].

Second run with cleaning protocol, deposition rate and annealing at 400

Apparently oxygen plasma treatment didn’t really have any significant effect on the
g temperature of

hich has been seen in
authenticate the parameters mentioned in

nm/s and to
C for 1 hour was a good head start for the fabricating ITO

39

according to the
at a rate of

. For annealing this time another
both in terms of surface quality and with slightly higher

serve
son for that

it wasn’t clear if increasing the thickness would decrease
transparent blotches that were observed

efore
deposited slides from the middle and the circumference of the

as
xygen plasma prior to annealing. In case of

films

Apparently oxygen plasma treatment didn’t really have any significant effect on the
of

hich has been seen in
authenticate the parameters mentioned in

nm/s and to
C for 1 hour was a good head start for the fabricating ITO



films which were at least transparent. The conductivity or the resistance of the film were
no
sheet was measured with a digital multimeter at two fixed points on the film
though t
resistance
However

Sadly
functi
were thus done in a furnace which could provide temperatures more than 600
the second experiments, a series of
temper
and transparent results. However
in the temperature
In

It is worth mentioning that the ITO granules used in the crucible for deposition process
come in different compositions commercially. This has been discussed in Chapter 3
exclusively, the compositions of In
Most of our study was done with 90/10, as in the beginning this was the only compos
tion available in the lab. Later on
experimentation was carried out. The reason for that was, 95/5 com
transparency and has very little colo
was much higher compared to the ones observed with 90/10 granules. The sheet r
sistances of 95/5 were observed 10 times higher than that of 90/10 co
ules, after deposition and annealing. Figure
annealing temperatures with 90/10 and 95/5 compositions.

Figure

films which were at least transparent. The conductivity or the resistance of the film were
not as yet measure
sheet was measured with a digital multimeter at two fixed points on the film
though t
resistance
However

Sadly
functi
were thus done in a furnace which could provide temperatures more than 600
the second experiments, a series of
temper
and transparent results. However
in the temperature
In2O

It is worth mentioning that the ITO granules used in the crucible for deposition process
come in different compositions commercially. This has been discussed in Chapter 3
exclusively, the compositions of In
Most of our study was done with 90/10, as in the beginning this was the only compos
tion available in the lab. Later on
experimentation was carried out. The reason for that was, 95/5 com
transparency and has very little colo
was much higher compared to the ones observed with 90/10 granules. The sheet r
sistances of 95/5 were observed 10 times higher than that of 90/10 co
ules, after deposition and annealing. Figure
annealing temperatures with 90/10 and 95/5 compositions.

Figure

films which were at least transparent. The conductivity or the resistance of the film were
t as yet measure

sheet was measured with a digital multimeter at two fixed points on the film
though t
resistance
However

Sadly, after the second deposition and annealing experiment the hotplate of the lab ma
functioned and was decommissioned for repairs. The rest of the annealing experiments
were thus done in a furnace which could provide temperatures more than 600
the second experiments, a series of
temperatures ranging from 350
and transparent results. However
in the temperature

O3/SnO

It is worth mentioning that the ITO granules used in the crucible for deposition process
come in different compositions commercially. This has been discussed in Chapter 3
exclusively, the compositions of In
Most of our study was done with 90/10, as in the beginning this was the only compos
tion available in the lab. Later on
experimentation was carried out. The reason for that was, 95/5 com
transparency and has very little colo
was much higher compared to the ones observed with 90/10 granules. The sheet r
sistances of 95/5 were observed 10 times higher than that of 90/10 co
ules, after deposition and annealing. Figure
annealing temperatures with 90/10 and 95/5 compositions.

Figure

films which were at least transparent. The conductivity or the resistance of the film were
t as yet measure

sheet was measured with a digital multimeter at two fixed points on the film
though the readings of the multimeter al
resistance
However,

after the second deposition and annealing experiment the hotplate of the lab ma
oned and was decommissioned for repairs. The rest of the annealing experiments

were thus done in a furnace which could provide temperatures more than 600
the second experiments, a series of

atures ranging from 350
and transparent results. However
in the temperature

/SnO

It is worth mentioning that the ITO granules used in the crucible for deposition process
come in different compositions commercially. This has been discussed in Chapter 3
exclusively, the compositions of In
Most of our study was done with 90/10, as in the beginning this was the only compos
tion available in the lab. Later on
experimentation was carried out. The reason for that was, 95/5 com
transparency and has very little colo
was much higher compared to the ones observed with 90/10 granules. The sheet r
sistances of 95/5 were observed 10 times higher than that of 90/10 co
ules, after deposition and annealing. Figure
annealing temperatures with 90/10 and 95/5 compositions.

Figure 6.8:

films which were at least transparent. The conductivity or the resistance of the film were
t as yet measure

sheet was measured with a digital multimeter at two fixed points on the film
he readings of the multimeter al

is dependent on the distance between the probes, which differed as well.
the readings always fluctuated be

after the second deposition and annealing experiment the hotplate of the lab ma
oned and was decommissioned for repairs. The rest of the annealing experiments

were thus done in a furnace which could provide temperatures more than 600
the second experiments, a series of

atures ranging from 350
and transparent results. However
in the temperature

/SnO2 granules

It is worth mentioning that the ITO granules used in the crucible for deposition process
come in different compositions commercially. This has been discussed in Chapter 3
exclusively, the compositions of In
Most of our study was done with 90/10, as in the beginning this was the only compos
tion available in the lab. Later on
experimentation was carried out. The reason for that was, 95/5 com
transparency and has very little colo
was much higher compared to the ones observed with 90/10 granules. The sheet r
sistances of 95/5 were observed 10 times higher than that of 90/10 co
ules, after deposition and annealing. Figure
annealing temperatures with 90/10 and 95/5 compositions.

.8: Sample of 200
nealing

films which were at least transparent. The conductivity or the resistance of the film were
t as yet measure

sheet was measured with a digital multimeter at two fixed points on the film
he readings of the multimeter al

is dependent on the distance between the probes, which differed as well.
the readings always fluctuated be

after the second deposition and annealing experiment the hotplate of the lab ma
oned and was decommissioned for repairs. The rest of the annealing experiments

were thus done in a furnace which could provide temperatures more than 600
the second experiments, a series of

atures ranging from 350
and transparent results. However
in the temperature

granules

It is worth mentioning that the ITO granules used in the crucible for deposition process
come in different compositions commercially. This has been discussed in Chapter 3
exclusively, the compositions of In
Most of our study was done with 90/10, as in the beginning this was the only compos
tion available in the lab. Later on
experimentation was carried out. The reason for that was, 95/5 com
transparency and has very little colo
was much higher compared to the ones observed with 90/10 granules. The sheet r
sistances of 95/5 were observed 10 times higher than that of 90/10 co
ules, after deposition and annealing. Figure
annealing temperatures with 90/10 and 95/5 compositions.

Sample of 200
nealing

films which were at least transparent. The conductivity or the resistance of the film were
t as yet measure

sheet was measured with a digital multimeter at two fixed points on the film
he readings of the multimeter al

is dependent on the distance between the probes, which differed as well.
the readings always fluctuated be

after the second deposition and annealing experiment the hotplate of the lab ma
oned and was decommissioned for repairs. The rest of the annealing experiments

were thus done in a furnace which could provide temperatures more than 600
the second experiments, a series of

atures ranging from 350
and transparent results. However
in the temperature

granules

It is worth mentioning that the ITO granules used in the crucible for deposition process
come in different compositions commercially. This has been discussed in Chapter 3
exclusively, the compositions of In
Most of our study was done with 90/10, as in the beginning this was the only compos
tion available in the lab. Later on
experimentation was carried out. The reason for that was, 95/5 com
transparency and has very little colo
was much higher compared to the ones observed with 90/10 granules. The sheet r
sistances of 95/5 were observed 10 times higher than that of 90/10 co
ules, after deposition and annealing. Figure
annealing temperatures with 90/10 and 95/5 compositions.

Sample of 200
nealing

films which were at least transparent. The conductivity or the resistance of the film were
t as yet measured properly

sheet was measured with a digital multimeter at two fixed points on the film
he readings of the multimeter al

is dependent on the distance between the probes, which differed as well.
the readings always fluctuated be

after the second deposition and annealing experiment the hotplate of the lab ma
oned and was decommissioned for repairs. The rest of the annealing experiments

were thus done in a furnace which could provide temperatures more than 600
the second experiments, a series of

atures ranging from 350
and transparent results. However
in the temperature, amount of oxygen during annealing and the composition of

granules

It is worth mentioning that the ITO granules used in the crucible for deposition process
come in different compositions commercially. This has been discussed in Chapter 3
exclusively, the compositions of In
Most of our study was done with 90/10, as in the beginning this was the only compos
tion available in the lab. Later on
experimentation was carried out. The reason for that was, 95/5 com
transparency and has very little colo
was much higher compared to the ones observed with 90/10 granules. The sheet r
sistances of 95/5 were observed 10 times higher than that of 90/10 co
ules, after deposition and annealing. Figure
annealing temperatures with 90/10 and 95/5 compositions.

Sample of 200
nealing temperatures and composition of ITO granules

films which were at least transparent. The conductivity or the resistance of the film were
properly

sheet was measured with a digital multimeter at two fixed points on the film
he readings of the multimeter al

is dependent on the distance between the probes, which differed as well.
the readings always fluctuated be

after the second deposition and annealing experiment the hotplate of the lab ma
oned and was decommissioned for repairs. The rest of the annealing experiments

were thus done in a furnace which could provide temperatures more than 600
the second experiments, a series of

atures ranging from 350
and transparent results. However

, amount of oxygen during annealing and the composition of
[4]

It is worth mentioning that the ITO granules used in the crucible for deposition process
come in different compositions commercially. This has been discussed in Chapter 3
exclusively, the compositions of In
Most of our study was done with 90/10, as in the beginning this was the only compos
tion available in the lab. Later on
experimentation was carried out. The reason for that was, 95/5 com
transparency and has very little colo
was much higher compared to the ones observed with 90/10 granules. The sheet r
sistances of 95/5 were observed 10 times higher than that of 90/10 co
ules, after deposition and annealing. Figure
annealing temperatures with 90/10 and 95/5 compositions.

Sample of 200
temperatures and composition of ITO granules

films which were at least transparent. The conductivity or the resistance of the film were
properly

sheet was measured with a digital multimeter at two fixed points on the film
he readings of the multimeter al

is dependent on the distance between the probes, which differed as well.
the readings always fluctuated be

after the second deposition and annealing experiment the hotplate of the lab ma
oned and was decommissioned for repairs. The rest of the annealing experiments

were thus done in a furnace which could provide temperatures more than 600
the second experiments, a series of

atures ranging from 350
and transparent results. However

, amount of oxygen during annealing and the composition of
[4].

It is worth mentioning that the ITO granules used in the crucible for deposition process
come in different compositions commercially. This has been discussed in Chapter 3
exclusively, the compositions of In
Most of our study was done with 90/10, as in the beginning this was the only compos
tion available in the lab. Later on
experimentation was carried out. The reason for that was, 95/5 com
transparency and has very little colo
was much higher compared to the ones observed with 90/10 granules. The sheet r
sistances of 95/5 were observed 10 times higher than that of 90/10 co
ules, after deposition and annealing. Figure
annealing temperatures with 90/10 and 95/5 compositions.

Sample of 200
temperatures and composition of ITO granules

films which were at least transparent. The conductivity or the resistance of the film were
properly,

sheet was measured with a digital multimeter at two fixed points on the film
he readings of the multimeter al

is dependent on the distance between the probes, which differed as well.
the readings always fluctuated be

after the second deposition and annealing experiment the hotplate of the lab ma
oned and was decommissioned for repairs. The rest of the annealing experiments

were thus done in a furnace which could provide temperatures more than 600
the second experiments, a series of

atures ranging from 350
and transparent results. However

, amount of oxygen during annealing and the composition of

It is worth mentioning that the ITO granules used in the crucible for deposition process
come in different compositions commercially. This has been discussed in Chapter 3
exclusively, the compositions of In
Most of our study was done with 90/10, as in the beginning this was the only compos
tion available in the lab. Later on
experimentation was carried out. The reason for that was, 95/5 com
transparency and has very little colo
was much higher compared to the ones observed with 90/10 granules. The sheet r
sistances of 95/5 were observed 10 times higher than that of 90/10 co
ules, after deposition and annealing. Figure
annealing temperatures with 90/10 and 95/5 compositions.

Sample of 200 nm
temperatures and composition of ITO granules

films which were at least transparent. The conductivity or the resistance of the film were
however as a

sheet was measured with a digital multimeter at two fixed points on the film
he readings of the multimeter al

is dependent on the distance between the probes, which differed as well.
the readings always fluctuated be

after the second deposition and annealing experiment the hotplate of the lab ma
oned and was decommissioned for repairs. The rest of the annealing experiments

were thus done in a furnace which could provide temperatures more than 600
the second experiments, a series of

atures ranging from 350-
and transparent results. However

, amount of oxygen during annealing and the composition of

It is worth mentioning that the ITO granules used in the crucible for deposition process
come in different compositions commercially. This has been discussed in Chapter 3
exclusively, the compositions of In
Most of our study was done with 90/10, as in the beginning this was the only compos
tion available in the lab. Later on
experimentation was carried out. The reason for that was, 95/5 com
transparency and has very little colo
was much higher compared to the ones observed with 90/10 granules. The sheet r
sistances of 95/5 were observed 10 times higher than that of 90/10 co
ules, after deposition and annealing. Figure
annealing temperatures with 90/10 and 95/5 compositions.

nm ITO films over glass slides with their corresponding a
temperatures and composition of ITO granules

films which were at least transparent. The conductivity or the resistance of the film were
however as a

sheet was measured with a digital multimeter at two fixed points on the film
he readings of the multimeter al

is dependent on the distance between the probes, which differed as well.
the readings always fluctuated be

after the second deposition and annealing experiment the hotplate of the lab ma
oned and was decommissioned for repairs. The rest of the annealing experiments

were thus done in a furnace which could provide temperatures more than 600
the second experiments, a series of

-600
and transparent results. However, the colo

, amount of oxygen during annealing and the composition of

It is worth mentioning that the ITO granules used in the crucible for deposition process
come in different compositions commercially. This has been discussed in Chapter 3
exclusively, the compositions of In
Most of our study was done with 90/10, as in the beginning this was the only compos
tion available in the lab. Later on,
experimentation was carried out. The reason for that was, 95/5 com
transparency and has very little colo
was much higher compared to the ones observed with 90/10 granules. The sheet r
sistances of 95/5 were observed 10 times higher than that of 90/10 co
ules, after deposition and annealing. Figure
annealing temperatures with 90/10 and 95/5 compositions.

ITO films over glass slides with their corresponding a
temperatures and composition of ITO granules

films which were at least transparent. The conductivity or the resistance of the film were
however as a

sheet was measured with a digital multimeter at two fixed points on the film
he readings of the multimeter al

is dependent on the distance between the probes, which differed as well.
the readings always fluctuated be

after the second deposition and annealing experiment the hotplate of the lab ma
oned and was decommissioned for repairs. The rest of the annealing experiments

were thus done in a furnace which could provide temperatures more than 600
the second experiments, a series of annealing experiments were conducted at different

600 °
the colo

, amount of oxygen during annealing and the composition of

It is worth mentioning that the ITO granules used in the crucible for deposition process
come in different compositions commercially. This has been discussed in Chapter 3
exclusively, the compositions of In2O
Most of our study was done with 90/10, as in the beginning this was the only compos

after the availability of 95/5 composition
experimentation was carried out. The reason for that was, 95/5 com
transparency and has very little colou
was much higher compared to the ones observed with 90/10 granules. The sheet r
sistances of 95/5 were observed 10 times higher than that of 90/10 co
ules, after deposition and annealing. Figure
annealing temperatures with 90/10 and 95/5 compositions.

ITO films over glass slides with their corresponding a
temperatures and composition of ITO granules

films which were at least transparent. The conductivity or the resistance of the film were
however as a

sheet was measured with a digital multimeter at two fixed points on the film
he readings of the multimeter al

is dependent on the distance between the probes, which differed as well.
the readings always fluctuated be

after the second deposition and annealing experiment the hotplate of the lab ma
oned and was decommissioned for repairs. The rest of the annealing experiments

were thus done in a furnace which could provide temperatures more than 600
annealing experiments were conducted at different
°C varying by 50

the colo
, amount of oxygen during annealing and the composition of

It is worth mentioning that the ITO granules used in the crucible for deposition process
come in different compositions commercially. This has been discussed in Chapter 3

O3/SnO
Most of our study was done with 90/10, as in the beginning this was the only compos

after the availability of 95/5 composition
experimentation was carried out. The reason for that was, 95/5 com

ur tinge in the film, however the sheet resistance
was much higher compared to the ones observed with 90/10 granules. The sheet r
sistances of 95/5 were observed 10 times higher than that of 90/10 co
ules, after deposition and annealing. Figure
annealing temperatures with 90/10 and 95/5 compositions.

ITO films over glass slides with their corresponding a
temperatures and composition of ITO granules

films which were at least transparent. The conductivity or the resistance of the film were
however as a

sheet was measured with a digital multimeter at two fixed points on the film
he readings of the multimeter always differed,

is dependent on the distance between the probes, which differed as well.
the readings always fluctuated be

after the second deposition and annealing experiment the hotplate of the lab ma
oned and was decommissioned for repairs. The rest of the annealing experiments

were thus done in a furnace which could provide temperatures more than 600
annealing experiments were conducted at different

C varying by 50
the colours o

, amount of oxygen during annealing and the composition of

It is worth mentioning that the ITO granules used in the crucible for deposition process
come in different compositions commercially. This has been discussed in Chapter 3

/SnO
Most of our study was done with 90/10, as in the beginning this was the only compos

after the availability of 95/5 composition
experimentation was carried out. The reason for that was, 95/5 com

r tinge in the film, however the sheet resistance
was much higher compared to the ones observed with 90/10 granules. The sheet r
sistances of 95/5 were observed 10 times higher than that of 90/10 co
ules, after deposition and annealing. Figure
annealing temperatures with 90/10 and 95/5 compositions.

ITO films over glass slides with their corresponding a
temperatures and composition of ITO granules

films which were at least transparent. The conductivity or the resistance of the film were
however as a preliminary

sheet was measured with a digital multimeter at two fixed points on the film
ways differed,

is dependent on the distance between the probes, which differed as well.
the readings always fluctuated between

after the second deposition and annealing experiment the hotplate of the lab ma
oned and was decommissioned for repairs. The rest of the annealing experiments

were thus done in a furnace which could provide temperatures more than 600
annealing experiments were conducted at different

C varying by 50
rs o

, amount of oxygen during annealing and the composition of

It is worth mentioning that the ITO granules used in the crucible for deposition process
come in different compositions commercially. This has been discussed in Chapter 3

/SnO2

Most of our study was done with 90/10, as in the beginning this was the only compos
after the availability of 95/5 composition

experimentation was carried out. The reason for that was, 95/5 com
r tinge in the film, however the sheet resistance

was much higher compared to the ones observed with 90/10 granules. The sheet r
sistances of 95/5 were observed 10 times higher than that of 90/10 co
ules, after deposition and annealing. Figure 6.
annealing temperatures with 90/10 and 95/5 compositions.

ITO films over glass slides with their corresponding a
temperatures and composition of ITO granules

films which were at least transparent. The conductivity or the resistance of the film were
preliminary

sheet was measured with a digital multimeter at two fixed points on the film
ways differed,

is dependent on the distance between the probes, which differed as well.
tween

after the second deposition and annealing experiment the hotplate of the lab ma
oned and was decommissioned for repairs. The rest of the annealing experiments

were thus done in a furnace which could provide temperatures more than 600
annealing experiments were conducted at different

C varying by 50
rs of the annealed film

, amount of oxygen during annealing and the composition of

It is worth mentioning that the ITO granules used in the crucible for deposition process
come in different compositions commercially. This has been discussed in Chapter 3

used in the study were 90
Most of our study was done with 90/10, as in the beginning this was the only compos

after the availability of 95/5 composition
experimentation was carried out. The reason for that was, 95/5 com

r tinge in the film, however the sheet resistance
was much higher compared to the ones observed with 90/10 granules. The sheet r
sistances of 95/5 were observed 10 times higher than that of 90/10 co

.8 shows the colo
annealing temperatures with 90/10 and 95/5 compositions.

ITO films over glass slides with their corresponding a
temperatures and composition of ITO granules

films which were at least transparent. The conductivity or the resistance of the film were
preliminary

sheet was measured with a digital multimeter at two fixed points on the film
ways differed,

is dependent on the distance between the probes, which differed as well.
tween 100

after the second deposition and annealing experiment the hotplate of the lab ma
oned and was decommissioned for repairs. The rest of the annealing experiments

were thus done in a furnace which could provide temperatures more than 600
annealing experiments were conducted at different

C varying by 50
f the annealed film

, amount of oxygen during annealing and the composition of

It is worth mentioning that the ITO granules used in the crucible for deposition process
come in different compositions commercially. This has been discussed in Chapter 3

used in the study were 90
Most of our study was done with 90/10, as in the beginning this was the only compos

after the availability of 95/5 composition
experimentation was carried out. The reason for that was, 95/5 com

r tinge in the film, however the sheet resistance
was much higher compared to the ones observed with 90/10 granules. The sheet r
sistances of 95/5 were observed 10 times higher than that of 90/10 co

8 shows the colo
annealing temperatures with 90/10 and 95/5 compositions.

ITO films over glass slides with their corresponding a
temperatures and composition of ITO granules

films which were at least transparent. The conductivity or the resistance of the film were
preliminary

sheet was measured with a digital multimeter at two fixed points on the film
ways differed,

is dependent on the distance between the probes, which differed as well.
100-

after the second deposition and annealing experiment the hotplate of the lab ma
oned and was decommissioned for repairs. The rest of the annealing experiments

were thus done in a furnace which could provide temperatures more than 600
annealing experiments were conducted at different

C varying by 50
f the annealed film

, amount of oxygen during annealing and the composition of

It is worth mentioning that the ITO granules used in the crucible for deposition process
come in different compositions commercially. This has been discussed in Chapter 3

used in the study were 90
Most of our study was done with 90/10, as in the beginning this was the only compos

after the availability of 95/5 composition
experimentation was carried out. The reason for that was, 95/5 com

r tinge in the film, however the sheet resistance
was much higher compared to the ones observed with 90/10 granules. The sheet r
sistances of 95/5 were observed 10 times higher than that of 90/10 co

8 shows the colo
annealing temperatures with 90/10 and 95/5 compositions.

ITO films over glass slides with their corresponding a
temperatures and composition of ITO granules

films which were at least transparent. The conductivity or the resistance of the film were
preliminary observation the resistance of the

sheet was measured with a digital multimeter at two fixed points on the film
ways differed,

is dependent on the distance between the probes, which differed as well.
-85

after the second deposition and annealing experiment the hotplate of the lab ma
oned and was decommissioned for repairs. The rest of the annealing experiments

were thus done in a furnace which could provide temperatures more than 600
annealing experiments were conducted at different

C varying by 50 °C, all of which had good clear
f the annealed film

, amount of oxygen during annealing and the composition of

It is worth mentioning that the ITO granules used in the crucible for deposition process
come in different compositions commercially. This has been discussed in Chapter 3

used in the study were 90
Most of our study was done with 90/10, as in the beginning this was the only compos

after the availability of 95/5 composition
experimentation was carried out. The reason for that was, 95/5 com

r tinge in the film, however the sheet resistance
was much higher compared to the ones observed with 90/10 granules. The sheet r
sistances of 95/5 were observed 10 times higher than that of 90/10 co

8 shows the colo
annealing temperatures with 90/10 and 95/5 compositions.

ITO films over glass slides with their corresponding a
temperatures and composition of ITO granules

films which were at least transparent. The conductivity or the resistance of the film were
observation the resistance of the

sheet was measured with a digital multimeter at two fixed points on the film
but

is dependent on the distance between the probes, which differed as well.
Ω

after the second deposition and annealing experiment the hotplate of the lab ma
oned and was decommissioned for repairs. The rest of the annealing experiments

were thus done in a furnace which could provide temperatures more than 600
annealing experiments were conducted at different

C, all of which had good clear
f the annealed film

, amount of oxygen during annealing and the composition of

It is worth mentioning that the ITO granules used in the crucible for deposition process
come in different compositions commercially. This has been discussed in Chapter 3

used in the study were 90
Most of our study was done with 90/10, as in the beginning this was the only compos

after the availability of 95/5 composition
experimentation was carried out. The reason for that was, 95/5 com

r tinge in the film, however the sheet resistance
was much higher compared to the ones observed with 90/10 granules. The sheet r
sistances of 95/5 were observed 10 times higher than that of 90/10 co

8 shows the colo
annealing temperatures with 90/10 and 95/5 compositions.

ITO films over glass slides with their corresponding a
temperatures and composition of ITO granules

films which were at least transparent. The conductivity or the resistance of the film were
observation the resistance of the

sheet was measured with a digital multimeter at two fixed points on the film
but that is expected since the

is dependent on the distance between the probes, which differed as well.
for this

after the second deposition and annealing experiment the hotplate of the lab ma
oned and was decommissioned for repairs. The rest of the annealing experiments

were thus done in a furnace which could provide temperatures more than 600
annealing experiments were conducted at different

C, all of which had good clear
f the annealed film

, amount of oxygen during annealing and the composition of

It is worth mentioning that the ITO granules used in the crucible for deposition process
come in different compositions commercially. This has been discussed in Chapter 3

used in the study were 90
Most of our study was done with 90/10, as in the beginning this was the only compos

after the availability of 95/5 composition
experimentation was carried out. The reason for that was, 95/5 com

r tinge in the film, however the sheet resistance
was much higher compared to the ones observed with 90/10 granules. The sheet r
sistances of 95/5 were observed 10 times higher than that of 90/10 co

8 shows the colo

ITO films over glass slides with their corresponding a
temperatures and composition of ITO granules

films which were at least transparent. The conductivity or the resistance of the film were
observation the resistance of the

sheet was measured with a digital multimeter at two fixed points on the film
that is expected since the

is dependent on the distance between the probes, which differed as well.
for this

after the second deposition and annealing experiment the hotplate of the lab ma
oned and was decommissioned for repairs. The rest of the annealing experiments

were thus done in a furnace which could provide temperatures more than 600
annealing experiments were conducted at different

C, all of which had good clear
f the annealed film

, amount of oxygen during annealing and the composition of

It is worth mentioning that the ITO granules used in the crucible for deposition process
come in different compositions commercially. This has been discussed in Chapter 3

used in the study were 90
Most of our study was done with 90/10, as in the beginning this was the only compos

after the availability of 95/5 composition
experimentation was carried out. The reason for that was, 95/5 com

r tinge in the film, however the sheet resistance
was much higher compared to the ones observed with 90/10 granules. The sheet r
sistances of 95/5 were observed 10 times higher than that of 90/10 co

8 shows the colour difference at different

ITO films over glass slides with their corresponding a
temperatures and composition of ITO granules

films which were at least transparent. The conductivity or the resistance of the film were
observation the resistance of the

sheet was measured with a digital multimeter at two fixed points on the film
that is expected since the

is dependent on the distance between the probes, which differed as well.
for this process

after the second deposition and annealing experiment the hotplate of the lab ma
oned and was decommissioned for repairs. The rest of the annealing experiments

were thus done in a furnace which could provide temperatures more than 600
annealing experiments were conducted at different

C, all of which had good clear
f the annealed films differed with change

, amount of oxygen during annealing and the composition of

It is worth mentioning that the ITO granules used in the crucible for deposition process
come in different compositions commercially. This has been discussed in Chapter 3

used in the study were 90
Most of our study was done with 90/10, as in the beginning this was the only compos

after the availability of 95/5 composition
experimentation was carried out. The reason for that was, 95/5 com

r tinge in the film, however the sheet resistance
was much higher compared to the ones observed with 90/10 granules. The sheet r
sistances of 95/5 were observed 10 times higher than that of 90/10 co

r difference at different

ITO films over glass slides with their corresponding a
temperatures and composition of ITO granules.

films which were at least transparent. The conductivity or the resistance of the film were
observation the resistance of the

sheet was measured with a digital multimeter at two fixed points on the film
that is expected since the

is dependent on the distance between the probes, which differed as well.
process

after the second deposition and annealing experiment the hotplate of the lab ma
oned and was decommissioned for repairs. The rest of the annealing experiments

were thus done in a furnace which could provide temperatures more than 600
annealing experiments were conducted at different

C, all of which had good clear
s differed with change

, amount of oxygen during annealing and the composition of

It is worth mentioning that the ITO granules used in the crucible for deposition process
come in different compositions commercially. This has been discussed in Chapter 3

used in the study were 90
Most of our study was done with 90/10, as in the beginning this was the only compos

after the availability of 95/5 composition
experimentation was carried out. The reason for that was, 95/5 composition has better

r tinge in the film, however the sheet resistance
was much higher compared to the ones observed with 90/10 granules. The sheet r
sistances of 95/5 were observed 10 times higher than that of 90/10 co

r difference at different

ITO films over glass slides with their corresponding a

films which were at least transparent. The conductivity or the resistance of the film were
observation the resistance of the

sheet was measured with a digital multimeter at two fixed points on the film
that is expected since the

is dependent on the distance between the probes, which differed as well.
process

after the second deposition and annealing experiment the hotplate of the lab ma
oned and was decommissioned for repairs. The rest of the annealing experiments

were thus done in a furnace which could provide temperatures more than 600
annealing experiments were conducted at different

C, all of which had good clear
s differed with change

, amount of oxygen during annealing and the composition of

It is worth mentioning that the ITO granules used in the crucible for deposition process
come in different compositions commercially. This has been discussed in Chapter 3

used in the study were 90
Most of our study was done with 90/10, as in the beginning this was the only compos

after the availability of 95/5 composition
position has better

r tinge in the film, however the sheet resistance
was much higher compared to the ones observed with 90/10 granules. The sheet r
sistances of 95/5 were observed 10 times higher than that of 90/10 composition gra

r difference at different

ITO films over glass slides with their corresponding a

films which were at least transparent. The conductivity or the resistance of the film were
observation the resistance of the

sheet was measured with a digital multimeter at two fixed points on the film
that is expected since the

is dependent on the distance between the probes, which differed as well.
process run.

after the second deposition and annealing experiment the hotplate of the lab ma
oned and was decommissioned for repairs. The rest of the annealing experiments

were thus done in a furnace which could provide temperatures more than 600
annealing experiments were conducted at different

C, all of which had good clear
s differed with change

, amount of oxygen during annealing and the composition of

It is worth mentioning that the ITO granules used in the crucible for deposition process
come in different compositions commercially. This has been discussed in Chapter 3

used in the study were 90/10 and 95/5.
Most of our study was done with 90/10, as in the beginning this was the only compos

after the availability of 95/5 composition
position has better

r tinge in the film, however the sheet resistance
was much higher compared to the ones observed with 90/10 granules. The sheet r

mposition gra
r difference at different

ITO films over glass slides with their corresponding a

films which were at least transparent. The conductivity or the resistance of the film were
observation the resistance of the

sheet was measured with a digital multimeter at two fixed points on the film
that is expected since the

is dependent on the distance between the probes, which differed as well.
run.

after the second deposition and annealing experiment the hotplate of the lab ma
oned and was decommissioned for repairs. The rest of the annealing experiments

were thus done in a furnace which could provide temperatures more than 600 °
annealing experiments were conducted at different

C, all of which had good clear
s differed with change

, amount of oxygen during annealing and the composition of

It is worth mentioning that the ITO granules used in the crucible for deposition process
come in different compositions commercially. This has been discussed in Chapter 3

/10 and 95/5.
Most of our study was done with 90/10, as in the beginning this was the only compos

after the availability of 95/5 composition very little
position has better

r tinge in the film, however the sheet resistance
was much higher compared to the ones observed with 90/10 granules. The sheet r

mposition gra
r difference at different

ITO films over glass slides with their corresponding a

films which were at least transparent. The conductivity or the resistance of the film were
observation the resistance of the

sheet was measured with a digital multimeter at two fixed points on the film.
that is expected since the

is dependent on the distance between the probes, which differed as well.
run.

after the second deposition and annealing experiment the hotplate of the lab ma
oned and was decommissioned for repairs. The rest of the annealing experiments

°C. After
annealing experiments were conducted at different

C, all of which had good clear
s differed with change

, amount of oxygen during annealing and the composition of

It is worth mentioning that the ITO granules used in the crucible for deposition process
come in different compositions commercially. This has been discussed in Chapter 3

/10 and 95/5.
Most of our study was done with 90/10, as in the beginning this was the only compos

very little
position has better

r tinge in the film, however the sheet resistance
was much higher compared to the ones observed with 90/10 granules. The sheet r

mposition gra
r difference at different

ITO films over glass slides with their corresponding a

films which were at least transparent. The conductivity or the resistance of the film were
observation the resistance of the

. Even
that is expected since the

is dependent on the distance between the probes, which differed as well.

after the second deposition and annealing experiment the hotplate of the lab ma
oned and was decommissioned for repairs. The rest of the annealing experiments

C. After
annealing experiments were conducted at different

C, all of which had good clear
s differed with change

, amount of oxygen during annealing and the composition of

It is worth mentioning that the ITO granules used in the crucible for deposition process
come in different compositions commercially. This has been discussed in Chapter 3

/10 and 95/5.
Most of our study was done with 90/10, as in the beginning this was the only compos

very little
position has better

r tinge in the film, however the sheet resistance
was much higher compared to the ones observed with 90/10 granules. The sheet r

mposition gra
r difference at different

ITO films over glass slides with their corresponding a

40

films which were at least transparent. The conductivity or the resistance of the film were
observation the resistance of the

Even
that is expected since the

is dependent on the distance between the probes, which differed as well.

after the second deposition and annealing experiment the hotplate of the lab mal-
oned and was decommissioned for repairs. The rest of the annealing experiments

C. After
annealing experiments were conducted at different

C, all of which had good clear
s differed with change

, amount of oxygen during annealing and the composition of

It is worth mentioning that the ITO granules used in the crucible for deposition process
come in different compositions commercially. This has been discussed in Chapter 3

/10 and 95/5.
Most of our study was done with 90/10, as in the beginning this was the only composi-

very little
position has better

r tinge in the film, however the sheet resistance
was much higher compared to the ones observed with 90/10 granules. The sheet re-

mposition gran-
r difference at different

ITO films over glass slides with their corresponding an-

40

films which were at least transparent. The conductivity or the resistance of the film were
observation the resistance of the

Even
that is expected since the

is dependent on the distance between the probes, which differed as well.

l-
oned and was decommissioned for repairs. The rest of the annealing experiments

C. After
annealing experiments were conducted at different

C, all of which had good clear
s differed with change

, amount of oxygen during annealing and the composition of

It is worth mentioning that the ITO granules used in the crucible for deposition process
come in different compositions commercially. This has been discussed in Chapter 3

/10 and 95/5.
i-

very little
position has better

r tinge in the film, however the sheet resistance
e-
n-

r difference at different

n-



41

6.4 Transparency Measurements

6.4.1 Using Ocean Optics Jaz 350 Spectrometer

Although on the first glance after the deposition of an as-deposited ITO film an observ-
er can never believe that the same film could become quite transparent after annealing.
But the real question is how much is the film actually transparent? The transparency of
the film is of prime importance for this study since the main aim was to fabricate micro-
electrodes that are transparent so they don’t owe any obscurity of the cells when being
viewed during the measurement procedures. Thus for measuring the transparency of the
film a good quality spectrometer was used in the department. The spectrometer is the
Ocean Optics Jaz 350 Spectrometer which is capable Vis-NIR measurements from 350-
1000 nm. The device is fairly portable and modular; it has a halogen light source thus
the mentioned spectral range. The modules include: a light source module, a sample
holding module and a Jazz controller module that controls the halogen light source. The
Jazz controller module measures the spectrum and relays the information to a PC via
USB connection. The data received by the computer for analysis and the controlling
parameters of the Jazz controller are all viewed and utilized by an interface software
that comes with the device. The software manipulates the results into graphs and also
manipulates settings for calibration of the device. The sample holding module of the
device was designed and manufactured to hold transparent plastic cuvettes for absorb-
ance test measurements of chemicals. However, for the transparency measurements for
glass slide there were slits present in the same space. This allowed the glass slides to be
loaded as well but they needed some support to remain at a vertical position relative to
the base of the holder for no refraction and reflection from the light source. To provide
that support some compressible packing material was used to fill the slits after placing
the slides in them, this fastened the slides to the desired normal position to the base. The
device had to be calibrated every time to compensate for the stray light in the back-
ground in both modes; with the light source on and with the light source off.

6.4.2 Reference Measurements of Clear Glass Slides and Air

Once the device was calibrated measurements for the transparency of the films was
done. Since the primary interest was in determining the transparency of the film, the
transparency measurements of the film without the glass slide was impossible as it was
the substrate. So any measurements of the transparency would include the absorbance of
light due to the substrate as well, which in this case is the glass slide. Logically the first
step was then to measure the transparency of a clean glass slide without the ITO coat-
ing. For that a glass slide from the cleaned batch was taken and measured with the spec-
trometer. The clean glass slide was among the batch of slides that were cleaned using
the same glass cleaning protocol that was discussed in the section 6.2. To make things
systematic, every time glass slides were cleaned for deposition, one or two glass slides
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were cleaned extra in each batch for measuring the transparency of the glass slide alone.
The glass slides were measured and they yielded a transparency of 93 % almost every
time even though the manufacturer prescribed value was 91.5 % the result was very
close since the measurement were done in dark to avoid contamination from stray light,
thus the difference of 1.5 %. The figure 6.9 can show the transmission of a clean and
clear glass slide compared to air. The transmission through the glass was measured to be
93 % and 100 % through air.

Figure 6.9: Transparency measurements of a clean glass slide by the spectrometer.

6.4.3 Transparency Measurements of as-deposited ITO Film

The next measurements were done for ITO coated slides with the same conditions. The
first measurement was done for as-deposited ITO film on glass slide. The as-deposited
slide is already shown previously in Figure 6.3 and with this black opaque layer the
measurement was found to vary from 3 % to 10 % in visible spectrum and can be seen
in Figure 6.10. An important point to notice here as well is that the figure also shows
measurement of air and glass slide along with the measurement of the as-deposited ITO
film. This helps understand with a clearer perspective as these two references are there
in the figure as well, as mentioned already the transmission at any wavelength also has
the deficit due to glass as well. As an example from Figure 6.10 of the as-deposited film
spectrum, if we take the transparency of the as-deposited film at 650 nm which is ap-
proximately 10 % relative to air, it can be understood that there is still a deficit of
transmission from the glass and that the actual transmission of the ITO as-deposited
layer is more than 10 %. In order to deduce the actual transmission the 10 % has to be
divided by 93 % to see what is the real transmission which would be relative to air in
the end. The equation below can help understand the entire phenomenon:
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1. 300 °C Annealed Films

The first annealing result of ITO film at 300 °C was measured and was observes as ex-
tremely non-transparent, same was the case with 350 °C temperature annealing process.
So the study was automatically progressed to investigate 400 °C temperature. However
later another annealing process for 300 °C was conducted on the evidence of a prior
study from J.Zhou et. al which showed good results if the annealing time was increased
to 18 hours or more [23]. Thus an annealing process at 300 °C was conducted exclu-
sively and is shown in Figure 6.11. The spectrum measured the highest transmission
within the visible wavelength at 617 nm with transmission of 90.7 %, surprisingly this
result was observed higher than that off the literature. Since the application will deal
with visible light spectrum, with light sources such as tungsten halogen (TH) light
sources, that emit a continuous spectrum of light ranging from about 300-1400 nm.
However, majority of the wavelength intensity is centred in the middle of the spectrum,
ranging of 600-850 nm region. Thus transparency measurement values beyond 850 nm
don’t really concern this study for that matter. The least value of % transmission for this
sample is observed at 723 nm for 83.4 %. Thus the average transmission value for this
sample in the operational wavelength range is 87.1 %. Of course this transmission still
has the attenuation due to the glass slide and if that is taken away the absolute transpar-
ency of the pure ITO film comes out to be 93.7 % transparency. Though the results
seem more than satisfactory, the only drawback with this annealing process and result
was, that the annealing time for 300 °C annealing was set for 24 hours. The annealing
was neither carried out in a furnace nor on a hot plate, contrarily the annealing was done
in a home oven. The reason for that was that such a long usage of furnace or hot plate
was deemed unsafe and impractical to use and monitor.

Figure 6.11: Transparency measurements of 300 °C annealed ITO film.

2. 400 °C Annealed Films

The first annealing result of ITO film at 400 °C was also measured and is shown in fig-
ure 6.12, which measured two high transmissions within the visible wavelength. The
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6.5  Sheet Resistance Measurements

Sheet resistance measurements were the most important measurements for characteriz-
ing the ITO thin films to be suitable for microelectrode fabrication. The sheet resistance
calculations were made using resistance measurements made with 4 probe resistance
measuring method, illustrated in Figure 6.15. The resistance measurements are shown in
Table 2. The measurements were done from the same ITO coated glass slides, as the
ones used for transparency measurement. The dimensions of the glass slides were found
as 76 x 26 x 1 mm (D x W X H) from the datasheet of the manufacturer [24]. Using
these dimensions and the formula given below the sheet resistances for all correspond-
ing resistances in Table 2, were measured.

ܴ௦ = ܴ
ܹ
ܮ

where

Rs: Sheet Resistance

R: Bulk Resistance (measured by 4 probe method)

L: Length of glass slide (76 mm)

W: Width of glass slide (26 mm)

The sheet resistance values (the 4th column) of Table 2 were calculated utilising the
equation, constants and variables described in the column 3 of Table 2. The 4th column
was derived for the sheet resistance for all the ITO covered glass specimens with differ-
ent annealing temperatures. The results of sheet resistance values also surpassed expec-
tations, from the literature review thermally deposited ITO and e-beam depositions
should yield below 50 Ω/sq and all results were better than the benchmark. From Table
2 it is evident that the best result was yielded by 300 °C annealing for 24 hours. Howev-
er, since the possibility for having an annealing time this long was out of the question
that left the options of 1 hour annealing processes to choose from. Amongst theses the
best result was obviously 400 °C annealing temperature. Though this result is peculiar
since it was expected that 500 °C annealing should have yielded better results, but that
wasn’t the case for this study oddly.
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Table 2. Sheet Resistances calculated from bulk resistances in Table 2 to the corre-
sponding annealing temperatures.

TEMPERATURE
°C

TIME
(hours)

RESISTANCE
(Ω)

SHEET
RESISTANCE

(Ω/sq)

500 1 132.3 45.1816

400 1 104.7 35.8184

300 1 180.1 61.6132

300 18 100.0 34.2105

300 24 37.6 12.8632

Having looked over the results of both sheet resistances and transparency measure-
ments, it was decided to choose 400 °C as the annealing temperature as standard prac-
tice for annealing ITO thin films. Even though annealing at 500 °C showed better re-
sults for transparency measurements, the choice of 400 °C annealing was favoured be-
cause sheet resistance values would eventually play a more important role in designing
better quality electrodes. Also the difference in sheet resistance values was much distin-
guished compared to the transparency measurements.

Figure 6.15: A 4-probe measuring concept of the annealed ITO layer over microscope
glass slide with equidistant placement of probes [36].
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7. TIER II:  PATTERNING THE ITO FLIM

After the fabrication for ITO film was optimized for best transparencies and sheet re-
sistances, the next challenge was to pattern it into the MEA layout. The patterning or
micro-processing of the ITO into the desired MEA layout required to figure out opti-
mum methodology to get rid of excess ITO from the glass wafers except the pattern
needed, without causing the pattern to be affected. ITO can be patterned using etching
and photolithographic techniques. The challenge remains to be able to pattern micro
scale objects of ITO, making sure that the geometric integrity of the object does not
deter. Photolithographic techniques become tedious and highly precise when the scale is
reduced to micro or nanometres and there are more chances that the patterns might not
be as accurate and precise with the slightest deviation or negligence.

7.1 Photolithographic Processes

All the necessary theoretical knowledge of the photolithographic processes needed to
understand the experimental part is already explained in Chapter 5 of the document. The
photolithographic process required in the study was needed to pattern the ITO thin films
developed earlier. The main challenge in this part of the study was the patterning of
ITO. This was generally known to be more common with wet etching using strong acids
or bases. However wet etching for ITO, generally is suitable for patterns in the range of
millimetres whereas the MEAs have geometric patterns as small as 20 μm at certain
places. [28]

In the beginning it was decided to test patterning the ITO with wet etching using hydro-
fluoric acid (HF) and hydrochloric acid (HCl) as the prime etchants. The photolitho-
graphic process would have to be accordingly and the choices of materials henceforth
were determined likewise. The resist chosen was PRI-2000A, which is a reddish ma-
roon coloured positive photoresist to be applied over the ITO film layers. As opposed to
the resist being viewable for transparent layers or substrates, it was also practically test-
ed in the past. The developing solution or the developer of the resist was chosen as RD-
6 developer, because it is a compliable developer for the resist. The spin coater was
used to uniformly distribute the resist and it was set to rotate at 3000 rpm for 60 sec-
onds. The exposure device used was a semi-automatic mask aligner and exposure de-
vice.

The photolithographic procedure was initially applied with everything according to the
specific instructions of use e.g. it is mentioned in the manual for RD-6 developer to be
used for thirty seconds after the exposure of 30 seconds. However, practically these and
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many other parameter of use, always change according to the condition in the clean
room and need to be tweaked to the users satisfaction and better judgment. The photo-
lithographic process for fabricating ITO MEAs was actually tried, tested and optimized
with the design of a flow-sensor developed in house by Mr. Tomi Ryynänen. The proto-
typing the flow sensor design instead of the MEA itself was to avoid wastage. Since the
flow sensor is a quarter of a size of the MEA design with similar smallest dimension
geometries, it yielded lesser wastage while perfecting the technique. Finally when the
process was fully optimized it was employed for fabricating ITO MEAs. Figure 7.1
shows the picture of an ITO patterned flow sensor.

Figure 7.1: A successfully patterned transparent ITO flow sensor prepared via dry
etching and photolithography.

The process always starts with the proper cleaning of the substrate, which in this case
was the ITO covered glass wafer. The cleaning protocol was the same one used for
cleaning the glass wafers prior to ITO deposition explained in subsection 6.2 except the
final oxygen plasma was not used because it could affect the characteristics of the ITO.
The resist application followed immediately after the cleaning protocol. The wafers
were not subjected to an initial bake as mentioned in the theoretical part of the docu-
ment; to drive off any excess moisture instead nitrogen was used to drive of any liquid
or viewable moisture. The wafer was then mounted on the spin coater and sufficient
resist was poured using droppers very carefully not to over spill or under use as it af-
fected the uniformity of the resist layer after the spin. The spin was set to be at 3000
rpm for 60 seconds, after the resist was poured on to the ITO layer. After the spin the
wafer was inspected to see if the resist layer was uniform and without any bumps and
ridges. If there would be any imperfections after the spin coat the wafer would go
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through the cleaning procedure again and then the photoresist would be poured all over
again followed by the spin. Once the spin was over, the wafers with the resist layer were
subjected to a bake of 120 °C for 1 minute. After which the wafer was subjected to the
mask aligner and exposure device. In this device the first step was to load the proper
photo mask of the desired pattern that needs to be impressed upon the resist layer. Then
the wafer with the pre baked layer is loaded in the substrate chamber and aligned
properly with the mask. Once the alignment is properly optimized and the contact be-
tween mask and resist layer is sealed the exposure is allowed. The exposure in this case
was initially kept for 30 seconds, which later on was optimized to 25 seconds. After the
exposure, came the step for developing the required pattern using the developer, which
in this case was RD-6. This post exposure, resist development, was done using for 30
seconds in the beginning but later was optimized to 45 seconds due to the change with
exposure time. The next step was hard baking, which was done at 130 °C for 1 minute
after the developing. It is important to observe here that the best exposure requires op-
timization of these two parameters essentially. After the developing and the baking of
theresist of the wafer it is subjected to thorough washing with DI water to avoid any
extra and unnecessary development process that could alter the geometric dimensions of
the impression required. Once thoroughly washed the developed layer of the ITO is then
subject to post development bake at 130 °C for 1 minute. Now, the wafer is good to go
for etching in the exposed resist parts.

This entire iteration is done similarly every time when a new layer is introduced over
the glass wafer. After etching the resist needs to be stripped from the underlying ITO
layer on the glass wafer. This is done by simply placing the wafer in excess acetone for
a minute or more and washed with DI water and subjected to the cleaning protocol once
more. In the end the final product is an ITO patterned in shape of MEAs on the glass
wafer. This is in no way the end of the fabrication process for fabricating MEAs; the
patterned wafer is once again subjected to deposition of a silicon nitride (Si3N4) isola-
tion layer. This isolation layer is again required to be patterned so as to cover the entire
wafer above the ITO patterned MEA but only to expose the electrodes and the contact
pads. Thus another iteration of photolithography is required except this time a different
photo mask will be used for a different impression over the post bake resist, rest all the
iteration remains the same.

7.2 Wet and Dry Etching

In section 7.1 it is mentioned that the photolithographic process was optimized first to
fabricate a smaller flow sensor, the same was the case for the etching process. The etch-
ing technique was first tried, tested and optimized for the flow sensor as well. Actually
it was the etching phase of the study that took the most time and laborious research to
nail the optimum methodology for the fabrication of the ITO standard MEAs. Literature
review in the beginning pointed out to follow for wet etching to pattern ITO films, using



52

acids like hydrofluoric acid (HF), hydrochloric acid (HCl), nitric acid (HNO3) and their
mixtures like aqua regia [25-27] etc. However, the wet etching mechanism chosen for
this study on the basis of literature review did not yield any successful results and were
deemed total failures. So the focus shifted to dry etching using RIE, as it was already
available in the clean room of the department. It was found that ion milling using plas-
ma and argon ions was an alternative for patterning ITO thin films for micro patterns
[28]. Using the dry etching a successful pattern of flow sensor was developed and was
then used for fabricating the ITO MEAs.

7.2.1 Wet Etching Experiments

The very first attempt to etch the layout of the flow sensor from an ITO film covered on
a glass wafer was done using diluted HCl alone. The maximum strength of HCl availa-
ble was 60 %, which meant that for every 100 ml of the solution in the bottle 60 ml was
HCl or H+ & Cl- ions and 40 ml was distilled water. So for the first experiment it was
decided to use a very dilute solution of 1:10, meaning 1 part HCl and 10 parts water (10
ml HCl and 90 ml water). With this concentration the etching rate was so slow that even
after half an hour the ITO layer was still not etched but the surface had started disinte-
grating and becoming flaky. After 65 mins, the experiment was aborted as the etch rate
for this kind of solution was approximated as 10 nm per minute and the thickness of the
ITO film was 250 nm so the expected time for etching was around half an hour. After
60 minutes, double the time had passed and still the surface seemed intact, so the exper-
iment had to be aborted. For the next experiment a more concentrated solution was used
where the ratio was set as 1:3 of the acid to water. In this experiment again the thickness
of the film of ITO was 250 nm, and this time the film was immersed for 20 minutes, at
first while still agitating the solution. During this trial the ITO’s surface began to disin-
tegrate after only 3 minutes, upon this it seemed for the time being that the solution was
etching according to the etch rate mentioned for the last solution ratio. However, after
20 minutes when the glass wafer was washed with water and inspected under the micro-
scope the pattern had been destroyed as well. The smallest patterns in the entire layout
has been etched away as well, so another trial was attempted with similar conditions,
but this time the wafer was taken out of the etchant after 6 minutes only. Upon washing
the glass wafer and inspecting under the microscope it was found that the layout of the
flow sensor was intact. Thus the resist was striped using acetone, and washed properly
and then inspected again under the microscope, the result was a failure again. The etch-
ant seemed to have seeped under the resist due to the isotropic action that happens in the
wet etching. Another trial was thought to be given a go, but this time the concentration
was decided to be slightly lower compared to the last time. So in this attempt the ratio
was set for 1:5; one part acid, 5 parts water, the thickness was the same again. The glass
wafer with the ITO was placed in and after 4 minutes and 30 seconds the surface began
to flake, and after 8 minutes it was taken out, washed and inspected under the micro-
scope. Upon viewing it under the microscope the pattern seemed intact with the photo-
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resist so the resist was again striped washed, and viewed again under the microscope.
This time again, the smaller patterns of 10 microns were destroyed even though there
was still ITO in the peripheries of the exposed parts of the wafer.

The solution with HCl and water alone didn’t seem to work so a new etchant recipe was
tried where HNO3 was introduced in the aqueous HCl solution and is also known fa-
mously as “aqua regia” [25]. For the first trial of this experiment the ration chosen was
1:3:10, where one part is HNO3, three parts are HCl and 10 parts of DI water. Again for
this trial the thickness of the ITO film was also 250 nm, the film was dipped in the solu-
tion and even after 15 minutes there was no surface flaking as it happens when the etch-
ing begins. After 20 min of dipping, the surface began to flake and by this time it was
realized that the solution was perhaps too dilute. The next trial for this solution had the
ratio modified to 1:3:5, where the water was now reduced from 10 parts to 5 parts. In
this trial the surface disintegration occurred just after 1 minute and the ITO seemed to
have vanished in 3 minutes, after 3 minutes the wafer was inspected with the resist on
and the resist had broken patterns at the smallest object in the layout of the flow sensor.
The etchant seemed to have been slightly more concentrated so the solution ratio was
again changed and this time the water was increased from 5 parts to 7 parts, giving a
final ratio of 1:3:7. In this trial as well the thickness was the same as in all the previous
trials and the first sign of flaking occurred at 5 minutes. After 7 minutes the wafer was
pulled out and the inspected under the microscope there were many patches of semi
etched ITO still in the peripheral exposed areas other than the layout, however the
smallest patterns of 10 microns were still damaged even though all the stray ITO had
yet to be etched way. Upon such a result it was again considered that this etchant solu-
tion was also an utter failure, so a new recipe of a more suitable etchant was needed to
be tried and tested.

 After a little more researching for possible ITO etchants, another recipe utilizing HF,
H2O2 and water was found and known to be a possible etchant. It too was given a series
of trials as well. For this recipe the suggested ratio of mixture was described as 1:1:10
and the etch rate was also estimated as 12.5 nm/s. Even with this recipe the results were
not satisfactory in the least bit. The etchant would take too long to etch away the residu-
al layer of ITO of the exposed surface, by which time the etchant would seemingly seep
underneath the mask and destroy the microstructures intended to remain un-etched.

It was somewhat clear that the wet etching owes a steeper bias than expected, with the
thickness of layers being dealt with, for this study. At higher thicknesses (300 nm and
above) of ITO layer the etchant seemed to be seeping under the mask no matter what
type of recipe was used. Some would take longer than others but eventually all the wet
etchants eventually had the similar effect, degrading the pattern once the etching of the
residual surface layer completed. This was the last recipe used to test wet etching and
with its failure, it also sealed the possible fate for using wet etching as a microfabrica-
tion process for the preparation of our MEAs any further.
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7.3 RIE Machine and Dry Etching Optimization

After having failed repeatedly at numerous wet etching iterations, it was time to consid-
er alternative approaches for such as dry etching or lift off processes. In one of the liter-
ature review it was suggested that lift-off process for micro-processing the ITO layer
wasn’t an optimum choice and the results aren’t always promising. The reason was that
high velocity particles during the deposition process of the ITO penetrate through the
cracks of the photoresist, which too are formed during the deposition. This causes wash-
ing of the resist difficult and sometimes impossible, rendering areas without ITO to
have ITO particle [28]. So it seemed that a better choice for micro-processing would be
dry etching/plasma etching.

When it came to dry etching more than one recipe was found which had different gases
and sometimes a mixture of different gases used as etchants. The only consideration
here was again using the gases available in our RIE device. Thus a lot many choices
were altogether dismissed owing to the unavailability of certain gases suggested in liter-
ature. An educated guess of using recipe with only a single gas as etchant seemed like a
sensible idea, as lesser variables would come into play. Thus a single and the very first
reference by Shabir et al paved way for experimentation for dry etching [28]. This
method for dry etching utilized only argon in plasma for etching the ITO away. Since it
was dry etching and that too in RIE device the result was expected to be highly aniso-
tropic unlike in the wet etching experiments. The process involved etching ITO using
argon atoms in plasma, where in the argon atoms would physically knock out the ITO
molecules from the glass substrate. Unlike other mechanisms of etching where chemical
changes causes etching this process is rather a physical one and can be referred to as ion
milling [28].

When using the RIE device for etching, a few things need to be kept into consideration
beforehand. The parameters of dry etching through RIE need a proper understanding of
the kind of gases used, then their corresponding pressures that are required to be main-
tained in the chamber during the process and also their flow in and out of the chamber
upon being used up during the procedure. Apart from optimizing the gas, other parame-
ters need to be optimized as well for the plasma generation that includes choosing the
appropriate RF (Radio Frequency) power and chamber pressure. Lastly, it isn’t neces-
sary that parameters for devices mentioned in the literature be valid or workable at all.
The major reason for why the literature parameters do or do not work, is that each plas-
ma device is unique and the parameters that work with one do not necessarily work with
other device (even if they were of same model and brand).

Thus the recipe used for dry etching of the deposited ITO thin films was derived from
the one followed in [28]. The working fully optimized recipe that was finally used for
this study was based on the literature recipe but was only successful after many tweaks.
Wherein, the RF power was set to 250 W, even though the recipe of the literature uses
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100 W, the reason for that will be discussed shortly. The chamber pressure was initially
maintained at 1x10-4 Torr, then argon was introduced in at a steady rate of 70 sccm
(cm3/min), causing the operational pressure to stay steady around 10-11 mTorr. The
process takes around 75-80 minutes to etch away all the unrequired ITO from the glass
wafer, leaving behind the photoresist and underneath the un-etched pattern of the ITO
required. The pattern was found to be extremely anisotropic and yielded the perfect re-
sult as was expected. However, one minor inconvenience was observed, which was al-
ready known beforehand, the photoresist got burnt and was difficult to remove by just
pouring over the acetone. Some physical agitation was needed to remove the burnt pho-
toresist properly and completely, for that initially acetone dipped cleanroom cloth was
used to gently scrub off the remains of unwashed photoresist from the acetone wash.

The recipe was not followed exactly as stated above, for the very first time during the
pilot run. The above recipe, for dry etching was tweaked to its current optimum form by
actually starting with all the parameters in [28]. According to the findings in Shabir et
al, the initial pressure of the chamber is set to 1x10-4 Torr and then argon is lead to flow
in at a steady rate in order to change the final pressure to 11 mTorr. However, no men-
tion of the argon in flow was mentioned. The only mention of gas flow rate was that it
should be as small as possible because at higher flow rates the ion milling efficiency of
the argon gets attenuated due to inter collision of argon to argon, rather than argon to
ITO [28]. Thus the argon flow rate had to be figured before beginning the actual etch-
ing. To do that, the empty chamber of the RIE device was pressurized at 1x10-4 Torr,
with RF power set to 100 W, and then test runs were made to observe the least flow rate
of argon that supported the desired chamber pressure for a complete run of 20 min. It
was figured that 70 sccm of argon was the least flowrate that could run the etch cycle.
Once the flow rate for argon was figured as 70 sccm, the next step was to run a pilot run
to etch a small flow sensor to see if all the other parameters worked properly. According
to the literature for dry etching 150 and 200 W RF powers were resulting in uncontrol-
lable and unstable etch rates, to the extent that they report pinholes forming in the sub-
strate at RF 200 W. For this reason, the very first run of the dry etching was also set
with RF power of 100 W. However, it seemed to have no affect over the ITO layer what
so ever, even after a serial run of 3 iterations each timing 20 minutes, thus resulting an
overall etch time of 1 hour. Thus again using hit and trial method higher values of RF
powers were tested and finally a value of 250 W RF power was observed for success. A
visible change was noticed in the ITO film as it turned cloudy from transparent, along
with a spike in the resistance value. Thus the same iteration of etching process with 250
W RF power and 70 sccm argon inflow was run again for 20 more minutes. After the
second run, the ITO film’s appearance changed to further densely clouded surface than
before and the resistance value also elevated considerably. Successive iterations were
made until the cloudy surface reappeared as transparent glass and a DMM showed un-
readable resistance, to ensure all the unnecessary ITO was etched away. Finally, after a
total of 4 iterations the flow sensor reassumed the transparent appearance of the glass
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8. TIER III: MEA FABRICATION AND TESTING

After the first successful prototype flow sensor was developed shown in Figure 7.1, the
second step in fabrication was complete. The first step was the fabrication of transparent
conductive ITO thin films on glass substrate, the second step as mentioned was the pat-
terning of the same ITO thin films into distinguishable micro-patterns. The third and the
final tier of this thesis study involved, not only patterning the layout of the MEA from
the thin ITO films but also to perform all the necessary tweaks and optimizations to
fabricate working MEAs, which could measure the activity of beating cardiomyocytes.
The second tier took most of this study’s time, however the most work was cut out in
tier three, as it required the processes and techniques to be tested again and again for the
best results and also included the testing and measurements of the designed MEAs.

8.1 MEA Fabrication and Optimization of Microfabrication

Once a working recipe for argon dry etching in the RIE machine was finally discovered
and tested, the next step was to use the same process to pattern the MEA layout from
the film ITO. Since the flow sensor was successful in patterning using this process, so it
was natural the process had to work for MEA layout as well. The only concern was that
the MEA layout had electrode wirings that were as narrow as 20 μm and whether or not
those structures would pattern out properly or not. So an initial or pilot run was made to
confirm if the results were as successful as in the case of flow sensor. As expected, the
results after the pilot run were just as successful and the 20 µm electrode wirings were
holding their structural integrity and measured under the microscope to be just as such.
The result of the dry etching to pattern the MEA layout of the ITO thin film for the very
first time can be seen in the figure 8.1, the figure shows the snap of the MEA under the
microscope at 5x zoom, the pattern is seen in pink colour while the glass wafer on
which the pattern holds is seemingly brown colour in the background.

8.1.1 Initial Process Flow of Microfabrication

Before the process flow can be understood and decided for any MEA it is important to
understand what key components MEAs possess. Usually standard MEAs have a glass
substrate which holds upon it the entire MEA layout of a particular conductive thin film
of metals or semiconductors, upon which is another transparent nonconductive isolation
layer. So in short the simplest MEA should be a two-layer device, with electrodes wir-
ings and contact pads as the first layer and on top of this layout the transparent noncon-
ductive isolation layer which covers the whole MEA only to expose the individual elec-
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trodes and the contact pads. In this thesis study the MEAs to be designed were 8 x 8
Standard MEA fabricated out of transparent ITO thin films, underneath an isolation
layer thus a two-layer device and so the process flow was planned accordingly.

Figure 8.1: Microscopic evidence of the successful patterning of ITO thin film into
MEA using argon dry etching in the RIE device. The layout in pink is the
ITO MEA layout on glass substrate (brown).

The first prototypes followed a process flow of fabrication which was to fabricate ITO
MEA layout over commercially manufactured glass wafers for MEA from Thermo
Fisher Scientific Gerhard Menzel B.V. & Co. with dimension 49.0 mm x 49.0 mm x 1
mm. These wafers were first cleaned by the cleaning protocol used in the deposition
part of the study mentioned in chapter 6, and will be used before each sub process of the
microfabrication process flow. Next these glass wafers were put to ITO deposition
through the metallization device or the (e-beam coater). Then the wafers were subject to
400 °C post annealing for 1 hour after the deposition. The wafers were once again sub-
jected to cleaning protocol, before the process of photolithography for MEA patterning.
The wafer, after the photolithography process, were put in the RIE device for argon dry
etching for 80 minutes with all the parameters set according to the section 7.3. After the
dry etching was complete the wafer were stripped of the photoresist using acetone wash
and some wiping, and was subsequently subjected to the cleaning process once more.
The wafer was now bearing the ITO MEA layout and was subjected to a 500 nm depo-
sition of the isolation layer of Si3N4 (silicon nitride), discussed in the previous section,
using PECVD (Plasma-enhanced chemical vapour deposition) method. The PECVD
deposition of Si3N4 was done by another cleanroom team at the ORC (Optoelectronics
Research Centre) at TUT. After the deposition of the Si3N4 isolation layer, the wafers
were again subjected to the cleaning protocol as they had to be photolithographed for
the second time to expose the individual 60 electrodes and the contact pads of the MEA.
Once they were done with the second photolithography process, the wafers were again
put in the RIE device for dry etching of the Si3N4 layer.

The only problem in this process flow came at the very end when the second set of pho-
tolithography was being done. The ITO alignment marks on the MEA, to which the film
mask was to be aligned for the patterning of the Si3N4 layout could not be aligned
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properly. The reason for that was the microscope of the mask aligner and the exposure
device had an incandescent lamp without a needed filter. This caused the ITO alignment
marks on the MEA, impossible to view and align with the mask for the Si3N4 pattern-
ing. Thus as a result the initial prototypes had a lot of miss alignment and the ITO elec-
trodes on the MEA were not exposed properly so as to give electrodes with 30 μm di-
ameter in most cases. Figure 8.2 clearly shows the misalignment of the ITO electrodes
to the Si3N4 holes intended to expose the electrodes.

Figure 8.2: Microscopic snap of the first prototype ITO MEA with isolation layer, hor-
ribly aligned due to lack of visibility of alignment marks during photoli-
thography process. The arrow indicates to the misalignment.

Table 4 shows a summary the initial process flow and can be understood by the follow-
ings steps.

Table 3. Initial process flow summarized in steps

Since the results of the initial process flow for the microfabrication of transparent ITO
MEAs wasn’t exactly up to the standard there was definitely some tweaking and opti-
mizations required for the process flow to yield better results. For that the actual reason

2.5 mins
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of the shortcomings had to be reviewed and addressed consequently. The problem with
the initial process flow was that the ITO alignment marks weren’t visible on the mask
aligner and exposure device’s microscope. So a strategy had to be implemented in order
to solve the viewing problem and eradicate the problem of misalignment once and for
all. Hence a new process flow was developed to address the problem of misalignment of
the different layers of the sensor.

8.1.2 Optimized Process Flow of Microfabrication

The misalignment in the ITO patterned layer and the Si3N4 patterning layer had devas-
tating results of the initial prototypes. Therefore, to address them, it was decided to ex-
periment by using opaque alignment marks.  These alignment marks, would be fabricat-
ed by some other material altogether which was not only easy to deposit but also easy to
pattern. Thus titanium was selected as the material of choice to fabricate the alignment
marks. The only problem now was that the new process flow required the first thing
after the very initial cleaning protocol was to deposit Ti rather than ITO. There were
two good reasons for that; one the alignment marks are a kind of reference and therefore
they have to be the first layer to be patterned so that all the subsequent layers would
follow in alignments properly. Second, all the ITO covered wafers without the align-
ment marks were now rendered useless too, because if Ti was deposited over the ITO
layer and then fabricated it would affect the ITO layer underneath. The Ti fabrication
into alignment marks was to be done via an etching solution (HF : H2O2 : H2O) as the
etchant, which also etches the ITO so the underlying ITO layer would be etched to some
extent.

Another surprising discovery was made related to the current dilemma during the time
dry etching technique for ITO using argon was being studied. The discovery was that
afore mentioned Ti etching solution, was found to be a very strong etchant with ex-
tremely high etching rate for Ti compared to ITO. It was learnt that if Ti was used to
mask ITO rather than the photoresist in the photolithography process, and then Ti was
patterned to the masking layout using wet etching, it might behave as a better photore-
sist than PRI-2000. However, it failed devastatingly, since a 200 nm thick Ti film de-
posited on bare glass substrate would completely etch within 30 seconds, but on top of
ITO the Ti did not etch as expected. It took more than 3-4 minutes for the surface Ti to
get removed. Upon removal the underlying ITO was damaged severely to an extent that
the transparency of ITO was diminished majorly by forming a rather flaky surface of the
ITO. This unfortunate failure was one of the bigger reasons why Ti deposition and pat-
terning into alignment marks had to be one of the first steps in the new process flow.

With the inclusion of the Ti alignment marks as the first layer now, the MEAs got up-
graded in design from being a two layer chip to being a three layer chip. Thus for a bet-
ter understanding Table 5 explains the new step by step process flow of the microfabri-
cation.
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Table 4. Step by step summary of the optimized process flow of microfabrication

Comparing Tables 4 and 5, immediately the differences can be spotted which are addi-
tion of an extra layer in the biosensor and all the related sub processes for the layer. The
Titanium layer in the beginning is deposited using the same metallization device used to
deposit ITO. The deposited thickness for Ti was 200 nm as it was sufficient to create
opaque structure on the wafer. Next it was subject to the cleaning protocol and then the
first photolithography process for the fabrication of the alignment marks. After that the
wafer was put in a (HF : H2O2 : H2O) etchant for hardly 30 seconds and the Ti etching
was complete. It might seem confusing in Table 5, mentioned 2.5 minutes for etching Ti
but that is to ensure that entire Ti is removed properly. By using such an extra amount
time it gets ensured that no stray Ti particles remain which may interfere with the MEA
pattern. The removal of photoresist and cleaning protocol was employed and here on-
wards after Ti etching. The rest was absolutely the same as the initial process flow for
fabrication of the MEA layout layer and the isolation layer.

The result of the new and optimized process flow was successfully patterned standard 8
x 8 Transparent ITO MEAs, which were now ready for testing before use and can be
seen in Figure 8.3 in comparison with Pt standard 8 x 8 MEA.

3 (for Si3N4 patterning)
for 2.5 mins

Ti Wet Etching using HF+H2O2 for 2.5 mins
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Figure 8.5: Impedance measurement (in kΩ) of MEA (A) 24 hrs after buffer addition

From the impedance measurement of each MEA, certain common things can be viewed
at once, electrode number 15 and 85 in all MEAs are the reference electrodes and they
are much bigger than the rest of the other electrodes. Hence the value of 2 or 1 kΩ, can
be seen in figures 8.5 respectively. It can be seen that most values in ‘A’ range between
888-1228 kΩ. The values of impedance of the electrodes in ‘B’ were in the range from
700-1459 kΩ. The values of impedance of electrodes in ‘C’ ranged from 929-1301 kΩ.
The values of impedance of electrodes in ‘D’ ranged from 1011-1359 kΩ. The values of
impedance of electrodes in ‘E’ ranged from 886-1249 kΩ. The values of impedance of
electrodes in ‘F’ range from 1157-1433 kΩ. Though there were also some electrodes in
prototypes other than A, with impedances greater than 5000 kΩ, this showed that there
was some sort of anomaly in these electrodes. The anomaly could be anything from
broken connections in the wiring or narrowing of the connections or defect in the elec-
trode surface etc. An overall average impedance value of the electrodes from all the
values were calculated as “1168 kΩ”, with a corresponding standard deviation of ±165
kΩ, which did not include values of reference electrodes, or the values above 5000 kΩ
as they were considered malfunctioned electrodes.

8.2.2 Noise Measurement Testing

The noise measurement testing was done at BioMediTech, University of Tampere
(UTA) with MEA-2100 system by Multi Channel Systems GmbH. The MEA-2100 sys-
tem was also used for the measurement of the data of beating cardiomyocytes. For the
measurement of the noise a similar strategy was assumed where the MEAs were filled
up with cell culture media of FBS (Foetal Bovine Serum) and allowed to rest for 24
hours. After 24 hours the MEAs were loaded in the MEA-2100 device and the record-
ings were made without any cells or contaminations etc. for 90-120 seconds.

Figure 8.6 shows the basic arrangement of a MEA-2100 System for use, thus it should
be clear that it requires a good functioning high performance PC. Other than a PC as its
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fundamental requirement for operation, the hardware of the MEA-2100 system includes
one or two head stages equipped with amplifiers, integrated stimulators and ADCs (An-
alog to Digital Convertors), and an interface board equipped with an integrated signal
processor. The head stage loads the MEAs for measurement and interface board relays
the measurement data into digital signal to the computer for display storage and analysis
purposes [30].

Figure 8.6: Fundamental set up of MEA-2100 System in a MEA lab with a PC on the
right, Interface board in the middle and 2 Head stages to make MEA re-
cordings [30]

The noise levels of all the ITO MEA prototypes A-F were measured in comparison to a
commercial TiN standard 8 x 8 MEA. The noise levels were measured for each elec-
trode and were stored in a “*.mcd” computer file, which only works with a specific
software called “MC_Rack” that interacts with the MEA-2100 system. For analysis the
*.mcd file is then converted to a *.txt file using a program called MC_Data Tool which
converts the binary data into ASCII code. The *.txt file is then used to import data in
forms of vector or matrices for analysis in MATLAB.

Just like all the prototypes were studied for impedance measurements, similarly all the
prototypes were tested for noise measurements as well. This would help understand if
the impedances of the individual electrodes which were all measured around 1200 kΩ
benchmark yielded low noise levels too. Figures 8.7 and 8.8 show the noise measure-
ments of commercial MEA and prototype A in the MC_Rack programme, respectively.
Prototype A is chosen to show out of all prototypes here, since it has the best result
comparable to the commercial MEA. The figures portray that the noise levels are strik-
ingly similar and comparable, when calculated from a common numbered electrode
from both showed that the values were indeed close. The calculated noise voltage for
commercial was found to be ± 4.3 μVrms and likewise for prototype A it was ± 7.1
μVrms. However the worst measurement recorded for noise was around 18 μVrms, and
the corresponding impedance of the electrode was investigated and found to be 1419
kΩ. A mean noise for all the working electrodes was calculated and found to be 10.67
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μVRMS with a standard deviation of ±3.1 μV. This actually shows that the highest noise
measurement was sort of an outlier. Nonetheless for 30 μm diameter electrodes the im-
pedance and noise values are more than satisfactory.

Figure 8.7: Noise levels of all 60 electrodes from the Commercial TiN MEA in
MC_Rack.

Figure 8.8: Noise levels of all 60 electrodes from prototype A in MC_Rack.
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8.3 MEA Testing III (Beating Cardiomyocytes)

From the results of the impedance and noise measurements, 2 best specimens were cho-
sen for testing of beating cardiomyocytes, these were prototypes “A” and “C” to be
compared with the commercial MEA.

The procedure was similar to the noise measurement, except this time after adding the
FBS solution to the sample reservoir in the PDMS rings, slices of beating cardiomyo-
cyte cell aggregates were cultured on top of the electrode region of the MEAs. Once the
cell cultures were placed on the electrode regions, a period of waiting followed until the
cultures adhered to the electrodes or fixated themselves over the electrodes. This could
take from 24 to 72 hours, before a sensible measurement could be made. If the cell cul-
tures did not bind appropriately to the electrodes then on the slightest movement or
jerks while moving the MEA chips could cause the culture to float randomly in the res-
ervoir. If the MEAs have temperature sensor in between the electrodes as in the case of
this study, then the cultured cells may land on top of the temperature sensor. This may
transmit a very faint signal on the neighbouring electrode. Secondly weak adherence of
cells also cause technical difficulty in measuring the signal as the magnitude of noise is
often comparable with the signals of the cells or the tissue culture. Thus a good binding
of the cells to the electrodes determines better results. Figure 8.9 shows the recording of
a signal directly from the MC-Rack software of beating cardiomyocytes; here it is evi-
dent that the signals magnitude is just slightly higher than the noise.

Figure 8.9: Raw signal recorded directly from MC_Rack of prototype ‘C’.

The signal attained in Figure 8.9 is then converted into ASCII, as was the case in noise
measurements before analysis. This signal is noise prone and using still requires soft-
ware conditioning to remove the noise and view the actual signal. That all is done via
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Figure 8.16: Individual waveform of beating cardiomyocyte from prototype ‘C’.

When comparing Figure 8.15 and Figure 8.16 there is a very distinct understanding of
the severe contamination of noise artefacts in prototype C compared to A, there can be
more than one explanation for that. The first explanation could be that the noise is in-
nately present due to higher impedance and the particular electrode can be checked for
both impedance and noise measurement prior to measurements made. Secondly the
noise can also arise from the amplifier system as a result of improper connection of the
head stage with the MEA contact pad. For that the head stage could be opened then
closed back properly and checked if there are any form of artefacts. Another way to
check if the connection pin of the head stage is faulty can be seen by adding a new
MEA with only FBS culture medium and make noise measurement afresh. The third
reason which occurs the most often is, if the culture temperature decreases due to pro-
longed measurements the cardiomyocytes beating begin to slow down and the ampli-
tude of the beats recede as well. During this time the beating can become so faint that it
begins to match the noise levels more or less. For which the MEA has to be placed back
in the culturing incubators for sufficient time so that the cells start to beat between 70-
100 bpm again.

In the case of prototype ‘C’ there were two issues for the presence of higher noise levels
resulting in the final output as artefacts. First it can be seen in the diagram the beating
rate is mentioned as 26 bpm, second upon referring back to the impedance data of this
electrode it was found to be 1301 kΩ which is slightly higher than usual.

Y-axis in μV
X-axis in seconds
Beats per minute: 26

Noise Artefacts
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9. CONCLUSION AND FUTURE PLANS

9.1 Conclusion

9.1.1 Tier I

In this study it is shown that good quality ITO thin layers can be deposited by EB-PVD
method over glass substrates, owing to condition that they are subjected to post deposi-
tion annealing. The key features that play a vital role in the good quality deposition are
low deposition rate of 0.05 nm/s and post annealing of the layer of at temperature rang-
es between 300-500 °C for no less than an hour. The best result for transparent ITO thin
film of 700 μm was achieved at the deposition rate of 0.05 nm/s and post annealing
temperature of 300 °C for more than 20 hrs. Though this result was extremely good and
much better than reports in [8-10,19,23], but sadly this wasn’t utilized for fabricating
the MEAs as this result required impractical length of annealing time. Thus the second
best result which was observed at 400 °C annealing was utilized as the prime ITO fabri-
cation parameter. Even though the 400 °C 1 hour annealing didn’t yield the second best
transparency results, but the sheet resistance was best after 300 °C 20 hours process,
since lower sheet resistance was preferred over transparency for better quality electrode
fabrication thus 400 °C 1 Hour annealing was finalized as the “go-to” process after dep-
osition of ITO as-deposited layers at 0.05 nm/s. The maximum transmittance achieved
was 92.8 % and the lowest was 82.3 %, with sheet resistance of 35.8 Ω/sq, which are
commercial grade results [31]. Though most commercial ITO layers are not available in
thicker layers than 100 nm, yet the layers fabricated in this study have thicknesses up to
700 nm.

9.1.2 Tier II

The best possible quality ITO films were then utilized to microfabricate 8 x 8 Standard
MEAs using dry etching with Ar gas (or otherwise known as sputter etching method).
The dry etching mechanism was extremely successful in comparison to wet etching us-
ing dilute acid solutions, as it provide better controllability and splendid precision in the
range of few microns. Though certain references such as [32-34], have reported fabrica-
tion of ITO microelectrode using wet etching, however, the experience gained from
study contradicts the feasibility of wet etching altogether.  The reason for its failure is
due to the steeper bias all the etchants owed on to the ITO structures. Similar results
were pre authenticated by Shabir et al. in their study as well, whereby small enough
geometries experience the etchants to seep under the resist due to isotropic nature of the
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etchant [28]. Nevertheless, dry etching is well known for its anisotropic nature and
therefore gives a rather precise geometric formulation for magnitude of dimensions be-
low 50 μm in geometry. The study shows that the microfabrication process was success-
ful for microfabrication of MEAs with success to fabrication of a flow sensor with ge-
ometric dimensions similar to standard 8 x 8 MEA. The result of the dry etching by the
RIE device is not too precise and neither is it a linear process. Due to limitation of time
and other unexplored aspects of the study it was decided to utilize the dry etching quali-
tatively rather than quantitatively. This implies that an etch curve for ITO using sputter
etching through RIE wasn’t studied. The etching was conducted with basic visual au-
thentication for disappearance of ITO under microscope and by using DMM to check
there was no resistance measured on exposed areas luckily, the results were still beyond
satisfactory.

9.1.3 Tier III

With success in dry etching to pattern ITO into microstructures and finally as standard 8
x 8 MEAs, the challenges of the study were far from over. Patterning the insulation lay-
er of Si3N4 was another mystery that needed solving. The problem was that ITO is a
transparent layer and in order to de-insulate the electrodes and the contact pad of the
MEAs, the mask for de-insulation couldn’t be aligned properly. Thus optimizations
were needed to overcome this issue and it was decided to at least have alignment marks
that were opaque. For that Ti was chosen to optimize the entire process. A rather odd
observation noticed was that though ITO wasn’t getting etched as many references have
reported, a common etchant that etches ITO etched Ti as well. However, the rate of
etching for Ti was extremely faster. The same etchant was expected to etch Ti above
ITO as well but that wasn’t the case. Ti when deposited on simple glass took mere sec-
onds to etch away 200 nm thick Ti layer, but a similar thick layer over ITO took up to 9
minutes to etch away. Even after the etching the result was devastating, for the under-
neath ITO layer got destroyed as soon as Ti was all etched away. This had changed the
approach so as to now deposit the Ti alignment marks before deposition of ITO alto-
gether. Such an optimization was an inconvenience, nevertheless an absolute necessity
as well. The inconvenience was the added labour of an entire layer of fabrication just for
adding alignment marks, this increased the time for fabrication by almost 30% and due
to addition of an extra layer, process uncertainties rose too. All the necessary labour was
applied, so as to produce MEAs which would work. Finally upon the fabrication of suc-
cessful MEAs, now they had to be tried and tested.

Upon testing it was found that the impedance values of the electrodes were around 1200
kΩ, comparable with commercially available ITO transparent MEAs [35]. Noise levels
vary considerably amongst the different prototypes and the reason for that is still un-
clear. However the best results show very little noise of no more than 7.1 μVrms and the
worst results exhibit 18 μVrms levels of noise. Oddly there have been reports of better
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and improved electrode impedances such as in [32-33], where they report impedance
value slightly above 500 kΩ. Exclusively in one reference it is mentioned that bi layer
lift off processed electrodes exhibit impedances at constant 500 kΩ, were as RIE pro-
cessed ITO electrodes exhibit impedance values vary from 100-3000 kΩ [33]. Though
the claimed impedance values are better than the ones presented in this study however,
the noise values for the same study are higher than the ones presented in this study. The
least noise measure for this study was 7.1 μVrms, the average noise is expected to be 10
μVrms and the highest noise recorded was 18 μVrms. Consequently in [33] ITO’s average
noise is reported as 14.8 μVrms, whereas gold electrodes noise is reported as 12 μVrms

and gold nano particle based electrode exhibits 7.1 μVrms. Clearly the best value of this
study and the one being discussed are similar but the point worth considering is that in
this study the same noise is being measured from ITO electrode, where as in the other
study it is measured from gold nanoparticle electrode.  The reduced electrical imped-
ance of an electrode should enable it to achieve higher signal-to-noise ratio values, thus
long-term recording, as the noise level is proportional to the electrical impedance [33].
Hence ITO MEAs in this study have earned for themselves a respectable spot as they
are comparable to TiN commercial MEAs as demonstrated in Chapter 8 already and the
same is true for Au MEAs from [33].

The transparencies of the electrodes show that the cells are completely visible with no
obscurities owing to electrodes. The study shows that meaningful data was measured
from the MEAs, and that they function as well as any contemporary MEAs (TiN), Au
and even other ITO MEAs when compared.

9.2 Future Possibilities

The current progress of this study involves little study for the characterization of the
MEAs fabricated. From the study, it is clear that beating cardiomyocytes can be meas-
ured using ITO MEAs with electrode diameter as low as 30 μm but could the similar
electrodes with smaller diameters be as viable? If so can smaller electrode be designed
to an extent that they are able to measure single beating cardiomyocyte at a higher spa-
tial and vectored resolution? What kind of signals will be generated and what will be the
challenges in acquiring clear and undistinguishable signals. How much noise will be
encountered and how much noise can be attenuated?

Answers to all these questions are yet to be discovered and so it will require surmounta-
ble amount of work to figure out if indeed a single cell MEA can be designed using ITO
or not. Based on my knowledge from this study I have high hopes that such MEAs can
be fabricated using ITO as they have shown promising results for this study. A thorough
study for the characterization is still required to measure the different kinds of noise
originating from different samples of the same prototypes that were fabricated for this
study.
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The ITO coating process that was developed for this study was the first of its kind done
in our department. Though the quality of the thin films that were deposited wasn’t simi-
lar to the commercial films available, however it was still comparable. A little more
study on the optimization might also prove fruitful in producing better MEAs in future.

Another possibility for future work in transparent MEAs could include testing other
TCO such as; AZO (Aluminium doped Zinc Oxide) or FTO (Fluorine doped Tin Oxide)
etc. to investigate which thin film yields better MEAs in terms of low noise, high signal,
low hysteresis, and are longer lasting. Such a study would prove invaluable in the field
of transparent MEAs.



78

REFERENCES

[1] C. A. Bishop, Vacuum Deposition onto Webs, Films, and Foils, Part 3: Process,
Chapter 12: Electron Beam (E-Beam) Evaporation, Elsevier, December 2006,
William Andrew, ISBN: 978-0-8155-1535-7.

[2] R.J.  Hill,  Physical Vapor  Deposition,  2nd  Edn.,  Temescal,  Berkeley,  CA,
1986. Part No. T-0186-6001-1.

[3] Pdf Source: J. Singh, F. Quli, D. E. Wolfe, J. T. Schriempf and J. Singh, “An
Overview: Electron Beam-Physical Vapor Deposition Technology- Present and
Future Applications”

http://infohouse.p2ric.org/ref/02/01162.pdf, [Last reviewed 5.9. 2015].

[4] D. M. Mattox, Physical Vapor Deposition (PVD) Processing, Surface Engineer-
ing, ASM Handbook, Noyes Publications, Westwood, NJ (1998), Vol. 5, ASM
International, Materials Park, OH (1994), ISBN 0-8155-1422-0.

[5] Pdf Source: “Transparent Conductive Oxide Thin Films”, Technical Paper, Ma-
terion Microelectronics & Services, 2978 Main Street, Buffalo,
www.materion.com/microelectronics

[6] Web Source: http://en.wikipedia.org/wiki/Indium_tin_oxide [Last reviewed:
15.4.2015].

[7]  H. Hosono, H. Ohta, M. Orita, K. Ueda, M. Hirano, Frontier of transparent con-
ductive oxide thin films, Elsevier, Vacuum,  August 2002, Volume 66, Issues 3–
4, Pages 419-425.

[8] H. R. Fallaha,, M. Ghasemia, A. Hassanzadehb, H. Stekic,  The effect of deposi-
tion rate on electrical, optical and structural properties of tin-doped indium oxide
(ITO) films on glass at low substrate temperature, Elsevier, Physica B, Issue 373
(2006), Pages 274–279.

[9] H. R. Fallaha, , M. Ghasemia, A. Hassanzadehb, H. Stekic,  The effect of an-
nealing on structural, electrical and optical properties of nanostructured ITO
films prepared by e-beam evaporation, Elsevier, Materials Research Bulletin 42
(2007), Pages 487–496.

[10] H. R. Fallaha, M. Ghasemia, A. Hassanzadehb, Influence of heat treatment on
structural, electrical, impedance and optical properties of nanocrystalline ITO
films grown on glass at room temperature prepared by electron beam evapora-
tion, Elsevier, Physica E 39 (2007) 69–74.

http://infohouse.p2ric.org/ref/02/01162.pdf
http://www.materion.com/microelectronics
http://en.wikipedia.org/wiki/Indium_tin_oxide


79

[11] J. Selvakumaran, M. P. Hughes, J. L. Keddie, D. J. Ewins, Assessing biocompat-
ibility of materials for implantable microelectrodes using cytotoxicity and pro-
tein adsorption studies, Annual International IEEE EMBS Special Topic Con-
ference on Microtechnologies in Medicine & Biology, May 24,2002.

[12] I. L. Jones,  P. Livi, M. K. Lewandowska, M. Fiscella, B. Roscic, A. Hierle-
mann, The potential of microelectrode arrays and microelectronics for biomedi-
cal research and diagnostics, Analytical and Bioanalytical Chemistry, March
2011, Volume 399, Issue 7, Pages 2313–2329.

[13] M. Fejtl et al. On Micro-Electrode Array Revival: Its Development, So-
phistication of Recording, and Stimulation. In: M. Baudry, M. Taketani, eds.
Advances in Network Electrophysiology Using Multi-Electrode Arrays. New
York: Springer Press; 2006: Pages 24-37.

[14] Multi Channel Sytems Manual 2100 System, Pdf source available at:
http://www.multichannelsystems.com/sites/multichannelsystems.com/files/docu
ments/manuals/MEA2100-System_Manual. pdf  [last accessed 23. 8.2015].

[15] Multi Channel Sytems MEA Manual, Pdf source available at:
http://www.multichannelsystems.com/sites/multichannelsystems.com/files/docu
ments/manuals/MEA_Manual.pdf [last accessed 23. 8.2015].

[16] J.C. Richard. Lithography. Introduction to Microelectronic Fabrication (2nd
ed.). Upper Saddle River: Prentice Hall, (2002). ISBN 0-201-44494-1.

[17] Archives on Photolithography from Georgia Tech University, web source:
http://www.ece.gatech.edu/research/labs/vc/theory/photolith.html [last accessed
5.9.2015]

[18] Archives on mask types available as product info, web source:
http://www.mitani-micro.co.jp/en/mask/photo.html [last accessed 5.11.2016].

[19] J. George, C.S. Menon, “Electrical and optical properties of electron beam evap-
orated ITO thin films”, Elsevier, Surface and Coatings Technology 2000,
Vol.132 Issue 1, Pages 45-48.
.

[20] K. Robbie M. J. Brett. "Sculptured thin films and glancing angle deposition:
Growth mechanics and applications." Journal of Vacuum Science & Technology
A: Vacuum, Surfaces, and Films 15.3 (1997): Pages 1460-1465.

[21] C. Renault, C. P. Andrieux, R. T. Tucker, M. J. Brett, V. Balland, and B. Li-
moges, “Unraveling the Mechanism of Catalytic Reduction of O2 by Microp-

http://www.ece.gatech.edu/research/labs/vc/theory/photolith.html


80

eroxidase-11 Adsorbed within a Transparent 3D-Nanoporous ITO Film”, Jour-
nal of American Chemical Society, 134 (15), pp 6834–6845.

[22] J. G. V. Dijken, M. J. Brett, “Nanopillar ITO electrodes via argon plasma etch-
ing”, Journal of Vacuum. Science & Technology A 30, 040606 (2012).

[23] J. Zhou, “Indium Tin Oxiide (ITO) Deposition Patterning and Schottky Contact
Fabrication”, Master’s Thesis Study, Department of Microelectronic Engineer-
ing, Rochester Institute of Technology, New York 2006.

[24] Archives on product info Menzel glass slides from Thermo Scientific, web
sourec: http://www.menzel.de/11-1-Downloads.html. [last accessed 21.11.2016]

[25] C.J. Huang, Y.K. Su, S.L. Wu, “The effect of solvent on the etching of ITO
electrode”, Elsevier, Materials Chemistry and Physics 84 (2004), Pages146–150

[26] T-H. Tsai, Y-Fu. Wu, “Wet etching mechanisms of ITO films in oxalic acid”,
Elsevier, Microelectronic Engineering 83 (2006), Pages 536–541.

[27] J-H. Lan, J. Kanicki, A. Catalano, J. Keane, W. D. Boer, T. Gu, “Patterning of
transparent conducting oxide thin films by wet etching for a-Si:H TFT-LCDs”,
Journal of Electronic Materials, December 1996, Volume 25, Issue 12, pp 1806-
1817.

[28] S. A. Bashar, "Study of Indium Tin Oxide (ITO) for Novel Optoelectronic De-
vices", University of London, Ph.D. thesis-Chapter 5, Section 2, Available on:
http://www.betelco.com/sb/phd/ch5/c52.html [last accessed 16.9.2015].

[29] Multi Channel Sytems Manual MEA-IT System, Pdf source available at::
http://www.multichannelsystems.com/software/mea-it, “MEA-IT Manual”, Mul-
ti Channel Systems GmbH: [Last accessed 18.5.2016].

[30] Multi Channel Sytems Manual 2100 System, Pdf source available at::
http://www.multichannelsystems.com/sites/multichannelsystems.com/files/docu
ments/manuals/MEA2100-System_Manual.pdf, [Last accessed 18.5.2016].

[31] Archives on ITO covered glass slides product info from Sigma Aldrich, web
Source:
http://www.sigmaaldrich.com/catalog/product/aldrich/703184?lang=fi&region=
FI&cm_sp=Insite-_-prodRecCold_xviews-_-prodRecCold10-3 [Last accessed
24.11.2016].

http://www.menzel.de/11-1-Downloads.html
http://www.betelco.com/sb/phd/ch5/c52.html
http://www.multichannelsystems.com/software/mea-it
http://www.sigmaaldrich.com/catalog/product/aldrich/703184?lang=fi&region=FI&cm_sp=Insite-_-prodRecCold_xviews-_-prodRecCold10-3
http://www.sigmaaldrich.com/catalog/product/aldrich/703184?lang=fi&region=FI&cm_sp=Insite-_-prodRecCold_xviews-_-prodRecCold10-3


81

[32] Y. Nam, K. Musick & B.C. Wheeler, Application of a PDMS microstencil as a
replaceable insulator toward a single-use planar microelectrode array, Kluwer
Academic Publishers, Biomedical Microdevices (2006) Volume 8, Issue 4, Pag-
es 375-381.

[33]  Y.H. Kim, G.H. Kim, N.S. Baek, Y.H. Han, Ah-Y. Kim, M-Ae. C.S. Jung, Fab-
rication of multi-electrode array platforms for neuronal interfacing with bi-layer
lift-off resist sputter deposition, IOP Publishing Ltd 2013, Journal of Microme-
chanics and Microengineering, Volume 23, Number 9.

[34] J.V. Pelt, P.S. Wolters, M.A. Corner, W.L.C. Rutten, G.J.A. Ramakers : Long-
term characterization of firing dynamics of spontaneous bursts in cultured neural
networks. IEEE Trans Biomed Eng. 2004, 51 (11): 2051-2062.

[35] Product catalogue on standard MEA products by Qwane Biosciences SA web
source [pdf]:
http://www.qwane.com/Documents/Qwane_MEA60_Product_Catalogue_2016.
pdf, [Last accessed: 22nd Nov. 2016]

[36] J M Pó, M C Brito, J.M. Alves, J.A. Silva, J.M. Serra, A.M. Vallêra, Measure-
ment of the dopant concentration in a semiconductor using the Seebeck effect,
IOP Publishing Ltd 2013, Measurement Science and Technology, Volume 24,
Number 5.

http://www.qwane.com/Documents/Qwane_MEA60_Product_Catalogue_2016.pdf
http://www.qwane.com/Documents/Qwane_MEA60_Product_Catalogue_2016.pdf


82

APPENDIX: STEP BY STEP MICROFABRICATION PROCESS

1. Cleaning protocol
· First the glass wafers are immersed in acetone reservoir of the ultrasonic bath

for 5 minutes.
· Then they are ultrasonically cleaned in IPA for 5 minutes.
· Next they are rinsed with distilled water.
· Then they are dried off  using clean nitrogen blasts
· Finally the dried glass slides are subjected to oxygen plasma for 5 minutes.

2. E-beam Deposition of Ti film, 200 nm thickness
· Deposition rate used for Ti is 5 nm/s

3. Cleaning protocol
· First the glass wafers are immersed in acetone reservoir of the ultrasonic bath

for 5 minutes.
· Then they are ultrasonically cleaned in IPA for 5 minutes.
· Next they are rinsed with distilled water.
· Then they are dried off  using clean nitrogen blasts

4. Photolithography 1 (for Alignment Marks)
· First PRI- 2000 A (positive photoresist) is applied to the substrate on the spin-

ner
· Spin for 45 seconds to 1 minute at 3000 rpm for uniform distribution
· Substrate is heated at 120℃ for 1 minute
· UV exposure is applied for 25 seconds with mask (mask 1 with alignment

marks) for 25 seconds
· Developed with RD-6 developer for 45 seconds to 1 minute
· Substrate is heated at 130℃ for 1 minute

5. Ti wet etching in 35 % HF+H2O2 for 1-2 minutes
· HF:H2O2 (1:10)

6. Stripping Photoresist and Cleaning Protocol
· First the glass wafers are immersed in acetone reservoir of the ultrasonic bath

for 5 minutes.
· Then they are ultrasonically cleaned in IPA for 5 minutes.
· Next they are rinsed with distilled water.
· Then they are dried off  using clean nitrogen blasts

7.  E-beam Deposition of ITO film, thickness 700 nm
· ITO used is 90/10 deposition rate of 0.05 nm/s
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8. Annealing at 400-450℃ for 1 hour
· Furnace or a hot plate can be used.

9. Cleaning Protocol
· First the glass wafers are immersed in acetone reservoir of the ultrasonic bath

for 5 minutes.
· Then they are ultrasonically cleaned in IPA for 5 minutes.
· Next they are rinsed with distilled water.
· Then they are dried off  using clean nitrogen blasts

10. Photolithography 2 (for ITO Patterning)
· First PRI- 2000 A is applied to the substrate on the spinner
· Spin for 45 seconds to 1 minute at 3000 rpm for uniform distribution
· Substrate is heated at 120℃ for 1 minute
· UV exposure is applied for 25 seconds with mask (mask 2 MEA patterns) for 25

seconds
· Developed with RD-6 developer for 45 seconds to 1 minute
· Substrate is heated at 130℃ for 1 minute

11. ITO Dry Etching for 80 minutes
· Sputter etching with RIE device
· Argon inflow 70 sccm
· RF- power 250 W
· Chamber pressure 11 mTorrs

12. Stripping Photoresist and cleaning protocol
· First the glass wafers are immersed in acetone reservoir of the ultrasonic bath

for 5 minutes.
· Then they are ultrasonically cleaned in IPA for 5 minutes.
· Next they are rinsed with distilled water.
· Then they are dried off  using clean nitrogen blasts

13. PECVD Deposition of Si3N4 (Isolation layer), thickness 500 nm

14. Cleaning Protocol
· First the glass wafers are immersed in acetone reservoir of the ultrasonic bath

for 5 minutes.
· Then they are ultrasonically cleaned in IPA for 5 minutes.
· Next they are rinsed with distilled water.
· Then they are dried off  using clean nitrogen blasts

15. Photolithography 3 (for Si3N4 Patterning)
· First PRI- 2000 A is applied to the substrate on the spinner
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· Spin for 45 seconds to 1 minute at 3000 rpm for uniform distribution
· Substrate is heated at 120℃ for 1 minute
· UV exposure is applied for 25 seconds with mask (mask 3 eith exposed elec-

trodes and contact pads) for 25 seconds
· Developed with RD-6 developer for 45 seconds to 1 minute
· Substrate is heated at 130℃ for 1 minute

16. Si3N4 Dry Etching for 2.5 minutes
· RIE device is used with Si3N4 SF6 + O2 etch v1.07 recipe

17. Stripping photoresist and final Cleaning Protocol
· First the glass wafers are immersed in acetone reservoir of the ultrasonic bath

for sufficient time to deserve the resist.
· Then they are ultrasonically cleaned in IPA for 5 minutes.
· Next they are rinsed with distilled water.
· Then they are dried off  using clean nitrogen blasts
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