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ABSTRACT: While offering high resolution atomic and elec-
tronic structure, scanning probe microscopy techniques have
found greater challenges in providing reliable electrostatic
characterization on the same scale. In this work, we offer
electrostatic discovery atomic force microscopy, a machine
learning based method which provides immediate maps of the
electrostatic potential directly from atomic force microscopy
images with functionalized tips. We apply this to characterize the
electrostatic properties of a variety of molecular systems and
compare directly to reference simulations, demonstrating good
agreement. This approach offers reliable atomic scale electrostatic
maps on any system with minimal computational overhead.

KEYWORDS: atomic force microscopy, machine learning, tip functionalization, chemical identification, electrostatics

INTRODUCTION

The electrostatic properties of molecules are dominant in a
wide variety of processes and technologies, from catalysis and
chemical reactions1 to molecular electronics2 and biological
functions.3 In general, if we can understand the link between
molecular function and electrostatics, it offers powerful tools to
control and design functionality with nanoscale precision.4 On
this scale, scanning probe microscopy (SPM) is the character-
ization technique of choice and scanning tunneling microscopy
(STM) has become the engine of local electronic character-
ization for conducting systems,5,6 while AFM is a general tool
for nanoscale imaging without material restrictions.7,8 In high-
resolution studies, AFM has evolved from its origins9 into a
breakthrough technique in studies of molecular systems.10,11

This has been driven by the use of functionalized tips, and
AFM in ultra high vacuum (UHV) now offers a window into
molecular structure on surfacesaside from the detailed
resolution of the results of molecular assembly, it is possible to
study bond order, charge distributions, and the individual steps
of on-surface chemical reactions.11 More recently, additions to
the SPM family such as alternate-charging STM12 and single-
electron transfer AFM13 have offered approaches to study
charge behavior in molecular systems.
While all of these methods give indirect information on the

electrostatic properties of the system being studied, significant
efforts have been made to develop systematic techniques to
directly characterize electrostatic properties. In particular,

Kelvin probe microscopy (KPFM) was introduced14,15 to
simultaneously explore the topography and local contact
potential difference with atomic resolution. Despite success
in characterizing the electrostatic properties of surfaces,16−19

and even proteins,20 the technique has limitations that prevent
widespread adoption. Generally, it is experimentally challeng-
ing, requiring much longer measurement times than equivalent
STM or AFM experiments and can be prone to tip-
convolutions.21 More generally, the varying contributions to
the signal mean it is very challenging to obtain quantitative
measurements from KPFM.22 The step-change in molecular
characterization offered by functionalized tips in AFM has also
been harnessed for electrostatic analysis, with KPFM being
applied with functionalized tips to provide a local potential
maps of single molecules.23,24 However, the outstanding
challenges of KPFM remain, or are even exaggerated: there
is no rigorous KPFM theory on the atomic scale, the usually
assumed qualitative proportionality to the out-of-plane electric
field gradient breaks down at small tip−sample separations,
and convolution with unknown background force contribu-
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tions further complicates the analysis. Attempts to address
these problems led to the recent development of scanning
quantum dot microscopy,25 which offers an alternative
approach to map the local potential of a surface and adsorbates
at high resolution.26 While powerful, the technique relies on
quantum dot tip functionalization and a dedicated controller,
again limiting its broad implementation as yet.
In this work, we were inspired by earlier efforts which use

AFM tips functionalized with molecules of different electro-
static character to resolve the electrostatic potential by
comparing the characteristic distortions of each tip.27

However, the limitations of the approach meant it was unable
to provide quantitative accuracy. Here, we offer electrostatic
discovery atomic force microscopy (ED-AFM), a machine
learning (ML) approach that can predict accurate electrostatic
fields directly from a set of standard experimental AFM images.
This methodology offers convenient access to the electrostatic

potential of molecules adsorbed on surfaces, which will be
important infor exampleunderstanding their catalytic
activity, identifying products of on-surface synthesis routes
and facilitating chemical identification of functional groups in
unknown molecules.

RESULTS AND DISCUSSION
At the heart of the ED-AFM methodology lies a convolutional
neural network that is trained to connect input dataa set of
constant height AFM images of the frequency shift Δf at
different tip−sample distances acquired with two different tip
chargesto a map of the electrostatic potential over the
molecule (ES map descriptor). The details of the procedure
are given in the Methods section.

Benchmark Systems. In order to benchmark the ED-
AFM method, we first consider three molecular systems using
only simulated data. The first two, “N2-(2-chloroethyl)-N-

Figure 1. Predictions on simulated AFM images. Predictions are shown for three test systems, (A) N2-(2-chloroethyl)-N-(2,6-
dimethylphenyl)-N2-methylglycinamide, (B) 2-[(1E)-2-thienylmethylene]-hydrazide, and (C) tetrathiafulvalene thiadiazole. In each case are
shown, from left to right, the 3D structure of the molecule, three out of six input AFM images at different tip−sample distances for both tip
functionalizations, and the predicted and reference ES Map descriptors. The color-bar scale for the prediction and the reference is the same
on each row.

Figure 2. Comparison of simulated and experimental predictions for perylenetetracarboxylic dianhydride. On the left are shown three out of
six input AFM images at different tip−sample distances for both tip functionalizations, and on the right are the model predictions for both
simulation and experiment and the reference descriptor. Both predictions and the reference are on the same color-bar scale. The molecule
geometry used in the simulation is shown on the bottom right.
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(2,6-dimethylphenyl)-N2-methyl-glycinamide (NCM)” and
“4-pyridinecarboxylic acid, 2-[(1E)-2-thienylmethylene]-
hydrazide (PTH)” (see Figure 1A,B) were chosen due to the
presence of different functional groups and bonds, as well as
due to their nonplanar geometry. In the third example, we
focus on a charge transfer complex, polar tetrathiafulvalene
thiadiazole (TTF-TDZ; see Figure 1C), which was charac-
terized electrostatically in a previous work using KPFM and ab
initio simulations.24 These examples are only considered as
free-standing molecules, and therefore the presented orienta-
tions and geometries are likely not fully representative of those
that the molecules would adopt on a surface.
We consider here the predictions in comparison to the

point-charge reference that the model was trained to
reproduce. In all cases the match between the predicted and
the reference descriptors is generally excellent. The positive
and negative regions are predicted in the correct places at a
correct magnitude with some small imprecision at the edge
regions. For a more quantitative comparison, we consider a
relative error metric:

∑ | − ̃ |

̃ − ̃

y y N

y y

/

max min
i i i

where y is the predicted descriptor, ỹ is the reference
descriptor, and the sum is over the N pixels in the descriptor.
This is the mean absolute error in the prediction relative to the
range of values in the reference. For our three benchmark
examples, we find that the relative errors are 1.04% for NCM,
1.79% for PTH, and 2.29% for TTF-TDZ.
Validation. Clearly, the real test of ED-AFM is with

experimental data, and we consider three representative
example molecular systems. In our first example, we consider
perylenetetracarboxylic dianhydride (PTCDA) on the
Cu(111) surface (see Figure 2), a benchmark system in the
analysis of molecules on metal surfaces and in characterizing
electrostatic interface properties.26,28,29 The simulation is done
on a free-standing molecule with planar geometry using point
charges for electrostatics. In the reference ES Map descriptor,
we find that the ends of the molecule with the three oxygens

have a negative field, as would be expected by the
electronegativity of oxygen, and the field in the middle of
the molecule is positive. In line with the previous simulation
examples, the prediction based on the simulated AFM images
is in good agreement with the reference. The prediction from
the experimental AFM images similarly shows a negative field
over the ends of the molecule and the positive field in between.
This matches well with the reference, except for the somewhat
weaker magnitude of the field in the experimental prediction.
We note that in the experimental Xe-AFM images, there

appears an abnormally large, bright feature in the upper right
corner over one of the oxygens. The origin of this artifact is
unclear, but we speculate that it could be due to a difference in
charge at that site (see Supporting Information (SI) section
“Possible extra electron in PTCDA” for further discussion).
Despite this unusual feature in the AFM images, the model
prediction does not appear to be greatly disturbed over the
corresponding region. Another unusual feature in this set of
images is that there is a gradient in the background of the AFM
images decreasing from the upper edge toward the lower edge
of the images. This is due to the experiment being performed
at a slight tilt with respect to the surface. Originally, our model
could not handle this feature in the images very well, since
such features originating from the surface are normally absent
from the simulations that only consider free molecules. After
adding artificial gradients in random directions to the
simulation images in training, we found that the model
began to perform more consistently in the PTCDA experi-
ment. See the SI section “Surface tilt effect on model
predictions” for further discussion.
For our second example, we study 1-bromo-3,5-dichlor-

obenzene (BCB) on the Cu(111) surface (see Figure 3), a
planar molecule with mixed halide functionalization. As with
PTCDA, for simulations of this molecule, we consider a
completely planar free-standing molecule with point-charge
electrostatics. In the reference ES Map descriptor, we find a
negative field both over the chlorines and in the middle of the
molecule, close to neutral over the bromine, and positive over
the hydrogens. Again, the simulation prediction is in good

Figure 3. Comparison of simulated and experimental predictions for 1-bromo-3,5-dichlorobenzene. On the left are shown three out of six
input AFM images at different tip−sample distances for both tip functionalizations, and on the right are the model predictions for both
simulation and experiment and the reference descriptor. Both predictions and the reference are on the same color-bar scale. The molecule
geometry used in the simulation is shown on the bottom right.
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agreement with the reference. In the prediction for the
experimental AFM images, we see a region of positive field
running along the edge of the lower left part of the molecule,
where we suppose the bromine is, and negative field over the
other two halides. This matches quite well with the reference,
also in the magnitude of the field, except for the missing
positive region over the hydrogen opposing the bromine. We
note here that the experimental Xe-AFM images have been
flipped left-to-right and slightly rotated due to the molecule
having rotated between the CO and Xe experiments. The
original images can be seen in SI Figure S6.
Our final example is a cluster of seven water molecules on

the Cu(111) surface (see Figure 4). Again, we use point-charge

electrostatics, but this time we include the metallic surface,
since this configuration of water molecules is only stable on a
surface. The seven water molecules form a single five-member
ring with two additional molecules forming an incomplete
second ring. Similar water clusters with nine and 10 molecules
forming two complete rings were previously studied with a
combination of DFT calculations and STM experiments.30 In
our calculations, we find that having the second ring be
incomplete results in a better match between the simulated and
experimental AFM images.
Here in the reference ES Map descriptor, we find that the

field is mostly positive over the whole structure with some
neutral regions on the sides. The simulation prediction

Figure 4. Comparison of simulated and experimental predictions for a water cluster on Cu(111). On the left are shown three out of six input
AFM images at different tip−sample distances for both tip functionalizations, and on the right are the model predictions for both simulation
and experiment and the reference descriptor. Both predictions and the reference are on the same color-bar scale. The molecule geometry
used in the simulation is shown on the bottom right.

Figure 5. Prediction and reference for on-surface geometry of (A) BCB and (B) the water cluster using the DFT Hartree potential for
electrostatics in the AFM simulations and for the reference ES Map descriptor.
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matches the reference well except for the sides where the
prediction is more negative. The match of the experimental
prediction with the reference is reasonable, capturing the
positive regions at the top part and at the bottom left “leg” of
the structure, but it also has a significantly larger negative
region in the middle and right side compared to either the
simulation prediction or the reference.
Since we have obtained more than the required six height

slices for each tip in the experiments, we also consider what
happens to the predictions as functions of tip−sample distance
for the PTCDA and BCB experiments and find that the
predictions stay consistent over small deviations to the distance
in either direction (see SI section “Distance dependence”).
Limitations of the Current Model. Until this point we

have been considering only the point-charge electrostatics that
the ML model was trained on and found that the model
performs well on the simulation examples and the experimental
predictions are in fairly good agreement with the ones for
simulations. However, the point-charge model of electrostatics
has its limitations and in many cases does not perfectly
represent the true charge distribution and, by extension, the
electric field of the sample. In order to test the validity of the
results so far, we performed density functional theory (DFT)
calculations using the all-electron density functional theory
code FHI-AIMS,31 implementing the “tight” basis with the
PBE functional32 and TS van der Waals33 for all the test
systems to obtain their Hartree potentials, which can be used
for more accurate electrostatics in both the AFM simulations
and the reference ES Map descriptors. We first test the Hartree
potentials on our three simulation benchmark systems (Figure
S7 in SI) and find that the Hartree reference descriptors
remain mostly the same as the point-charge ones. The
predictions are still qualitatively fairly good and are at least
semiquantitative in accuracy. The relative errors are 6.12%,
4.78%, and 7.34% for NCM, PTH, and TTF-TDZ,
respectively.
Next, we test the Hartree potential on BCB, one of our

experimental test systems. For this test, we first relax the
geometry on a Cu(111) surface to obtain a more accurate
geometry for the molecule. The resulting AFM simulation
based on the Hartree potential rather than point charges, the
ML prediction, and the reference descriptor are shown in
Figure 5A. In the on-surface geometry the bromine is attracted
closer to the surface, giving the molecule a slight tilt. This
makes the bromine appear less bright in the AFM simulation
compared to the planar geometry with point charges, which
matches better with the experimental AFM images. The
Hartree reference ES Map has similar pattern of field to that of
the point-charge reference over the edges of the molecule, but
they differ in the middle over the carbon ring where the
Hartree reference has a strong positive field instead of a
negative field. The prediction on the simulation using the
Hartree potential correctly catches this positive field in the
middle of the molecule, but it misses the negative field over the
chlorines, and the magnitude of the field is overall too small,
roughly by a factor of 2. However, the prediction on the
experimental AFM images compares more favorably with the
ES Map based on point-charge than with DFT/Hartree, even
though the Hartree potential from DFT should represent a
more accurate description of reality. Note here that it is not a
priori clear which (if either) ES map the experiment should
reproduce: using point charges and the geometry of an isolated
molecule is not expected to be the best description of the real

BCB molecule on the Cu(111) surface. On the other hand, if
we run the AFM simulations based on DFT/Hartree molecular
structure and electrostatics, we would not expect the ML to
reproduce the ES map reference as the model is trained on
point charges. Understanding this in detail requires develop-
ment of a model trained on out-of-distribution samples using
the Hartree potential, a focus of future work.
We also perform the DFT calculation for on-surface

PTCDA, and find that in this case the model performs poorly
even on the simulated data (Figure S8 in SI). However,
establishing accurate geometries for PTCDA on metal surfaces
is very challenging,34 and indeed, when we perform AFM
simulations for our on-surface geometry for PTCDA (SI Figure
S8) we find that the simulation shows an asymmetric and
much larger contrast between the ends and the middle of the
molecule than in the experimental images. This indicates that
the real geometry of the molecule is more planar and more
symmetric than in our DFT simulation. Therefore, we feel the
reference ES Map descriptor for PTCDA obtained from the
DFT Hartree potential here does not provide a valid point of
comparison with the experimental prediction.
Finally, we test the Hartree potential on the water cluster

(Figure 5B) using the same geometry as with the point
charges. Compared to BCB, the difference between the point
charges and the Hartree potential is less pronounced, both in
the simulated AFM images and the reference ES Map. The
biggest difference is the appearance of a stronger positive
region at the top of the structure and more negative fields on
the sides, which takes the reference, at least qualitatively, closer
to the ES Map predicted from the experimental AFM images.
The prediction on the simulated images using the Hartree
potential is qualitatively good but is weaker in magnitude,
especially at the positive region at the top. The relatively
weaker magnitude of the predictions compared to the
reference seems to be the general pattern for all of our cases
using the Hartree potential.

CONCLUSIONS
This work demonstrates that ED-AFM offers a method for the
rapid prediction of electrostatic properties directly from
experimental AFM images. We have shown that these
predictions demonstrate quantitative accuracy with minimal
computational cost once the machine learning infrastructure is
trained. In particular, the comparison between reference
electrostatics and ML predictions from simulated AFM data
has an error of about 1−2%. However, it is also clear, as for any
ML-based approach, that the method cannot predict what it
has not learned and it performs poorly in systems where point
charge electrostatics are a poor approximationseven for
simulated data, the error increases to 5−7%. We will address
this in future work: as part of the database generation, we have
stored full density matrices with higher-order quantum
chemical accuracy,35,36 and we are developing methods for
their efficient incorporation into the training process. However,
we also note that fixed point charges offer decent accuracy in
many systems and are routinely used in molecular model-
ing.37,38 The further limitations of ED-AFM lie mainly in the
challenges posed for experiments and, in particular, obtaining
images of the same system with two different tips. As we have
demonstrated, this is feasible on well-defined metal surfaces
but can pose problems on less standard samples. This can be at
least partially alleviated by developing methods for the
autonomous functionalization of the tip in AFM (see, e.g.,
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https://github.com/SINGROUP/Auto-CO-AFM). We note
that the two different tips do not need to be CO and Xe,
and we have shown, at least for simulated data, that other pairs
would work effectively for ED-AFM. Finally, as for any
machine learning based approach, the predictions can be
confused by unexpected artifacts. We apply a suite of tools to
improve robustness (see SI sections “Machine learning” and
“AFM Simulations”), and due to the longer range of
electrostatic forces, the predictions are less dominated by
images at close approach and hence less sensitive to tip-
induced relaxations.39

Finally, we note that ED-AFM also offers the prospects of
application beyond the examples considered here, to any
system where electrostatic characterization is of interest. For
example, expansion to predictions for assembled layers,40,41

defects,42,43 and charge dynamics44 requires only development
of the training data to ensure that it is general enough. The
method can also be applied to images of systems where direct
simulation is impossible due to size, complexity, or lack of
information. Combined with developments in the autonomous
functionalization of the tip in SPM,45 this promises a future of
potential in electrostatics for ED-AFM.

METHODS/EXPERIMENTAL
In general, the adoption of ML methods into materials analysis has
seen rapid recent growth,46−48 and this has been followed by an
equivalent growth in its applications to image analysis in SPM.45,49−56

Here, we build upon our ML method for predicting molecular
structure from AFM images,39 to predict the electrostatic field of the
sample molecule.
The overall idea of our method is illustrated in Figure 6. We train a

deep learning model on a data set of simulated AFM images and
reference descriptors based on a large database of molecular
geometries, including electrostatics at the level of point charges
taken from the associated quantum chemistry calculations.39 For more
details on how the data set is generated from the geometries, see the
section “Data set” in the Supporting Information (SI). The trained
ML model can then be used to make predictions with experimental
data as input. More specifically, the ML model takes as input two sets
of six AFM images of the same sample at different tip−sample
distances, imaged with two different functionalizations of the AFM
tip. The model, which is an Attention-U-Net-type convolutional
neural network57,58 (more details in SI section “Machine learning”),
translates the AFM images into a descriptor of the imaged sample,

which we call the electrostatic (ES) map. The ES Map is defined as
the vertical component of the electrostatic field calculated on a
constant-height surface 4 Å above the highest atom in the sample.
Furthermore, the nonzero region is cut only into the region where the
sample molecule of interest is visible in the AFM images, such that the
ML model is not asked to predict the field over the background where
there are no discernible features present. For a more detailed
description of how the ES Map descriptor is generated, see the SI
section “ES Map descriptor”.

The use of two sets of AFM images in the input is motivated by the
observation that the different distortions in the images obtained with
different tip functionalizations are linked to the different electronic
charges on the tips.27 Thus, given a database of such pairs of images,
an ML model should be able to learn what role the electrostatics play
in the formation of the images and separate the electrostatic
contribution from other forces that contribute to the images. Here
for the tip functionalizations, we use CO, which has a slightly negative
charge, and Xe, which has a somewhat positive charge. Other choices
for functionalization are possible, and we investigate the alternative tip
combinations of Cl−CO and Cl−Xe on simulated data in the SI
section “Other tip combinations”. We also tried training a model
using images of only a single tip functionalization with CO but found
the results to be less robust (see SI section “Single-channel
measurements”). As in our previous work,39 we train the model
using simulated AFM images and validate the model using both
simulated and experimental AFM images. Our implementation of the
model in Pytorch59 with pretrained weights can be found at https://
github.com/SINGROUP/ED-AFM.

The manuscript was previously submitted to a preprint server.60
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Details of the machine learning models and training
data, including investigation of the sensitivity of the
predictions to tip−surface distance, noise, various
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Figure 6. Schematic of the ED-AFM method. We train a neural network that takes two sets of AFM images as input and translates them to
the ES Map descriptor, which is the vertical component of the electrostatic field over the sample molecule. The model is trained on
simulated sets of input−output pairs calculated from a database of several tens of thousands of molecule geometries. The trained model can
then be applied to experimental AFM images to produce a prediction of the sample electric field.
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(27) Hapala, P.; Švec, M.; Stetsovych, O.; van der Heijden, N. J.;
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