
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Kurki, Emma Karoliina; Mudarra, Carlos
On the extension of Muckenhoupt weights in metric spaces

Published in:
Nonlinear Analysis, Theory, Methods and Applications

DOI:
10.1016/j.na.2021.112671

Published: 01/02/2022

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Kurki, E. K., & Mudarra, C. (2022). On the extension of Muckenhoupt weights in metric spaces. Nonlinear
Analysis, Theory, Methods and Applications, 215, Article 112671. https://doi.org/10.1016/j.na.2021.112671

https://doi.org/10.1016/j.na.2021.112671
https://doi.org/10.1016/j.na.2021.112671


Nonlinear Analysis 215 (2022) 112671

Contents lists available at ScienceDirect

Nonlinear Analysis

www.elsevier.com/locate/na

On the extension of Muckenhoupt weights in metric spaces✩

Emma-Karoliina Kurki, Carlos Mudarra ∗

Aalto University, Department of Mathematics and Systems Analysis, P.O. BOX
11100, FI-00076 Aalto, Finland

a r t i c l e i n f o

Article history:
Received 4 June 2021
Accepted 22 October 2021
Communicated by Andrea Mondino

MSC:
30L99
42B25
42B37

Keywords:
Muckenhoupt weight
Metric measure space
Doubling condition

a b s t r a c t

A theorem by Wolff states that weights defined on a measurable subset of Rn

and satisfying a Muckenhoupt-type condition can be extended into the whole
space as Muckenhoupt weights of the same class. We give a complete and self-
contained proof of this theorem generalized into metric measure spaces supporting
a doubling measure. Related to the extension problem, we also show estimates for
Muckenhoupt weights on Whitney chains in the metric setting.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

On a metric space X with a doubling measure, the familiar Muckenhoupt class Ap consists precisely
of those weights for which the Hardy–Littlewood maximal operator maps the weighted space Lp(X, w dµ)
onto itself. In addition to Ap weights being ubiquitous in harmonic analysis, weighted norm inequalities
have applications in the study of regularity of certain partial differential equations. In order to deduce
weighted Poincaré inequalities using the theory of global weights, we would like to extend Muckenhoupt
weights defined on subsets to the entire space.

Our main result is the following theorem that provides an abstract starting point for the investigation of
extensions. It is the generalization to a metric-space context of a result due to Thomas H. Wolff. The result
in Rn supposedly originates in an elusive preprint titled “Restrictions of Ap weights”, that to our knowledge
remains unpublished. An outline of the Euclidean proof can be found in [9], Theorem 5.6. However, the
metric setting brings about technical challenges that are not present in the Euclidean case.
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Theorem 1.1. Let X be a complete metric space with a doubling measure, E ⊂ X a measurable set with
µ(E) > 0, and w a weight on E. Then, for 1 < p < ∞, the following statements are equivalent.

(i) There exists a weight W ∈ Ap(X) such that W = w a.e. on E;
(ii) There exists an ε > 0 such that

sup
B⊂X
B ball

(
1

µ(B)

∫
B∩E

w1+ε dµ

)(
1

µ(B)

∫
B∩E

(
1

w1+ε

) 1
p−1

dµ

)p−1

< ∞. (1)

In addition, whenever p = 1, the condition (ii) takes the following form: There exists a constant C > 0
such that

1
µ(B)

∫
B∩E

w1+ε dµ ≤ C ess inf
B∩E

w1+ε

for every ball B ⊂ X.

In Section 2, we present a complete and self-contained proof of Wolff’s extension theorem (above and
Theorem 2.13) for measurable sets in a metric space supporting a doubling measure. Comparing (ii) to
the classical Ap condition, it is clear that we need to deal with weights and maximal functions restricted
to arbitrary measurable subsets E ⊂ X. We have chosen to call these classes induced Ap weights; see
Definition 2.1. It is not obvious at the outset whether all properties of globally defined weights hold true for
this class as well.

Like the corresponding proof in Rn, our proof relies on a factorization theorem, which in turn is based
on the boundedness of the maximal operator. In particular, we need to show that the restricted maximal
function is bounded on Lp(E, w) when the weight w belongs to the induced Aq class for some q < p

(Lemma 2.6). The proofs of this theorem in the whole space are based either on Calderón–Zygmund
decompositions on cubes (when X = Rn) or on Vitali-type coverings of the distributional sets of the maximal
function. It is not clear how to adapt these arguments when E is an arbitrary subset, because of the simple
fact that the relative balls E ∩B do not necessarily satisfy a doubling condition, i.e., µ(E ∩5B) or w(E ∩5B)
are not comparable to µ(E ∩ B) or w(E ∩ B) in general.

The reader might wonder why we need to assume the Muckenhoupt-type condition (1) for w1+ϵ instead
of simply stating the corresponding condition for w. A Muckenhoupt weight W ∈ Ap(X) in the whole space
always satisfies a self-improving property in the sense that W 1+ε also belongs to Ap(X) for a suitable ε

depending on the characteristic Ap constant of W (Lemma 2.12). This is a consequence of the fact that
global Muckenhoupt weights satisfy a reverse Hölder inequality (RHI; Proposition 2.11). As a result, one is
free to apply Gehring’s lemma to obtain the desired self-improving inequality. However, it is unclear whether
the induced classes of weights satisfy a RHI, since it is yet again impossible to control the measures of the
relative balls B ∩ E in terms of those of B. Even when the measure is positive, µ(B ∩ E) might be too
small in comparison to µ(B), unless we tighten our assumptions on the set E. This technicality destroys our
ability to compute the averaged integrals that would lead to the RHI.

For an early treatment of harmonic analysis in metric spaces, see [6]. Muckenhoupt weights in particular
are discussed in [12,28]. A solid reference to the theory, albeit in Rn, is [9]. For recent results concerning
reverse Hölder inequalities for A∞ weights or strong Ap weights, as well as versions of the Gehring lemma
in various spaces, see the articles [1–3,7,8,19,20,22–24,26].

In Sections 3 and 4 , we turn to an intended application of Theorem 1.1. This theorem gives a necessary
and sufficient condition for the existence of an extension. One might ask what are the subsets E and weights
w that satisfy (1) and consequently possess an extension to the entire space. Peter J. Holden [17], working
in Rn, has verified (1) for weights in Ap(E) under additional geometric assumptions on the set E. We made
an effort to reproduce Holden’s argument in the metric setting, yet were not able to reach the point where
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we could apply Theorem 1.1. However, we believe that our findings are of independent interest and value for
future research. In particular, Lemma 4.4 states that the weights of balls on a Whitney chain are comparable
as long as we are able to control the length of the chain. In [17], this lemma is used to recover the Euclidean
equivalent of Theorem 1.1 (ii).

2. The extension theorem

The results in this section apply in a complete metric measure space (X, d, µ). In addition, we assume
that the nontrivial Borel regular measure µ satisfies the doubling condition: there exists a constant Cd =
Cd(µ) > 1 only depending on µ such that

0 < µ (2B) ≤ Cdµ (B) < ∞ (2)

for all balls B ⊂ X. The constant Cd is spoken of as the doubling constant. In particular, we assume that
every ball in X has positive and finite measure. An argument involving the Vitali covering lemma shows that
X is separable and that every ball is totally bounded. This implies that X is locally compact and proper,
which in turn means that every closed and bounded subset of X is compact.

A ball is determined by its center x and radius r and denoted B = B(x, r) = {y ∈ X : d(x, y) < r}, where
the center and radius are left out when not relevant to the discussion. Observe that in general, the center
and the radius of a ball B are not uniquely determined by B as a set. We use the notation rad(B) = r when
B = B(x, r) and, at times, cB = B(x, cr) for the ball dilated by a constant c.

For any two nonnegative numbers A and B, if there exists a constant C ∈ (0, ∞) such that A ≤ CB,
we write A ≲ B. Furthermore, we write A ≈ B whenever there exist constants C1, C2 ∈ (0, ∞) such that
C1A ≤ B ≤ C2A. This notation is used where the exact magnitude of the constants is not of interest.

Whenever E ⊂ X is a measurable subset and the function f is integrable on every compact subset of E

we say that f is locally integrable on E, denoted f ∈ L1
loc(E). If the measure ν is absolutely continuous with

respect to µ and if there exists a nonnegative locally integrable function w such that dν = w dµ, we call ν

a weighted measure with respect to µ, and w a weight. [28] In practice, we assume w to be positive almost
everywhere in E. For any measurable subsets F ⊂ E and a weight w on E, we write w(F ) =

∫
F

w dµ.
For the purposes of Theorem 2.13, we introduce the following classes of induced Muckenhoupt weights on

a subset, which we denote by Ãp.

Definition 2.1. On a metric space X, let E ⊂ X be a measurable subset with µ(E) > 0. Let w be a weight
on E. If 1 < p < ∞, we say that w ∈ Ãp(E) whenever

[[w]]p = sup
B⊂X
B ball

(
1

µ(B)

∫
B∩E

w dµ

)(
1

µ(B)

∫
B∩E

(
1
w

) 1
p−1

dµ

)p−1

< ∞. (3)

If p = 1, we define Ã1(E) as the class of weights w for which there exists C > 0 with

1
µ(B)

∫
B∩E

w dµ ≤ C ess inf
B∩E

w (4)

for every ball B ⊂ X. We denote by [[w]]1 the infimum of the C > 0 for which the inequality (4) holds.

Observe that conditions (3) and (4) imply that w is integrable on each B ∩ E, where B ⊂ X is a ball.
Whenever E = X, the above classes coincide with Muckenhoupt weights as usually defined. In this case
we will denote them by Ap(X) and A1(X), respectively. Notice that it is not possible to reduce (3) to the
Ap(X) condition e.g. by replacing w with XEw.
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Definition 2.2. The Hardy–Littlewood maximal function is defined by

Mf(x) = sup
B∋x

1
µ(B)

∫
B

|f | dµ,

where X is a metric space, B ⊂ X are balls and f ∈ L1
loc(X). Whenever E ⊂ X is a measurable set and

x ∈ E, we also define a maximal function relative to the set E by

mEf(x) = sup
B∋x

1
µ(B)

∫
B∩E

|f | dµ.

In the following we verify a number of propositions regarding the Ãp classes, leading to the proof of the
extension theorem. These correspond to well-known results for Ap weights in Rn. While the proofs are based
on those in Ap(Rn), we have chosen to present them in full, because our notion of induced weights along
with the metric setting presents some difficulties that do not appear in Rn.

Throughout the rest of this section (X, d, µ) will denote a complete metric measure space, with the
measure µ satisfying doubling condition (2) and thus all the properties mentioned at the beginning of the
section.

To begin with, the following proposition is a generalization of a well-known result for A1(Rn); see [13],
p. 502.

Proposition 2.3. Let E ⊂ X be a measurable set with µ(E) > 0. If w ∈ Ã1(E), then w(x) ≤ mEw(x) ≤
[[w]]1w(x) for almost every x ∈ E.

Proof. The first inequality is a consequence of the Lebesgue differentiation theorem for µ. For a proof of
this classical theorem in a metric space with a doubling measure see [15], p. 4. As for the second one, let
A = {x ∈ E : mEw(x) > [[w]]1w(x)}. We aim to show that µ(A) = 0. Because X is separable, there exists a
dense sequence of points {zk}k in X. Define a countable collection of balls F = {B(zk, q) : k ≥ 1, q ∈ Q+}.
Then, for every x ∈ A, there exist a δ ∈ (0, 1) and a ball B = B(z, r) ∋ x such that

[[w]]1w(x) < (1 − δ) 1
µ(B)

∫
B∩E

w dµ.

For every ε ∈ (0, 1) denote Bε = B(z, (1 − ε)r). Because w is integrable on B ∩ E, by the absolute
continuity of the Lebesgue integral there exists an η > 0 such that if F ⊂ B is measurable and µ(F ) ≤ η,
then

∫
F ∩E

w ≤ δ
∫

B∩E
w. If ε ∈ (0, 1) is small enough so that x ∈ Bε and µ (B \ Bε) ≤ η, then∫

(B\Bε)∩E
w ≤ δ

∫
B∩E

w. Let B′ = B(z′, q), where z′ ∈ {zk}k and q ∈ Q+ are chosen so that d(z, z′) < εr/4
and (1 − 3ε/4)r < q < (1 − ε/4)r. The triangle inequality gives the inclusions Bε ⊂ B′ ⊂ B, implying that
x ∈ B′ and

∫
(B\B′)∩E

w ≤ δ
∫

B∩E
w. It follows that∫

B∩E

w dµ =
∫

B′∩E

w dµ +
∫

(B\B′)∩E

w dµ ≤
∫

B′∩E

w dµ + δ

∫
B∩E

w dµ

which, recalling that w ∈ Ã1(E), yields

[[w]]1w(x) < (1 − δ) 1
µ(B)

∫
B∩E

w dµ <
1

µ(B′)

∫
B′∩E

w dµ ≤ [[w]]1 ess inf
B′∩E

w.

We have shown that w(x) < ess infB′∩E w, which means that x belongs to the set DB′ = {y ∈ B′ ∩E :w(y) <

ess infB′∩E w}, where µ(DB′) = 0. Hence A ⊂
⋃

B′∈F DB′ , which is a countable union of sets of measure
zero. □

4



E.-K. Kurki and C. Mudarra Nonlinear Analysis 215 (2022) 112671

We remark that the above proposition remains true if the maximal function mE is defined by taking a
supremum over closed balls instead. The proof is similar, except that the absolute continuity of the Lebesgue
integral is not needed.

The next lemma follows from Proposition 2.3, and is needed in the proof of Theorem 2.13.

Lemma 2.4. For a measurable set E ⊂ X with µ(E) > 0 and a weight w ∈ Ã1(E), the function wXE is in
L1

loc(X) and its maximal function M(wXE) is finite at almost every point of X. Here wXE is the function
in X that coincides with w on E and vanishes outside E.

Proof. It is immediate that wXE ∈ L1
loc(X) because

∫
B∩E

w is finite for every ball B ⊂ X. As for the
second statement, Proposition 2.3 implies that M(wXE)(x) = mEw(x) < ∞ for a.e. x ∈ E. It remains to
verify that M(wXE) < ∞ on X \ E. Defining

A = {y ∈ E : mEw(y) ≤ [[w]]1w(y) < ∞},

Proposition 2.3 shows that µ(E \ A) = 0, and therefore M(wXE) = M(wXA) on X. For a.e. x ∈ X \ A, the
Lebesgue differentiation theorem states that

lim
B∋x

r(B)→0

1
µ(B)

∫
B

wXA dµ = wXA(x) = 0,

and thus there exists a radius rx > 0 such that

sup
B∋x

r(B)≤rx

1
µ(B)

∫
B

wXA dµ ≤ 1.

For almost every x /∈ A, we estimate the averages over balls B such that x ∈ B, r(B) > rx, and B ∩ A ̸= ∅.
For such a ball B it clearly holds that d(x, A) ≤ 2r(B), and consequently r(B) ≥ max{rx, d(x, A)/2}. Also,
there exists a point y0 = y0(x) ∈ A such that d(x, y0) < max{rx, 2d(x, A)}. Denoting by z the center of B,
we have

d(y0, z) ≤ d(y0, x) + d(x, z) < max{rx, 2d(x, A)} + r(B) ≤ 4r(B) + r(B) = 5r(B),

and hence y0 ∈ 5B. Using the doubling condition for µ and the definition of A, we obtain

1
µ(B)

∫
B

wXA dµ ≤ C(Cd) 1
µ(5B)

∫
5B

wXA dµ ≤ C(Cd) sup
B′∋y0

1
µ(B′)

∫
B′∩A

w dµ ≤ C(Cd)[[w]]1w(y0).

We conclude that M(wXA)(x) < ∞ for almost every x ∈ X. □

In the following two technical lemmas, we will not be using the fact that the measure is doubling.

Lemma 2.5. Let E ⊂ X be a measurable set with µ(E) > 0. If p, q > 1, v ∈ Ãp(E), and 0 ≤ δ ≤
min{1, (q − 1)(p − 1)−1}, then vδ ∈ Ãq(E) with

[[
vδ
]]

q
≤ [[v]]δp. Also, if q ≥ 1, v ∈ Ã1(E), and δ ∈ [0, 1], then

vδ ∈ Ãq(E) with
[[

vδ
]]

q
≤ [[v]]δ1. In particular, Ãp(E) ⊂ Ãq(E) for every 1 ≤ p ≤ q.

Proof. We will use the following basic estimate. Let A ⊂ X be measurable, 0 ≤ s ≤ 1, and h ∈ L1(A).
Then it follows from Hölder’s inequality that∫

A

hs dµ ≤ µ(A)1−s

(∫
A

h dµ

)s

. (5)

5
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Since the exponents δ and δ(p − 1)(q − 1)−1 are in [0, 1], we can apply (5) to obtain∫
B∩E

vδ dµ ≤ µ(B ∩ E)1−δ

(∫
B∩E

v dµ

)δ

, (6)

∫
B∩E

(
1
vδ

) 1
q−1

dµ =
∫

B∩E

(
1
v

) δ(p−1)
(q−1)(p−1)

dµ ≤ µ(B ∩ E)1− δ(p−1)
q−1

(∫
B∩E

(
1
v

) 1
p−1

dµ

) δ(p−1)
q−1

. (7)

Since the exponents 1 − δ and (q − 1) − δ(p − 1) are nonnegative, we have µ(B ∩ E)1−δ ≤ µ(B)1−δ and
µ(B ∩ E)1−δ(p−1)(q−1)−1 ≤ µ(B)1−δ(p−1)(q−1)−1 . Then (6) and (7) lead to

1
µ(B)q

∫
B∩E

vδ dµ

(∫
B∩E

(
1
vδ

) 1
q−1

dµ

)q−1

≤ µ(B)q−δp

µ(B)q

(∫
B∩E

v dµ

)δ
(∫

B∩E

(
1
v

) 1
p−1

dµ

)δ(p−1)

≤ [[v]]δp,

which proves the statement for p > 1. In the case δ ∈ [0, 1], v ∈ Ã1(E), and q > 1, using first (5) and then
the definition of Ã1(E) we can write

1
µ(B)q

∫
B∩E

vδ dµ

(∫
B∩E

(
1
vδ

) 1
q−1

dµ

)q−1

≤ µ(B ∩ E)1−δ

µ(B)q

(∫
B∩E

v dµ

)δ
µ(B ∩ E)q−1

ess infB∩E vδ

≤ [[v]]δ1
(

µ(B ∩ E)
µ(B)

)q−δ

≤ [[v]]δ1,

where we have used the fact that δ ≤ 1. For q = 1, the result follows immediately from (5). □

Lemma 2.6. Let E ⊂ X be a measurable set with µ(E) > 0. If 1 ≤ q < ∞, v ∈ Ãq(E) and g ∈ Lq(E, v),
then for every ball B ⊂ X we have

v(B ∩ E)
(

1
µ(B)

∫
B∩E

|g| dµ

)q

≤ [[v]]q
∫

B∩E

|g|q v dµ.

Proof. We may and do assume g ≥ 0. In the case q > 1, applying Hölder’s inequality we readily obtain(
1

µ(B)

∫
B∩E

g dµ

)q

≤ 1
µ(B)q

∫
B∩E

gqv dµ

(∫
B∩E

(
1
v

) 1
q−1

dµ

)q−1

≤
[[v]]q

v(B ∩ E)

∫
B∩E

gqv dµ.

When q = 1, the assertion follows immediately from the definition of Ã1(E) (4). □

The Hardy–Littlewood maximal function is well known to satisfy a weak type inequality. The following
lemma provides a version for the maximal function relative to a subset. Notice that by letting E = X, we
recover the classical result.

Proposition 2.7. Let E ⊂ X be a measurable set with µ(E) > 0. Furthermore, let 1 ≤ q < ∞, v ∈ Ãq(E),
f ∈ Lq(E, v), and t > 0. Then

v ({x ∈ E : mEf(x) > t}) ≤ Ct−q

∫
E

|f |q v dµ,

where the constant C only depends on q, [[v]]q, and the doubling constant Cd(µ).
6
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Proof. We may assume f ≥ 0. We restrict the supremum defining the maximal function to balls with
radius no greater than R, and denote the resulting function by mR

Ef . Once we show the estimate for mR
E ,

the statement will follow by the monotone convergence theorem.
For every x ∈ Et = {x ∈ E : mR

Ef(x) > t}, there is a ball Bx ∋ x such that rad(Bx) ≤ R and∫
Bx∩E

f dµ > tµ(Bx). The set Et is contained in
⋃

x∈Et
Bx ∩ E. Since the space X is separable, by the

Vitali covering lemma we can find a disjoint sequence of balls {Bj}j belonging to this collection such that⋃
x∈Et

Bx ⊂
⋃

j 5Bj . Now let us write∫
Et

v dµ ≤
∫⋃

j
(5Bj∩E)

v dµ ≤
∑

j

∫
5Bj∩E

v dµ. (8)

For each j, we apply Lemma 2.6 with B = 5Bj and g = fXBj∩E to deduce that the sum (8) is smaller than

[[v]]q
∑

j

∫
5Bj∩E

gqv dµ

(
1

µ(5Bj)

∫
5Bj∩E

g dµ

)−q

= [[v]]q
∑

j

∫
Bj∩E

fqv dµ

(
1

µ(5Bj)

∫
Bj∩E

f dµ

)−q

.

By the choice of the balls Bx, this in turn is smaller than

[[v]]q
∑

j

∫
Bj∩E

fqv dµ

(
tµ(Bj)
µ(5Bj)

)−q

≤ [[v]]qC(q, Cd)t−q

∫⋃
j

Bj∩E

fqv dµ ≤ Ct−q

∫
E

fqv dµ,

where we have applied the doubling property of µ. □

We next show a strong-type estimate for the maximal function mE restricted to E, in the space Lp(E, v),
provided v is an induced Muckenhoupt weight of a higher class.

Proposition 2.8. Let E ⊂ X be a measurable set with µ(E) > 0, 1 ≤ q < p, v ∈ Ãq(E), and f ∈ Lp(E, v).
Then ∫

E

(mEf)pv dµ ≤ C

∫
E

|f |p v dµ,

where the constant C depends only on p, q, [[v]]q, and the doubling constant Cd(µ).

Proof. For simplicity, we again assume that f ≥ 0, and proceed to write

f = fX{f>t/2} + fX{f≤t/2} = ft + fX{f≤t/2}.

Using the subadditivity of the maximal function mE , we have that mEf ≤ mE(ft) + t/2, from which it is
clear that the set {x ∈ E :mEf(x) > t} is contained in {x ∈ E :mEft(x) > t/2}. Combining this observation
with Cavalieri’s principle for the measure v dµ, and then using Proposition 2.7 for q and ft, we arrive at∫

E

(mEf)(x)pv(x) dµ(x) ≤ p

∫ ∞

0
tp−1v ({x ∈ E : mEft(x) > t/2}) dt

≤ C

∫ ∞

0
tp−q−1

∫
E

ft(x)qv(x) dµ(x) dt = C

∫ ∞

0
tp−q−1

∫
{x∈E:f(x)>t/2}

f(x)qv(x) dµ(x) dt

= C

∫
E

f(x)qv(x)
∫ 2f(x)

0
tp−q−1 dt dµ(x) ≤ C

∫
E

f(x)pv(x) dµ(x),

where C depends on p, q, [[v]]q, and Cd(µ). □

The following factorization theorem will be one of the main ingredients in the proof of Theorem 1.1.

7
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Proposition 2.9. Let E ⊂ X be a measurable set with µ(E) > 0, p > 1, and v a weight on E such that
vr ∈ Ãp(E) for some r > 1. Then there exist weights v1, v2 ∈ Ã1(E) such that v = v1v1−p

2 .

Proof. Writing q1 = r−1(p − 1) + 1, we have 1 < q1 < p and, by virtue of Lemma 2.5, v = (vr)1/r ∈
Ãq1(E) with [[v]]q1

≤ [[vr]]1/r
p . Also, by the hypothesis, the weight (v−r)1/(p−1) belongs to Ãp′(E) with[[

(v−r)1/(p−1)]]
p′ = [[vr]]1/(p−1)

p , where p′ is the conjugate exponent of p. Applying again Lemma 2.5 for
q2 = r−1(p′−1)+1 and δ = r−1, we have that v−1/(p−1) ∈ Ãq2(E) and

[[
v−1/(p−1)]]

q2
≤
[[

(v−r)1/(p−1)]]1/r

p′ ≤
[[vr]]1/r(p−1)

p . Notice that q1 < p and q2 < p′.
Proposition 2.8 applied first with v and q1, and then with v−1/(p−1) and q2, yields that mE is a bounded

operator both in Lp(E, v) and Lp′ (
E, v−1/(p−1)), with norms bounded by constants depending only on r,

p, and [[vr]]p.
Let v be as per the hypothesis and p ≥ 2, and

Tf =
(

v− 1
p mE

(
v

1
p f

p
p′
)) p′

p
+ v

1
p mE

(
v− 1

p f
)

.

This is a bounded operator in Lp(E), which can be verified by applying Proposition 2.8:

∫
E

(
v− 1

p mE

(
v

1
p f

p
p′
)) p′

p ·p
dµ =

∫
E

mE

(
v

1
p f

p
p′
)p′

v− 1
p−1 dµ ≲

∫
E

v
p′
p |f |p v− 1

p−1 dµ =
∫

E

|f |p dµ,∫
E

(
v

1
p mE

(
v− 1

p f
))p

dµ =
∫

E

mE

(
v− 1

p f
)p

v dµ(x) ≲
∫

E

|f |p dµ.

Fix f ∈ Lp(E) and set η =
∑∞

k=1 (2c)−k
T kf . The series converges absolutely, and by the completeness of

Lp(E), we conclude that η ∈ Lp(E). The operator T is subadditive since p/p′ ≥ 1, so

Tη ≤
∞∑

k=1
(2c)−k

T k+1f =
∞∑

k=2
(2c)1−k

T kf ≤ 2cη.

It follows that the weights
v1 = v

1
p η

p
p′ , v2 = v− 1

p η

are in Ã1(E), because

mEv1 ≤ mE(v
1
p η

p
p′ ) + v

1
p

(
v

1
p mE

(
v− 1

p η
)) p

p′
≤ v

1
p (Tη)

p
p′ ≤ (2c)

p
p′ v

1
p η

p
p′ = (2c)

p
p′ v1,

mEv2 = mE

(
v− 1

p η
)

≤ v− 1
p

(
v− 1

p mE

(
v

1
p η

p
p′
)) p′

p
+ mE

(
v− 1

p η
)

= v− 1
p Tη ≤ v− 1

p 2cη = 2cv2.

In the case 1 < p < 2, we instead factorize v1−p′ = v1v1−p′

2 as above, and raise this equation to the power
1/(1 − p′). □

The following proposition is one half of the Coifman–Rochberg characterization of A1 weights. We will
not be needing the reverse statement.

Proposition 2.10. Let 0 < ε < 1, g a nonnegative function such that g, g−1 ∈ L∞(X), and f ∈ L1
loc(X) a

nonnegative function such that Mf < ∞ a.e. in X. Then, the weight g (Mf)ε = w belongs to A1(X).

8
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Proof. Since g, g−1 ∈ L∞(X), it is enough to show that for every ball B ⊂ X and x ∈ B

1
µ(B)

∫
B

(Mf)ε dµ ≤ C(Mf)(x)ε, (9)

where the constant C depends on ε and the doubling constant Cd. For a ball B ⊂ X, write f = fX4B +
f (1 − X4B) = f1 + f2. Then, owing to subadditivity of the maximal function, we have

(Mf)ε ≤ (Mf1)ε + (Mf2)ε
.

Each term is estimated separately. Beginning with (Mf1)ε, by Cavalieri’s principle we have
1

µ(B)

∫
B

(Mf1)(y)ε dµ(y) = 1
µ(B)

∫ ∞

0
εtε−1µ ({y ∈ B : Mf1(y) > t}) dt

= 1
µ(B)

(∫ a

0
· · · +

∫ ∞

a

· · ·
)

. (10)

The first of these integrals can be estimated simply by
1

µ(B)

∫ a

0
εtε−1µ ({y ∈ B : Mf1(y) > t}) dt ≤ 1

µ(B)

∫ a

0
εtε−1µ (B) dt = aε.

As for the second, Proposition 2.7 applied with E = X for f1 ∈ L1(X) has it that
1

µ(B)

∫ ∞

a

εtε−1µ ({y ∈ B : Mf1(y) > t}) dt ≤ 1
µ(B)

∫ ∞

a

εtε−1µ ({y ∈ X : Mf1(y) > t}) dt

≤ 1
µ(B)

∫ ∞

a

εtε−1 · C(µ)
t

∫
X

|f1(y)| dµ(y) dt = C(µ)ε
1 − ε

aε−1 1
µ(B)

∫
4B

|f(y)| dµ(y).

We choose a = µ(B)−1 ∫
4B

|f | dµ and combine the two parts. We may and do assume that a is positive, as
otherwise f = 0 on B and the desired inequality follows immediately. Then (10) becomes

1
µ(B)

∫
B

(Mf1)(y)ε dµ(y) ≤
(

1
µ(B)

∫
4B

|f(y)| dµ(y)
)ε(

1 + C(µ)ε
1 − ε

)
=
(

1 + C(µ)ε
1 − ε

)(
µ(4B)
µ(B)

1
µ(4B)

∫
4B

|f(y)| dµ(y)
)ε

≤ C(µ, ε)
(

1
µ(4B)

∫
4B

|f(y)| dµ(y)
)ε

≤ C(Mf)(x)ε,

where we have used the fact that µ satisfies the doubling condition (2).
On to (Mf2)ε. Let x, y ∈ B = B(z, r) and let B′ = B(z′, r′) be another ball containing y. Assume first

that there exists a point p ∈ B′ \ 4B. We claim that r ≤ r′. Indeed, otherwise we have d(y, p) ≤ 2r′ ≤ 2r

and
d(y, z) ≥ d(z, p) − d(p, y) ≥ 4r − 2r = 2r > r,

implying that y /∈ B, a contradiction. Using that r ≤ r′, we have for any q ∈ B

d(q, z′) ≤ d(q, y) + d(y, z′) ≤ 2r′ + r′ = 3r′,

which shows that B ⊂ 4B′. In particular x ∈ 4B′ and we can write
1

µ(B′)

∫
B′

|f2| dµ ≤ C(µ)
µ(4B′)

∫
4B′

|f2| dµ ≤ C sup
B∋x

1
µ(B)

∫
B

|f | dµ = C(Mf)(x).

In the case B′ ⊂ 4B, we have that
∫

B′ |f2| dµ = 0, and the preceding estimate trivially holds. In both cases,
the right-hand side does not depend on the choice of y, and we have

Mf2(y) = sup
B∋y

1
µ(B)

∫
B

|f2| dµ ≤ C(Mf)(x),

which completes the proof of the proposition. □

9
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In order to show that (i) implies (ii) in Theorem 1.1, we are going to need the self-improving property of
classical Ap(X) weights. This is Lemma 2.12, which is straightforward to prove with the following reverse
Hölder inequality at hand.

Proposition 2.11. Let 1 ≤ p < ∞, and w ∈ Ap(X). Then there exist constants δ > 0 and 0 < C < ∞
such that for all balls B ⊂ X we have(

1
µ(B)

∫
B

w1+δ dµ

) 1
1+δ

≤ C
1

µ(B)

∫
B

w dµ. (11)

For a proof of Proposition 2.11 see [28], Theorem I.15.

Lemma 2.12. Let w ∈ Ap(X) with 1 ≤ p < ∞. There exists an ε > 0 such that w1+ε ∈ Ap(X).

Proof. Let ε > 0 be such that w satisfies the reverse Hölder inequality (11) with δ = ε. If p = 1, applying
the said inequality (11) and the A1 condition (14) of w we have for any ball B ⊂ X

1
µ(B)

∫
B

w1+ε dµ ≤ C

(
1

µ(B)

∫
B

w dµ

)1+ε

≤ C
(
ess inf

B
w
)1+ε ≤ C ess inf

B
w1+ε,

which implies that w1+ε ∈ A1(X).
As for p > 1 we start by observing that, as a consequence of Jensen’s inequality, if a weight v satisfies

(11) for some δ > 0, then v satisfies the same inequality for every 0 < δ′ ≤ δ. It immediately follows from
the Ap condition (3) with E = X that w1−p′ ∈ Ap′(X) with 1

p + 1
p′ = 1. As a consequence, we obtain that

both w and w1−p′ satisfy a reverse Hölder inequality (11) for ε > 0 small enough. Together with the fact
that w ∈ Ap(X), this implies

1
µ(B)

∫
B

w1+ε dµ

(
1

µ(B)

∫
B

w− 1+ε
p−1 dµ

)p−1

≤ C

(
1

µ(B)

∫
B

w dµ

)1+ε( 1
µ(B)

∫
B

w− 1
p−1 dµ

)(1+ε)(p−1)
≤ C[[w]]1+ε

p ,

which is the Ap(X) condition for w1+ε. □

We are now ready to prove our main result, Theorem 1.1.

Theorem 2.13. Let X be a complete metric space with a doubling measure, E ⊂ X a measurable set with
µ(E) > 0, and w a weight on E. Then, for 1 ≤ p < ∞, the following statements are equivalent.

(i) There exists a weight W ∈ Ap(X) such that W = w a.e. on E;
(ii) There exists an ε > 0 such that w1+ε ∈ Ãp(E).

Proof. The implication (i) ⇒ (ii) follows from Lemma 2.12. Because W ∈ Ap(X) for a given 1 ≤ p < ∞,
there exists an ε > 0 such that W 1+ε ∈ Ap(X). Assume first that p > 1. Then, for all balls B ⊂ X,(

1
µ(B)

∫
B∩E

w1+ε dµ

)(
1

µ(B)

∫
B∩E

w
1+ε
1−p dµ

)p−1

=
(

1
µ(B)

∫
B∩E

W 1+ε dµ

)(
1

µ(B)

∫
B∩E

W
1+ε
1−p dµ

)p−1

≤
(

1
µ(B)

∫
B

W 1+ε dµ

)(
1

µ(B)

∫
B

W
1+ε
1−p dµ

)p−1
≤ C.

10



E.-K. Kurki and C. Mudarra Nonlinear Analysis 215 (2022) 112671

If p = 1, it is enough to write

1
µ(B)

∫
B∩E

w1+ε dµ ≤ 1
µ(B)

∫
B

W 1+ε dµ ≤ C ess inf
B

W 1+ε ≤ C ess inf
B∩E

W 1+ε = C ess inf
B∩E

w1+ε.

Next, let us prove (ii) ⇒ (i). Let us define the weight v = w1+ ε
2 on E. Consider first the case p > 1.

Because w1+ε ∈ Ãp(E), it is clear that v satisfies the hypothesis of Proposition 2.9, so we can write
v = v1v1−p

2 on E, where v1, v2 ∈ Ã1(E). Next, we define

Vi = M (XEvi)δ
, i ∈ {1, 2} , δ = 1

1 + ε
2

,

where M is the Hardy–Littlewood maximal function, and XEvi is the function in X that coincides with vi

on E and vanishes outside E. These are weights in A1(X) as per Lemma 2.4 and Proposition 2.10. Then,
V1V 1−p

2 is again an Ap(X) weight such that

V1V 1−p
2 =

(
mEv1 (mEv2)1−p

)δ

on E, with the maximal function mE restricted to E as per Definition 2.2. The fact that v1, v2 ∈ Ã1(E)
implies that there is a constant C = max{[[v1]]1, [[v2]]1} such that vi ≤ mEvi ≤ Cvi, i = 1, 2, almost
everywhere on E (Proposition 2.3). Thus there exist nonnegative functions gi, i = 1, 2, such that gi, g−1

i ∈
L∞(X) and gimEvi = vi almost every where on E. Defining g = gδ

1g
δ(p−1)
2 we see that g, g−1 ∈ L∞(X),

g > 0, and
g(x)V1(x)V2(x)1−p =

(
v1(x)v2(x)1−p

)δ = v(x)δ = w(x)

for almost every x ∈ E. The weight W = gV1V 1−p
2 is in Ap(X) and satisfies W = w a.e. on E.

Finally, if p = 1, we reproduce the above argument taking v1 as v and discarding the weight v2. □

3. Balls and chains

The aim of this section is to collect several preparatory results concerning balls in a metric space with a
doubling measure. Our reason to delve into the geometry of Whitney-type balls is that they can be used to
give estimates for Muckenhoupt weights over chains. In particular, Lemma 3.8 is needed to prove Lemma 4.4
in the next section, which in turn is an integral part of Holden’s argument in [17]. We have found it necessary
to provide an explicit proof of Lemma 3.8, as we could not locate one in the literature.

While most results in this section do not require any additional assumptions, on occasion we need to
assume the existence of geodesics joining every pair of points. To cite an example of geodesic spaces relevant
to partial differential equations, Corollary 8.3.16 in [16] states that a complete, doubling metric space that
supports a Poincaré inequality admits a geodesic metric that is bilipschitz equivalent to the underlying
metric, with constant depending on the doubling constant of the measure and the data of the Poincaré
inequality.

We say that a complete metric space (X, d) is a geodesic space provided that any two points x, y ∈ X can
be joined by a continuous, rectifiable curve γ : [a, b] → X with d(x, y) = ℓ(γ), where ℓ(γ) denotes the length
of γ. A rectifiable curve γ : [a, b] → X satisfying ℓ(γ) = d(γ(a), γ(b)) is called a geodesic on X. Note that
for a general rectifiable curve γ : [a, b] → X, we always have the inequality ℓ(γ) ≥ d(γ(a), γ(b)).

We will invoke the following well-known property of geodesics: if [a′, b′] ⊂ [a, b], the subarc γ|[a′,b′]
of the

geodesic γ : [a, b] → X is a geodesic too. Hence, for any three points γ(ti) on the geodesic γ such that
a ≤ t0 < t1 < t2 ≤ b, the triangle inequality for d becomes an equality:

d(γ(t0), γ(t2)) = d(γ(t0), γ(t1)) + d(γ(t1), γ(t2)).

Slightly abusing notation, we write γ|[x1,x2] to mean γ|[t1,t2] whenever γ(ti) = xi, i = 1, 2.
11



E.-K. Kurki and C. Mudarra Nonlinear Analysis 215 (2022) 112671

Throughout the rest of this section, we will assume that (X, d, µ) is a complete metric measure space such
that µ satisfies the doubling condition (2). Also, when using the notation A ≈ B or A ≲ B for any two real
numbers A, B, we understand that the constants involved may depend on the doubling constant Cd(µ).

We begin by showing two lemmas in metric geometry for future reference. In the first one, the measure
does not play any role.

Lemma 3.1. Let X be a geodesic space, and B, B′ any two balls in X. Assume that rad(B) ≲ rad(B′) and
that B′ contains the center of B. Then there exists a ball B′′ ⊂ B ∩ B′ with rad(B′′) ≈ rad(B).

Proof. By assumption, there is a constant 0 < a ≤ 1 such that a rad(B) ≤ rad(B′). In the first place,
assume that d(z, z′) ≤ 1

2 rad(B). Let z and z′ denote the centers of B and B′ respectively. In this case,
define B′′ as the ball centered at z′ and of radius a

4 rad(B). Since a rad(B) ≤ rad(B′), it is obvious that
B′′ ⊂ B′. On the other hand, for any x ∈ B′′ we can write

d(x, z) ≤ d(x, z′) + d(z′, z) ≤ a
4 rad(B) + 1

2 rad(B) < 1
4 rad(B) + 1

2 rad(B) < rad(B),

which shows that B′′ ⊂ B, and we also have rad(B′′) = a
4 rad(B) ≈ rad(B).

Consider then the case d(z, z′) > 1
2 rad(B). Let γ be a continuous curve joining z and z′ with ℓ(γ) =

d(z, z′). Because 1
2 rad(B) < d(z, z′) ≤ rad(B), there exists a point p ∈ γ such that d(p, z) = 1

2 rad(B).
Let q ∈ γ be the midpoint between z and p, that is, d(z, q) = d(q, p) = 1

2 d(z, p). We define B′′ as the ball
centered at q and radius 1

2 d(z, q). For any x ∈ B′′ we have

d(x, z) ≤ d(x, q) + d(q, z) ≤ 1
2 d(z, q) + d(q, z) < 2d(z, q) = d(z, p) = 1

2 rad(B).

This shows that B′′ ⊂ B. To verify that B′′ ⊂ B′, notice first that d(z, q) + d(q, z′) = d(z, z′) as subarcs of
the geodesic γ. Now, for any x ∈ B′′, write

d(x, z′) ≤ d(x, q) + d(q, z′) ≤ 1
2 d(z, q) + d(q, z′) < d(z, z′) ≤ rad(B′),

whereby we conclude that B′′ ⊂ B ∩ B′. Finally, because d(z, p) = 1
2 rad(B), we have

rad(B′′) = 1
2 d(z, q) = 1

4 d(z, p) = 1
8 rad(B),

which completes the proof of the lemma. □

Lemma 3.2. Let B, B′ ⊂ X any two balls such that rad(B) ≈ rad(B′) and d(p, p′) ≲ rad(B) for some
p ∈ B, p′ ∈ B′. Then µ(B) ≈ µ(B′).

Proof. Let zB denote the center of B. For any x ∈ B′ we have

d(x, zB) ≤ d(x, p′) + d(p′, p) + d(p, zB) ≤ 2 rad(B′) + 2d(B, B′) + rad(B) ≲ rad(B).

As a result, there exists a constant 1 ≤ λ < ∞ such that d(x, zB) ≤ λ rad(B) for every q ∈ B′, which
means that B′ ⊂ λB and therefore µ(B′) ≤ µ(λB). But µ(λB) ≲ µ(B) because the measure is doubling, so
µ(B′) ≲ µ(B). Reversing the roles of B and B′ gives the inequality in the other direction. □

For our Whitney decomposition we follow Lemma 2.8 in [14], whose proof is based on ideas from [27,
Lemma 2] and [6, Theorem 1.3]. See also [29, Lemma 5] and [12, Lemma 1.3.3].

Lemma 3.3. Let D ⊂ X be an open, nonempty, proper subset of X. Then there exists a collection
W(D) = {Bk = B(xk, rk)}k of balls with the following properties:

12
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(i) the balls {B(xk, rk/4)}k are pairwise disjoint and
⋃

k Bk =
⋃

k 2Bk = D;
(ii) 2 rad Bk ≤ d (x, X \ D) ≤ 6 rad Bk for every x ∈ 2Bk;
(iii) for each B ∈ W(D), there are at most N = N(Cd) < ∞ balls in W(D) that intersect B.

Furthermore, let B1, B2 ∈ W(D) such that B1 ∩ B2 ̸= ∅. We have

(iv) 1
4 rad B1 ≤ rad B2 ≤ 4 rad B1;

(v) µ(B1) ≈ µ(B2). □

Properties (iv) and (v) are not explicitly stated in [14, Lemma 2.8], but they are direct consequences of
(ii) and Lemma 3.2. The next lemma pertains to balls whose radius is comparable to their distance from
the boundary. This, of course, includes but is not limited to actual Whitney balls.

Lemma 3.4. Let D ⊂ X be open and proper, and B ⊂ D a ball such that rad(B) ≈ d(B, X \ D). Then

(i) if B′ ∈ W(D) and B′ ∩ B ̸= ∅, then rad(B) ≈ rad(B′);
(ii) there are at most N = N(Cd) < ∞ Whitney balls on D intersecting B;
(iii) Assume further that X is a geodesic space. If B′ ∈ W(D) and B′ contains the center of B, then there

exists a ball B′′ ⊂ B ∩ B′ such that rad(B′′) ≈ rad(B) and µ(B′′) ≈ µ(B).

Proof. (i) Let y ∈ B ∩ B′. Since B′ is a Whitney ball, we have that

rad(B′) ≤ d(B′, ∂D) ≤ d(y, X \ D) ≤ diam(B) + d(B, X \ D) ≈ rad(B).

Similarly, we obtain rad(B′) ≳ rad(B).
(ii) Let B = {R : R ∈ W(D), R ∩ B ̸= ∅} and let N denote the cardinal of B. Let us write B = {Bi}N

i=1.
By (i) we have that rad(Bi) ≈ rad(B) for each i, and by Lemma 3.2 µ(Bi) ≈ µ(B) for every i. Thus there
exists a constant λ ≥ 1 such that

N⋃
i=1

Bi ⊆ λB.

The Bi being Whitney balls, the collection { 1
4 Bi}i is pairwise disjoint. Also, observe that µ

( 1
4 Bi

)
≈ µ(Bi) ≈

µ(B) for each i. Since we obviously have the inclusion
⋃N

i=1
1
4 Bi ⊆ λB, we may write

µ(B) ≳ µ(λB) ≥ µ

(
N⋃

i=1

1
4 Bi

)
=

N∑
i=1

µ( 1
4 Bi) ≳

N∑
i=1

µ(B) = Nµ(B).

This proves that N is bounded above by a constant only depending on the doubling constant.
(iii) We know from (i) that r(B) ≈ r(B′). Lemma 3.1 provides a ball B′′ ⊂ B ∩ B′ such that

r(B′′) ≈ r(B) ≈ r(B′). The statement for measures then follows from Lemma 3.2. □

By a domain D of X we understand a nonempty proper open subset of X with the property that every
two points in D can be joined by a rectifiable curve entirely contained in D.

Definition 3.5. Let D ⊂ X be a domain, k ∈ {0, 1, 2, . . .}, and Bj ∈ W(D) for j = 0, . . . , k. We say that

C(B0, Bk) = (B0, . . . , Bk)

is a (Whitney) chain joining B0 to Bk, if Bj ∩ Bj−1 ̸= ∅ for every j ∈ {1, . . . , k}. In this case, we say that
k is the length of the chain C(B0, Bk). The length of the shortest chain in D from B0 to Bk is denoted by
k̃D(B0, Bk). Because there is no possibility of confusion, we drop the subscript D from now on.

13
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We will be measuring distances in D in terms of the quasihyperbolic metric, which was introduced by
Gehring in the 1970s to study quasiconformal mappings in Rn; see [10,11].

Definition 3.6. Let X be a geodesic space. For a domain D ⊂ X and two points x1, x2 ∈ D, the
quasihyperbolic distance between them is

kD(x1, x2) = inf
γ

∫
γ

ds

d(y, ∂D) ,

where the infimum is taken over all rectifiable curves γ ⊂ D with endpoints x1 and x2. The quantity kD

satisfies the axioms of a metric on D × D. A rectifiable curve γ : [0, 1] → D is called a quasihyperbolic
geodesic if, for each pair of points y1, y2 ∈ γ, it holds that

kD(y1, y2) =
∫

γ|[y1,y2]

ds

d(y, ∂D) .

If E1, E2 are subsets of D, we define kD(E1, E2) = infx1∈E1, x2∈E2 kD(x1, x2). As there is no risk of
ambiguity, we will leave out the subscript D in the following.

It is easy to see that the quasihyperbolic diameter of any Whitney-like ball is bounded, which is the
content of the following lemma.

Lemma 3.7. Assume further that X is a geodesic space and let D ⊂ X be a domain. If B ⊂ D is a ball
such that d(B, ∂D) ≈ rad(B), then k(x, y) ≤ C for any two points x, y ∈ B.

Proof. Let z denote the center of B, and let γ ⊂ B be a rectifiable curve connecting z and x such that
ℓ(γ|[z,x]) = d(z, x). Then

k(z, x) ≤
∫

γ|[z,x]

ds

d(y, ∂D) ≲
∫

γ|[z,x]

ds

rad(B) =
ℓ(γ|[z,x])
rad(B) ≤ C.

Similarly we obtain k(z, y) ≤ C, and the triangle inequality implies k(x, y) ≤ C. □

The next lemma establishes an equivalence between shortest Whitney chains and quasihyperbolic
distance. It is essentially contained in the proof of Lemma 9 in [29]. For a detailed proof of the corresponding
lemma in Rn, see Proposition 6.1 in [18]. Notice that if the space X is geodesic and D ⊂ X is a proper subset,
the distance functions d(·, ∂D) and d(·, X \ D) coincide over D. We are then allowed to use Lemmas 3.3 and
3.4 with the distance d(·, ∂D) instead of d(·, X \ D).

Lemma 3.8. Assume further that X is a geodesic space. Let D ⊂ X be a domain and Bi = B(xi, ri) ∈
W(D), i = 1, 2. Then k̃(B1, B2) ≈ k(x1, x2).

Proof. Let M = k̃(B1, B2) be the length of the shortest Whitney chain joining B1 to B2. In the case
x1 = x2, both quantities amount to zero and there is nothing to prove. Suppose now x1 and x2 are distinct
points. First, we prove k̃(B1, B2) ≲ k(x1, x2). Denote by γ the quasihyperbolic geodesic joining x1 and x2,
and take z to be an arbitrary point on γ. Of all the Whitney balls containing z, we choose the one with
the smallest radius, say, B = B(x, r). Consider the ball Bz centered at z and with radius r. It is clear that
Bz ⊂ 2B, and thus Bz is contained in D with d(Bz, ∂D) ≥ d(2B, ∂D) ≥ r by virtue of Lemma 3.3 (ii). Also,
by the properties of the Whitney decomposition (Lemma 3.3 (ii)), we have

d(Bz, ∂D) ≤ d(z, ∂D) ≤ d(B, ∂D) + diam(B) ≤ 8r,

and we conclude that d(Bz, ∂D) ≈ rad(Bz) = r.
14



E.-K. Kurki and C. Mudarra Nonlinear Analysis 215 (2022) 112671

Let γz be a subarc of γ ∩ Bz passing through z and of maximal length. We claim that ℓ(γz) ≥ C1r at all
times. Whenever γ is not entirely contained in Bz, by the continuity of γ, there exists a point q ∈ γz such
that d(q, z) > r/2. Then we have ℓ(γz) ≥ d(q, z) = r/2. In the case γ ⊂ Bz, by the properties of the Whitney
decomposition there exists a constant 0 < c < 1 such that ℓ(γz) = ℓ(γ) ≥ d(x1, x2) ≥ cr1. Furthermore,
Lemma 3.4 (i) gives r ≈ r1 and consequently ℓ(γz) ≥ C1r. Recalling that γz ⊂ Bz and d(z, ∂D) ≤ 8r, in all
cases it holds that ∫

γz

dl

d(y, ∂D) ≥ ℓ(γz)
r + d(z, ∂D) ≥ C1r

9r
≥ C2. (12)

Next, we cover the geodesic γ by balls {Bzi
}i, with the points {zi}i ⊂ γ chosen so that every point is

contained in at most two balls Bzi
. Among these collections we choose the one with the smallest cardinality,

say m = #{Bzi
}. For any z ∈ γ, Lemma 3.4 (ii) shows that there are at most C Whitney balls intersecting

Bz. Now let M1 be the minimal number of Whitney balls needed to cover
⋃

i Bzi
, and denote this collection

by F . Clearly M1 ≥ M , because M was the length of the shortest chain joining B1 and B2. Also, we have
that # F = M1 and, by minimality, for every B ∈ F there is at least one i such that B ∩Bzi

̸= ∅. Therefore,
we have that F ⊂

⋃
i{B ∈ W(D) : B ∩ Bzi

̸= ∅} and

M1 = # F ≤ #
(

m⋃
i=1

{B ∈ WD : B ∩ Bzi
̸= ∅}

)
≤

m∑
i=1

#{B ∈ WD : B ∩ Bzi
̸= ∅} ≤ Cm.

We obtain Cm ≥ M1 ≥ M . Now, denoting γi = γ ∩ Bzi
and applying (12) on each of these subarcs, we

obtain the estimate

k(x1, x2) =
∫

γ

dl

d(y, ∂D) ≥ 1
2

m∑
i=1

∫
γi

dl

d(y, ∂D) ≥ mC2

2 ≥ C2

2C
M = C3k̃(B1, B2).

As for the inequality in the other direction, take the shortest chain C =
(
B1, B2, . . . , BM

)
connecting

B1 = B1 = B(x1, r1) and B2 = BM = B(xM , rM ). For every j ∈ {1, . . . , M − 1}, take a point pj in
Bj ∩ Bj+1. We have k(xj , pj) ≤ C and k(xj+1, pj) ≤ C owing to Lemma 3.7. Using the triangle inequality
repeatedly, we obtain

k(x1, x2) = k(x1, xM ) ≤
M−1∑
j=1

(
k(xj , pj) + k(pj , xj+1)

)
≤ 2C(M − 1) ≲ M = k̃(B1, B2),

whereby the statement is proven. □

4. Estimates for weights on Whitney chains

In a metric measure space X we call a domain D ⊂ X an extension domain for the Muckenhoupt class
Ap, if whenever w ∈ Ap(D) there exists a W ∈ Ap(X) such that W = w a.e. on D. Holden [17] gives certain
sufficient conditions for extension domains in Rn. Holden’s strategy of proof is to verify Wolff’s condition
(1) by propagating estimates on cubes along Whitney chains. In this final section we adapt [17, Lemma 2]
into the metric setting, resulting in Lemma 4.4. In Holden’s Euclidean argument, [17, Lemma 2] is used to
estimate integrals over each cube in a dyadic decomposition of Q∩E in terms of integrals over cubes arising
from Holden’s assumptions that enjoy additional good properties.

To put the extension problem in context, it is instructive to outline the situation regarding the space
of functions of bounded mean oscillation (BMO). These are intimately related to Muckenhoupt weights:
whenever a weight w belongs to Ap, then log w is of bounded mean oscillation. Conversely, whenever
f ∈ BMO, then exp(δf) ∈ Ap for small enough δ. Peter W. Jones [21] has shown that extension domains
for BMO functions in the Euclidean space Rn are precisely uniform domains, that can be characterized in
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terms of the quasihyperbolic metric. Vodop’yanov and Greshnov [29] extended Jones’ characterization to
metric spaces supporting a doubling measure. Recently, Butaev and Dafni [5] proved the analogue of Jones’
characterization for functions of vanishing mean oscillation in Rn.

For Muckenhoupt weights, the question remains open. Some examples and counterexamples concerning
necessary or sufficient conditions for extension domains for Ap are discussed by Holden [17] and Koskela in
his corresponding review [25].

For the purposes of this section we need to introduce classical Ap weights defined on a subset. Compare
this to Definition 2.1. By L1

loc(D) we denote the class of functions that are integrable on every compact
subset of D.

Definition 4.1. Let D ⊂ X be a nonempty open subset in a metric space X, and 1 < p < ∞. An a.e.
positive function w ∈ L1

loc(D) is called a Muckenhoupt Ap weight in D, denoted w ∈ Ap(D), if

[w]p = sup
B⊂D

(
1

µ(B)

∫
B

w dµ

)(
1

µ(B)

∫
B

w− 1
p−1 dµ

)p−1
< ∞. (13)

The supremum is taken over all balls B ⊂ D. For p = 1, a nonnegative function w ∈ L1
loc(D) belongs to

A1(D) if there exists a constant C > 0 such that for all balls B ⊂ D

1
µ(B)

∫
B

w dµ ≤ C ess inf
B

w. (14)

We denote by [w]1 the infimum of the C > 0 for which the inequality (14) holds.

Provided that the underlying measure µ satisfies a doubling condition and w is an Ap weight, the weighted
measure w dµ satisfies the doubling condition for balls B such that 2B ⊂ D. This property follows from
statement (ii) of the next lemma, that collects some estimates for weights on balls and chains. Throughout
the rest of the section, we will assume that (X, d, µ) is a complete metric measure space such that µ satisfies
(2).

Lemma 4.2. Let D ⊂ X be an open proper subset, and w ∈ Ap(D) with 1 ≤ p < ∞.

(i) If the ball B ⊂ D, then

1
µ(B)

∫
B

w dµ ≤ [w]p exp
(

1
µ(B)

∫
B

log w dµ

)
.

(ii) If B is a ball in D and E ⊂ B is a measurable subset with µ(E) > 0, then∫
B

w dµ ≤ [w]p
(

µ(B)
µ(E)

)p ∫
E

w dµ.

(iii) ( (he A∞ condition) There exist constants 0 < Cw, δ(w) < ∞, depending only on the doubling constant
Cd(µ) and the weight w, such that for all balls B ⊂ D and all measurable subsets E ⊂ B we have

w(E)
w(B) ≤ Cw

(
µ(E)
µ(B)

)δ(w)
.

(iv) Assume further that D is a domain. If B1, B2 ∈ W(D), then

1
µ(B1)

∫
B1

w dµ ≤ exp
(

Ck̃(B1, B2)
) 1

µ(B2)

∫
B2

w dµ,

where C is a constant only depending on Cd, p, and [w]p.
16
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Proof. To prove (i), we may assume that p > 1 because A1(D) ⊂ A2(D). Now, the inequality (i) follows
from the Ap condition (Definition 4.1). Indeed, notice that the function t ↦→ exp

(
−t(p − 1)−1) is convex,

and apply Jensen’s inequality:

[w]p ≥
(

1
µ(B)

∫
B

w dµ

)(
1

µ(B)

∫
B

exp (log w)− 1
p−1 dµ

)p−1

≥
(

1
µ(B)

∫
B

w dµ

)
exp

(
1

µ(B)

∫
B

log w dµ

)− 1
p−1 (p−1)

.

When p > 1, the statement (ii) is a consequence of the Ap condition (Definition 4.1):

1
µ(B)

∫
B

w dµ ≤ [w]p
(

1
µ(B)

∫
B1

w− 1
p−1 dµ

)−(p−1)

≤ [w]p
(

µ(E)
µ(B)

)−(p−1)( 1
µ(E)

∫
E

w− 1
p−1 dµ

)−(p−1)

≤ [w]p
(

µ(B)
µ(E)

)p−1 1
µ(E)

∫
E

w dµ,

where the last estimate follows from Hölder’s inequality. Besides, when p = 1, w ∈ A1(D) implies

1
µ(B)

∫
B

w dµ ≤ [w]1 ess inf
B

w ≤ [w]1 ess inf
E

w ≤
[w]1
µ(E)

∫
E

w dµ.

For a proof of the A∞ condition (iii) we refer to [28], Theorem I.15. There, the weights are globally defined
in X, but the proof for weights in Ap(D) is exactly the same. Indeed, provided that w satisfies a reverse
Hölder inequality with exponent 1+δ over balls B ⊂ D (compare Proposition 2.11), using it and the classical
Hölder inequality we have

∫
E

w dµ ≤ µ(E)
δ

1+δ

(∫
B

w1+δ dµ

) 1
1+δ

≤ C

(
µ(E)
µ(B)

) δ
1+δ

∫
B

w dµ

for all balls B ⊂ D and all measurable subsets E ⊂ B. The fact that w satisfies a reverse Hölder inequality
can be proven using a version of Gehring’s lemma for weights in Ap(D), whose proof is similar to that for
Ap(X) weights because in Definition 4.1 we only consider balls that are entirely contained in D. A proof of
Gehring’s lemma for Ap(X) weights can be found in [4], p. 77.

Finally, let us prove (iv). Let Bj = B(pj , rj) and Bj+1 = B(pj+1, rj+1) be two consecutive balls in the
chain C(B1, B2). Then Bj ∩ Bj+1 ̸= ∅. To begin with, we show that there is a constant C such that∫

Bj+1

w dµ ≤ C

∫
Bj

w dµ. (15)

To this effect, let y ∈ Bj ∩ Bj+1 and suppose first that d(y, pj+1) < 1
8 rj+1. For any z ∈ X, we have

d(z, pj) ≤ d(z, pj+1) + d(pj , y) + d(y, pj+1) < d(z, pj+1) + rj + 1
8 rj+1.

Letting z ∈ 1
8 Bj+1 = B

(
pj+1, 1

8 rj+1
)

in the above and applying (iv) of Lemma 3.3, we have

d(z, pj) < 1
8 rj+1 + rj + 1

8 rj+1 ≤ 1
4 · 4rj + rj = 2rj ,

17
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which shows that 1
8 Bj+1 ⊂ 2Bj ⊂ D as guaranteed by (i) of Lemma 3.3. Using (ii) of the current lemma

and the fact that µ is doubling, we may write∫
Bj+1

w dµ ≲ [w]p
(

µ(Bj+1)
µ( 1

8 Bj+1)

)p ∫
1
8 Bj+1

w dµ ≲ [w]p
∫

1
8 Bj+1

w dµ

≤ [w]p
∫

2Bj

w dµ ≲ [w]p
(

µ(2Bj)
µ(Bj)

)p ∫
Bj

w dµ ≲ [w]p
∫

Bj

w dµ,

which proves (15).
Now suppose that d(y, pj+1) ≥ 1

8 r(Bj+1). The balls B∗
j+1 = B(y, 1

8 rj+1) and 1
8 Bj+1 have the same radius

and d(y, pj+1) ≈ 1
8 rj+1. Then, by Lemma 3.2 and the doubling condition (2), it holds that

µ(B∗
j+1) ≈ µ

( 1
8 Bj+1

)
≈ µ(Bj+1).

Using the triangle inequality, Lemma 3.3 (iv), and the fact that y ∈ Bj ∩ Bj+1, we easily obtain for a
z ∈ B∗

j+1

d(z, pj+1) ≤ d(z, y) + d(y, pj+1) ≤ 1
8 rj+1 + rj+1 < 2rj+1,

d(z, pj) ≤ d(z, y) + d(y, pj) ≤ 1
8 rj+1 + rj ≤ 3

2 rj < 2rj ,

which implies that B∗
j+1 ⊂ 2Bj+1 ∩ 2Bj . Applying (ii) of the current lemma, we conclude that

∫
Bj+1

w dµ ≤
∫

2Bj+1

w dµ ≲ [w]p

(
µ(2Bj+1)
µ(B∗

j+1)

)p ∫
B∗

j+1

w dµ ≲ [w]p
∫

B∗
j+1

w dµ

≤ [w]p
∫

2Bj

w dµ ≲ [w]p
(

µ(2Bj)
µ(Bj)

)p ∫
Bj

w dµ ≲ [w]p
∫

Bj

w dµ.

Thus, in any case we have
∫

Bj+1
w dµ ≲ [w]p

∫
Bj

w dµ. Reversing the roles of Bj and Bj+1, we obtain∫
Bj

w dµ ≈
∫

Bj+1
w dµ, where the constants involved depend on p, the doubling constant, and [w]p.

Furthermore, by Lemma 3.3 (v), there exists a constant C1 such that

1
µ(Bj)

∫
Bj

w dµ ≤ C1
1

µ(Bj+1)

∫
Bj+1

w dµ.

Recalling that k̃(B1, B2) is the number of balls in W(D) in the shortest chain from B1 to B2, we apply this
recursively to obtain

1
µ(B1)

∫
B1

w dµ ≤ C
k̃(B1,B2)
1

1
µ(B2)

∫
B2

w dµ.

Choose C = log C1 to get the desired expression. □

Remark 4.3. In the proof of property (iv), we in fact showed that whenever µ is doubling and w ∈ Ap(D),
then for any two Whitney balls B1, B2 ∈ W(D) such that B1 ∩ B2 ̸= ∅ it holds that

∫
B1

w ≈
∫

B2
w.

Statement (ii) is a “reverse A∞ condition” that follows immediately from the Ap condition. Namely,
whenever E ⊂ B, then

µ(E)
µ(B) ≤ C(w)

(
w(E)
w(B)

) 1
p

.

Lemma 4.4. Assume further that X is a geodesic space and let D ⊂ X be a domain, w ∈ Ap(D) with
1 ≤ p < ∞, C a constant possibly depending on Cd, and B1, B2 ⊂ D balls satisfying
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(i) d(Bi, ∂D) ≈ rad(Bi), i = 1, 2,
(ii) k(B1, B2) ≤ C.

Then ∫
B1

w dµ ≈
∫

B2

w dµ,

where the constants involved depend on C, Cd, p, and [w]p.

Proof. Let B′
i = B(z′

i, r′
i) ∈ W(D), i = 1, 2, contain the centers of B1 = B(z1, r1) and B2 = B(z2, r2)

respectively. Lemma 3.4 (iii) guarantees that there exist balls B′′
i ⊂ Bi ∩ B′

i, i = 1, 2, such that rad(B′′
i ) ≈

rad(B′
i) ≈ rad(Bi) and µ(B′′

i ) ≈ µ(B′
i) ≈ µ(Bi).

Furthermore, it holds that k(z′
1, z′

2) ≤ C. To see this, let x1, x2 be points contained in B1 and B2

respectively such that k(x1, x2) ≤ k(B1, B2) + C. Using the triangle inequality for k we have

k(z′
1, z′

2) ≤ k(z′
1, z1) + k(z1, x1) + k(x1, x2) + k(x2, z2) + k(z2, z′

2).

Observe that zi ∈ B′
i, xi ∈ Bi, and k(x1, x2) ≤ 2C. By Lemma 3.7, the quasihyperbolic diameters of the

balls Bi and B′
i are uniformly bounded, and we have

k(z′
1, z′

2) ≤ C1.

Also, by Lemma 3.8, we have k(z′
1, z′

2) ≈ k̃(B′
1, B′

2) and thus k̃(B′
1, B′

2) ≲ C1. With these remarks, Lemma 4.2
(ii) allows us to estimate

1
µ(B1)

∫
B1

w dµ ≲

(
µ(B1)
µ(B′′

1 )

)p−1 1
µ(B′′

1 )

∫
B′′

1

w dµ (16)

≲
µ(B′

1)
µ(B′′

1 )
1

µ(B′
1)

∫
B′

1

w dµ

≲
1

µ(B′
1)

∫
B′

1

w dµ (17)

≲
1

µ(B′
2)

∫
B′

2

w dµ (18)

≲

(
µ(B′

2)
µ(B′′

2 )

)p−1 1
µ(B′′

2 )

∫
B′′

2

w dµ (19)

≲
1

µ(B′′
2 )

∫
B′′

2

w dµ (20)

≲
1

µ(B2)

∫
B2

w dµ.

Line (16) follows from the fact that the measure w dµ is doubling, while (18) and (19) are Lemma 4.2(iv)
and (ii), respectively. On lines (17) and (20) we used the fact that µ(B′′

i ) ≈ µ(B′
i) ≈ µ(Bi).

Finally, if
(
B′

1 = B0, . . . , BN = B′
2
)

is the shortest Whitney chain connecting B′
1 and B′

2, we have that
N ≲ C by the previous arguments. Since each pair of consecutive balls (Bj−1, Bj) in the chain has nonempty
intersection, we have rad(Bj−1) ≈ rad(Bj) by Lemma 3.3(iv) and therefore rad(B0) ≈ rad(Bj) ≈ rad(BN )
for every j = 1, . . . , N , because N ≲ C. Moreover, if pj ∈ Bj−1 ∩ Bj , the triangle inequality gives

d(p0, pN ) ≤
N∑

j=1
d(pj−1, pj) ≤

N∑
j=1

2 rad(Bj−1) ≲ rad(BN ).
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It follows from Lemma 3.2 that µ(B′
1) ≈ µ(B′

2), which in turn implies µ(B1) ≈ µ(B2). We conclude that∫
B1

w dµ ≲
∫

B2

w dµ

and, swapping the roles of B1 and B2, the inequality in the other direction. □
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[20] T. Hytönen, C. Pérez, E. Rela, Sharp reverse Hölder property for A∞ weights on spaces of homogeneous type, J. Funct.

Anal. 263 (12) (2012) 3883–3899.
[21] P.W. Jones, Extension theorems for BMO, Indiana Univ. Math. J. 29 (1) (1980) 41–66.
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