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The field of thermotronics aims to develop thermal circuits that operate with temperature biases and heat
currents just as how electronic circuits are based on voltages and electric currents. Here, we investigate a thermal
half-wave rectifier based on a quantum two-level system (a qubit) that is driven by a periodically modulated
temperature difference across it. To this end we present a nonequilibrium Green’s function technique, which
we extend to the time domain to account for the time-dependent temperature in one of two thermal reservoirs
connected to the qubit. We find that the qubit acts a thermal diode in parallel with a thermal capacitor, whose
capacitance is controlled by the coupling to the reservoirs. These findings are important for the efforts to design
nonlinear thermal components such as heat rectifiers and multipliers that operate with more than one diode.

DOI: 10.1103/PhysRevB.104.205420

I. INTRODUCTION

The miniaturization of electronic elements has led to a
dramatic growth in the density of components in electronic
circuits [1]. This remarkable progress has allowed the de-
sign of more compact and faster electronic devices, and it
has increased the computational throughput of the individual
processing units. At the same time, the dissipation of heat at
micro- and nanoscales has become a serious issue, which gets
increasingly adverse as electronic circuits are scaled down in
size. In one attempt to avoid overheating, the waste heat may
be dissipated into the environment by means of a refrigeration
circuit [2,3]. However, this approach may greatly reduce the
overall efficiency of a device, not only because of the wasted
energy, but also because the refrigeration circuit itself requires
external power, which can be a significant fraction of the total
power consumption of a device [4].

In an alternative way to handle waste heat generated by
electronic devices, one may try to exploit thermoelectric ef-
fects and thereby convert and store parts of the energy for
use at a later time [5,6]. While this strategy might be an
improvement over simply dissipating the waste heat into the
environment, it is still rather inefficient [7], and more radical
ideas may be needed to exploit waste heat. In the approach
that we follow here, the aim is to build heat-flow-based
components which make use of heat currents and tempera-
ture gradients just as how electric currents and voltages are
controlled in electronic circuits. The management of heat car-
ried by phonons is known as phononics [8,9], and the more
general field dealing with heat flows in systems involving
electrons [10], photons [11–13], or phonons has been coined
thermotronics [6].

Although the field of thermotronics is still in its in-
fancy, several basic components have already been proposed
and realized such as thermal transistors [14,15], thermal
memories [16–18], thermal heat valves [19,20], and thermal
switches [21]. When combined, these elements may pave the

way for logic circuits that process a thermal input signal and
return an output signal in terms of a heat current [22]. One key
component for such circuits is a thermal diode, which allows
for nonreciprocal transport of heat currents upon the inversion
of the thermal gradient. A simple and promising realization
of thermal diodes is based on spin-boson systems, where a
quantum two-level system is coupled to two thermal baths
at different temperatures [23,24]. Such systems are known to
exhibit nonreciprocal heat transport as needed for a thermal
diode [25–29], and they have recently been used to realize a
thermal heat valve [19]. While earlier works have considered
low-frequency heat transport [30–33], we now extend the
discussion to finite driving frequencies.

In the framework of thermotronics, we here theoretically
investigate the application of a thermal diode as a half-
wave thermal rectifier. We consider the setup in Fig. 1(a),

FIG. 1. AC temperature-driven qubit. (a) The setup consists of a
quantum two-level system, or qubit, coupled to two thermal reser-
voirs. A time-dependent temperature in the left reservoir, T (t ),
generates a time-dependent heat current, J (t ), in the right reservoir,
which is kept at the constant base temperature, Tg. (b) Equivalent
circuit diagram of the quantum two-level system, which acts as a
thermal diode in series with a resistor, R, and in parallel with a
capacitor, C.
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consisting of a quantum two-level system (or qubit) coupled
to two bosonic baths. The right reservoir is kept at a constant
temperature, while the left one is driven by a time-dependent
temperature, encoding a thermal input signal. The output sig-
nal is then given by the time-dependent heat current flowing
into the right reservoir. To evaluate the time-dependent heat
current, we extend the method of Refs. [34,35] for static
systems to setups with time-dependent temperatures. We then
apply this methodology to characterize the qubit as a ther-
mal half-wave rectifier. Based on the response to a dynamic
temperature bias, we find that the system exhibits a nontrivial
dependence on both the driving frequency and amplitude. Our
approach is valid at slow driving frequencies compared to
the qubit spacing and with not too strong couplings. We find
that the system behaves as a diode in parallel with a thermal
capacitor, as illustrated in Fig. 1(b). The capacitance induces
a phase shift between the input and output signals, and we
show that its microscopic origin can be related to the coupling
between the two-level system and the heat baths.

Our work is organized as follows. In Sec. II we introduce
the transport setup consisting of a quantum two-level system
coupled to two heat baths, and we discuss the implementa-
tion of a time-dependent temperature. In Sec. III we describe
the nonequilibrium Green’s function (NEGF) approach that
we use to calculate the time-dependent heat current running
into the drain reservoir. In Sec. IV we consider a constant
temperature difference between the baths to investigate the
low-frequency transport properties of the quantum two-level
system before turning to the general case of a time-dependent
temperature in Sec. V. There, we evaluate the time-dependent
heat current due to a periodic temperature drive, and we de-
velop an equivalent circuit model for the quantum two-level
system, which acts as a thermal diode in series with a small
resistance and in parallel with a capacitor. We also provide
simple estimates of the system parameters, which are relevant
for realistic physical setups. Finally, in Sec. VI we summarize
our findings and provide an outlook on possible directions for
future work.

II. THERMAL CIRCUIT WITH A QUBIT

Our goal is to characterize the dynamic thermal transport
properties of a qubit in a two-terminal setup as depicted
in Fig. 1(a). In the weak coupling regime without a time-
dependent drive, the system is known to behave as a thermal
diode [23], which led to the recent realization of a thermal
heat valve [19]. Here, our aim is investigate the setup with a
time-dependent temperature in the spirit of thermotronics [6].
We will drive the temperature of one bath with frequency �

and amplitude �T and evaluate the heat current running into
the other bath.

The setup consists of a quantum two-level system (a qubit)
coupled to left and right heat reservoirs. In this work we focus
on two heat baths, but our approach can readily be extended to
more complex setups, such as a three-terminal system making
up a transistor. The system is described by the Hamiltonian

Ĥ (t ) = ĤQ +
∑

�=L,R

[Ĥ�(t ) + T̂�(t )], (1)

where the qubit is given by the term

ĤQ = h̄ε

2
σ̂x, (2)

while the Hamiltonian of each heat bath takes the form

Ĥ�(t ) = r�(t )
∑

k

h̄ω�kâ†
�kâ�k, (3)

where â†
�k and â�k describe bosonic modes of frequency ω�k ,

and we take h̄, kB = 1 from now on. The terms

T̂�(t ) = r�(t )
∑

k

s�(t, ω�k )g�k σ̂zq̂�k (4)

describe the coupling between the qubit and the heat baths,
where g�k is the strength of the coupling to a bath excita-
tion with momentum k, and we have defined the position
operator q̂�k = â†

�k + â�k . Above, we have also introduced the
time-dependent parameters r�(t ) and s�(t, ω�k ), which will
be important in the following for the description of time-
dependent temperatures.

A. Time-dependent temperatures

To describe a time-dependent temperature we exploit an
analogy with time-dependent voltages in electronic setups.
In that case, a modulated voltage is described by a time-
dependent local chemical potential in each bath. The central
idea is that the chemical potential is the Lagrange multiplier
that guarantees that the mean number of particles in the reser-
voir is kept constant. Similarly, the inverse temperature is the
Lagrange multiplier that fixes the mean energy of the external
reservoir. Hence the time-dependent scaling factor r�(t ) in Ĥ�

plays the role of the multiplier μ (the chemical potential) in
front of the operator for the total particle number in the grand
canonical ensemble. Thus it scales the energies of the bath
and, as we will see, it effectively leads to a rescaling of the
inverse bath temperature, which becomes β�/r�(t ).

A related approach based on a functional theory [30]
has been presented in Refs. [31–33] using a Luttinger-field
method [36], however, without the rescaling of the interaction
term T̂�(t ) that we include here. Specifically, the prefactor
r�(t )s�(t, ω�k ) in the coupling Hamiltonian is chosen so that
the rescaling of the energies does not change the spectral
properties of the bath. In particular, when rescaling the bath
Hamiltonian, the density of states is modified and the fre-
quency of a particular mode is changed from ω�k to r�(t )ω�k .
As a result, the spectral function, which is given by the
couplings g�k , is effectively changed. We thus include the
prefactor s�(t, ω�k ) in front of the coupling to keep the spectral
density unchanged. The specific form of s�(t, ω�k ) will depend
on the couplings g�k and will be discussed in Sec. III. Below,
we drive the temperature of only the left bath, and we thus
keep rR(t ) = 1 and sR(t, ω�k ) = 1 for the right bath.

B. Time-dependent heat current

To investigate the thermal transport properties of the qubit,
we will consider how it transforms a periodic input signal,
encoded in the temperature drive of the left bath, into an
output signal in the right bath. We express the time-dependent
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heat current in the right bath as [25,37]

JR(t ) = −i〈[Ĥ (t ), ĤR]〉, (5)

where the Hamiltonian of the bath, ĤR, is time independent,
since the temperature there is kept constant. Here, we con-
sider the part of the heat current that is given by the rate
of change of the bath energy [38]. On the other hand, we
do not discuss the one that is associated with the contact
region between the system and the heat bath but note that
this term may need to be considered to establish a thermody-
namically consistent framework at finite frequencies [39–42].
The time-dependent heat current can now be evaluated using
nonequilibrium Green’s functions, and following the deriva-
tion in Appendix A, it can be written as

JR(t ) = 2Re

[∫
dωωIR(ω)JR(ω)

]
, (6)

where

JR(ω) =
∫

dτ
[
DR

Rω(t, τ )K<
z (τ, t ) + D<

Rω(t, τ )KA
z (τ, t )

]
(7)

is the average flow of bosons into the right reservoir at a given
frequency, and IR(ω) is the spectral density of that bath. To
evaluate the heat current, we then need to compute the lesser
two-times self-correlation function

K<
z (t, t ′) = −i〈σ̂z(t ′)σ̂z(t )〉 (8)

of the qubit as well as its spectral function encoded in the
advanced component

KA
z (t, t ′) = θ (t − t ′)[K<

z (t, t ′) − K>
z (t, t ′)], (9)

where θ is the Heaviside step function. Moreover, we need the
free propagators of each bath mode, DR,<

�ω (t, t ′).

III. NEGF FOR A DRIVEN SYSTEM

To evaluate the heat current, we use nonequilibrium
Green’s functions to find the time-dependent correlation func-
tions of the qubit. In particular, we extend the approach of
Refs. [34,35] to include a time-dependent temperature. We
start by performing a polaron transformation, which allows us
to rewrite the coupling to the reservoirs in a manner that can
be treated using perturbation theory [43–45]. Next, we repre-
sent the spin operators using Majorana fermions [46,47]. The
commutation relations of the spin operators make it difficult
to apply Wick’s theorem, but we may switch to a Majorana
fermion representation, which has proven useful to evaluate
spin-spin correlation functions perturbatively [35,45,48]. In
the following we describe only the main steps of this calcula-
tion and refer the reader to Appendix B for further details. Our
approach follows Ref. [35], but for the sake of completeness
and to highlight the additional steps that are required for the
time-dependent drive, we present the essential details here.

A. Polaron transformation

We first apply a polaron transformation of the form

Û (t ) = e−iσ̂z�̂(t ), (10)

where we have defined the operator

�̂(t ) = 2i
∑

�

∑
k

s�(t, ω�k )g�kω
−1
�k (â†

�k − â�k ). (11)

The unitary operator Û (t ) shifts the equilibrium position of
the bath oscillators according to the state of the qubit. Specif-
ically, in the polaron frame, the Hamiltonian reads

H̃ (t ) = Û (t )Ĥ (t )Û †(t ) + ih̄

[
d

dt
Û (t )

]
Û †(t )

= Ȟ (t ) +
∑

�

Ĥ�(t ) + ĤU (t ),
(12)

where the first term,

Ȟ (t ) = ε

2
(σ̂x cos �̂(t ) + σ̂y sin �̂(t )), (13)

contains the resummed interactions between the qubit and the
baths, which are bounded by ε because of the trigonometric
functions. The last term above,

ĤU (t ) = 2ih̄σ̂z

∑
�

∑
k

ds�(t, ω�k )

dt
g�kω

−1
�k (â†

�k − â�k ), (14)

is proportional both to the coupling strength and the driving
frequency via the time derivative. Thus, below, when we con-
sider weak couplings and driving frequencies that are smaller
than the qubit spacing, we can safely neglect this term (and it
vanished if the rescaling is constant). We note that the polaron
transformation is useful for evaluating multitime correlators
of σ̂z, but less so for other correlation functions.

B. Majorana-fermion representation

It is not straightforward to apply the NEGF approach to
systems described by spin operators such as Pauli matrices
because of their nontrivial commutator algebra. In particular,
since neither their commutators nor anticommutators are just
complex numbers, we cannot apply Wick’s theorem to reduce
higher-order correlators to products of two-point correlation
functions. To circumvent this problem, it is convenient to
resort to mappings to either fermionic or bosonic operators,
depending on the problem at hand. In our case it is useful
either to map the two-level system to a pair of spinless Dirac
fermions or to three Majorana fermions [46]. Here, we choose
the second strategy and map the spin operators to fictitious
Majorana fermions as

σ̂k = − i

2
εklmη̂l η̂m, (15)

where εklm is the fully antisymmetric Levi-Civita tensor, sum-
mation over repeated indices is implied, and the operators
η̂k fulfill the standard Majorana anticommutation relations,
{η̂k, η̂l} = 2εkl . We can now introduce the Green’s function
in the Majorana representation as

Gk (τ, τ ′) = −i〈Tγ η̂k (τ )η̂k (τ ′)〉, k = x, y, z, (16)

where τ and τ ′ denote complex times on the Keldysh-
Schwinger contour γ with the time-ordering operator Tγ [49].
The free Green’s functions are

Gk0(τ, τ ′) = −i〈Tγ η̂k0(τ )η̂k0(τ ′)〉, (17)
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where η̂k0(τ ) is the Majorana operator in the Heisenberg pic-
ture of the uncoupled qubit. One can establish a relationship
between the Green’s functions in the two pictures using the
expressions below following Ref. [48]:

K<
z (t, t ′) = −G<

z (t, t ′),

K>
z (t, t ′) = G>

z (t, t ′),

KA
z (t, t ′) = −�(t ′ − t )[G>

z (t, t ′) + G<
z (t, t ′)],

KR
z (t, t ′) = �(t − t ′)[G>

z (t, t ′) + G<
z (t, t ′)]. (18)

From the expression of the heat current in Eq. (6), we see that
we need to compute the Green’s function Gz(t, t ′).

C. Dyson equation

To find the Green’s function, we first rewrite the Hamilto-
nian with the resummed interactions as

Ȟ (t ) = −i
ε

2
(η̂yη̂z cos �̂(t ) + η̂zη̂x sin �̂(t )). (19)

As in Ref. [35], we then write down a Dyson equation for the
full Green’s function of the form

Gz(τ, τ ′)=Gz0(τ, τ ′)+
∫

γ

dsds′Gz0(τ, s′)�(s′, s)Gz(s, τ ′),

(20)

where the self-energy is expressed as

�(τ, τ ′) = i

4
[Gx0(τ, τ ′)Bx(τ, τ ′) + Gy0(τ, τ ′)By(τ, τ ′)]

(21)
in terms of the additional bath correlation functions

Bx(τ, τ ′) = −i〈Tγ cos �̂(τ ) cos �̂(τ ′)〉,
By(τ, τ ′) = −i〈Tγ sin �̂(τ ) sin �̂(τ ′)〉. (22)

Due to the polaron transformation, the self-energy is nonad-
ditive in the baths, which is different from a master equation,
where the contributions from different baths are typically ad-
ditive.

In order to evaluate the bath correlation functions, we need
to specify the spectral functions for each of them. If we con-
sider spectral functions of the form

I�(ω) = α�πωpω1−p
c e−ω/ωc , (23)

it is possible to evaluate the self-energies analytically, see
Appendix B. Here, the dimensionless parameter α controls
the strength of the interactions, and ωc is a cut-off frequency
for the bath. In the Ohmic case, p = 1, the lesser and greater
self-energies read

�>(t, t ′) = [�<(t, t ′)]∗ = −iε
∏

�=L,R

�(�)(t, t ′), (24)

having defined the function

�(�)(t, t ′) =
(

ω2
c�

2[T�(t )/ωc + 1]�2[T�(t ′)/ωc + 1]

T�(t )T�(t ′)�2[c(�)
+ (t, t ′)]�2[c(�)

− (t, t ′) + 1]

)α�

.

(25)
Above, the gamma function is denoted by �[x], and

c(�)
± (t, t ′) = [T�(t ) + T�(t ′)]/2ωc ± i

∫ t

t ′
dqT�(q) (26)

contains the effective temperature T�(t ) ≡ r�(t )T�. Here, for
p = 1, we have made use of the relation

s�(t, ω) = [r�(t )]
p−2

2 e
1−r� (t )

2 ω/ωc , (27)

which we derive in Appendix B. We note that with a constant
temperature, r�(t ) = r�, we recover well-known expressions
for a time-independent setup with the rescaled temperature
r�T�. Moreover, we can now appreciate the importance of
including the scaling factor r�(t )s�(t, ω) in the interaction
Hamiltonian (4). Without this term, the spectral function of
the baths and thus the self-energy would not be rescaled
properly, resulting in an effectively time-dependent spectral
density. We recall again that we only modulate the tempera-
ture in the left bath.

Finally, with the spectral function above, we can evaluate
the free Green’s functions of the bath, which become

D>(τ ) = −2iα

[
β−3ζ

(
3, 1 + ω−1

c + iτ

β

)
+ (

ω−1
c + iτ

)−3
]
,

(28)

and

DR(τ ) = −2iαθ (τ )(ω−1
c + iτ )−3, (29)

where ζ (s, x) = ∑∞
n=0 1/(n + x)s is the Hurwitz zeta func-

tion, and we have introduced the time difference τ = t − t ′.
We then use the Langreth rules [50] to obtain the Dyson
equations for the various Keldysh components of the complex
contour Dyson equation in Eq. (20), which we solve numeri-
cally as in Refs. [51,52].

IV. DC HEAT TRANSPORT

A single qubit coupled to two heat baths at different tem-
peratures has been predicted to show nonreciprocal transfer
of energy. This feature has recently been exploited to engi-
neer a heat valve that can control the flow of heat [19,28].
In analogy with electrical circuits, one may consider such a
device as a thermal diode, which could form a basic building
block of thermal circuits, where temperature gradients and
heat currents play the roles of voltage biases and electrical cur-
rents. One common figure of merit to quantify nonreciprocal
transport is the difference between the forward and backward
heat currents, defined as the response to a positive or negative
temperature difference across the device with the average tem-
perature kept constant. In the next section we keep the right
bath at the ground temperature Tg, while the left one is driven
periodically with amplitude �T around Tg. Consequently, we
here define the forward and backward heat currents as the
ones that are produced with the left bath held at the con-
stant temperatures Tg + �T and Tg − �T , respectively, while
the right one has the fixed temperature Tg. (This definition
is different from the most common approach of switching
the temperatures of the baths, while keeping their average
temperature constant.) For linear electrical circuits, the two
cases would be equivalent, since a ground voltage would not
affect the transport. By contrast, in our case, nonreciprocal
features arise due to the nonlinear response of the qubit to the
temperature bias.
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(a) (b)

FIG. 2. Rectification and susceptibilities. (a) Difference between the forward and the backward current as a function of the coupling
strength (blue) and the ground temperature (yellow) with kBTg = 2.5h̄ε and �T = 0.5Tg (blue) and α = 0.05 (yellow). (b) Susceptibilities for
the forward (blue) and backward (red) currents, corresponding to the couplings indicated in panel (a).

As we argue now, the transport is always reciprocal in lin-
ear response regardless of what definition we use. To see this,
we find the stationary heat current from Eq. (6) at long times,
assuming that a stationary state has been reached and taking
into account the conservation of energy, such that JS

L + JS
R = 0

for the stationary currents based on our sign conventions. We
then find

JS
R = αLαR

4π (αL + αR)

∫ ∞

0
dωωI (ω)χ (ω)[nR(ω) − nL(ω)], (30)

where

χ (ω) = K>
z (ω) − K<

z (ω) (31)

is the susceptibility of the qubit in frequency space, and the
Bose-Einstein distribution of each bath is denoted as n�(ω).
Both bath spectral functions are given by Eq. (23) with dif-
ferent coupling strengths, αL/R, so that I (ω) above is given by
Eq. (23) with α = 1 and the coupling strengths instead enter
in front of the integral. From Eq. (30), one can show that the
forward and backward currents coincide in linear response,
regardless of the definition of the temperature bias. Here,
linear response is defined as having a small temperature bias
compared to the ground temperature, �T � Tg. This finding
implies that the system does not behave like a thermal diode
in the linear-response regime, and we have to apply larger
temperature biases to observe rectification.

In the following we consider the nonlinear regime, where
the definition of the temperature bias becomes important. In
particular, we will explore two phenomena with polarity in-
version on the diode, where the direction of the rectification
changes as a function of a control parameter. In one case
we observe polarity inversion for weak couplings as the base
temperature Tg is lowered below the qubit energy ε. The other
case occurs for high temperatures as the coupling strength is
gradually increased. The first case is simply a consequence of
how we define the bias, while the second one also occurs for
the usual definition. We also note that if one simply switches
the temperatures, there is no rectification for αL = αR, while
with our definition, there may still be rectification, since our
definition inherently is asymmetric. We consider the symmet-

ric case αL = αR = α, and note that different couplings can
either increase or decrease the difference between the forward
and backward currents.

In Fig. 2(a) we show the difference between the forward
and backward currents as a function of the coupling strength
and the ground temperature. As a function of the coupling
strength, the polarity of the diode inverts close to the Toulouse
point at α = 1/2. To understand this behavior, we note that the
forward and backward susceptibilities in Fig. 2(b) coincide
exactly at the Toulouse point. However, the polarity changes
slightly before the Toulouse point, because the heat current is
given not only by the susceptibility but also by the difference
of the Bose-Einstein distributions. This behavior would also
occur for the usual definition of the temperature bias. By
contrast, the polarity inversion that can be seen as a function
of temperature can be related to our specific definition of the
bias and would not normally occur.

The microscopic origin of the polarity inversion can be
understood by considering the imaginary part of the sus-
ceptibility in Fig. 2(b) for different coupling strengths. The
imaginary part of the susceptibility quantifies the response of
the qubit to external forces at a given frequency [34], and with
a small susceptibility the qubit interacts only weakly with the
environments, resulting in a small energy transfer. We note
that the susceptibility can be related to a scattering matrix [29]
and to the structure factor through fluctuation-dissipation the-
orems [53], which in turn quantifies the scattering of photons
due to the interaction with the qubit [54].

V. AC HEAT TRANSPORT

We now turn to the situation where the qubit is driven by a
periodically varying temperature of the left bath,

T (t ) = Tg + �T sin(�t ), (32)

where Tg is the base temperature of the reservoirs, and �T is
the amplitude of the oscillations with frequency �. In what
follows we consider the qubit as a two-terminal element that
processes an input signal, given by the periodic temperature
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FIG. 3. Time-dependent heat current. The dashed lines corre-
spond to the quasistatic limit, where the driving is so slow that
the heat current at any time is given by Eq. (30). The solid lines
correspond to different driving frequencies. The ground temperature
and the driving amplitude are kBTg = 2.5h̄ε and �T = 0.6Tg, respec-
tively, and α = 0.05.

modulation, and returns an output signal in terms of the time-
dependent heat current in the right reservoir. In conventional
electronics, a diode in series with a resistor functions as a
half-wave rectifier for periodic voltage modulations. We now
analyze the thermally driven qubit from a similar perspective
and develop an equivalent circuit. We focus on high temper-
atures, as the low-temperature regime displays very different
features which are beyond the scope of this work.

Figure 3 shows the time-dependent current over a period of
the drive for different driving frequencies. We also show the
current obtained from Eq. (30) using the instantaneous tem-
perature corresponding to the quasistatic limit of low driving
frequencies. First, we note that a phase shift between the input
and output signals develops with increasing driving frequency.
Thus, when driven by a periodic input signal, the circuit
does not just behave as a thermal diode, but it also exhibits
retardation effects. We also see that the rectification of the
signal decreases with increasing driving frequency, leading
to reduced maximally negative currents. We will come back
to the characterization of the rectification, but we start by
exploring the phase shift in more detail.

In Fig. 4 we again show the time-dependent heat current
for different driving frequencies, however, without rescal-
ing the time by the driving frequency. We can then observe
that all signals cross at the same time after t = 0, showing
that the phase shift is proportional to the driving frequency.
Such a phase shift is reminiscent of an RC time in an elec-
tronic circuit, and we thus suggest the equivalent circuit in
Fig. 1(b) with a resistor in parallel with a capacitor. For that
circuit, the impedance reads Z (ω) = Re−iφ(ω), where φ(ω) =
arctan(ωRC) is the frequency-dependent phase shift of the
output signal. At low frequencies we then have φ(ω) 	 ωRC,
which is consistent with our observation of a phase shift that
is proportional to the driving frequency �. (We note that the
resistor cannot be in series with the capacitor, since there
would be no current with a constant bias.)

FIG. 4. Heat currents and phase shifts. We show time-dependent
heat currents with driving frequencies increasing from � = 0.15ε

(dark blue) to � = 0.5ε (light blue) in equidistant steps for the
period. The other parameters are the same as in Fig. 3.

To better illustrate the phase shift, we show in Fig. 5 a
parametric plot of the temperature and the heat current. In
the quasistatic limit, the input and output signals are in sync,
and the area enclosed by the parametric curve vanishes. By
contrast, with increasing driving frequency, a finite area builds
up due to the phase shift between the two signals. In addi-
tion, the major axis of the ellipselike shapes gradually rotates
upwards, away from the quasistatic result. This behavior is
consistent with the circuit in Fig. 1(b). Eventually, at higher
frequencies we expect that a current can flow through the
circuit in both directions via the capacitor despite the diode
in the other branch. As a consequence, the rectification will
be lost.

FIG. 5. Parametric plot of temperature and heat current. The
dashed line shows results for the quasistatic limit, where the heat
current is in sync with the temperature bias. The solid lines cor-
respond to different driving frequencies. The base temperature is
kBTg = 2.5h̄ε, the amplitude of the driving is �T = 0.6Tg, and the
coupling strength is α = 0.05.
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FIG. 6. Input-output phase shift. The phase shift between the
input and the output signal as a function of the coupling α < 0.5
with the driving frequency � = 0.2ε. The phase shift approximately
follows a power law.

Figure 6 shows how the phase shift depends on the cou-
pling strength, which also changes the resistance of the
thermal circuit. In particular, for low couplings, α ∼ 0.1,
the current should increase linearly with increasing coupling,
which thus lowers the resistance linearly. However, Fig. 6
shows that the phase shift to a good approximation displays a
nonlinear power-law dependence on the coupling. This behav-
ior shows that the capacitance also depends on the coupling
strength following a power law.

In Fig. 7 we return to the rectification in the system. The
rectification can be characterized by two figures of merit:
the period-averaged heat current, which we denote by J̄ , and
the difference between the maximal negative and positive cur-
rents, �J . These quantities may be used to estimate how well
the output signal can be distinguished from the background
noise, which is important in view of possible applications for
digitizing the output signal for thermotronic applications. In
Fig. 7 we show the two quantities as functions of the driving

FIG. 7. Rectification of the input. Solid lines show the period-
averaged heat current, while the dashed lines correspond to the
difference between the minimum and maximum output. The ground
temperature is kBTg = 2.5h̄ε, and α = 0.05.

frequency for three different amplitudes of the temperature
oscillations, and we observe that the loss of rectification with
increasing driving frequency is qualitatively similar for the
three amplitudes and both figures of merit.

Finally, we discuss possible parameter values for our cal-
culations. Our results are based on a generic nonequilibrium
spin-boson model, which potentially can be realized in many
different physical platforms, for example, using superconduct-
ing qubits [55], atoms in optical lattices [56,57], electron spins
in quantum dots [58], or any other realization of a quantum
two-level system coupled to external heat reservoirs. To be
specific, we consider the spin of a trapped electron for which
the tunable qubit spacing would be around ε 	 500 MHz in
a magnetic field of 100 mT. This qubit splitting corresponds
to a temperature of T = h̄ε/kB 	 30 mK, which certainly is
reachable, more so if we consider a temperature that is two or
three times higher. In addition, the driving frequencies would
be on the order of 100–200 MHz, which certainly should be
achievable with current technology. For comparison, voltages
can be modulated at much higher frequencies of about 1–
10 GHz, and a sample may be heated up by simply running
a current through a resistor. Since electron and phonon re-
laxation times are typically much faster, the heat reservoirs
will quickly equilibrate and follow the desired temperature
modulations.

VI. CONCLUSIONS

We have theoretically investigated the thermal transport
in a quantum two-level system driven by a time-dependent
temperature difference. To this end we have extended a
nonequilibrium Green’s functions approach for static setups to
include a time-dependent temperature. Based on this method-
ology, we have characterized the dynamic thermal properties
of the quantum two-level system and showed that it can op-
erate as a thermal half-way rectifier. We have proposed an
equivalent circuit model of the setup consisting of a thermal
diode in parallel with a capacitor. The thermal properties of
the device are related to the quantum nature of the system,
which must be accounted for in the design of thermal circuits
at the nanoscale. The method presented here can be extended
to setups with more than two heat baths, for example, a three-
terminal setup such as a thermal transistor. It would be also be
interesting to investigate several coupled two-level systems,
which may provide a means to enhance the asymmetry and
rectification of a device. In practice, the spin-boson setup that
we have considered can be implemented in many different
ways, and we thus end by passing the baton to the experi-
mentalists to identify the best systems to realize these ideas.
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APPENDIX A: HEAT CURRENT

Here we describe the calculations leading to the expression
for the heat current in Eq. (6). The average change of the
energy in the right bath R is defined as

JR(t ) = −i〈[Ĥ (t ), ĤR]〉. (A1)

Now, using the expressions for the total and the free Hamilto-
nian of the bath, we obtain

JR(t ) = 2Re

[∑
k

ωRk (t )gRkM<
Rkz(t, t )

]
, (A2)

where we have defined the mixed Green’s function

MRkz(z, z′) = −i〈Tγ âRk (z)σ̂z(z′)〉. (A3)

For noninteracting baths, it is possible to derive an expres-
sion for the mixed Green’s function in terms of the free bath
propagator D(z, z′) and the interacting Green’s function of the
qubit K (z, z′). This procedure closely follows Refs. [25,35]
and yields

MRkz(z, z′) = gRk

∫
dz̄ D(z, z̄)Kz(z̄, z′). (A4)

Finally, by inserting this expression into the one for the heat
current and projecting it onto the real-time axis, we arrive at
Eq. (6) for the heat current.

APPENDIX B: EVALUATION OF SELF-ENERGIES

Here, we find the lesser and greater components of the self-
energy and the correlations functions B(t1, t2) for each bath.
The lesser or greater self-energies read

�>/<(τ, τ ′) = i

4

[
G>/<

x0 (τ, τ ′)B>/<
x (τ, τ ′)

+G>/<

y0 (τ, τ ′)B>/<
y (τ, τ ′)

]
, (B1)

where the qubit’s Green’s functions are just the imaginary unit
i, since the Hamiltonian of the qubit in the polaron frame van-
ishes, and we have introduced the additional bath correlation
functions

Bx(τ, τ ′) = −i〈Tγ cos �̂(τ ) cos �̂(τ ′)〉,
By(τ, τ ′) = −i〈Tγ sin �̂(τ ) sin �̂(τ ′)〉, (B2)

where �̂ is defined in Eq. (11). The greater and lesser compo-
nents of the free bath Green’s functions in the polaron frame
are given by

B>(t, t ′) = −i

(〈cos �̂(t ) cos �̂(t ′)〉 〈cos �̂(t ) sin �̂(t ′)〉
〈sin �̂(t ) cos �̂(t ′)〉 〈sin �̂(t ) sin �̂(t ′)〉

)
,

(B3)

with B>(t, t ′) = [B<(t, t ′)]∗.
Next, we need to evaluate the four types of Green’s func-

tions involving combinations of trigonometric functions of �̂.
These correlation functions can be expressed in terms of the
functions

�mn(t, t ′) = 〈emi�̂(t )eni�̂(t ′ )〉, (B4)

where n and m are integers. In the Heisenberg picture, we can
write the annihilation operators of the bath as

â�k (t ) = â�ke−iω�kR�(t ), (B5)

where we have defined the time-integrated rescaling of the
inverse temperature as

R�(t ) ≡
∫ t

0
dsr�(s). (B6)

We then find the expression

�n,m(t, t ′) =
∏
k,�

(1 − eβω�k )
∞∑

nk=0

e−βnkω�k

× 〈nk|enν(t,ω�k )p̂�k (t )emν(t ′,ω�k )p̂�k (t ′ )|nk〉, (B7)

where β is inverse temperature (before the rescaling), the
eigenstates of the quantum harmonic oscillator are denoted as
|nk〉, and we have defined

ν(t, ω�k ) = −2
g�k

ω�k
s(t, ω�k ) (B8)

together with the operators

p̂�k (t ) = â†
�keiR�(t )ω�k − â�ke−iR�(t )ω�k . (B9)

Next, we factor out the time dependence and normal-order
the operators. To this end, we recall that

eÂ+B̂ = eÂeB̂e−[Â,B̂]/2 (B10)

for pairs of operators, whose nested commutators vanish,
[[Â, B̂], Â] = [[Â, B̂], B̂] = 0. Considering the product of ex-
ponentials in Eq. (B7), we then find

enν1 p̂1 emν2 p̂2 = enν1 p̂1+mν2 p̂2 enmν1ν2[p̂1,p̂2]/2, (B11)

having used subscripts to represent the different variables of
the functions. We can rewrite these expressions as

nν1 p̂1 + mν2 p̂2 = ξ â† − ξ ∗â, (B12)

and

[ p̂1, p̂2] = e−iR̃�(t,t ′ )ω − eiR̃�(t,t ′ )ω

= −2i sin (R̃�(t, t ′)ω), (B13)

having defined ξ = nν1eiR�(t )ω + mν2eiR�(t ′ )ω and

R̃�(t, t ′) = R�(t ) − R�(t ′) =
∫ t

t ′
dsr�(s). (B14)

We then find

enν1 p̂1 enν2 p̂2 = e−|ξ |2/2eξ â†
e−ξ∗âe−inmν1ν2 sin(R̃�ω), (B15)
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and by inserting this expression into Eq. (B7), we obtain

�n,m(t, t ′) =
∏
k,�

e−inmνk
1 νk

2 sin(R̃�ω�k )e|ξ |2 (1 − eβω�k )
∞∑

nk=0

e−βnkω�k 〈nk|eξ â†
e−ξ∗â|nk〉

=
∏
k,�

e−inmνk
1 νk

2 sin(R̃�ω�k )e−|ξ |2/2e−|ξ |2nB (ω�k ) ≡ eKn,m (t,t ′ ),

(B16)

where we have introduced the matrix elements

Kn,m(t, t ′) =
∑
k,�

−inmνk
1ν

k
2 sin(R̃�ω�k ) − 1

2
|ξ |2(1 + 2nB(ω�k ))

=
∑
k,�

4
g2

�k

ω2
�k

[
−inms(t )s(t ′) sin(R̃�ω�k ) +

(
s2(t ) + s2(t ′)

2
+ nms(t1)s(t2) cos(R̃�ω�k )

)
coth(βω�k/2)

]
, (B17)

having used Eq. (B8) in the second line. This expression can be written as a sum over the baths, Kn,m(t, t ′) = ∑
� K (�)

n,m(t, t ′), and
we focus now on the contribution from one of the baths. Assuming a continuous density of states, we may replace the sum by an
integral and write

K (�)
n,m(t, t ′) =

∫ ∞

0
dω

2

π

I�(ω)

ω2

[
−inms(t )s(t ′) sin(R̃�ω) +

(
s2(t ) + s2(t ′)

2
+ nms(t1)s(t2) cos(R̃�ω)

)
coth(βω/2)

]
, (B18)

where I�(ω) = 2π
∑

k g2
�kδ(ω − ω�k ) is the spectral density of the bath, which we take to be of the form

I�(ω) = α�πωpω1−p
c e−ω/ωc , (B19)

as in Eq. (23). We now see that the rescaled spectral density can be written as

I�(r�ω)

s2
�r2

�

= rp−2
� e(1−r� )ω/ωc

s2
�

I�(ω), (B20)

and requiring that it must equal the original spectral density I�(ω), we set the fraction on the right-hand side equal to unity, which
in turn fixes the dependence of s�(t, ω) on r�(t ) as

s�(t, ω) = [r�(t )]
p−2

2 e
1−r� (t )

2 ω/ωc . (B21)

As an important sanity check, we find in the case where r�(t ) = r� is constant, the expression

K (�)
n,m(τ ) = 2α�

∫ ∞

0
(r�dω)(r�ω)(p−2)ω1−p

c e−r�ω/ωc [−inm sin(r�ωτ ) + (1 + nm cos(r�ωτ )) coth (r�ω(β/r�)/2)]

= 2α�

∫ ∞

0
dωω(p−2)ω1−p

c e−ω/ωc [−inm sin(ωτ ) + [1 + nm cos(ωτ )] coth (ω(β/r�)/2)], (B22)

which is a function of the time difference τ = t − t ′ only and exactly corresponds to a bath with the constant rescaled inverse
temperature β/r�.

The final time-dependent expression reads

K (�)
n,m(t, t ′) = 2α�

∫ ∞

0
dωω(p−2)ω1−p

c

[
− inm

√
[r�(t )r�(t ′)]p−1e

−
(

r� (t )+r� (t ′ )
2

)
ω
ωc sin(R̃�ω)

+
(

[r�(t )]p−1e−r�(t ) ω
ωc + [r�(t ′)]p−1e−r�(t ′ ) ω

ωc

2
+ nm

√
[r�(t )r�(t ′)]p−1e

−
(

r� (t )+r� (t ′ )
2

)
ω
ωc cos(R̃�ω)

)
coth(βω/2)

]
. (B23)

To evaluate the Green’s functions in the main text, we only need the terms K (�)
1,−1 and K (�)

−1,1 with the properties K (�)
1,−1 = K (�)

−1,1 ≡
K (�), such that only K (�)(t, t ′) needs to be evaluated. Using

ζ (z, q) = 1

�(z)

∫ ∞

0
dω

ωz−1e−qω

1 − e−ω
, (B24)

we can evaluate K (�)(t, t ′) analytically, and in the Ohmic limit p → 1 we find

K (�)(t, t ′) = α� ln

(
β2ω2

c�
2
[ r�(t )

βωc
+ 1

]
�2

[ r�(t ′ )
βωc

+ 1
]

r�(t )r�(t ′)�2[c(�)
+ (t, t ′)]�2[c(�)

− (t, t ′) + 1]

)
, (B25)

205420-9



PORTUGAL, FLINDT, AND LO GULLO PHYSICAL REVIEW B 104, 205420 (2021)

where �[x] is the gamma function, and the function c(�)
± (t, t ′) is defined in Eq. (26) for a single heat bath. These expressions

finally lead us to Eq. (25), which allows us to calculate the heat current for a time-dependent temperature.
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