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1University of Cambridge, UK
2Aalto University, Finland

Abstract

Gaussian processes (GPs) are important probab-
ilistic tools for inference and learning in spatio-
temporal modelling problems such as those in cli-
mate science and epidemiology. However, existing
GP approximations do not simultaneously support
large numbers of off-the-grid spatial data-points
and long time-series which is a hallmark of many
applications. Pseudo-point approximations, one of
the gold-standard methods for scaling GPs to large
data sets, are well suited for handling off-the-grid
spatial data. However, they cannot handle long tem-
poral observation horizons effectively reverting to
cubic computational scaling in the time dimension.
State space GP approximations are well suited to
handling temporal data, if the temporal GP prior
admits a Markov form, leading to linear complex-
ity in the number of temporal observations, but
have a cubic spatial cost and cannot handle off-the-
grid spatial data. In this work we show that there
is a simple and elegant way to combine pseudo-
point methods with the state space GP approxima-
tion framework to get the best of both worlds. The
approach hinges on a surprising conditional inde-
pendence property which applies to space–time
separable GPs. We demonstrate empirically that
the combined approach is more scalable and applic-
able to a greater range of spatio-temporal problems
than either method on its own.

1 INTRODUCTION

Large spatio-temporal data containing millions or billions
of observations arise in various domains, such as climate
science. While Gaussian process (GP) models [Rasmussen
and Williams, 2006] can be useful models in such settings,
the computational expense of exact inference is typically

Figure 1: Spatial slice of a large-scale spatio-temporal mod-
elling problem: The posterior mean belief over max tem-
perature (standardised scale, −3 3) on a day in
early 2020 around Seattle and Vancouver. Pink squares are
weather stations, orange dots are pseudo-points.

prohibitive, necessitating approximation. This work com-
bines two classes of approximations with complementary
strengths and weaknesses to tackle spatio-temporal prob-
lems: pseudo-point [Quiñonero-Candela and Rasmussen,
2005, Bui et al., 2017] and state-space [Särkkä et al., 2013,
Särkkä and Solin, 2019] approximations. Fig. 1 shows a
single time-slice of a spatio-temporal model for daily max-
imum temperature, which extrapolates from fixed weather
stations, constructed using this technique.

This work hinges on a conditional independence property
possessed by separable GPs. This property was identified by
O’Hagan [1998], and appears to have gone largely unnoticed
within the GP community. This property, in conjunction
with the imposition of some structure on the pseudo-point
locations, yields a collection of methods for approximate
inference algorithm which scale linearly in time, the same as
standard pseudo-point methods in space, and which can be
implemented straightforwardly by utilising standard Kalman
filtering-like algorithms.
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In particular, we show (i) how O’Hagan’s conditional in-
dependence property can be exploited to significantly ac-
celerate the variational inference scheme of Titsias [2009]
for GPs with separable and sum-separable kernels, (ii) how
this can be straightforwardly combined with the Markov
property exploited by state space approximations [Särkkä
and Solin, 2019] to obtain an accurate approximate infer-
ence algorithm for sum-separable spatio-temporal GPs that
scales linearly in time, and (iii) how the earlier work of
Hartikainen et al. [2011] on this topic is more closely re-
lated to the pseudo-point work of Csató and Opper [2002]
and Snelson and Ghahramani [2005] than previously real-
ised.

2 SUM-SEPARABLE SPATIO-TEMPORAL
GPS

We call a GP separable across space and time if its kernel
is of the form

κ((r, τ), (r′, τ ′)) = κr(r, r′)κτ (τ, τ ′) (1)

where r, r′ ∈ X are spatial inputs and τ, τ ′ ∈ R are tem-
poral inputs. We also call kernels such as κ separable. There
is no particular restriction on what we define X to be – it
could be 3-dimensional Euclidean space in the literal sense,
or it could be something else, such as a graph or the surface
of a sphere. Moreover, we place no restrictions on the form
of κr, in particular we do not require it to be separable. Sim-
ilarly, while the temporal inputs must be in R, it is irrelevant
whether this dimension actually corresponds to time or to
something else entirely.

This work considers a generalisation of separable GPs that
we call sum-separable across space and time, or simply sum-
separable. We call a GP sum-separable if it can be sampled
by summing samples from a collection of independent separ-
able GPs. Specifically, let fp ∼ GP(0, κp), p = {1, ..., P},
be a collection of P independent separable GPs with ker-
nels κp, and f :=

∑P
p=1 fp, then f is sum-separable. f has

kernel

κ((r, τ), (r′, τ ′)) =
∑P

p=1
κp((r, τ), (r′, τ ′)) , (2)

which is not separable, meaning that sum-separable GPs
such as f are not generally separable. In fact they are a much
more expressive family of models, as they can represent
processes which vary on multiple length scales in space
and time. Note that these are also distinct from additive GPs
[Duvenaud et al., 2011] since each function depends on both
space and time.

3 PSEUDO-POINT APPROXIMATIONS

Pseudo-point approximations tackle the scaling problems
of GPs by summarising a complete data set through a

much smaller set of carefully-chosen uncertain pseudo-
observations.

Consider a GP, f ∼ GP(m,κ), of which N observations
y ∈ RN are made at locations x ∈ XN through observa-
tion model p(y | f) =

∏N
n=1 p(yn | fn), fn := f(xn). The

seminal work of Titsias [2009], revisited by Matthews et al.
[2016], introduced the following approximation to the pos-
terior distribution over f :

q(f) = q(u) p(f 6=u |u) , (3)

where um := f(zm) are the pseudo-points for a collec-
tion of M pseudo-inputs z1:M , and f6=u := f \ u are all
of the random variables in f except those used as pseudo-
points. We assume that q(u) is Gaussian with mean mq

u

and covariance matrix Cq
u. Subject to the constraint im-

posed in Eq. (3), this family contains the optimal choice
for q(u) if each observation model p(yn | f(xn)) is Gaus-
sian; moreover, a Gaussian form for q(u) is the de-facto
standard choice when p(yn | f(xn)) is not Gaussian – see
e.g. Hensman et al. [2013]. This choice for q(u) yields the
following approximate posterior predictive distribution at
any collection of test points x∗

q(f∗) =N (f∗;Cf∗uΛum
q
u,C) , (4)

C :=Cf∗ −Cf∗uΛuCuf∗ + Cf∗uΛuC
q
uΛuCuf∗ ,

where Λu := C−1
u is the inverse of the covariance matrix

between all pseudo-points, Cf∗u is the cross-covariance
between the prediction points and pseudo-points under f ,
and mu and mf∗ are the mean vectors at the pseudo-points
and prediction points respectively. For observation model

p(y | f) = N (y; f ,S) (5)

where S ∈ RN×N is a positive-definite diagonal matrix, it
is possible to find the optimal q(u) in closed-form:

q(u) ∝ N (y;CfuΛuu,S)N (u;0,Cu) (6)

and the ELBO at this optimum is also closed-form:

L = logN (y;mf ,CfuΛuCuf + S)

− 1

2
tr
(
S−1(Cf −CfuΛuCuf )

)
, (7)

and is known as the saturated bound. It can be computed
using only O

(
NM2

)
operations using the matrix inversion

and determinant lemmas

Related Models The optimal q(u) coincides with the ex-
act posterior distribution over u under an approximate model
with observation density N (y;CfuΛuu,S), and that the
first term in L is the log marginal likelihood under this ap-
proximate model. It is well known that this is precisely the
approximation employed by Seeger et al. [2003], known as
the Deterministic Training Conditional (DTC). Despite their
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similarities, the DTC log marginal likelihood and the ELBO
typically yield quite different kernel parameters and pseudo-
inputs when optimised for – while the pseudo-inputs z1:M

are variational parameters in the variational approximation,
and therefore not subject to overfitting (see section 2. of Bui
et al. [2017]), they are model parameters in the DTC. For
this reason, the variational approximation is widely favoured
over the DTC.

However, this close relationship between the variational
approximation and the DTC is utilised in Sec. 5 to obtain
algorithms which combine pseudo-point and state-space
approximations in a manner which is both efficient, and
easy to implement.

Benefits and Limitations Pseudo-point approximations
perform well when many more observations of a GP are
made than are needed to accurately describe its posterior.
This is often the case for regression tasks where the in-
puts are sampled independently. In this case the value of
M required to maintain an accurate approximation as N
increases generally seems not to grow too quickly—indeed
Burt et al. [2019] showed that if the inputs xn are sampled
i.i.d. from a Gaussian, then the value of M required scales
roughly logarithmically in N . However, Bui and Turner
[2014] noted that this is typically not the case for time series
problems, where the interval in which the observations live
typically grows linearly in N . Indeed Tobar [2019] showed
that the number of the pseudo-points per unit time must not
drop below a rate analogous to the Nyquist-Shannon rate
if an accurate posterior approximation is to be maintained
as N grows. Consequently the number of pseudo-points
M required to maintain a good approximation must grow
linearly in N , so the cost of accurate approximate inference
using pseudo-point methods is really O

(
N3
)

in this case.

4 STATE SPACE APPROXIMATIONS TO
SUM-SEPARABLE SPATIO-TEMPORAL
GPS

Many time-series GPs can be augmented with additional lat-
ent dimensions in such a way that the marginal distribution
over the original process is unchanged, but with the highly
beneficial property that conditioning on all D dimensions
at any point in time renders past and future time points in-
dependent [Särkkä and Solin, 2019]. This augmentation is
exact for many GPs, in particular the popular half-integer
Matérn family, and a good approximation for others, such as
those with exponentiated-quadratic kernels. Consequently,
for any collection of T points in time, τ1 < τ2 < ... < τT ,
the augmented GP forms a D-dimensional Gauss-Markov
chain, whose transition dynamics are a function of the ker-
nel of the GP. This means that standard algorithms (similar
to Kalman filtering) can be utilised to perform inference
under Gaussian likelihoods, thus achieving linear scaling in

T . This technique can be extended to separable and sum-
separable spatio-temporal GPs for rectilinear grids of inputs,
the details of which are as follows.

Separable GPs Let f̄ be such an augmentation of f such
that the distribution over f̄(τ, r, 1) is approximately equal
to that of f(τ, r), and conditioning on all latent dimensions
renders f̄ Markov in τ . f̄ is specified implicitly through a lin-
ear stochastic differential equation, meaning that inference
under Gaussian observations can be performed efficiently
via filtering / smoothing in a Linear-Gaussian State Space
Model (LGSSM). Let f̄t be the collection of random vari-
ables in f̄ at inputs given by the Cartesian product between
the singleton {t}, NT arbitrary locations in space r1:NT ,
and all of the latent dimensions {1, . . . , D}. Let the kernel
of f be separable: κ((r, τ), (r′, τ ′)) = κr(r, r′)κτ (τ, τ ′).
Any collection of finite dimensional marginals f̄ := f̄1:T ,
each using the same r1:NT , form an LGSSM with NTD-
dimensional state with dynamics

f̄t | f̄t−1 ∼N
(
[INT ⊗At] f̄t−1,C

r
f ⊗Qt

)
(8)

Hab := Ia ⊗
[
1 01×b−1

]
(9)

ft =HNTD f̄t, (10)
yt | ft ∼N (ft,St) (11)

where ⊗ denotes the Kronecker product, At ∈ RD×D and
Qt ∈ RD×D are functions of κτ , Qt is positive definite, Cr

f

is the covariance matrix associated with κr and r1:NT , 0p×q
is a p × q matrix of zeros, yt is the block of y containing
the observations at the tth time, and the diagonal matrix St
is the on-diagonal block of S corresponding to yt. See Solin
[2016] for further details about At and Qt.

Sum-Separable GPs Let f be the sum-separable GP
given by summing over fp ∼ GP(0, κp). A state space
approximation to f is obtained by constructing a Dp-
dimensional state space approximation for each fp, the finite
dimensional marginals of which form an LGSSM

f̄pt | f̄
p
t−1 ∼N

(
[INT ⊗Ap

t ] f̄
p
t−1, [C

r,p
f ⊗Qp

t ]
)

(12)

ft =

P∑
p=1

HNTDp f̄
p
t (13)

where Ap
t , Qp

t , and Cr,p
f are defined in the same way as

above for each fp, and yt | ft is again given by Eq. (11). This
LGSSM has NT

∑P
p=1Dp latent dimensions, increasing

the time and memory needed to perform inference when
compared to a separable model, and is the price of a more
flexible model.

Benefits and Limitations While this formulation truly
scales linearly in T it has two clear limitations, (i) all loc-
ations of observations must lie on a rectilinear time-space
grid if any computational gains are to be achieved; and (ii)
inference scales cubically in NT , meaning that inference is
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rendered infeasible by time or memory constraints if a large
number of spatial locations are observed.

5 EXPLOITING SEPARABILITY TO
OBTAIN THE BEST OF BOTH WORLDS

We now turn to the main contribution of this work: combin-
ing the pseudo-point and state space approximations. The
result is an approximation which is applicable to any sum-
separable GP whose time kernels can be approximated by a
linear SDE. We do this simply by constructing a variational
pseudo-point approximation of the state space approxima-
tion to the original process. In cases where the state space
approximation is exact, this is similar to constructing an
inter-domain pseudo-point approximation [Lazaro-Gredilla
and Figueiras-Vidal, 2009] to the original process, where
some of the pseudo-points are placed in auxiliary dimen-
sions.

In this section we show that by constraining the pseudo-
inputs, approximate inference becomes linear in time.

5.1 THE CONDITIONAL INDEPENDENCE
STRUCTURE OF SEPARABLE GPS

O’Hagan [1998] showed that a separable GP f(r, τ) has the
following conditional independence properties:

f(r, τ) ⊥⊥ f(r′, τ ′) | f(r, τ ′) , (14)
f(r, τ) ⊥⊥ f(r′, τ ′) | f(r′, τ) . (15)

These are explained graphically in Fig. 2. It is straightfor-
ward to show (see App. A.1) that this property extends to
collections of random variables in f :

f(R, T ) ⊥⊥ f(R′, T ′) | f(R, T ′) where (16)
f(R, T ) := {f(r, τ) | r ∈ R, τ ∈ T }
f(R′, T ′) := {f(r, τ ′) | r ∈ R′}
f(R, T ′) := {f(r, τ ′) | r ∈ R}

τ τ ′

r

r′

⊥⊥ |
Figure 2: Depiction of the conditional independence prop-
erty in Eq. (14). The blue square is f(r, τ), the red square
is f(r′, τ ′), and the black circle is f(r, τ ′).

τ ′

⊥⊥ |
τ

r

Figure 3: Depiction of the conditional independence prop-
erty in Eq. (16). The blue squares are f(R, T ), the red
squares are f(R′, T ′), and the black circles are f(R, T ′).

where R and R′ are sets of points in space, T is a set of
points through time, and τ ′ ∈ T . This conditional inde-
pendence property is depicted in Fig. 3, and it is this second
property that sits at the core of the approximation introduced
in the next section.

5.2 COMBINING THE APPROXIMATIONS

We now combine the pseudo-point and state space approxim-
ations, and show how a temporal conditional independence
property means that the optimal approximate posterior is
Markov. This in turn leads to a closed-form expression for
the optimum under Gaussian observation models and the
existence of a simplified LGSSM in which exact inference
yields optimal approximate inference in the original model.

Pseudo-Point Approximation of State Space Augment-
ation We perform approximate inference in a separable
GP f with the kernel in Eq. (1) by applying the standard
variational pseudo-point approximation (Sec. 3) to its state
space augmentation (Sec. 4) f̄ :

q
(
f̄
)

:= q(ū) p
(
f̄ 6=ū

∣∣ ū) , q(ū) = N
(
ū;mq

ū,C
q
ū

)
,

where the pseudo-points ū = ū1:T form a rectilinear grid of
points in time, space, and all of the latent dimensions with
the same structure as f̄ in Sec. 4, but replacing r1:NT with a
collection of Mτ spatial pseudo-inputs, z1:Mτ

, for a total of
TMτD pseudo-points. p(ū) is therefore Markov-through-
time with conditional distributions

ūt | ūt−1 ∼N ([IMτ
⊗At]ūt−1,C

r
u ⊗Qt) , (17)

ut :=HMτDūt. (18)

where Cr
u is the covariance matrix associated with κr and

z1:Mτ
. Note the resemblance to Eq. (8). No constraint is

placed on the location of the pseudo-points in space, only
that they must remain at the same place for all time points.
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Crucially, we now relax the assumption that the inputs as-
sociated with f must form a rectilinear grid. Instead, it is
necessary only to require that each observation is made at
one of the T times at which we have placed pseudo-points.
We denote the number of observations at time t by Nt, and
continue to denote by ft the set of observations at time t.

Exploiting Conditional Independence Due to O’Hagan
[1998]’s conditional independence property, p

(
f̄t
∣∣ ū) =

p
(
f̄t
∣∣ut); see App. A for details. Consequently, the recon-

struction terms in the ELBO depend only on ut as opposed
to the entirety of ū:

L =

T∑
t=1

rt −KL[q(ū) ||p(ū)] , (19)

rt :=Eq(ut)
[
Ep(ft |ut)[log p(yt | ft)]

]
This property alone yields substantial computational savings
– only the covariance between ut and ft need be computed,
as opposed to all of ū and ft. Moreover, this means that

Cf ūΛū =

[
B1 0

. . .
0 BT

]
, Bt := CftutΛutHMτD. (20)

The Optimal Approximate Posterior is Markov As an
immediate consequence of Eq. (19), and by the same argu-
ment as that made by Seeger [1999], highlighted by Opper
and Archambeau [2009], the optimal approximate posterior
precision satisfies

Λq
ū = Λū +

[
G1 0

. . .
0 GT

]
,Gt := −2∇Cq

t
rt. (21)

where Λq
ū := [Cq

ū]−1, and Cq
t is the tth block on the di-

agonal of Cq
ū. Recall that the precision matrix of a Gauss-

Markov model is block tridiagonal (see e.g. Grigorievskiy
et al. [2017]), so Λū is block tridiagonal. Further, the exact
posterior precision of an LGSSM with a Gaussian obser-
vation model is given by the sum of this block tridiagonal
precision matrix and a block-diagonal matrix with the same
block size. Λq

ū has precisely this form, so the optimal ap-
proximate posterior over ū must be a Gauss-Markov chain.

Approximate Inference via Exact Inference in an Ap-
proximate Model The above is equivalent to the optimal
approximate posterior having density proportional to

q(ū) ∝
T∏
t=1

p(ūt | ūt−1)N
(
yq
t ; ūt,G

−1
t

)
, (22)

where yq
1, ...,y

q
T are a collection of T surrogate observa-

tions, detailed in App. B.1. Thus the optimal q(ū) is given
by exact inference in an LGSSM. Moreover, Ashman et al.
[2020] (App. A) show that Gt can be written as a sum of
Nt rank-1 matrices.

Solution for Gaussian Observation Models Under a
Gaussian observation model, the optimal approximate pos-
terior is given by the exact posterior under the DTC obser-
vation model, as discussed in section Sec. 3. Eq. (20) means
that the DTC observation model can be written as

N (y;Cf ūΛūū,S) =

T∏
t=1

N (yt;Btūt,St) . (23)

In conjunction with p(ū), this yields the required LGSSM.

This LGSSM can be exploited both to perform approximate
inference and compute the saturated bound in linear time,
repurposing existing code – see App. B.2. This LGSSM
also makes it clear, for example, how to employ the parallel-
ised inference procedures proposed by Särkkä and García-
Fernández [2020] and Loper et al. [2020] within this ap-
proximation.

Sum-Separable Models Extending this approximation
to sum-separable processes is similar to the standard state
space approximation. The resulting LGSSM is

ūpt | ū
p
t−1 ∼N

(
[IMτ

⊗Ap
t ] ū

p
t−1, [C

r,p
u ⊗Qp

t ]
)

(24)
p(yt | ūt) =N (yt;

∑P
p=1B

p
t ū

p
t ,St) .

Bp
t :=Cfpt u

p
t
Λupt

HMτDp .

Note the resemblance to Eq. (12).

Efficient Inference in the Conditionals The structure
present in each Bp

t can be used to accelerate inference. In
particular note that HMτDp has size Mτ × DMτ while
Cp

ftut
Λput is Nt×Mτ . Certainly Mτ ≤ DMτ and typically

Mτ < N , so this linear transformation forms a bottleneck.
App. F explores this property, and shows how to exploit it
to accelerate inference.

Computational Complexity The total number of flops
required to compute the saturated ELBO is T (DMτ )3 +

D3M2
τ + M2

τ

∑T
t=1Nt to leading order. This is a great

deal fewer when T is large than the M3 + M2N =
M3
τ T

3+M2
τ T

2N required if the bound is computed naively.
Similar improvements are achieved when making posterior
predictions.

Utilising Other Pseudo-Point Approximations The con-
ditional independence property exploited to develop the vari-
ational approximation in this section also shines new light on
the work of Hartikainen et al. [2011]. In the specific case of
their equation 5, in which the observation model is (adopting
their notation) p(yk |xk) = N (yk; [IN ⊗H]xk,St), they
perform approximate inference in p(ū) using the modified
observation model

p̃(yt | ūt) :=N
(
yt;CftūtΛūt ūt, [C̃y]t

)
,

[C̃y]t := diag(Cft −CftūtΛūtCūtft) + St
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which is inspired by the well-known FITC [Csató and Opper,
2002, Snelson and Ghahramani, 2005] approximation. How-
ever, due to O’Hagan [1998]’s conditional independence
property, this is equivalent to

p̃(y | ū) :=N
(
y;Cf ūΛūū, C̃y

)
,

C̃y := diag(Cf −Cf ūΛūCūf ) + S.

While Hartikainen et al. [2011] did not actually consider the
Gaussian observation model in their work, it is clear from
the above that they would have utilised exactly the FITC
approximation applied to f̄ had they done so.

Bui et al. [2017] showed that both FITC and VFE can be
viewed as edge cases of the Power EP algorithm introduced
by Minka [2004]. Consequently the equivalent approximate
model generalised both that of FITC and VFE – only C̃y is
changed from FITC: let α ∈ [0, 1], then

C̃y := α diag(Cf −Cf ūΛūCūf ) + S.

In short, most standard pseudo-point approximations can be
straightforwardly combined with state space approximations
for sum-separable spatio-temporal GPs in the manner that
we propose due to the conditional independence property.

Relationship with Other Approximation Techniques
There are several existing methods that could be used to
scale GPs to large spatio-temporal problems beyond those
already considered – each method makes different assump-
tions about the kinds of problems considered, therefore
making different trade-offs relative to ours.

The popular Kronecker-product methods for separable ker-
nels explored by Saatçi [2012] are unable to handle heteros-
cedastic observation noise or missing data, scale cubically
in time, and require observations to lie on a rectilinear grid.
Our approach suffers none of these limitations.

Wilson and Nickisch [2015] introduced a pseudo-point ap-
proximation they call Structured Kernel Interpolation (SKI)
which is closely-related to the Kronecker-product methods,
but removes many of their constraints. In particular, SKI
places pseudo-points on a grid across all input dimensions,
and utilises them to construct a sparse approximation to the
prior covariance matrix over the data – crucially it is local in
the sense that the approximation to the covariance between
the pseudo-points and any given point depends only on a
handful of pseudo-points. SKI covers the domain in a reg-
ular grid of points, which results in exponential growth in
the number of pseudo-points as the number of dimensions
grows. So, while this approximation scales very well in
low-dimensional settings, it does not scale to input domains
comprising more than a few dimensions. Moreover, to ex-
ploit this grid structure, separability across all dimensions
is required. Gardner et al. [2018] alleviates this exponential
scaling problem, but still require that the kernel be separable
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Figure 4: Arbitrary Spatial Locations. Top: Locations of
(pseudo-)inputs for Mτ = 10. 10 locations in space chosen
randomly at each time point. Bottom: Time to compute
ELBO vs performing exact inference. ELBO tight forMτ =
20; see Fig. 11.

across all dimensions if their approximation is to be applied.
Our approach does not suffer from this constraint as only the
time dimension must be covered by pseudo-points – there
are no constraints on their spatial locations. Naturally, that
we do not perform similar approximations to SKI across
the spatial dimensions means that our method will have the
standard set of limitations experienced by all pseudo-point
methods as the number of points in space grows. In short,
the two classes of method are applicable to different kinds of
spatio-temporal problems. They take somewhat orthogonal
approaches to approximate inference, so combining them
by utilising SKI across the spatial dimensions could offer
the benefits of both classes of approximation in situations
where SKI is applicable to the spatial component.

Similarly, approximations based on the relationship between
GPs and Stochastic Partial Differential Equations [Whittle,
1963, Lindgren et al., 2011] could be combined with this
work to improve scaling in space when the spatial kernel
is in the Matérn family. In low-dimensional settings other
standard inter-domain pseudo-point approximations such
as those of Hensman et al. [2017], Burt et al. [2020], and
Dutordoir et al. [2020] could be applied.
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Figure 5: Grid-with-Missings. Top: Locations of
(pseudo-)inputs – note the grid structure with 50 ob-
servations per time point, of which 5 are missing. Bottom:
Time to compute ELBO vs LML naively and via state space
methods (sde). ELBO tight for Mτ = 20; see Fig. 11.

6 EXPERIMENTS

We view the proposed approximation to be a useful contri-
bution if it is able to outperform the vanilla state space ap-
proximation (Sec. 4), which is a strong baseline for the tasks
we consider. To that end, we benchmark inference against
synthetic data in Sec. 6.1, on a large-scale temperature mod-
eling task to which both the vanilla and pseudo-point state
space approximations can feasibly be applied (Sec. 6.2), and
finally to a problem to which it is completely infeasible to
apply the vanilla state space approximation (Sec. 6.3). We
do not compare directly against the vanilla pseudo-point
approximations of Titsias [2009] and Hensman et al. [2013].
As noted in Sec. 3, they are asymptotically no better than
exact inference for problems with long time horizons.

6.1 BENCHMARKING

We first conduct two simple proof-of-concept experiments
on synthetic data with a separable GP to verify our proposed
method. In both experiments we consider quite a large tem-
poral extent, but only moderate spatial, since we expect the
proposed method to perform well in such situations – if
the spatial extent of a data set is very large relative to the

Figure 6: Posterior std. dev. counterpart to Fig. 1. The colour
scale (0 1.75) is relative, pink squares are weather
stations, and orange dots pseudo-points.

characteristic spatial variation, pseudo-point methods will
struggle and, by extension, so will our method. App. E.1
contains additional details on the setup used, and App. E.1.1
contains the same experiments for a sum-separable model.

Arbitrary Spatial Locations Fig. 4 (top) shows how in-
puts were arranged for this experiment; at each time 10
spatial locations were sampled uniformly between 0 and
10, so N = 10T . The spatial location of pseudo-inputs are
regular between 0 and 10. When using pseudo-points, we
are indeed able to achieve substantial performance improve-
ments relative to exact inference by utilising the state space
methodology, while retaining a tight bound.

Grid-with-Missings Fig. 5 (top) shows how (pseudo) in-
puts were arranged for this experiment for Mτ = 10; the
same 50 spatial locations are considered at each time point,
but 5 of the observations are dropped at random, for a total
of Nt = 45 observations per time point – our largest case
therefore involves N = 4.5× 106 observations. The timing
results show that we are able to compute a good approxima-
tion to the LML using roughly a third of the computation
required by the standard state space approach to inference.

6.2 CLIMATOLOGY DATA

The Global Historical Climatology Network (GHCN)
[Menne et al., 2012] comprises daily measurements of a vari-
ety of meteorological quantities, going back more than 100
years. We combine this data with the NASA Digital Eleva-
tion Model [NASA-JPL, 2020] to model the daily maximum
temperature in the region (47°,−127°) and (49°,−122°),
which contains 99 weather stations. We utilise all data in this
region since the year 2000, training on 90% (331522) and
testing on 10% (36835) of the data. This experiment was
conducted on a workstation with a 3.60 GHz Intel i7-7820X
CPU (8 cores), and 46 GB of 3000 MHz DDR3 RAM.
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Figure 8: Apartment price posterior mean and standard devi-
ation on a day near the end of 2020. Pseudo-point locations
picked using K-means and marked with orange dots.

Two models were utilised: a simple separable model with
a Matérn- 5

2 kernel over time, and Exponentiated Quadratic
over space, and a sum of two such kernels with differing
length scales and variances. Additional details in App. E.2.

Fig. 7 compares a simple subset-of-data (SoD) approxima-
tion, which is exact when M = 99, with the pseudo-point
(P-P) approximation developed in this work. The results
demonstrate that (i) the pseudo-point approximation has
a more favourable speed-accuracy trade-off than the SoD,
offering near exact inference in less time for a separable
kernel, and (ii) a sum-separable model offers substantially
improved results over a separable in this scenario.

6.3 APARTMENT PRICE DATA

Property sales data by postcode across England and Wales
are provided by HM Land Registry [2014]. There are over
106 unique postcodes in England and Wales, of which a
tiny proportion contain a sale on a given day. Consequently
this data set has essentially arbitrary spatial locations at

Table 1: Performance on apartment price data. Mτ = 75.

RSMSE NPPLP
Separable 0.658 2920

Sum-Separable 0.618 192

each point in time, which our approximation can handle, but
which renders the vanilla state-space method infeasible.

We follow a similar procedure to Hensman et al. [2013],
cross-referencing postcodes against a separate database
[Camden, 2015] to obtain latitude-longitude coordinates,
which we regress against the standardised logarithm of
the price. However, we train on 843766 of the 1687536
apartment sales between 2010 and 2020, and test on the re-
mainder. We again consider a separable and sum-separable
GP that are similar to those in Sec. 6.2, but the temporal
kernel is Matérn- 3

2 . More detail in App. E.3.

Table 1 again demonstrates that a sum-separable model is
able to capture more useful structure in the data than the
separable model; Fig. 8 shows the variability and uncertainty
in the prices on an arbitrarily chosen day.

7 DISCUSSION

This work shows that pseudo-point and state space approx-
imations can be directly combined in the same model to
effectively perform approximate inference and learning in
sum-separable GPs, and ties up loose ends in the theory re-
lated to combining these models. This is important in spatio-
temporal applications, where the model admits a form of an
arbitrary-dimensional (spatial) random field with dynamics
over a long temporal horizon. Experiments on synthetic and
real-world data show that this approach enables a favourable
trade-off between computational complexity and accuracy.
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Standard approximations for non-Gaussian observation
models, such as those discussed by Wilkinson et al. [2020],
Chang et al. [2020], and Ashman et al. [2020], can be
applied straightforwardly within our approximation. Our
method represents the simplest point in a range of possible
approximations. As such there are several promising paths
forward to achieve further scalability beyond simply util-
ising hardware acceleration, including (i) applying the es-
timator developed by Hensman et al. [2013] to our method
to utilise mini batches of data, (ii) embedding the infinite-
horizon approximation introduced by Solin et al. [2018] to
trade off some accuracy for a substantial reduction in the
computational complexity of our approximation, (iii) remov-
ing the constraint that observations must appear at the same
time as pseudo-points by utilising the method developed by
Adam et al. [2020].

Code github.com/JuliaGaussianProcesses/
TemporalGPs.jl contains an implementation of the
approximation developed in this work.

github.com/willtebbutt/
PseudoPointStateSpace-UAI-2021 contains
code built on top of TemporalGPs.jl to reproduce the
experiments.
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