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ABSTRACT Formant tracking is investigated in this study by using trackers based on dynamic program-
ming (DP) and deep neural nets (DNNs). Using the DP approach, six formant estimation methods were
first compared. The six methods include linear prediction (LP) algorithms, weighted LP algorithms and
the recently developed quasi-closed phase forward-backward (QCP-FB) method. QCP-FB gave the best
performance in the comparison. Therefore, a novel formant tracking approach, which combines benefits
of deep learning and signal processing based on QCP-FB, was proposed. In this approach, the formants
predicted by a DNN-based tracker from a speech frame are refined using the peaks of the all-pole spectrum
computed by QCP-FB from the same frame. Results show that the proposed DNN-based tracker performed
better both in detection rate and estimation error for the lowest three formants compared to reference formant
trackers. Compared to the popular Wavesurfer, for example, the proposed tracker gave a reduction of 29%,
48%, and 35% in the estimation error for the lowest three formants, respectively.

INDEX TERMS Speech analysis, formant tracking, linear prediction, dynamic programming, deep neural
net.

I. INTRODUCTION
Estimation and tracking of formant frequencies is an impor-
tant research topic in several areas of speech science and
technology [1]–[6]. During the past few decades, many tech-
niques have been proposed for formant tracking [7]–[10].
These algorithms typically consist of two parts, the estimation
stage and the tracking stage. In the former, initial estimates
of the vocal tract resonances (VTRs) are computed in short
frames (e.g., 25 ms) using spectral estimation methods such
as linear prediction (LP). In the latter, the formants esti-
mated from individual frames are expressed using contours
which cover a longer unit (e.g., word or sentence) [7], [8].
In addition, estimation and tracking can be done simulta-
neously using an initial representation of the vocal tract
system [9], [10]. In both approaches, accurate estimation of
VTRs is an important and necessary computational block.

The associate editor coordinating the review of this manuscript and

approving it for publication was Shaikh Anowarul Fattah .

LP is the most widely used technique to estimate VTRs
from speech [11] and therefore many variants of LP have
been proposed (e.g. [12], [13]). In formant estimation and
tracking, the most popular variants are the autocorrelation
and covariance methods [7], [8]. The closed phase (CP)
analysis is known to improve VTR estimates by avoiding
the contribution of the speech samples in the open phase of
the glottal cycle thereby decoupling the effect of the trachea
more effectively [14]. CP analysis, however, works better for
low-pitched voices which typically have a larger number of
samples in the closed phase of the glottal cycle compared
to high-pitched voices which might have just a few samples
in the closed phase. To reduce problems caused by having a
small number of closed phase samples, LP can be computed
over multiple neighboring cycles [14].

Weighted linear prediction (WLP) is an all-pole model-
ing method based on temporally weighting the prediction
error [13], [15]–[20]. Temporal weighting of the prediction
error has been shown to be beneficial in computing vocal
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tract models which are robust with respect to noise and
the selection of analysis window as well as the biasing
effect of high fundamental frequency. Formant estimation
of high-pitched vowels was studied using WLP in [18] by
developing a simple weighting function, called the attenuated
main excitation (AME) function, to downgrade the strong
effect of the glottal source in the computation of the vocal
tract model. Based on [18], the quasi-closed phase (QCP)
method was proposed for glottal inverse filtering (GIF)
in [19]. In QCP, a more generalized AME-type of weighting
function is used. Recently, a new formant estimation method
based on QCP, called quasi-closed phase forward-backward
(QCP-FB) LP analysis, was proposed in [21]. QCP-FB com-
bines two approaches: (1) QCP analysis in which the residual
is temporally weighted, and (2) forward-backward (FB) anal-
ysis in which the number of samples is increased in LP by
using two prediction directions simultaneously. In addition,
WLP methods have been proposed recently based on using
stochastic approaches in the computation of the weighting
function [22].

In this article, formant tracking is studied by investigat-
ing different all-pole modeling methods in formant estima-
tion. The all-pole formant estimation methods are used with
two formant tracking approaches, a dynamic programming
(DP) -based approach and a deep neural net (DNN) -based
approach. As the first part of the study, six different LP-based
andWLP-based formant estimation methods are compared in
formant tracking using aDP-based tracker. The novelty of this
part is in studying how the potential new method, QCP-FB,
which was investigated solely in formant estimation in [21],
works in formant tracking. In the second part of the study,
two most potential all-pole modeling methods from the first
part are used with a modern DNN-based tracker by proposing
a novel formant tracking approach, which combines benefits
of the data-driven deep learning approach and benefits of the
model-driven all-pole modeling approach. In this novel track-
ing approach, the formants, which are predicted by the DNN
from a given speech frame, are refined using the spectral
peaks, which are indicated by the spectrum, which is com-
puted from the same frame with a model-based parametric
all-pole spectral estimation method. Altogether five known
formant trackers (Wavesurfer [8], PRAAT [7], MUST [23],
KARMA [10], and Deep Formants [24]) are used as reference
methods in this study.

The contributions of the study are as follows:
• The potential new formant estimation method, QCP-FB,
is evaluated in formant tracking and its performance
is compared with existing LP-based and WLP-based
formant estimation methods using a DP-based tracker.

• A novel formant tracking technique is proposed by com-
bining the data-driven DNN-based approach and the
model-driven all-pole approach. In this technique, the
formants predicted from a speech frame by a DNN are
refined using the spectral peaks that are extracted from
an all-pole model, which is computed from the same
frame.

• A systematic investigation is carried out by compar-
ing the novel formant tracking method described above
with five reference formant trackers (Wavesurfer [8],
PRAAT [7], MUST [23], KARMA [10], and Deep
Formants [24]).

The paper is organised as follows. The QCP-FB method,
which was introduced as a new formant estimation method
recently in [21], is first described in section II. The other
formant estimation methods and the formant trackers used in
the study are described in section III. The results of the for-
mant tracking experiments are reported in section IV. Finally,
conclusions are drawn in section V.

II. QUASI-CLOSED PHASE FORWARD-BACKWARD
ANALYSIS
The traditional formulation of LP is based on forward pre-
diction in which the current speech sample is predicted from
the past p samples. It is, however, also possible to use back-
ward prediction in which the current sample is predicted
from the future p samples. The filter coefficients computed
using forward and backward predictions are inter-convertible,
and therefore they do not carry any additional informa-
tion when computed separately. However, by simultaneously
using both backward and forward prediction, a prediction
model different from that of traditional LP is obtained by
using forward-backward (FB) analysis, where the current
sample is predicted based on past and future samples using
a common set of p coefficients. The combined error to be
minimized is given by

E = E f + Eb, (1)

where E f =
∑
n

(
xn +

p∑
k=1

akxn−k

)2

(2)

and Eb =
∑
n

(
xn +

p∑
k=1

akxn+k

)2

(3)

denote the forward and backward errors, respectively, xn
denotes the current speech sample, and ak denotes the predic-
tion coefficients. The prediction coefficients can be computed
by minimizing the combined error (∂E/∂ai = 0, 1 ≤ i ≤ p)
which results in the following normal equations

p∑
k=1

ci,kak = −ci,0, 1 ≤ i ≤ p (4)

where ci,k =
∑
n

xn−ixn−k +
∑
n

xn+ixn+k . (5)

Previous studies have shown that FB analysis reduces the
dependency of spectral estimates on the initial sinusoidal
phase, shifting of frequency estimates due to additive noise
and the so called line-splitting problem (see [21] for a review).
The line-splitting problem refers to obtaining spectral mod-
els which show a single sinusoidal component incorrectly
as two distinct peaks. By taking advantage of FB analy-
sis, two benefits are achieved: (1) the estimated spectral
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peak locations are less sensitive to the window position, and
(2) the combination of the two prediction directions gives
more samples to compute correlations for the given frame.

Quasi-closed phase forward-backward (QCP-FB) analysis
involves the use of FB analysis within the framework of
QCP in order to combine the benefits of both techniques.
The resulting method imposes the temporal QCP weighting
function wn, defined by [19], on the forward and backward
errors individually. The combined error to be minimized is
given by

F = F f
+ Fb, (6)

where F f
=

∑
n

wn

(
xn +

p∑
k=1

akxn−k

)2

(7)

and Fb
=

∑
n

wn

(
xn +

p∑
k=1

akxn+k

)2

(8)

are the weighted forward and backward errors, respectively.
The resulting normal equations are given by

p∑
k=1

di,kak = −di,0, 1 ≤ i ≤ p (9)

where di,k =
∑
n

wnxn−ixn−k +
∑
n

wnxn+ixn+k . (10)

Appropriate choice of range for the variable n results in the
autocorrelation or covariance methods for QCP-FB.

QCP-FB is used in formant tracking in the current study
and it is expected to show improved performance compared
to existing formant tracking methods due to the following
two main reasons. First, FB analysis helps to improve the
formant estimation by providingmore samples for prediction,
and by reducing the problems of window positioning and
line splitting. Second, QCP analysis exploits the WLP frame-
work of sample selective prediction by designing a temporal
weighting function that gives more emphasis on closed phase
regions and deemphasizes the open phase aswell as the region
immediately after the main excitation. This results in more
accurate closed phase estimates of the vocal tract system with
a reduced influence from the glottal source.

III. FORMANT TRACKERS
Several formant tracking algorithms have been proposed in
the literature [7]–[10], [24]. It is worth emphasising that a
formant tracking algorithm will most likely show varying
performance when combined with different formant estima-
tion methods and this makes it difficult to compare different
tracking algorithms. In principle, most of the tracking algo-
rithms can be combined with any formant estimation method.
Therefore, formant tracking is studied in this paper using
trackers which are based on both DP and DNN.

A. DP-BASED FORMANT TRACKERS
Using the DP-based tracking algorithm proposed in [8], for-
mant tracking performance was investigated by comparing

six different formant estimation methods that all use all-pole
modeling. These methods, listed in Table 1, are as follows:
(1) conventional LP based on the autocorrelation method
(LP-ACOR), (2) conventional LP based on the covariance
method (LP-COV), (3) LP based on forward-backward pre-
diction and the covariance method (LP-FBCOV), (4) QCP
analysis based on the autocorrelation method (QCP-ACOR),
(5) QCP analysis based on the covariance method (QCP-
COV) and (6) QCP analysis based on forward-backward
prediction and the covariance method (QCP-FBCOV). All
these methods were computed using a frame length of 25 ms,
a frame shift of 10 ms and an all-pole model order p = 12.
Speech signals, sampled using 8 kHz, were pre-emphasised
using an FIR filter (P(z) = 1−0.5z−1). In the autocorrelation
methods, the Hamming window was used. In the covari-
ance methods, the rectangular window was used. The peaks
in the spectrum were detected by convolving the spectrum
using a Gaussian derivative window with a width of 100 Hz
and picking the negative zero-crossings. Five most energetic
peaks of the spectrum were selected as the formant candi-
dates. A verbatim MATLAB implementation of the tracking
algorithm [8] was used to track the best four contours from
the underlying formant candidates estimated by the all-pole
methods.

B. DNN-BASED FORMANT TRACKERS
In order to study the possible limitations of the DP-based
tracker, a deep neural network (DNN) -based formant tracker
was developed as an alternative. A simple four-layer feed-
forward DNN was used to capture the nonlinear mapping
between the spectrum and the formant frequencies. The DNN
had 300 units with tangent-hyperbolic activation in each of
the three hidden layers [25]. The input dimension of 143 units
corresponded to 13 RASTA-PLP [26] cepstral coefficients
with an 11-frame neighborhood, and the three linear output
units corresponded to the first (F1), second (F2) and third (F3)
formant to be predicted.

A common input feature was deliberately used to have a
common baseline performance, and to study the incremen-
tal improvement provided by different spectrum estimation
methods when used for refinement. 300 utterances from the
train subset of the VTR-TIMIT database [27] were used to
train the models. Mean square error between the estimated
and actual formant values was used as the objective function.
All parameters of the network were initialized randomly.

The stochastic gradient descent algorithm with standard
backpropagation of error was used to learn the network
parameters. The dropout regularization method was used to
prevent overfitting the network. Input values were normalized
to the range of [0.1, 0.9] and output values were normal-
ized to have zero mean and unit variance. The DNN-based
tracker was used in three modes: (1) by predicting the lowest
three formants directly, (2) by refining the formants pre-
dicted by the DNN by replacing them with the frequencies
of the corresponding nearest peaks in the LP-FBCOV spec-
trum, (3) by refining the formants predicted by the DNN
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TABLE 1. Formant tracking performance of the DP-based tracker using six all-pole modeling methods in formant estimation and performance of six
reference trackers. The numbers in parentheses denote the potential performance of the underlying formant estimation method if any of the five formant
candidates is found within the allowed deviation from the ground truth. The results are reported by averaging over of all the 192 utterances of the VTR
test database.

TABLE 2. Performance of the DNN-based formant trackers and performance of three reference trackers. The results are reported by averaging over of all
the 192 utterances of the VTR test database.

by replacing them with the frequencies of corresponding
nearest peaks in the QCP-FBCOV spectrum. (Note that with
the model order p = 12, the LP-FBCOV spectrum and
the QCP-FBCOV spectrum can show maximally six peaks).
These three trackers will be referred to as DNN, DNN-LP-
FBCOV and DNN-QCP-FBCOV, respectively. It is worth
emphasizing that the latter two modes combine a data-driven
approach and a model-driven approach in formant tracking in
a novel way: formants F1–F3 are first predicted using a data-
driven deep learning approach from a given frame with the
DNN after which the predicted formants are refined using a

model-driven signal processing approach using the all-pole
spectrum extracted from the frame.

C. REFERENCE FORMANT TRACKERS
The DP-based and the DNN-based formant tracking algo-
rithms were compared to known formant trackers. These
reference trackers include algorithms used in two popular
speech analysis tools (Wavesurfer [8] and PRAAT [7]), the
adaptive filter bank (AFB) -based formant tracking algo-
rithm (denoted as MUST) [23], KARMA (based on Kalman
filtering) [10], and Deep Formants (based on DNNs) [24],

151634 VOLUME 9, 2021



D. N. Gowda et al.: Formant Tracking Using QCP-FB LP Analysis and DNNs

TABLE 3. The formant tracking performance of KARMA, Deep Formants, DNN and DNN-QCP-FBCOV in terms of FDR and FEE for different phonetic
categories. The results are reported by averaging over of all the 192 utterances of the VTR test database.

[28]. Both Wavesurfer and PRAAT use LP analysis fol-
lowed by DP-based tracking. Wavesurfer was used in two
forms corresponding to autocorrelation LP and stabilized
covariance LP which are referred to as WSURF-0 and
WSURF-1, respectively [8]. The PRAAT algorithm uses
the BURG method in LP analysis [7]. All the algorithms
tracked four formants from the top five formant candi-
dates derived from the underlying spectrum at a frame rate
of 100 Hz.

IV. EXPERIMENTS AND RESULTS
A. DATABASE AND PERFORMANCE METRICS
The formant tracking performance was evaluated using the
VTR database, which is one of the most widely used speech

databases in the areas of formant estimation and tracking [27].
The test data of the database was used for the evaluation. This
data consists of 192 utterances (produced by 8 female and
16 male speakers, each pronouncing 8 utterances). The dura-
tion of each utterance varies between 2 and 5 s. The ground
truth (i.e., formant frequencies) have been derived using
a semi-supervised LP–based method [29]. The values of
F1–F3 have been corrected manually using spectrograms.
The ground truth values for formants are provided for
every 10 ms interval. The formant tracking performance was
evaluated using two known metrics: the formant detection
rate (FDR) and the formant estimation error (FEE) as defined
in [21]. During the performance evaluation, the reference
ground truth for each of the lowest three formants was
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TABLE 4. Formant tracking performance of different methods for male and female speakers separately. The results are reported by averaging over all the
utterances of the male and female speakers of the VTR test database.

associated with the nearest formant candidate lying within a
specified relative (τp) and absolute (τa) deviations.
The FDR is computed in terms of the percentage of frames

for which a hypothesized formant occurs within a specified
deviation from the ground truth formant. The FDR for the ith

formant overM analysis frames is computed as

Di =
1
M

M∑
n=1

I (1Fi,n), (11)

I (1Fi,n) =


1 if(1Fi,n/Fi,n

< τr & 1Fi,n < τa)
0 otherwise,

(12)

where I (.) denotes a binary formant detector function.
1Fi,n = |Fi,n − F̂i,n| is the absolute deviation of the hypoth-
esized formant frequency (F̂i,n) from the reference ground
truth (Fi,n) at the nth frame for the ith formant. The FEE is
computed in terms of the average absolute deviation of the
hypothesized formant from the ground truth formant. The
FEE for the ith formant over M analysis frames is computed
as

Ri =
1
M

M∑
n=1

1Fi,n. (13)

The FEE values in conjunction with FDR values give a
better sense of the performance of a formant tracker.

B. DP-BASED FORMANT TRACKING
The FDRs (within τp = 30% and τa = 300 Hz deviation)
and FEEs for the different formant estimation methods are
given in Table 1. In this table, the two metrics are computed
by associating the three hypothesized formant tracks with the
lowest three reference tracks.

The scores in the parentheses, however, denote the best
scores which were obtained by identifying each formant as
the spectral peak (among the detected five candidates) that
was closest to the corresponding reference formant. The
scores in the parentheses describe the performance of the
underlying formant estimation method when used with an
ideal formant tracker. It can be seen from the results that
the DP-based tracker gave scores inferior to the detection
potential of the underlying spectral estimates.

It can be seen from Table 1 that the QCP-based meth-
ods performed consistently better than all of their LP-based
counterparts. The covariance method performed better than
the autocorrelation method for both LP and QCP. How-
ever, LP-FBCOV showed no improvement over LP-COV, and
QCP-FBCOV seems to be inferior to QCP-COV, despite the
detection potential being highest (the scores in parentheses)
for QCP-FBCOV. This behavior can be attributed to the
inherent limitations of the DP-based tracker with a possibility
of tracking a spurious candidate instead of the best candidate
(which is otherwise not known without the ground truth).

C. DNN-BASED FORMANT TRACKING
A comparison of the performance of the DNN-based formant
tracker using LP-FBCOV and QCP-FBCOV for refinement
is given in Table 2 along with the performance of the DNN
predictor.

Three reference trackers (Wavesurfer (WSURF-1),
KARMA, and Deep Formants) were chosen for comparison
based on their performance shown in Table 1. It can be seen
that the DNN-QCP-FBCOV tracker performed best, almost
realizing the full potential of the QCP-FBCOV method (the
scores in parentheses in Table 1). The improvement given
by DNN-QCP-FBCOV compared particularly to the popular
Wavesurfer tracker is large showing a reduction of 29%, 48%
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FIGURE 1. Formant tracking by KARMA and DNN-QCP-FBCOV for an utterance produced by a male speaker: (a) the time-domain speech signal,
(b) the narrowband spectrogram with reference ground truth formant contours, (c) the formant track estimates of KARMA along with the
voiced-unvoiced regions shown by a dotted rectangular-wave plot, and (d) the formant track estimates of DNN-QCP-FBCOV.

and 35% in the estimation error for the lowest three formants,
respectively. These results demonstrate that the QCP-FBCOV
method can be a good replacement for the popularly used
LP-COV analysis in formant estimation and tracking tools
and applications.

A detailed comparison in the formant tracking perfor-
mance of KARMA, Deep Formants, DNN and DNN-QCP-
FBCOV is given in Table 3 for different phonetic categories
(vowels, dipthongs, and semovowels). It can be seen that
the proposed DNN-QCP-FBCOV method performed clearly
better for all the phonetic categories in both FDR and FEE.
Formant tracking performance of different methods analyzed
separately for male and female speakers is given in Table 4.
From the table it can be observed that the performance

of Deep Formants is better for male speakers (except in
δF1, where the DNN-QCP-FBCOV method is better) but for
female speakers the DNN-QCP-FBCOV method is better.

Formant tracking performance for different methods using
speech degraded with white and babble noise at signal-to-
noise ratio (SNR) levels of 10 dB and 5 dB are given in
Table 5. From the table it can be observed that the proposed
DNN-QCP-FBCOV method performed better in the case of
speech degraded with white noise. In the case of speech
degraded with babble noise, Deep Formants and DNN meth-
ods seems to perform better.

An illustration of formant tracking by KARMA and
DNN-QCP-FBCOV for an utterance produced by a male
speaker is shown in Fig. 1. It can be seen from the figure
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TABLE 5. Formant tracking performance for different methods using speech degraded with white and babble noise at SNR levels of 10 dB and 5 dB. The
results are reported by averaging over of all the 192 utterances of the VTR test database.

that the formants tracked by the DNN-QCP-FBCOV method
match closely the ground truth in voiced segments. Further-
more, it can be clearly seen that DNN-QCP-FBCOV is better
than KARMA in tracking all the formants.

V. CONCLUSION
Formant tracking was studied in this paper based on the
widely used two-stage approach consisting of the estima-
tion stage and the tracking stage. In the former, six differ-
ent all-pole modeling methods were first compared with a
DP-based tracker. In addition, five known formant trackers
were used as references. Two most potential all-pole mod-
eling methods (LP-FBCOV and QCP-FBCOV) were then
used with a modern DNN-based tracker by proposing a
novel formant tracking technique which combines benefits
of data-driven and model-driven approaches: the formants
predicted with the data-driven DNN were refined using the

frequencies of the peaks in the all-pole spectra computed by
the model-driven LP-FBCOV and QCP-FBCOV methods.

The DNN-based formant trackers using the LP-FBCOV
and QCP-FBCOV refinement were further compared to two
conventional formant trackers (Wavesurfer and KARMA)
and to one recently published DNN-based tracker (Deep For-
mants). With the QCP-FBCOV refinement, the DNN-based
tracker outperformed the conventional reference formant
trackers in all metrics. Compared to Deep Formants, the
proposed DNN-tracker gave better performance in all other
metrics except for FDR and FEE in F3 where Deep Formants
was just slightly better. In addition to these encouraging
objective results, it is worth emphasising that the proposed
QCP-FBCOV refinement technique can be used in principle
to improve the performance of any existing DNN-based for-
mant tracker which has been trained to map a speech signal
frame into formants, that is, there is no need to re-train the
DNN-based tracker used. However, it should be noted that
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the performance of the proposed method might depend on
the accuracy of the estimated glottal closure instants, which
are needed to generate the QCP weighting function [19].
Therefore, the robustness of the proposed method in various
noisy conditions needs to be studied further. One way of
improving the performance under degradations could be by
training the DNN models for all noisy conditions of interest.
Nevertheless, under clean conditions, the current study shows
that the QCP-FBCOVmethod is a potential all-pole modeling
technique to be used in formant tracking instead of the widely
used conventional LP methods.

It is worth noting that the DNN-based formant track-
ing methods studied in this investigation (i.e., Deep For-
mants, DNN, DNN-LP-FBCOV, and DNN-QCP-FBCOV)
are based on supervised learning and their computational
complexity is relatively high compared to traditional model-
based approaches. It is known that DNNs are resource
hungry due to their need for training data and the archi-
tecture of the neural network adds more computational
complexity when the trained network is used in formant
tracking. The LSTM-based Deep Formants architecture has
approximately 4M parameters, while the FFNN DNN archi-
tecture we propose has around 0.3M parameters. It is worth
emphasizing, however, that the main contribution of this
study, the QCP-FBCOV based refinement of formants, can
be plugged into any existing pre-trained DNN-based tracker,
which results only in a marginal increase in complexity.
Compared to the conventional autocorrelation based LP,
which has a computational complexity ofO(n2), our proposed
QCP-FBCOV-based tracker has O(n3) complexity, where n
denotes the size of the covariance matrix (which is equal to
the LP order, which was p = 12 in the experiments of the
current study). However, the order of LP analysis being small,
our proposed DNN-QCP-FBCOV/-based formant tracking
results only in a negligible increase in the overall computa-
tional complexity. There is an added computation complexity
due to the computation of the temporal weighting function
(wn in Eqs. 7 and 8), which calls for estimating glottal
closure instants, which also requires LP inverse filtering and
is proportional to O(n3) computations.

ACKNOWLEDGMENT
Dhananjaya Gowda and Bajibabu Bollepalli were with Aalto
University when this work was initiated.

REFERENCES
[1] P. F. Assmann, ‘‘The role of formant transitions in the perception of

concurrent vowels,’’ J. Acoust. SoC. Amer., vol. 97, no. 1, pp. 575–584,
Jan. 1995.

[2] L.Welling andH. Ney, ‘‘Formant estimation for speech recognition,’’ IEEE
Trans. Speech Audio Process., vol. 6, no. 1, pp. 36–48, Jan. 1998.

[3] T. Smit, F. Tärckheim, and R. Mores, ‘‘Fast and robust formant detection
from LP data,’’ Speech Commun., vol. 54, no. 7, pp. 893–902, Sep. 2012.

[4] I.-C. Yoo, H. Lim, and D. Yook, ‘‘Formant-based robust voice activity
detection,’’ IEEE/ACM Trans. Audio, Speech, Language Process., vol. 23,
no. 12, pp. 2238–2245, Dec. 2015.

[5] R. Singh, D. Gencaga, and B. Raj, ‘‘Formant manipulations in voice
disguise by mimicry,’’ in Proc. 4th Int. Conf. Biometrics Forensics (IWBF),
Limassol, Cyprus, Mar. 2016, pp. 1–6.

[6] H. K. Kathania, S. R. Kadiri, P. Alku, and M. Kurimo, ‘‘Study of formant
modification for children ASR,’’ in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), May 2020, pp. 7429–7433.

[7] P. Boersma, ‘‘Praat, a system for doing phonetics by computer,’’ Glot Int.,
vol. 5, nos. 9–10, pp. 341–345, 2002.

[8] K. Sjolander and J. Beskow, ‘‘Wavesurfer—An open source speech tool,’’
in Proc. Int. Conf. Spoken Lang. Process., Beijing, China, Oct. 2000,
pp. 464–467.

[9] L. Deng, L. J. Lee, H. Attias, andA. Acero, ‘‘Adaptive Kalman filtering and
smoothing for tracking vocal tract resonances using a continuous-valued
hidden dynamic model,’’ IEEE/ACM Trans. Audio, Speech, Language
Process., vol. 15, no. 1, pp. 13–23, Jan. 2007.

[10] D. D. Mehta, D. Rudoy, and P. J. Wolfe, ‘‘Kalman-based autoregressive
moving averagemodeling and inference for formant and antiformant track-
ing,’’ J. Acoust. SoC. Amer., vol. 132, no. 3, pp. 1732–1746, Sep. 2012.

[11] J. Makhoul, ‘‘Linear prediction: A tutorial review,’’ Proc. IEEE, vol. 63,
no. 4, pp. 561–580, Apr. 1975.

[12] D. Giacobello, M. G. Christensen, M. N. Murthi, S. H. Jensen, and
M. Moonen, ‘‘Sparse linear prediction and its applications to speech pro-
cessing,’’ IEEE/ACM Trans. Audio, Speech, Language Process., vol. 20,
no. 5, pp. 1644–1657, Jul. 2012.

[13] C. Magi, J. Pohjalainen, T. Bäckström, and P. Alku, ‘‘Stabilized weighted
linear prediction,’’ Speech Commun., vol. 51, no. 5, pp. 401–411, 2009.

[14] B. Yegnanarayana and R. Veldhuis, ‘‘Extraction of vocal-tract system
characteristics from speech signals,’’ IEEE Trans. Speech Audio Process.,
vol. 6, no. 4, pp. 313–327, Jul. 1998.

[15] R. Mizoguchi, M. Yanagida, and O. Kakusho, ‘‘Speech analysis by selec-
tive linear prediction in the time domain,’’ in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process., Paris, France, May 1982, pp. 1573–1576.

[16] C.-C. Lee, ‘‘On robust linear prediction of speech,’’ IEEE Trans. Acoust.,
Speech Signal Process., vol. ASSP-36, no. 5, pp. 642–650, May 1988.

[17] C. Ma, Y. Kamp, and L. F. Willems, ‘‘Robust signal selection for linear
prediction analysis of voiced speech,’’ Speech Commun., vol. 12, no. 1,
pp. 69–81, Mar. 1993.

[18] P. Alku, J. Pohjalainen, M. Vainio, A.-M. Laukkanen, and B. H. Story,
‘‘Formant frequency estimation of high-pitched vowels using weighted
linear prediction,’’ J. Acoust. SoC. Amer., vol. 134, no. 2, pp. 1295–1313,
Aug. 2013.

[19] M. Airaksinen, T. Raitio, B. Story, and P. Alku, ‘‘Quasi closed
phase glottal inverse filtering analysis with weighted linear prediction,’’
IEEE/ACM Trans. Audio, Speech, Language Process., vol. 22, no. 3,
pp. 596–607, Mar. 2014.

[20] D. Gowda, S. Reddy Kadiri, B. Story, and P. Alku, ‘‘Time-varying
quasi-closed-phase analysis for accurate formant tracking in speech sig-
nals,’’ IEEE/ACM Trans. Audio, Speech, Language Process., vol. 28,
pp. 1901–1914, 2020.

[21] D. Gowda, M. Airaksinen, and P. Alku, ‘‘Quasi-closed phase forward-
backward linear prediction analysis of speech for accurate formant detec-
tion and estimation,’’ J. Acoust. SoC. Amer., vol. 142, no. 3, pp. 1542–1553,
Sep. 2017.

[22] A. Rao and P. K. Ghosh, ‘‘Glottal inverse filtering using probabilistic
weighted linear prediction,’’ IEEE/ACM Trans. Audio, Speech, Language
Process., vol. 27, no. 1, pp. 114–124, Jan. 2019.

[23] K. Mustafa and I. C. Bruce, ‘‘Robust formant tracking for continuous
speech with speaker variability,’’ IEEE Trans. Audio, Speech, Language
Process., vol. 14, no. 2, pp. 435–444, Mar. 2006.

[24] Y. Dissen, J. Goldberger, and J. Keshet, ‘‘Formant estimation and track-
ing: A deep learning approach,’’ J. Acoust. SoC. Amer., vol. 145, no. 2,
pp. 642–653, Feb. 2019.

[25] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016. [Online]. Available: http://www.
deeplearningbook.org

[26] H. Hermansky, ‘‘Perceptual linear predictive (PLP) analysis of speech,’’
J. Acoust. SoC. Amer., vol. 87, no. 4, pp. 1738–1752, 1990.

[27] L. Deng, X. Cui, R. Pruvenok, J. Huang, and S. Momen, ‘‘A database
of vocal tract resonance trajectories for research in speech processing,’’
in Proc. Int. Conf. Acoust. Speech Signal Process. (ICASSP), Toulouse,
France, 2006, pp. I369–I372.

[28] Y. Dissen and J. Keshet, ‘‘Formant estimation and tracking using deep
learning,’’ in Proc. Interspeech, San Francisco, CA, USA, Sep. 2016,
pp. 958–962.

[29] L. Deng, L. J. Lee, H. Attias, and A. Acero, ‘‘A structured speech model
with continuous hidden dynamics and prediction-residual training for
tracking vocal tract resonances,’’ in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., vol. 1, Montreal, QC, Canada, May 2004, pp. 1–9.

VOLUME 9, 2021 151639



D. N. Gowda et al.: Formant Tracking Using QCP-FB LP Analysis and DNNs

DHANANJAYA N. GOWDA (Member, IEEE)
received the master’s and Ph.D. degrees in the area
of speech signal processing from the Department
of Computer Science and Engineering, Indian
Institute of Technology (IIT) Madras, Chennai,
India, in 2004 and 2011, respectively. He worked
as a Postdoctoral Researcher at Aalto University,
Espoo, Finland, from 2012 to 2017. He is currently
working as a Principal Engineer at the Speech
Processing Lab, AI Center, Samsung Research,

R&D Campus, Seoul, South Korea. His research interests include speech
processing, signal processing, speech recognition, machine learning, and
spoken language understanding.

BAJIBABU BOLLEPALLI (Member, IEEE)
received the bachelor’s and master’s degrees from
IIIT-Hyderabad, India, 2011 and 2012, respec-
tively, the Licentiate of Engineering from the
KTH Royal Institute of Technology, Stockholm,
Sweden, in 2017, and the Ph.D. degree from the
Department of Signal Processing and Acoustics,
Aalto University, Finland, in 2020. He worked as a
Postdoctoral Fellow at Verisk Analytics, Munich,
Germany, before joining in Amazon. He is cur-

rently working as an Applied Scientist at Amazon, Alexa AI, Cambridge,
U.K. His research interests include speech synthesis, speech processing,
natural language processing, andmachine learning. He was a recipient of two
best student paper awards one in ICASSP 2016 and another in Interspeech
2016.

SUDARSANA REDDY KADIRI (Member,
IEEE) received the B.Tech. degree from
Jawaharlal Nehru Technological University
(JNTU), Hyderabad, India, in 2011, with a spe-
cialization in electronics and communication
engineering (ECE), the M.S. (Research) during
2011–2014, and later converted to Ph.D., and
received the Ph.D. degree from the Department
of ECE, International Institute of Information
Technology, Hyderabad (IIIT-H), India, in 2018.

He was awarded the Tata Consultancy Services (TCS) fellowship for his
Ph.D. He is currently a Postdoctoral Researcher with the Department of
Signal Processing and Acoustics, Aalto University, Espoo, Finland. He was
a Teaching Assistant for several courses at IIIT-H, from 2012 to 2018, and he
has been involving in teaching and mentoring activities at Aalto University,
since 2019. His research interests include signal processing, speech analysis,
speech synthesis, paralinguistics, affective computing, voice pathologies,
machine learning, and auditory neuroscience. He has published over 50
research papers in peer-reviewed journals and conferences in these areas.

PAAVO ALKU (Fellow, IEEE) received the M.Sc.,
Lic.Tech., and Dr.Sc.(Tech) degrees from the
Helsinki University of Technology, Espoo, Fin-
land, in 1986, 1988, and 1992, respectively. Hewas
an Assistant Professor with the Asian Institute
of Technology, Bangkok, Thailand, in 1993, and
an Assistant Professor and a Professor with the
University of Turku, Finland, from 1994 to 1999.
He is currently a Professor of speech commu-
nication technology at Aalto University, Espoo.

He has published over 220 peer-reviewed journal articles and over 210 peer-
reviewed conference papers. His research interests include the analysis and
parameterization of speech production, statistical parametric speech synthe-
sis, spectral modeling of speech, speech-based biomarking of human health,
and cerebral processing of speech. He is a fellow of ISCA. He is an Associate
Editor of The Journal of the Acoustical Society of America. He served as an
Academy Professor assigned by the Academy of Finland, from 2015 to 2019.

151640 VOLUME 9, 2021


