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Abstract

For several emerging technologies such as augmented
reality, autonomous driving and robotics, visual localiza-
tion is a critical component. Directly regressing cam-
era pose/3D scene coordinates from the input image using
deep neural networks has shown great potential. However,
such methods assume a stationary data distribution with all
scenes simultaneously available during training. In this pa-
per, we approach the problem of visual localization in a
continual learning setup – whereby the model is trained on
scenes in an incremental manner. Our results show that
similar to the classification domain, non-stationary data in-
duces catastrophic forgetting in deep networks for visual
localization. To address this issue, a strong baseline based
on storing and replaying images from a fixed buffer is pro-
posed. Furthermore, we propose a new sampling method
based on coverage score (Buff-CS) that adapts the existing
sampling strategies in the buffering process to the problem
of visual localization. Results demonstrate consistent im-
provements over standard buffering methods on two chal-
lenging datasets – 7Scenes, 12Scenes, and also 19Scenes
by combining the former scenes1.

1. Introduction
Camera relocalization is a fundamental problem aimed

at estimating 6 degree-of-freedom (DoF) camera pose with
respect to a known environment. Visual localization aims to
solve this problem requiring only RGB images as input [52–
54, 56]. Traditional methods [50–56, 61, 62] require build-
ing a 3D map of the environment followed by an explicit
matching stage [58,59] to establish 2D pixels to 3D coordi-
nates. Recently with the success of deep neural networks,
the problem can now be solved end-to-end by directly re-
gressing the camera pose [12, 31–33, 42, 47, 57, 63, 67] or
3D scene coordinates [9–11, 37, 68]. This has shown to be
more accurate than feature-based methods (at least for small

*The first two authors contributed equally.
1Code and materials are available at https://github.com/

AaltoVision/CL_HSCNet.

scale environments).

One of the limitations of end-to-end regression methods
for visual localization is limited scalability to larger envi-
ronments with several scenes. Although the methods per-
formed well when trained and evaluated on a single scene,
the performance quickly degraded when jointly trained on
multiple scenes. This was mitigated by considering a hi-
erarchical approach [37] to localize a given input image –
first obtain a coarse localization in terms of the scene or
sub-scene, followed by estimating a finer camera pose esti-
mate. In this work, we push the methods further towards a
general intelligence setting – learn continually from the in-
coming stream of data. Under this setting, all the scenes are
not available during training but encountered sequentially
one after the other as shown in Figure 1. There are several
benefits in terms of sample and memory efficiency to learn-
ing tasks in a continual manner over the setting of training
jointly over all tasks. In the joint training setting, each time
a scene has changed, the model needs to be retrained on
all the scenes in the database – even the ones that have not
undergone any change. Adding new scenes to the database
also requires model retraining which affects the scalability.
Due to the above issues, the full dataset needs to be stored in
memory. In contrast, continual learning (CL) [1, 2, 19, 35]
aims to reduce the computational costs by fine-tuning the
model only on the changed/new scene and images from the
previous scenes stored in a small buffer. Furthermore, the
memory costs are also reduced as only the data for the cur-
rent scene needs to be stored in memory along with a small
buffer of images from previous scenes. This is of particular
importance for mobile applications where storage capacities
are device constrained.

Solely training on the images from the current scene
leads to catastrophic forgetting of knowledge gained from
prior scenes. This is attributed to the interference of the
gradients from the current task images with the model pa-
rameters learned on previous scenes. The performance of
neural networks in such non-stationary data distribution set-
ting is well studied under the domain of continual learning.
The CL problem is broadly categorized into i) class/task
CL: all the data from current class/task is available and the
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Figure 1. Overview of our replay-based continual learning approach for visual localization. During each scene (task) iteration, the model
is updated using the current and previous task samples. The former is sampled from a small fixed-size buffer. After the training is over, a
small subset of the current task samples are stored in the buffer by replacing parts of stored data from previous tasks.

model is allowed to have repeated passes through the whole
dataset, and ii) online CL: the task boundary changes sud-
denly. To mitigate the challenges of CL, several approaches
are proposed: i) regularization methods [1, 35, 45] that pe-
nalize changes in weights considered important for previ-
ous scenes or directly impose orthogonality constraints in
the training objective, ii) modular methods [2, 28, 49] that
increase the model capacity assigning new parameters for
each task, and iii) replay methods [22, 48] that perform ex-
perience replay by storing samples from previous scenes in
a fixed size buffer or using generative models to generate
images of past scenes. All the three methods incur limited
memory and computational costs as regularization meth-
ods require past gradients or feature maps to be stored in
memory like the replay-based approaches, while modular
approaches require an increase in model size. For a fixed
model size, experience replay based methods have shown
superior performance compared to regularization methods,
and in some recent works [19], a combination of both also
leads to good results.

In this work, we consider the task CL setting for the
problem of visual localization in the context of experience-
replay based solutions. We adopt some of the buffer-
ing methods from literature – Reservoir [66], and Class-
balance [22] to perform experience replay. A strong base-
line is created using these methods and challenges specific
to the visual localization problem highlighted. Unlike the
classification domain where each image is representative of
the whole class, visual localization scenes consist of diverse

sets of images spanning a whole 3D environment. Exist-
ing buffering methods do not take the 3D scene layout into
account. Storing images from just one part of the scene
does not guarantee generalization to images from other dis-
joint parts. To retain performance on several parts of the
scene, we propose a buffering process that ensures the im-
ages stored in the buffer will have higher scene coverage.
This is done by computing a coverage score factor that in-
dicates if buffering new incoming image will improve the
existing coverage score of buffer images. The proposed
buffering algorithm outperforms existing methods on chal-
lenging datasets – 7Scenes, 12Scenes, and also 19Scenes
obtained by combining the former scenes.

To summarize, we make the following contributions:

• Introduce the problem of continual learning for visual
localization.

• Create a strong experience-replay baseline from exist-
ing buffering methods across several indoor datasets.

• Propose a new buffering strategy conditioned on the
3D geometry of the scene.

2. Related Work
Visual localization. Visual localization is the task of esti-
mating 6-DoF camera pose from an image. Conventional
methods [50–56, 61, 62] solve it by matching image fea-
tures against a prebuilt 3D map [58, 59]. The camera
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pose can then be recovered from the 2D-3D matches in a
RANSAC [25] optimization loop. Recently with the suc-
cess of deep neural networks, learning-based methods have
been proposed to tackle the problem. To learn the entire lo-
calization pipeline end-to-end, PoseNet [33] was first pro-
posed to directly regress the absolute camera pose from
an RGB image, and was later improved upon and studied
in [12, 31, 32, 42, 47, 57, 63, 67]. Instead of directly regress-
ing the absolute pose, in [4,23,36,70], neural networks are
trained to predict query pose relative to the database images
of which the poses are known. Scene coordinate regression
methods [6–11,13,14,16–18,26,37–39,41,41,43,44,60,65,
68,69], unlike pose regression methods, focus on predicting
2D-3D correspondences directly from the image, and the
camera pose can be solved using the predicted correspon-
dences as in the conventional pipeline.

Continual learning. Regularization methods penalize
changes in weight parameters important for previous
tasks [1, 35, 45]. Modular approaches [2, 24, 28, 49] assign
new task-specific parameters for each new task amount-
ing to zero forgetting. However, this comes at additional
memory requirements. Meta-learning based approaches [5,
30, 46] use meta-learning to learn sequential tasks. Replay
based methods [22,29,48] use knowledge distillation [27] to
rehearse using a small episodic memory of data stored from
previous tasks. On the other hand, several works [3, 21, 40]
use the episodic memory as an optimization constraint that
penalizes increase in loss at previous tasks.

Reservoir sampling [66] samples a subset of data.
Aljundi et al. [3] proposes two sampling methods that at-
tempt to maximize the gradient directions of the stored sam-
ples in buffer memory. Recently proposed sampling method
by Chrysakis et al. [22] propose a balanced buffering strat-
egy to deal with imbalanced class distribution.

3. Methods

In this section, we provide a brief background of con-
tinual learning, and the visual localization pipeline used in
the continual learning setting. This is followed by the pro-
posed buffering strategy to adapt existing continual learning
solutions for visual localization problem.

3.1. Continual Learning

We consider a parameterized mapping such as deep-
neural network f o g : x → ŷ, where x ∈ RW×H×3

is the input image, gΘ : x → ỹ encodes the intermediate
representation and fθ : ỹ → ŷ maps the intermediate repre-
sentation to the final output space.

Given a stream of non-stationary iid data, Dt, t = 1...T ,
continual learning aims to learn the parameters of the model

f o g using the following loss function:

L = argmin
θ,Θ

T∑
t=1

Lt (1)

where Lt = E(x,y)∼Dt
e(ŷ, y), e(.) refers to the error func-

tion such as Euclidean Loss or Cross-Entropy loss between
ŷ and corresponding ground-truth labels, y.
Buffering. To prevent catastrophic forgetting, a small
amount of previous data is stored in a buffer of fixed size, B.
Input images from the current task/class and corresponding
labels are stored in the buffer. We refer to this process of
storing images in the buffer as Img-buff.

Apart from images, intermediate representations are also
stored that provide a better manifold structure. For exam-
ple, storing pre-softmax layer logits provides a distribution
of class probabilities that encodes inter-class semantic re-
lationships. The buffer Bz stores these representations, ỹ
w.r.t each image in the buffer, B. Buffering intermediate
representations is referred to as Rep-buff.
Replay. Replay is the process of re-iterating through sam-
ples from past scenes stored in the buffer while learning the
current task. The final loss is computed for both the current
task samples and those from buffer, B as:

L = Lt + E(x,y)∼Be(ŷ, y) (2)

The intermediate representations stored in Bz can be
used as pseudo-labels through the process of knowledge dis-
tillation. For example, logits from the current network state
are constrained to be similar to corresponding ones stored
in buffer memory, Bz .

L = Lt + E(x,y,ỹ)∼Bz
(e(ŷ, y) + e(ˆ̃y, ỹ)) (3)

Algorithms. The buffering algorithm decides which sam-
ples in the current task are to be stored for future replay
and which samples stored in the buffer are to be replaced.
The first stage consists of filling the buffer until it is full.
The second stage then decides buffering probability of ad-
ditional incoming instances. Here we discuss two baseline
approaches:
Reservoir sampling assigns the buffering probability of a
new instance as |B|/N , where N is the total number of in-
stances observed.
Class-balance: One of the limitations with reservoir sam-
pling is class-imbalanced problem – cardinality difference
between different classes in the buffer. As a result, there
is also an imbalance in replay rate of different class in-
stances. To create a balanced buffer, only the instances
from the largest class are replaced once the buffer is full.
If the class c corresponding to current sample (x) itself is
the largest class, then one of its sample in the buffer is re-
placed with probability mc/nc where mc is the number of
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currently stored instances of c, while nc is the total instances
observed of class c.

The pseudo codes for Reservoir and Class-balance sam-
pling are presented in the supplementary material.

3.2. Visual Localization

Visual localization aims to estimate the 6DoF camera
pose from a given input image. While many deep learning
methods have been proposed, we focus on a particular class
of methods: deep structured models that have shown to be
more accurate than feature based methods [8,9,37]. Among
these methods, only a recently proposed HSCNet [37] has
shown scalability to large number of disjoint scenes with
a single deep model. Unlike related works, HSCNet [37]
maintains an implicit representation of the scene in a set of
parameterized hierarchical network layers that predict 3D
scene coordinates for each 2D pixel location. Using PnP, the
2D-3D correspondences are used to obtain the final query
camera estimate.

The ground-truth 3D points, y3D are hierarchically clus-
tered into coarse-to-fine set of discrete labels, yl, where
l = 1, 2...L are the coarse-to-fine cluster levels such that
|y1| < |y2|... < |yL| < |y3D| . The combined label set is
defined as y = y3D

⋃
{yl}Ll=1 with y(x) corresponding to

the labels for input x. We refer the reader to the supplemen-
tary for the detailed explanation. For each input pixel in a
given image, HSCNet [37] predicts the corresponding clus-
ter label in coarse-to-fine manner, where finer predictions
are conditioned on coarser predictions from previous layers
using conditioning layers. The task loss for visual localiza-
tion of input image x is the sum of losses at each cluster
level summed over all pixels:

Lt =

L∑
l=1

αl · e(ŷl, yl(x)) + β · e(ŷ3D, y3D(x)) (4)

where αl and β are the weighting coefficients.
In a continual learning setup, the scenes are presented se-

quentially, and the continual loss function in Eq. 1 is com-
puted using Eq. 4. For Img-buff only the input images
and corresponding 3D scene coordinates, y are stored in
B. In addition, the intermediate cluster-level predictions,
ỹ = ŷ3D

⋃
{ŷl}Ll=1 are also stored for Rep-buff (c.f . Sec. 4).

3.3. Coverage Score Buffering

Unlike classification problems, visual localization
scenes/classes are visually diverse and independent - learn-
ing localization on images of a particular sub-scene does
not enable generalization to other parts of the scene. To re-
tain localization performance on all sub-scenes of a given
scene, the buffer needs to maintain images that maximize
the scene coverage. In this section we propose a method to

Algorithm 1 Buffering

1: input stream: (x,y ∼ Dt)
2: c ≡ class(x)
3: Buffer Memory: B
4: for i = 1 to n do
5: if B is not filled then
6: B ← (x, y)
7: else
8: Reservoir / Class-balance / Buff-CS
9: end if

10: end for

Algorithm 2 Buff-CS
1: if c is not largest then
2: Select a random instance of largest class
3: Replace it with (x,y)
4: else
5: Flag← ∅
6: cs← CoverageScore(c, (x,y))
7: if cs is not ∅ then
8: Flag← 1
9: else

10: mc ← number of currently stored instances of c
11: nc ← number of total instances observed of c
12: u ∼ Random(0,1)
13: if u < mc/nc then
14: Flag← 1
15: end if
16: end if
17: if Flag is not ∅ then
18: Replace an instance of c with (x,y)
19: else
20: Ignore
21: end if
22: end if

Algorithm 3 CoverageScore

input: class c
input: new instance (x,y)

1: Sample data {xb,yb}|Bc|
b=1 of class c from B

2: Compute cs1 using Eq. 6
3: return cs1

sample images that provides an improved scene coverage -
referred to as Buff-CS.

The fundamental difference with Class-balance is in the
case where the current scene is the largest class in the buffer,
and each new instance is buffered with probability mc/nc.
With increasing nc, or for small mc the buffering proba-
bility decreases sharply. Thereby, later observations have a
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lower probability of being buffered2. In this work, we in-
crease the buffering probability to 1 if the incoming new in-
stance provides novel scene observations compared to the
instances that observed by the buffer images. Example
scene observations can be the ground-truth 3D scene co-
ordinates. Given the 3D scene coordinates y3D(x) seen
by the new instance x and those by buffer images of class
c, y3D(Bc) = {y3D(xb)}|Bc|

b=1 we compute the coverage
score factor:

cs3D = y3D(x) \ y3D(Bc) (5)

If cs3D is not ∅, x observes novel 3D points that are not
seen by the images I ∈ Bc and hence will be registered into
the buffer, B.

As the coverage score is computed for each sample dur-
ing the buffering process, an efficient method is required
to compute the coverage score. Although y3D provides an
accurate estimate of coverage score, for dense 3D models
this becomes computationally intensive. We propose an ef-
ficient method to compute the coverage score by replacing
y3D in Eq. 5 with the coarsest cluster level y1:

cs1 = y1(x) \ y1(Bc) (6)

As |y1| ≪ |y3D| the computational efficiency is signifi-
cantly improved at the cost of lower coverage score accu-
racy. The gain in coverage score obtained using coarse-
level cluster information (c.f. Table 1) indicates that the ap-
proximate method still achieves higher coverage score than
Class-balance method. Algorithms 2 and 3 are the pseudo
codes for Buff-CS and our coverage score method.

4. Experiments
In this section, we describe our experimental setup.

4.1. Benchmarks and Environment Setup

Datasets. Different from standard continual learning
tasks evaluated on classification benchmarks, we select
two visual localization benchmarks, 7Scenes [60] and
12Scenes [64] for the experiments. 7Scenes records RGB-
D image sequences of seven different indoor scenes from
a handheld Kinect camera, each sequence consists of 500–
1000 frames at 640×480 resolution. 12Scenes is another in-
door RGB-D dataset containing 4 large scenes, with a total
of 12 rooms, captured using a Structure.io depth sensor cou-
pled with an iPad color camera. Both datasets also provide
dense 3D points and the ground truth camera poses. In order
to evaluate the CL methods in a sequential manner, we inte-
grate the individual seven scenes and twelve scenes into sin-
gle coordinate systems and yields to two large scenes sim-
ilar to [9, 37]. In addition, we also synthesize the largest

2Note that when current scene is not largest, the sample will have
buffering probability 1

scene by the combination of all nineteen scenes. These
three large scenes are denoted by i7S (ca. 125m3 total),
i12S (ca. 520m3 total), and i19S (ca. 645m3 total), respec-
tively.
Baselines. In this work, we adopt two buffering meth-
ods as the baselines, namely Reservoir [66] and Class-
balance [22]. These two methods are referred to as Reser-
voir and Class-balance respectively. Reservoir aims to
sample k data instances from an input stream of unknown
size, where k is the predefined sample size. The data
from the input stream in our experiments are the training
frames of i7S, i12S, or i19S, and this method guarantees
the same probability for the individual frame to be selected
into the buffer. Class-balance aims to further solve the
class-imbalance problem in online continual learning. This
method keeps the classes as balanced as possible, while the
distribution of each class/scene is preserved.

Besides the aforementioned methods, we also consider
one weak baseline – train our models without buffering and
image-replay. We refer to this method as W/O Buffering.
Evaluation Metrics. Following [60], we evaluate the per-
formance of these methods using pose accuracy. Pose accu-
racy is defined as the percentage of the query images with
an error below 5 cm and 5◦. We consider both the accuracy
after the training is complete and the average accuracy over
different stages of the training process. Similar to [20], the
latter one is defined as:

Ai =
1

N − i+ 1

N∑
j=i

ai,j (7)

where N is the total number of scenes, and ai,j denotes the
accuracy of the model on scene i after the training of the
model on scene j is complete.

4.2. Implementation Details

In the task of continual learning for visual localization,
individual scenes are fed to the training network in an in-
cremental manner – that is to say, data in the first scene
is trained to estimate scene coordinates, then the train-
ing weights are utilized as the initialization for the second
scene.

For training HSCNet [37] in a continual learning setup,
the training data of each scene are sampled and stored in the
buffer after the training of the corresponding scene is com-
plete. As mentioned before, buffering only the input im-
ages and corresponding labels is referred to as Img-buff, and
buffering additionally the intermediate representations is re-
ferred to as Rep-buff. For Img-buff, we store the RGB im-
ages, the depth maps, and ground truth poses to the buffer,
and the ground truth labels for training are generated in the
same way as in [37]. For Rep-buff, we additionally store
pre-softmax layer logits and the scene coordinates predicted

3256



by the current model.
We keep most of the training settings in [37] unchanged.

However, some changes are made to adapt it to our contin-
ual learning setup. First, all the networks are trained us-
ing the Adam [34] optimizer with a smaller learning rate of
5e−5. Second, different from Li et al. [37] who train each
individual scene with 300K iterations, we reduce it to 30K
for each scene to save the training time. This is because
of the sequential property of the continual learning task, i.e.
the training on each scene begins only after the previous one
is finished. It is reported in [37] that the training time for
each scene is around 12 hours, and thus the training would
become impractical if we keep the number of iterations un-
changed for our experiments. Besides, we also found that
training with 30K iterations still leads to comparable results.

5. Results

5.1. Comparison with Baselines

In this section, we compare our Buff-CS method against
the two strong baselines ( Reservoir, and Class-balance) on
the three combined scenes.

Table 1 reports the performance in terms of pose ac-
curacy averaged over all the scenes after the training is
complete, and the coverage score (Eq. 6). Four different
buffer sizes are experimented, ranging from B = 128 to
B = 1024. We also present results for the methods with the
two types of buffering information, namely Img-buff and
Rep-buff. In addition to the above methods, we report the
results of HSCNet in the last row. It is also worth noting
that we do not report the 95% confidence interval for the re-
sults in Table 1 as in [15,20,22], due to the impractical long
training time of our task. However, to support our results,
we report the 95 % confidence interval of the accuracy for
the results on i7S in the ablation study (see Table 4).

We observe that Buff-CS achieves the highest coverage
score in all settings and outperforms the other two ap-
proaches in most of the experiments in terms of the pose
accuracy. With the buffer size B = 256 and B = 512,
the higher coverage score of our method yields better pose
accuracy on all the three combined scenes. The results
indicate that the performance of the Reservoir baseline is
significantly exceeded by the other two methods due to
the low coverage score. We notice that the Class-balance
method achieves performance comparable to Buff-CS with
the buffer size B = 128 and B = 1024. We see that with a
large buffer size B = 1024, the coverage score for these
two approaches are both over 93%, which indicates that
nearly all parts of the scene appear in the buffer and the
effectiveness of using coverage score is narrowed. Other
factors such as the robustness of RANSAC [25] in camera
pose estimation also affect the final results. With extremely
small buffer size B = 128 on i19S, both Class-balance

Figure 2. The memory distribution of three methods with buffer
size = 256 after the training is complete on i7S. Reservoir suffers
from data imbalance while the samples in Class-balance and Buff-
CS are balanced.

and Buff-CS on an average perform comparably and better
than Reservoir. When comparing the two buffering strate-
gies Img-buff and Rep-buff we observe that Rep-buff per-
forms better on larger scenes and smaller buffer length. In
particular, the biggest performance gap between Img-buff
and Rep-buff is observed in i19S and B = 128. For larger
buffer size, B = 1024 the performance is comparable. A
detailed analysis of Rep-buff is provided in the supplemen-
tary. Although the performance of CL approaches lags be-
hind the joint training setting (last row in Table 1), memory
(c.f . Sec. 5.3) and computational efficiency provides suffi-
cient motivation to pursue visual localization in CL setting.

To make a more detailed comparison among the ap-
proaches, we report the accuracy on each scene of i7S af-
ter training is complete. Table 2 presents the results for the
methods with Img-buff and buffer size B = 256. Indeed,
training on all scenes together as in [37] achieves the best
performance. When we train the model in the incremental
scenario without buffering, as shown in Table 2, the accu-
racy on the previously encountered scenes is 0%, which in-
dicates that the visual localization network also suffers from
catastrophic forgetting when trained in a continual manner.
Reservoir exceeds both Class-balance and Buff-CS methods
on Chess, Office, and Redkitchen. This can be attributed
to the larger number of samples stored in the buffer corre-
sponding to these scenes, see Fig. 2 for the sample distribu-
tion. However, the accuracy drops dramatically on Fire and
Heads due to the reduced number of scene samples in the
buffer. Buff-CS manages to balance the number of samples
in the buffer and effectively improves the coverage score
compared to Class-balance. Thus, it achieves generally
better accuracy among all the sampling approaches while
maintaining a balanced class distribution in the buffer.

The average accuracy in Table 3 evaluates the perfor-
mance of the three methods on previous tasks after com-
pleting a new task. Table 3 presents the average accuracy
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i7S i12S i19S
Accuracy ( % ) Accuracy ( % ) Accuracy (% )Buffer Size Buffer methods Coverage Score

(average %) Img-buff Rep-buff
Coverage Score

(average %) Img-buff Rep-buff
Coverage Score

(average %) Img-buff Rep-buff
Reservoir 26.7 56.8 59.79 58.3 67.51 70.23 39.6 33.2 34.37
Class-balance 29 59.6 64.25 63.9 74.4 75.72 55.2 47.98 54.12128
Buff-CS (ours) 33.2 61.2 61.13 66.9 75.4 77.33 58.8 46.43 51.86
Reservoir 79.3 69.3 69.46 75.4 82.54 85.82 58.6 47.53 49.48
Class-balance 87.3 70.06 69.76 76.5 85.72 87.36 71.1 64.7 67.31256
Buff-CS (ours) 92.6 72 71.34 86.3 91.85 92.78 76.7 68 70.09
Reservoir 91.3 73.4 72.34 89 93.67 94.33 70.5 60.15 62.34
Class-balance 92.5 74.24 73.6 90.7 95.63 95.63 86.1 78.61 79.06512
Buff-CS (ours) 97.4 75.81 76.06 95.7 96.42 95.85 91.3 80.93 79.51
Reservoir 95.8 75.7 77.07 94.2 97.26 97.14 86.3 80.94 79.5
Class-balance 96.9 77.09 74.71 96.3 98.43 98.49 93.1 85.36 84.171024
Buff-CS (ours) 98.7 76.89 75.22 97.7 98.9 98.11 96 85.23 85.42

HSCNet (joint training) [37] 100 84.19 100 99.0 100 92.5

Table 1. Coverage score and accuracy of our method and the two baselines on i7S, i12S, and i19S after the training is complete. The
coverage scores are averaged across all the scenes. The best and second best results among approaches are highlighted in blue and red
respectively.

Figure 3. The accuracy (error < 5 cm, 5◦) on individual scenes of i7S (except for the last scene) at each stage of the training. The x axis
indicates the training progress. All methods employs an Img-buff buffer of size 256.

for each scene in i7S with buffer size B = 256. Similar
to Table 2, Reservoir achieves best performance on Chess,
office, and Redkitchen while it drops significantly on Fire,
Heads (around 10%) due to the class imbalance. In terms of
overall average, this method falls behind Class-balance and
Buff-CS by 0.8% and 2.51% respectively. Class-balance
relieves the problem by balancing the sample distribution.
However, it still has weaker results than Buff-CS due to the
lower coverage score. Fig. 3 shows a more detailed pic-
ture in terms of the test accuracy of the three methods after
each task is completed. First, we observe that with increas-
ing task length, the performance generally drops across all

methods and scenes. This is due to the decreasing of class
samples in the buffer. Second, compare to Class-balance,
Buff-CS shows strong performance in the majority of cases.
In such a scenario, we believe that the increase of cover-
age score has a positive effect on test accuracy by providing
larger scene observations during the replay process.

5.2. Ablation Study

In this section, we conduct an ablation study to illustrate
how different factors affect the performance of the localiza-
tion system in the continual learning setup. We conduct the
experiments on i7S with buffer size B = 256 and Img-buff

3258



Accuracy (%)
Scene

W/O Buffering Revervoir Class-balance Buff-CS( ours) HSCNet [37]

Chess 0.0 91.45 88.50 88.30 97.30

Fire 0.0 67.25 76.35 80.30 96.15

Heads 0.0 69.40 80.40 89.60 98.30

Office 0.0 71.00 62.98 62.08 85.50

Pumpkin 0.0 50.60 51.45 54.25 60.85

Kitchen 0.0 56.14 50.18 49.78 63.74

Stairs 74.30 79.70 80.60 79.70 87.50

Average 10.61 69.30 70.06 72.00 84.19

Table 2. The percentage of accurately localized test images (error
< 5 cm, 5◦) on i7S with the buffer size B = 256, after the training
is complete. Here we use Img-buff for replay. The best and second
best results are highlighted in blue and red respectively.

Scene
Average Accuracy (%)

Reservoir Class-balance Buff-CS (ours)
Chess 93.14 91.35 93.01
Fire 78.09 83.99 85.38
Heads 75.90 83.88 87.54
Office 74.92 69.31 73.15
Pumpkin 53.55 55.18 55.07
Kitchen 55.66 52.68 54.29
Stairs 78.90 79.40 79.30
Overall Average 72.88 73.68 75.39

Table 3. The average accuracy over different stages of the training
process on each scene of i7S with the buffer size B = 256. Our
method has overall better performance compared to the other two
methods.

Final Accuracy (%)
Buff Size = 256

Reservoir Class-balance Buff-CS (ours)
Img-buff 66.99± 1.23 69.66± 0.54 70.51± 0.94

Rep-buff 68.00± 1.32 69.12± 1.67 70.67± 1.10

Table 4. 95% confidence interval of the average accuracy on i7S
with B = 256 after the training is complete. The results are ob-
tained over 5 runs.

information.
Disorder Scenes. We generate random permutations of the
scene order being fed to the training network in a continual
manner. Results presented in Table 1 of the supplementary
shows that the Buff-CS performs comparably or better than
the baseline methods.
95% confidence interval. We experience intractable train-
ing time when trying to report the 95% confidence interval
for all of the experiments in Table 1. Thus, only 95% confi-
dence interval of the test set accuracy on i7S with buffer size
256 is reported in Table 4. The experiments are run 5 times
with different random seeds, and we keep the same seed for
all approaches in each run. We observe that the conclusions
in Table 1 still holds, i.e. our method outperforms the two
baselines with both Img-buff and Rep-buff.

5.3. Training Time and Memory Consumption

Visual localization in continual learning setup aims to
achieve data efficiency compared to joint training by learn-
ing the tasks sequentially. However, due to catastrophic for-
getting, the concept of replay-buffer is used which incurs
memory costs of its own. In this section we analyze the
memory requirements of buffering different forms of data
and compare to the data storage costs of training jointly on
all tasks.

To guarantee a fair comparison, all of the experiments
are run on NVIDIA Tesla V100 GPUs. We observe that,
with buffer size B = 256, Reservoir, Class-balance, and
Buff-CS require roughly the same amount of time (∼ 20h)
with both Img-buff and Rep-buff, which is reasonable since
these methods have similar buffering and replay process.
When comparing the efficiency between Img-buff and Rep-
buff, we observe that Rep-buff is more memory-consuming.
Approximately 10 times the more storage space (∼ 1091
Mb) is needed compared to Img-buff (∼ 117 Mb), as it
requires larger space for storing dense intermediate cluster
predictions.

Compared to the joint training setting which requires to
store ∼ 35 Gb for i19S, the proposed CL method only re-
quires on an average 1.9 Gb and 2.8 Gb with Img-buff and
Rep-buff buffering respectively. From this occupied space,
1.8 Gb corresponds to the average space for task-specific
data, while the remaining is allotted to buffer data.

6. Conclusion

In this work we have presented the problem of continual
visual localization. A strong baseline is introduced based
on experience replay using samples from a small fixed-size
buffer. This prevents catastrophic forgetting while learn-
ing localization on new scenes. We propose a new buffer-
ing strategy that takes into account the 3D scene geome-
try while keeping a balanced distribution of class samples.
The proposed method is evaluated on several indoor local-
ization datasets demonstrating better or competitive perfor-
mance against the baselines across various settings. Instead
of single scene per task, multiple scenes can be considered
which makes the problem more challenging and a direction
for future work. Although the proposed method balances
inter-task data distributions, the above problem setting also
requires balancing intra-task data from multiple scenes.
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