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Abstract—Full research paper—In this work, we study pro-
ductivity differences in an introductory programming course.
Focusing on a set of students who completed all programming
assignments in the course, we quantify differences in productivity,
measured through the time spent on completing the assignments.
We focus both on the overall time needed to complete all
programming assignments in the course, as well as on time
spent on individual programming assignments. In addition, the
effect of previous programming experience and difficulty of
the programming assignment is considered. Our results show
significant productivity differences between students. In addi-
tion, while programming experience influences productivity, a
proportion of students who have never programmed before are
faster in completing the programming assignments than students
with considerable amounts of previous programming experience.
Our results suggest that the classic credit-based or lecture hour
based workload estimates of a course fit poorly to the whole
course population in programming, suggesting that programming
courses and training should be adjusted based on the participant.

Index Terms—CS1, programming, productivity, time on task,
novice, expert

I. INTRODUCTION

Productivity differences between software engineers have
been reported and discussed in various works [1]–[8]. Some
quote differences in the orders of magnitude [1], while others
suggest smaller differences [9]. The productivity of a software
developer may vary based on the task or other factors [2],
indicating that productivity is not a stable construct. Each
developer has, however, started their career as a novice, often
attending an introductory programming course.

In this work, we seek to quantify the productivity differences
of students participating in an open introductory programming
course. We are interested in determining whether the differ-
ences in productivity are similar to those reported in the con-
text of software development, or whether the differences from
the literature do not apply to those attending a course intended
for novices. Information on the differences in productivity
could be used, for example, for course design decisions.

Large productivity differences might stem from various
factors, including prior exposure to programming; prior acqui-
sition of beneficial personal work routines, cognitive strategies,
or mental models of computing; and from personal charac-
teristics, including aptitude for analytic tasks and personality
traits that support working in a precise manner with sometimes

tedious tasks [10]. Getting a picture of the productivity of
individual students as well as groups of students could support
teachers in personalising programming courses and is a step
towards understanding student performance.

Productivity in real-life software engineering is impacted by
a multitude of factors, and overall performance is ultimately
judged in terms of organisational goals, such as financial prof-
itability [11]. Still, individual productivity plays an important
role in commercial software development: faster completion
of tasks translates into cost savings, schedule benefits, and
earlier delivery. If quality is simultaneously maintained or
improved, there are further benefits for both the supplier and
the customer. Thus understanding productivity is an important
component in software engineering education, and means
of improving and studying software engineering students’
productivity are called for.

The analysis presented in this article focuses on students
who completed all programming assignments in an open
online programming course (n=173). As the students were
working on the programming assignments, process data in-
cluding keystrokes with timestamps were gathered for analysis
purposes. Using this data, we quantify productivity and study
it through multiple aspects.

This article is organized as follows. Next, in Section II, we
outline related work on differences in programming produc-
tivity. In Section III, we discuss the context, data, research
questions, and the research approach. Section IV outlines the
results of our study, which are further discussed in Section V.
Section VI concludes the work, outlining future research
directions.

II. BACKGROUND

One of the first studies that compared developer produc-
tivity was published by Sackman et al. in 1968 [12]. In the
study, the authors compared the productivity of developers
in programming and debugging tasks. The article has been
later cited as pointing out that the productivity differences
between developers can be as much as 28:1. The work has
also been critiqued, however, as these highest productivity
differences come from a setting where the developers had
different tools [2], [9]. For example, Prechelt [9] points out
that ”The oft-cited ratio of 28:1 for slowest to fastest work time



in the experiment is plain wrong. The correct value is 14:1”,
continuing with data from their experiments, suggesting that
”we can say that typical work time differences between slower
and faster programmers are more on the order of 2:1”. These
findings have been echoed by others as well [13].

High throughput in completing programming or debug-
ging tasks is just one criterion of being a good software
engineer [14]. The tendency to produce high volumes of
unmaintainable code, which might work in a specific situation,
can lead to a code base that is difficult to maintain and
later cause problems due to accumulating technical debt. A
developer, in the end, does many other tasks in addition to
programming as a part of their work; for example, in a study
by Begel and Simon [15], new software developers spent
a considerable amount of time on non-direct programming
activities (communication, documentation, tools, project man-
agement, specifications, etc) in addition to the programming
activities (working on bugs, programming, testing).

Experience in programming reduces development time [16]
and influences productivity in programming related tasks. For
example, experts are better at debugging source code, possibly
because they are better at understanding the programs [17]
and recognizing relevant information [18]. There are also
differences between the actions of experts and non-experts –
for example, non-experts are more likely to introduce new bugs
to programs as they seek to fix existing problems [17]. On the
other hand, there are studies that suggest that after a while,
productivity does not increase. Lawrence, for example, points
out that while they found an increase in productivity between
developers with 0-1 years and 2-3 years of experience, no
productivity increase was found between groups that had 2-3
years of experience and 3 or more years of experience [19].

Terminology in the area can be challenging, and the term
productivity has been used various ways [19]. In educational
contexts, performance is often viewed through the lens of
performance in a course [20], while in software development,
time that developers spend in developing or debugging soft-
ware is often used [9], [12]. While the time is often recorded
through observations or self-reports, the way in which time
on a particular task is estimated can also be elaborated. For
example, Takada et al. [21] studied developers’ efficiency by
monitoring their keystrokes. The keystrokes were aggregated
and studied to identify actions on modifying code, which
then led to a metric of developer performance quantifying
developers’ ability to fix issues in a system [21].

The use of keystroke data in analysing programmers has
become more popular in the recent years [22]. For example,
Leinonen et al. [23] noted that in the context of an introduc-
tory programming course, previous programming experience
can be inferred to some extent from keystrokes: those who
have programmed before tend to type programming-related
character pairs faster than those who have not programmed
previously. Timestamp data that is often included in keystroke
data can also be used to estimate other factors in performance
in introductory programming courses [24].

III. METHODOLOGY

A. Context and Data

The study was conducted using data from an open online
programming course in Java1, offered for free for anyone by
the University of Helsinki in early 2019. The duration of
the course is seven weeks, and the course covers the basics
of programming in Java, starting from procedural program-
ming (input/output, variables, conditionals, loops, methods),
continuing with the use of elementary data structures in
programming (lists, hashmaps), learning to create classes and
objects, including objects that contain other objects, as well
as lists, and learning basic sorting and searching algorithms.

The course is taken by both degree and non-affiliated stu-
dents at the University of Helsinki. When starting the course,
students fill in a research consent form and a background
questionnaire outlining their previous programming experi-
ence. Answering the background questionnaire is voluntary
and those who answer it are included in a raffle of movie
tickets, even if they in the end choose that their data can not
be used for research.

The workload of the course is 5 ECTS credits, which corre-
sponds to approximately 125-150 hours of study. The course
has an interactive online textbook accompanied with a set of
weekly programming assignments (ca 15-40 assignments each
week), which are automatically assessed. Students work on the
course assignments individually using a modified version of
Test My Code [25], a programming environment that provides
feedback on the programming process, automatically assesses
submissions, and records programming process data. When
students work on programming assignments, key-level data of
their programming process is collected. For each key press
that changes source code in an assignment, an event outlining
the change is stored. The event contains a diff entry detailing
the change, a timestamp, the name of the assignment, and the
identifier of the student.

Finally, whenever a student completes an assignment, they
are prompted for a subjective measurement of difficulty of
the assignment using a five-step scale from very easy to very
difficult. Answering the question is voluntary, and the data
is used to create an aggregate outline of the difficulty of the
programming assignments in the course.

B. Research Questions and Approach

Our research questions for this study are as follows:
RQ1 What are the productivity differences between students

in a programming course?
RQ2 How does previous programming experience influence

students’ productivity?
RQ3 How does the difficulty of a programming assignment

influence students’ productivity?
RQ4 What types of assignments show the highest differences

in students’ productivity?
RQ5 Is productivity consistent across the programming as-

signments?

1Version in English at: https://java-programming.mooc.fi/



TABLE I
MINIMUM, MAXIMUM, AVERAGE, STANDARD DEVIATION AND MEDIAN OF
COMPLETED PROGRAMMING ASSIGNMENTS (OUT OF 176) AND PREVIOUS

PROGRAMMING EXPERIENCE (IN HOURS).

min max avg stdev median

Completed assignments 1 176 106 63 115
Programming experience 0 80000 599 3762 15

In this work, we define productivity in an assignment as
the time that a student spends to complete the programming
assignment, productivity in all programming assignments as
the total time that a student spends in completing all the
assignments, and productivity difference as the difference in
productivity between two given students.

All productivity data is calculated using events stored by the
programming environment. Pauses of more than five minutes
are omitted in order to, heuristically, avoid including time
that the student is disengaged from the programming task. We
acknowledge that this likely also excludes time that the student
spends studying the materials and the assignment handout, as
well as time that the student uses for looking up information
from external sources, and other similar activities.

In this analysis, we focus only on those students who
completed all the programming assignments in the course.
Moreover, to avoid bias from possible excessive collaboration
and/or plagiarism, analysis of productivity differences focuses
on populations (e.g. least productive student in the top quintile
versus the most productive student in the bottom quintile)
instead of comparing the most productive and the least produc-
tive individuals. Finally, when conducting statistical analyses,
outliers have been excluded from the analysis (here, data
points outside 3 standard deviations of the mean).

IV. RESULTS

A. Overview of Data

In total, 1972 students in the course provided research
consent and responded to the questionnaire asking for their
previous programming experience. The median completed pro-
gramming assignments was 115 (out of 176), and the median
self-reported previous programming experience in hours was
15. The statistics are summarized in Table I.

Out of the 1972 students, 173 students completed every
assignment out of the 176 assignments (approx 9% of the
included students). On average, students who completed all as-
signments spent approximately 32 hours on the programming
assignments, when all pauses over 5 minutes are excluded.

B. Productivity Differences

Productivity differences were considered from two aspects:
(1) the difference in total time that the students spent on
completing all assignments, and (2) the difference in total
time that the students spent on completing each individual
assignment. Only those students who completed all course
assignments were considered.

First, we studied the difference in total time spent on
programming assignments. The least productive student in the
top 10% spent 15 hours on the programming assignments,
while the most productive student in the bottom 10% spent
51 hours on the programming assignments. Here, there is a
3.4-fold difference. Similarly, the least productive student in
the top 20% spent 18 hours on the programming assignments
in the course, while the most productive student in the bottom
20% spent 44 hours on the programming assignments. The
difference is 2.4-fold.

Next, productivity differences in individual assignments
were considered. When considering the least productive stu-
dent of the top 10% and the most productive of the bottom
10%, the average productivity difference over the assignments
was 12.3. Here, the smallest productivity difference in the
assignments was 3.7, while the largest productivity difference
was 136.0 – meaning that in one of the assignments, the
slowest of the top 10% students completed the assignment
approximately 136 times faster than the fastest of the bottom
10% students.

When considering the least productive student of the top
20% and the most productive of the bottom 20%, the average
productivity difference over the assignments was 4.8. The
smallest productivity difference in the assignments was 2.3,
while the largest productivity difference was 20.4. Productivity
differences over the assignments for the top 20% and bottom
20% are visualized in Figure 1.

Fig. 1. Productivity differences across the course assignments for the fastest
of the bottom 20% of the students and the slowest of the top 20% of the
students. The x-axis indicates the assignment number, while the y-axis shows
the productivity difference. The spikes in the chart predominantly highlight
short assignments that allow large differences in productivity.



C. Productivity and Previous Experience

First, we studied the correlation between the previous pro-
gramming experience in hours and the time that it takes to
complete all the programming assignments. Using Pearson’s
r, a statistically significant but weak negative correlation was
identified (r = −0.23, p = 0.003), implying that students with
more programming experience are, on average, marginally
faster in completing the programming assignments.

Then, we created two groups of students based on their
previous programming experience, including only those who
completed all programming assignments with no previous
programming experience (n=17) and with over 1000 hours
of previous programming experience (n=46). On average,
the students who had no previous programming experience
completed the assignments in 38 hours (stdev=15.4), while
the students who had programmed previously completed the
programming assignments in 27 hours (stdev=13.7).

Shapiro-Wilk test was used to test for normality of produc-
tivity in all assignments. The data was not normally distributed
(W = 0.87, p ≈ 0). Then, Kruskal-Wallis test was used to
test whether the groups differ from each others. There is a
statistically significant difference in the productivity in all
assignments between the groups (stat = 8.1, p = 0.004) in
favor of the students with previous programming experience.

Subsequently, we studied the difference in productivity
between the groups. When considering the least productive
student of the top 20% and the most productive of the bottom
20% with no previous experience, the average productivity
difference was 1.6-fold. Similarly, when considering the least
productive student of the top 20% and the most productive
of the bottom 20% with previous experience, the average
productivity difference was 2.5-fold.

When considering the slowest 20% of the students with
previous programming experience and the fastest 20% of
the students with no previous programming experience, the
productivity difference is 1.3-fold in favor of the student with
no experience. Similarly, when considering the slowest 10%
of the students with previous programming experience and
the fastest 10% of the students with no previous programming
experience, the productivity difference is 2.3-fold in favor of
the student with no experience.

The difference in the productivity of the populations is
shown in the density plot in Figure 2. The line in the
density plot is smoothed for visualization purposes. Students
with previous programming experience are, on average, more
productive when completing the programming assignments. At
the same time, there is an overlap in the populations, indicating
that some of the students with no previous programming
experience complete assignments faster than some of the
students with previous programming experience.

D. Productivity and Programming Assignment Difficulty

First, we studied whether the time spent on an assignment
is related to the difficulty of the assignment. Using student-
provided aggregate feedback on programming assignment dif-
ficulty and averaged time needed to complete an assignment,

Fig. 2. Density plot showing the number of hours that students spent on
completing all the programming assignments in the course. The plot shows
two groups of students: students with no previous programming experience
(blue), and students with 1000 hours of previous programming experience or
more (orange).

we calculated Pearson’s r to study the correlation between
the variables. A strong statistically significant correlation was
observed between the averaged programming assignment diffi-
culty and the averaged time needed to complete the assignment
(r = 0.82, p ≈ 0). The correlation is visualized in Figure 3
using first order linear regression.

Next, we studied whether the productivity differences in
assignments are related to the difficulty in assignments. Using
student-provided aggregate feedback on programming assign-
ment difficulty and the averaged productivity differences for
individual assignments discussed in Section IV-B, we calcu-
lated Pearson’s r to study the correlation. A statistically sig-
nificant but weak correlation was identified (r = −0.20, p =
0.009), suggesting that the difficulty of an assignment may
have a negligible effect on the productivity difference in the
assignment. The data is visualized in Figure 4 using first order
linear regression.

E. Programming Assignments and Productivity Differences

We then studied the ten assignments with the largest pro-
ductivity differences and the ten assignments with the smallest
productivity differences. The average productivity difference
for the ten assignments with the largest productivity difference
was 14.2, while the average productivity difference for the ten
assignments with the smallest productivity difference was 2.6.

In general, the assignments with the highest productivity
differences were such where the students were (1) learning
specifics of data structures for the first time (e.g. learning



Fig. 3. Average difficulty of an assignment plotted against the average time
to solve the assignment. The difficulty of an assignment is represented using
a scale from 1 to 5, where smaller values indicate easier assignments, while
the average time to solve an assignment is depicted in minutes.

about indexing and retrieving a value from the end of a
list); (2) combining mathematics and programming concepts
(e.g. creating a good hash function for dates); (3) creating
programs that showed particular programming-related effects
(e.g. writing a program that throws the NullPointerException
with a particular input, writing a program that throws the
IndexOutOfBoundsException with a particular input); and (4)
writing small programs with degrees of freedom (i.e. students
had more room to choose what they wanted to implement).

The assignments with the lowest productivity differences
were (1) very well specified; (2) asking the student to imple-
ment a program that is very similar to an example given in the
course material; (3) asking the student to implement a variant
of a program that the student had previously implemented; (4)
larger in size but still well-specified.

F. Consistency of Productivity over Programming Assignments

Finally, we studied whether students’ productivity is con-
sistent across the assignments. This was conducted through
calculating students’ rank in each programming assignment,
and then studying the average ranks and their standard devia-
tion. First, we calculated Pearson’s r to study the correlation
between the variables. A moderate statistically significant cor-
relation was observed between the averaged rank of a student
and the standard deviation of the rank (r = 0.50, p ≈ 0). The
data is visualized in Figure 5 using first order linear regression.

This suggests that, on average, the higher the students’ rank
is, the more the rank is scattered over the assignments. In other

Fig. 4. Average difficulty of an assignment plotted against the productivity
difference of an assignment. The difficulty of an assignment is represented
using a scale from 1 to 5, where smaller values indicate easier assignments.
Productivity difference is calculated as the ratio of the productivity of the
slowest student in the fastest 20% of students and the fastest student in the
slowest 20% of students.

words, the data does not support that all students would be
consistently ranked.

V. DISCUSSION

A. Productivity Differences

Our analysis focused on a small subset of students who had
completed all the programming assignments in the course (9%
of the available population). When considering the overall time
taken to complete the course assignments, there were over 3-
fold differences between the slowest student from the top 10%
and the fastest student in the bottom 10%. It is likely that if
the analysis would have focused on the top 5% and bottom
5%, the differences would have been larger.

When looking at the productivity differences within pro-
gramming assignments, the largest productivity difference
within a single assignment (when looking at the slowest
student from the top 10% and the fastest student from the
bottom 10%) was over 136-fold. Here, however, the difference
was observed in a very small assignment on indexes and
lists, where the fastest students could complete it within a
handful of seconds. While such differences may be seen in
e.g. debugging velocity of experts and novices, where finding
a simple bug may take significant amounts of time for a
novice [26], we acknowledge that such assignments should
not be used for quantifying overall productivity differences.
Instead, they could, assuming that the assignments are small,
have potential to be used as a rapid test of comprehension of
the current topic, for example.



Fig. 5. Average rank of a student plotted against the standard deviation of
the rank of the student, calculated based on productivity in each assignment.

While it is possible that some of the productivity differences
could be due to unwanted behavior, i.e. excessive collabora-
tion, we sought to remove the influence of such behavior from
the analysis by focusing on subsets of students. Consequently,
in addition to not studying the absolute fastest students, we
also chose not to study the absolute slowest students; this
was conducted to avoid including off-task behavior into the
analysis.

While we focused only on the students who completed all
programming assignments, it is possible that a student who
did not complete all of the assignments actually spent more
time on the course, as the programming assignments in the
course often build on top of the previous assignments. On
the other hand, it is possible that some students may have
skipped assignments due to some of them being repetitive,
and there may have been students who would be faster in
completing the assignments. In the current analysis, we sought
to quantify productivity differences, and chose to not quantify
how practice within the course, i.e. completed or skipped
programming assignments, influences productivity – this is left
for future work.

B. Novices and Non-Novices

In the course, a majority of the participants had 15 hours
or less previous programming experience. When considering
the overall effect of previous programming experience on
productivity, we observed a statistically significant but weak
correlation between the variables. It is possible that due to the
skew of the data, the effect could in fact be larger than what
the observed correlation (r2 = 0.05) suggests.

To determine actual productivity differences between
novices and non-novices, we further divided the students into
two populations. One population had reported that they have
no previous programming experience (n=17), while the other
population had reported that they had programmed at least
for one thousand hours (n=46). Here, there was a significant
difference in terms of productivity between the populations,
where the students with previous programming experience
completed the assignments noticeably faster.

At the same time, there was an overlap in the populations in
terms of productivity. Some of the students who had stated that
they have no previous programming experience completed all
the course assignments faster than some of the students with
previous programming experience. This was contrary to our
intuition that any student who has programmed for at least one
thousand hours should complete programming assignments in
an introductory programming course faster than those who
have not programmed before. At this point, we do not know
what student-specific factors contributed to this result.

We must note that the student population who had plenty
of programming experience was over-represented: students
with no previous programming experience were less likely to
complete all the programming assignments. Regardless, this
result suggests that some novices either start the course at
a level where they can complete programming assignments
faster than others, or that the differences grow over time.
Consequently, this also suggests that when entering industry
and taking on their first programming jobs, some of the
novices may perform faster – after a while – than some of
the developers who have already been working at the industry
for a short duration.

C. Quality and Productivity

Our analysis only focused on assignments that the students
had completed, and we did not discern differences e.g. in terms
of quality including readability and maintainability. While
the course materials encourage writing programs that can be
understood by others, it is possible that some of the students
sacrificed quality and readability of their programs in favor of
completing the programs faster. That is, we do not claim that
high productivity in our study would imply high quality.

Similarly, when considering learning, it is possible that stu-
dents who spent more time on the programming assignments
have learned more during the process than those who spent less
time on the assignments. Being faster at completing program-
ming assignments does not automatically imply understanding
the content better – on the contrary, it may even be that
students who fly through the assignments do not consider the
reasons why something is implemented the way it is instructed.
Similarly, a mistake that takes time to fix may yield a better
learning outcome than not doing the mistake at all.

D. Productivity and Programming Courses

Even though our analysis did not consider the time that
students spend on reading course materials or the time that stu-
dents spend on non-programming activities such as respond-



ing to questionnaires and essays, the observed productivity
differences indicate that some may complete the course faster
than others. When considering students who reported that they
have no previous programming background, there was a 1.6-
fold productivity difference between the top 20% and the
bottom 20%. As the analysis focused only on students who
had completed all the assignments, it is possible that the actual
productivity differences are larger.

If a programming course is supposed to take a specified
amount of time from a student, such as the estimated 5 ECTS
workload, which translates to 125-150 hours of work, the
contents of the course should be adjusted based on students’
performance. This is, however, not practically feasible, as the
course is a pre-requisite for subsequent courses. One way to
account for our results in the design of a programming course
would be to make sure that the programming course would
have a clear minimum set of skills that the target population
could reach in the specified time-frame, while additional
activities and learning opportunities could be provided to more
advanced students.

E. Productivity and Programming Assignments

When considering individual programming assignments, we
observed over 100-fold productivity differences between the
top 10% and bottom 10% students. Such large differences in
productivity can be, however, explained by the programming
assignments and students’ previous programming experience;
tasks that are trivial to those with previous programming
experience can take a long while from novices, especially if
they get stuck to e.g. a syntactical construct.

While the 100-fold productivity difference was an extreme
example, the differences in productivity within assignments
were larger than the differences in productivity over the course.
This was supported also through our analysis of students’ con-
sistency in the programming assignments, where we observed
that students’ productivity rank (i.e. the rank in productivity
within an assignment) varies considerably; this may suggest
that different students struggle with different concepts.

Moreover, when looking into the difficulty of the program-
ming assignments, we observed that difficulty and the time it
takes to complete the task are interlinked. At the same time,
the average difficulty of an assignment seems to have little
connection with the productivity differences between students,
which further suggests that not all students struggle with all
assignments.

F. Limitations of Work

Our study comes with a range of limitations which we
discuss next. First, as the analysis focused on a small part of
students in the course, we cannot claim that the results would
be similar for the whole course population, or in other courses.
Second, it is possible that some of the students did not com-
plete all assignments themselves, but they may have received
help from others; that is, it is possible, that the productivity
reported here does not reflect the actual productivity of the
participants. Third, in the analysis, we used a five-minute

window as an indicator of possible off-task behavior; here,
hypothetical students who continued their work after a pause
of four minutes and 59 seconds were significantly penalized in
terms of productivity when compared to those, who continued
their work after a pause of five minutes and one second.
Overall, the issue of measuring time from logs has been
discussed e.g. in [27]. We sought to address the second and the
third issue, which are both related to the way in which time is
estimated, by considering only subpopulations of students, i.e.
the slowest student in the top quintile and the fastest student
in the bottom quintile. Fourth, when studying programming
background, we focused on the number of hours as a metric
of previous experience – we acknowledge that the metric is not
ideal [28]. It is, however, likely that previous experience with
a non-related programming language could be less beneficial
than previous experience with the language the course used.
Moreover, it is possible that different students understood the
term previous programming experience differently; some may
have included e.g. high school courses using spreadsheets or
writing HTML, while others may not. Finally, due to analyzing
only subpopulations of students, we did not discern extreme
differences in productivity – it is highly likely that there are
even larger differences in productivity, e.g. when studying the
top 1% and the bottom 1%.

VI. CONCLUSIONS

In this work, we studied productivity differences, measured
as time spent, between students in a programming course
using data collected from students’ programming process. Our
analysis revealed noticeable productivity differences between
students – our answer to the first research question ”What are
the productivity differences between students in a program-
ming course?”, is: The productivity differences between the
top quintile and bottom quintile over the course is at least
two-fold, while the productivity differences within individual
assignments can be larger.

In the course, students were surveyed about their previous
programming experience in terms of hours programmed. We
studied the connection between the self-reported previous
programming experience and students’ productivity. Our an-
swer to the second research question ”How does previous
programming experience influence students’ productivity?” is:
There was a weak negative correlation between hours pro-
grammed and productivity, implying that those with previous
programming experience were more productive. Moreover,
when considering students with no previous programming ex-
perience and students who had previously programmed at least
1000 hours, the differences in productivity were significant. At
the same time, some of the students who had not previously
programmed were more productive than some of the students
who had programmed at least 1000 hours.

After completing an assignment, students could answer a
question on the difficulty of the assignment. To determine
whether the difficulty of an assignment influences productivity,
we studied the connection between the average difficulty of
an assignment and average productivity in the assignment, as



well as differences in productivity. Our answer to the third
research question ”How does the difficulty of a programming
assignment influence students’ productivity?” is: There is a
strong correlation between the difficulty of the assignment
and the time it takes to solve the assignment. At the same
time, there is a weak negative correlation between the average
assignment difficulty and the average productivity difference,
suggesting that the difficulty of an assignment has only little
explanatory power over the productivity differences in an
assignment.

We also studied the assignments with the smallest and
largest productivity differences. Our answer to the fourth
research question ”What types of assignments show the highest
differences in students’ productivity?” is: The largest produc-
tivity differences can be explained by (small) assignment size
and skill differences, while the smallest productivity differ-
ences were observed in well specified assignments similar to
assignments that students had already worked on.

Finally, we studied the consistency of productivity within
the programming assignments by analyzing whether students’
are ranked the same across the programming assignments
(in terms of productivity). Our answer to the fifth research
question ”Is productivity consistent across the programming
assignments?” is: No. While the most productive students
tend to remain among the most productive students, there
are considerable productivity differences within the student
population across the course assignments.

Performance differences between students are important to
consider in curriculum development. In previous literature,
previous programming experience and consequently perfor-
mance has been connected to, e.g., career motivations [29]
and course retention [30]. Courses with wide differences in
performance and knowledge may, on the other hand, demo-
tivate weaker students if they compare themselves against
more experienced peers. Our results support the notion of
providing an accelerated track for more experienced students
in introductory programming courses [31]. This would leave
more teaching resources for novices and could ease integration
into the learning community.

As a part of our future work, instead of solely focusing on
students who completed all the assignments, we are looking
into the larger student population in order to determine to
what extent the productivity differences observed in our study
generalize to the overall population, as well as to determine
to what extent skipping individual assignments influences
productivity in the course. We are also looking into factors that
could explain some of the productivity, including the structure
and quality of students’ programs, with the goal of identifying
practices that could lead to higher productivity.
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