
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Mishra, Archana; Simon, Pascal; Hyart, Timo; Trif, Mircea
Yu-Shiba-Rusinov Qubit

Published in:
PRX Quantum

DOI:
10.1103/PRXQuantum.2.040347

Published: 07/12/2021

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Mishra, A., Simon, P., Hyart, T., & Trif, M. (2021). Yu-Shiba-Rusinov Qubit. PRX Quantum, 2(4), 1-21. Article
040347. https://doi.org/10.1103/PRXQuantum.2.040347

https://doi.org/10.1103/PRXQuantum.2.040347
https://doi.org/10.1103/PRXQuantum.2.040347


PRX QUANTUM 2, 040347 (2021)

Yu-Shiba-Rusinov Qubit

Archana Mishra,1,* Pascal Simon,2,† Timo Hyart,1,3,‡ and Mircea Trif 1,§

1
International Research Centre MagTop, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46,

Warsaw PL-02668, Poland
2
Université Paris-Saclay, CNRS, Laboratoire de Physiques des Solides, Orsay 91405, France

3
Department of Applied Physics, Aalto University, Aalto, Espoo 00076, Finland

 (Received 15 June 2021; accepted 2 November 2021; published 7 December 2021)

Magnetic impurities in s-wave superconductors lead to spin-polarized Yu-Shiba-Rusinov (YSR) in-gap
states. Chains of magnetic impurities offer one of the most viable routes for the realization of Majorana
bound states, which hold promise for topological quantum computing. However, this ambitious goal looks
distant, since no quantum coherent degrees of freedom have yet been identified in these systems. To fill this
gap, we propose an effective two-level system, a YSR qubit, stemming from two nearby impurities. Using
a time-dependent wave-function approach, we derive an effective Hamiltonian describing the YSR-qubit
evolution as a function of the distance between the impurity spins, their relative orientations, and their
dynamics. We show that the YSR qubit can be controlled and read out using state-of-the-art experimental
techniques for manipulation of the spins. Finally, we address the effect of spin noise on the coherence
properties of the YSR qubit and show robust behavior for a wide range of experimentally relevant param-
eters. Looking forward, the YSR qubit could facilitate the implementation of a universal set of quantum
gates in hybrid systems where they are coupled to topological Majorana qubits.

DOI: 10.1103/PRXQuantum.2.040347

I. INTRODUCTION

The goal of building a fault-tolerant quantum computer
has allowed the understanding of the quantum realm in
a plethora of systems to be deepened, as well as leading
to an advancement in the development of novel quan-
tum technologies. Trapped ions, semiconductor quantum
dots, superconducting circuits, and hybrid semiconductor-
superconductor platforms are some of the examples which
have played crucial roles in developing the field of quan-
tum computing [1–14].

While superconducting-circuit-based qubits have been
at the forefront of the immense recent progress, proposals
that utilize the low-energy bound states in superconduc-
tors (SCs), i.e., the Andreev levels, have also been under
intense scrutiny for quantum computing [15–21]. The
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reasons are twofold: (i) the dimensions of Andreev-states-
based qubits (approximately micrometers) are typically
much smaller than the sizes of the conventional supercon-
ducting qubits (approximately millimeters), which facil-
itates the design of quantum registers with higher qubit
densities; and (ii) they constitute the building blocks of
topological quantum computers based on Majorana zero
modes, which have experienced significant theoretical and
experimental research efforts [22–27].

Magnetic impurities in superconductors lead to local-
ized Yu-Shiba-Rusinov (YSR) in-gap Andreev states
[28–34], with chains and lattices of impurities being viable
setups to realize topological superconductors hosting the
Majorana modes [35–58]. The advantage of these imple-
mentations is rooted in the ability to pattern supercon-
ducting surfaces with magnetic impurities and possibly
engineer (topological) quantum processors in a controlled
fashion. Moreover, through the use of scanning tunneling
microscopy (STM) techniques, they can be interrogated
locally, with high spatial resolution. A drawback, however,
is that the system parameters are hard to tune, making it
difficult to control the topological regime of the system or
to manipulate the emerging Majorana modes. Several solu-
tions have been put forward, among which are exploiting
the dynamics of the magnetic impurities [59,60], driving
the YSR states with microwave fields [61], varying the ori-
entation of the external magnetic fields [62,63], or tuning
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the Josephson effect through a superconducting tip coupled
to the YSR states [64].

The realization of the Majorana-based topological quan-
tum computer in Shiba chains looks distant, as no experi-
mental evidence of quantum degrees of freedom exists as
yet in these systems. For this purpose, it would be nec-
essary to experimentally demonstrate that it is possible
to coherently manipulate the Majorana qubits before they
decohere. In this paper, we show that the minimal system
for the demonstration of the quantumness of these systems
is a new type of superconducting qubit, the YSR qubit,
stemming from two nearby impurities. We demonstrate
that the dynamics of the magnetic impurities can be used
for controlling the quantum state of the YSR qubit and
we uncover the requirements for experimentally observ-
ing Rabi oscillations in this system. The precession of the
magnetic impurities also leads to a feedback torque acting
on the impurities due to the YSR states [65] and we show
that this effect can be utilized for the read out of the YSR-
qubit states. We also address the effect of the spin noises
on the coherence properties of the YSR qubit and show
robust behavior for a wide range of experimentally relevant
parameters. Our proposal is feasible with state-of-the-art
experimental techniques, because controlled coupling of
YSR states in impurity dimers has already been experi-
mentally demonstrated [66–70] and the manipulation of
the impurity spins is possible through STM electron spin
resonance (STM-ESR) techniques [71–75]. Finally, we
discuss the possibilities of utilizing the YSR qubits in
hybrid systems where they are coupled to Majorana qubits.

The paper is organized as follows. In Sec. II, we intro-
duce the model Hamiltonian describing the dynamical spin
dimer. Using a time-dependent wave-function approach, in
Sec. III we derive the effective YSR-qubit Hamiltonian in
the presence of the precessing spins. In Sec. IV, we dis-
cuss how to implement coherent Rabi oscillations of the
YSR qubit and provide a specific manipulation protocol.
Then, in Sec. V, we demonstrate that the spin dynamics
can be utilized for the readout of the YSR qubit. In Sec. VI,
we introduce a hybrid YSR qubit – Majorana (topological)
qubit that can be operated to achieve a universal set of
quantum gates. We conclude with a discussion in Sec. VII.

II. MODEL HAMILTONIAN

The time-dependent Bogolioubov de Gennes (BdG)
Hamiltonian describing the spin dimer system in
Fig. 1 can be written in the Nambu basis �(r) =
[c↑(r), c↓(r), c†

↓(r), −c†
↑(r)]

T as

HBdG(t) = H0 +
∑

j =1,2

Vj (t)δ(r − Rj ),

H0 = εpτz +�τx,

Vj (t) = Jj Sj (t) · σ ,

(1)

εq

|0〉

|1〉

S1 S2R

HT

εq

∼
Ω1

∼
Ω2 = εq

s-wave SC

FIG. 1. The YSR qubit: two classical spins, target (red) and
test (blue), are placed on top of a two-dimensional (2D) s-wave
superconductor at a distance R, inducing a double-well poten-
tial that accommodates two in-gap YSR states for a given parity.
The odd-parity states |0〉 and |1〉 define the YSR-qubit states.
The asymmetry of the potential stems from the slightly differ-
ent coupling parameters at the two sites. The hybridization of
the two YSR states is quantified by a tunneling Hamiltonian
HT. Driving the test spin effectively tunes the potential bias and,
when at resonance with the qubit splitting �2 = εq, it allows for
coherent rotations of the qubit. The target spin is interrogated off-
resonantly at a frequency �1 �= εq for quantum non-demolition
detection of the YSR-qubit state. Alternatively, the qubit can also
be operated with just a single tip.

where H0 is the superconductor Hamiltonian and Vj (t) des-
cribes the coupling of electrons to the classical spins Sj
(t)= S[sin θj (t) cosφj (t), sin θj (t) sinφj (t), cos θj (t)] with
time-dependent polar θj (t) and azimuthal φj (t) angles
(j = 1, 2). Here, Rj = 0(R) is the position of the spin j =
1 (j = 2), Jj are the coupling strengths, σ = (σx, σy , σz)

and τ = (τx, τy , τz) are the Pauli matrices in the spin
and particle-hole spaces, � is the superconducting order
parameter, and εp = p2/2m − μ is the kinetic energy of
the electrons with effective mass m, momentum p , and
chemical potential μ. For simplicity, we neglect the scalar
potentials [56] generated by the magnetic impurities, as
they do not affect directly the dynamics. The target spin
S1 and test spin S2 can be addressed and driven individu-
ally through STM ESR and they are used for read out and
manipulation, respectively.

Before proceeding with a detailed description of the
dynamics, let us provide some physical insights into the
spin dimer in Fig. 1 based on the recent findings in
Ref. [65] concerning the dynamics of a single magnetic
impurity in an s-wave SC. We first note that for the static
case, the Shiba energy is given by ES = �(1 − α2)/(1 +
α2), with α = πν0JS and ν0 being the density of states at
the Fermi level in the normal state. For a spin precess-
ing with frequency � � � (adiabatic limit) at an angle
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θ around the z axis, the effective Shiba energy has been
found to be ES(�) � ES − (�/2) cos θ , i.e., it is shifted
by the Berry-phase contribution. Moreover, this dynami-
cal YSR state has been found to act back on the classical
spin via a universal torque τ S(t) = −(nS − 1/2)FSṅ(t),
where n(t) = S(t)/S, nS is the YSR state occupation num-
ber and FS is the radial Berry curvature. In the absence
of spin-orbit interaction, FS = 1/2. This torque modifies
the bare resonance frequency �0 of the classical spin as
δ�/�0 ≈ (1/S)(nS − 1/2)FS, being a direct measurement
of the occupation nS. The energy shift (on the Shiba side)
and the frequency shift (on the classical spin side) are at
the core of our proposal, which is depicted in Fig. 1: the
former allows us to control the bias of the double-well
potential by driving one of the spins, analogously to tun-
ing the voltage bias in double quantum dots [76], while the
latter facilitates extraction of the occupation of the in-gap
states, in analogy to quantum non-demolition qubit read-
outs in cavity quantum electrodynamics setups [77]. The
hybridization between the two YSR states will modify the
single-impurity findings and in the following we proceed
to describe the dynamical YSR dimer system in detail.

III. EFFECTIVE QUBIT HAMILTONIAN

Next, we derive the low-energy Hamiltonian describ-
ing the in-gap “molecular” YSR states stemming from
the dynamical spin dimer, using a time-dependent wave-
function approach that allows us to identify the effec-
tive two-level system defining the YSR qubit. The
system dynamics are described by the time-dependent
BdG equation i∂tψ(r, t) = HBdG(t)ψ(r, t), whereψ(r, t) =
[u↑(r, t), u↓(r, t), v↓(r, t), −v↑(r, t)]T is the BdG wave
function. It is instructive to switch to the Fourier space
ψ(r, t) = (1/Ld)

∑
k e−ik·rψ(k, t) (where d is the dimen-

sion of the system), which in turn allows us to write

[
i
∂

∂t
− H0(k)

]
ψ(k, t) =

∑

j =1,2

Vj (t)ψ(rj , t)eik·rj . (2)

Assuming that the Shiba energies are close to the Fermi
level (deep Shiba limit α1,2 ≈ 1) and adiabatic dynamics
of the classical spins on the scale of T� = �/�, we can
follow the approach described in Refs. [41,60] to derive
an effective time-dependent 8 × 8 Schrödinger equation
that describes the dimer i∂tψ̃i(t) = Hij (t)ψ̃j (t). Here,
ψ̃1(2)(t) = α1(2)ψ(0(R), t) is a four-component spinor at
position r = 0 (r = R) in the Nambu and spin space,
while the diagonal elements H11(22)(t) ≡ H1(2)(t) describe
the interaction of the SC with the spins at the positions
r = 0(R),

Hi(t) ≈ −�
(

ni · σ

αi
+ τx

)
+ (ni × ṅi) · σ , (3)

and H12(t) = HT(t) represents the tunnelling between the
YSR states at different impurities:

HT(t) = −�(n1 · σ )(n2 · σ )[Ĩ 0(R)τx + Ĩ 1(R)τz]. (4)

Here, ni = Si(t)/Si and Ĩ 0,1(R) are evaluated from the
overlap integrals for two impurities separated by a dis-
tance R in the superconductor (Appendix A). We point out
that the time dependence of the classical spins generates a
Berry-phase contribution [the second term in Eq. (3)] that
cannot be captured by only making the effective static the-
ory time dependent. As shown later, while this term does
not affect the qubit Hamiltonian, it does drastically change
the spin expectation values at each impurity; in particular,
the contributions perpendicular to the instantaneous clas-
sical spin directions (which are responsible to the torques
acting on the latter). This is one of the instances when an
effective static theory does not suffice to describe the low
energy sector dynamics.

Let us first consider the dimer in the absence of dynam-
ics. Projecting the above 8 × 8 Hamiltonian blocks, Hi
and HT, onto the low energy sector results in an effec-
tive 4 × 4 Hamiltonian describing the in-gap states [41,60]
(for details, see Appendix A). Assuming θ1 = 0 (i.e., the
first spin defines the z axis), the in-gap energy spectrum of
the 4 × 4 Hamiltonian becomes |E1,2| = (B ± C)/(2α1α2),
where

B =
√

(2α1α2 − α1 − α2)2 +
[

th cos
(

kFR + π

4

)
sin

θ

2

]2

,

C =
√

(α1 − α2)2 +
[

th sin
(

kFR + π

4

)
cos

θ

2

]2

,

(5)

where th = 4α1α2e−R/
√

2πkFR quantifies the tunneling
strength and kF is the Fermi momentum. Note that all ener-
gies are expressed in terms of � = 1, while all lengths are
expressed in terms of the SC coherence length ξ = vF/�,
with vF being the Fermi velocity. In Fig. 2(a), we show
the corresponding energy spectrum as a function of θ . The
inset of Fig. 2(a) depicts the relative maximum deviation in
the energy difference between the lowest two energy states
as a function of δα = α1 − α2 for various separation dis-
tances R. From these plots, we can infer that: (i) even for
moderate values of δα, the dependence of the energies Ei
on θ is negligible; and (ii) in general, these energies are not
equidistant. We can then encode the YSR qubit in the two
lowest-energy states defined by the {−E1, −E2}, which, for
a wide range of parameters, are also well separated from
the excited pair {E1, E2}. The qubit Hamiltonian can be
written as Hq = (εq/2)�z, where εq ≡ εq(θ) = C/(α1α2)

is the qubit splitting and�z is the z component of the Pauli
matrix acting on the states defined by {−E1, −E2}.
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FIG. 2. (a) The single-particle energy spectrum E for the in-
gap states as a function of θ for α1 = 1.15, α2 = 1.1 at R = 2.9.
Here, �2 is the classical spin precession frequency that matches
the qubit splitting. The inset shows the energy width δE =[
εq(0)− εq(π)

]
/
[
εq(0)+ εq(π)

]
as a function of δα = α1 − α2

and for several values of R. (b) The many-body energy spec-
trum EMB for α1 = 1.15, α2 = 1.1 and R = 2.9 in the absence
of Coulomb interactions. The dotted lines represent the many-
body energy spectrum for α1 = α2 = 1.1, showing a crossing at
θ = π . Here, {|10〉, |01〉} and {|00〉, |11〉} label the odd- and even-
parity states, respectively, with the YSR qubit being encoded in
the former. In both plots, we use kF = 13.55.

It is useful to describe the YSR qubit using many-
body states |n1n2〉, where n1,2 = 0, 1 are the occupancy
of the single-quasiparticle states. Specifically, the pair of
states {|00〉, |11〉} ({|01〉, |10〉}) spans the even- (odd-) par-
ity many-body states with energies ±|E1 + E2|/2 (±|E1 −
E2|/2). Note that within the BdG description the two par-
ity sectors are decoupled and the YSR qubit defined above
acts within the odd-parity states. This choice for the YSR
qubit is further justified by its insensitivity to the Coulomb
interaction effects that are present for double occupancy
(even parity). The many-body energy spectrum depicting
the odd- and even-parity states is shown in Fig. 2(b). While
the ground state corresponds to the even-parity state |11〉
for the chosen parameters, the odd-parity sector can be
selected by tuning the offset charge with a gate voltage
in the case of a finite superconducting island with a suffi-
ciently large charging energy. Alternatively, one can utilize
the spin dynamics for the initialization of the system to the
odd-parity state.

The many-body picture also allows us to gain further
insight into the origin of the qubit states, which is deter-
mined by max(δα, th). For δα � th, the qubit states stem
from the two individual YSR states formed under each of
the impurities, while in the opposite regime δα � th, they
correspond to the symmetric and antisymmetric superpo-
sition of the individual YSR states, being dictated by the
tunneling. The first scenario is more advantageous, as the
qubit energies become insensitive to θ , as depicted in
Fig. 2, rendering it more robust against fluctuations.

Having defined the YSR qubit, we can now reinstate the
dynamics of the classical spins, which we exploit for the
manipulation and read out of the qubit states. Without loss

of generality, in the following we assume that only one spin
precesses. Projecting the 4 × 4 time-dependent Hamilto-
nian onto the YSR-qubit subspace, we obtain the following
qubit Hamiltonian (Appendix B):

Hq(t) = εq

2
�z + β(t) · �, (6)

where �β(t) = (βx(t),βz(t),βz(t)) with

βx(t) = th
sin(kFR + π/4) sin θ sin(θ/2)

4α1α2εq
φ̇,

βy(t) = th
(α1 − α2) sin(kFR + π/4) sin(θ/2)

4(α1α2)2ε2
q

θ̇ ,

βz(t) = (α2 − α1) sin2(θ/2)
2α1α2εq

φ̇.

(7)

Equations (6) and (7) establish the imprints of the classical-
spin dynamics on the effective YSR-qubit Hamiltonian
and represent one of our main findings. Above, we dis-
regard the terms that act as identity in the qubit space.
The first two terms in Eq. (7) induce transitions between
the qubit states, while the last term allows us to dynam-
ically control the qubit splitting εq → εq + 2βz(t). For
δα � th, βx,y(t) ∝ th/δα, while βz(t) ≈ sin2(θ/2)φ̇/2 is
independent of any of the microscopic parameters.

IV. YSR-QUBIT MANIPULATION

The YSR qubit can be manipulated by utilizing the sec-
ond term in Eq. (6). The pulse sequence for introducing
Rabi oscillations is shown schematically in Fig. 3(a). The
logical states of the qubit are defined in a parallel classical-
spin alignment and the resonant oscillations between the
states of the qubit are induced in the antiparallel con-
figuration. Before describing the details of the sequence,
let us underline the physical reasons for this choice. The
βi(t) terms in Eq. (7) are much weaker for deviations δθ
around θ = 0 [βx,z ∝ (δθ)2 and βy ∝ δθ ] than when the
same deviations occur in the proximity of θ = π (βx ∝ δθ

and βy,z ∝ constant), which makes them rather inefficient
in the parallel configuration. In the idle phase, on the other
hand, this is beneficial, since the qubit will be more robust
against random fluctuations in the angles θ and φ (dis-
cussed below). Nevertheless, the qubit can also be operated
fully in the antiparallel geometry, at the expense of shorter
coherence times.

Let |0〉 and |1〉 be the eigenstates of the static qubit
Hamiltonian at θ = 0 and let us assume that the qubit
is initialized in state |0〉 at time t = 0. Then, at time t,
the qubit state becomes |ψ(t)〉 = Uq(t, 0)|0〉, where the
evolution operator is Uq(t, 0) = Te−(i/�) ∫ t

0 dt′Hq(t′), with T
being the time-ordering operator. In step 1© of the pro-
tocol in Fig. 3(a), the right classical spin is rotated from
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FIG. 3. (a) The pulse sequence proposal for coherent manip-
ulation of the YSR qubit: the right spin (blue) is first rotated
adiabatically from θ = 0 to θ = π in time Ta, then driven into
resonant precession with the qubit for a time Tl, after which it
is rotated back adiabatically to its original orientation. The qubit
can also be fully operated in the antiparallel configuration. (b)
The Rabi oscillations encoded in the probability of state |1〉 being
occupied, P1(Tl) = |〈1|ψ(Tl)〉|2, as a function of the pulse time
Tl for Ta = 6Tq and Tb = 0.6Tq. The other parameters are δθ =
0.1, α1 = 1.15, α2 = 1.1, R = 2.9, so that th/δα = 0.34. (c) The
amplitude of the Rabi oscillations, P1m, as a function of the angle
deviation δθ (main) and δα (inset). Here, th/δα = 17, 1.7, and
0.34 for δα = 0.001, 0.01, and 0.05, consistent with P1m ∼ 1 for
th � δα on a wide range of δθ values. (d) The Rabi oscillation
period, TR, as a function of δθ (main) and δα (inset) for different
values of δα and δθ , respectively. The same conclusions as in (c)
apply. All plots are obtained using kF = 13.55.

the parallel to the antiparallel configuration via a pulse
θ(t) = π tanh(2π t/Ta), where Ta is the pulse length, and
the evolution operator is Uq,1 ≡ Uq(Ta, 0) [78]. The ampli-
tude of the Rabi oscillations is largest if the qubit remains
in state |0〉 during this pulse. Thus, ideal results are
obtained if 0 − π transition is adiabatic, i.e., Ta � Tq with
Tq = �/εq, but almost ideal Rabi oscillations can also be
achieved for fast pulses (Appendix E). In the second part of
the sequence, the classical spin is driven into circular pre-
cession around the z axis, so that the precession frequency
�2 is in resonance with the qubit splitting �2 = εq. Con-
sequently, the qubit undergoes coherent Rabi oscillations
and the evolution is described by Uq,2 ≡ Uq(Ta + Tl, Ta).
In our calculations, we use a spiral pulse φ(t) = �2t and

θ(t) = π − δθ

(
tanh

t
Tb

− tanh
t − Tl

Tb
− 1

)
, (8)

which first stabilizes the precession of the spin to a cone
angle θ = π − δθ in a time Tb (step 2©), then causes a
precession of the spin for a duration Tl − 2Tb (step 3©),
and finally restores the classical spin back to θ = π in
time Tb (step 4©). Assuming that Tb � Tq implies that the
evolution induced by φ̇(t) during the ramping periods is
practically frozen and we can write Uq,2 ≈ U−1

q,2gUq,2rUq,2g ,
where Uq,2g and Uq,2r correspond to the evolution from π

to π − δθ at φ̇ = 0 and the evolution induced by the circu-
lar precession at fixed δθ (θ̇ = 0) during the time Tl − 2Tb,
respectively. Finally, the classical spin is rotated back to
the parallel configuration using Uq,3 ≡ U−1

q,1, shown by
step 5© in Fig. 3(a).

The amplitude and the period of the Rabi oscillations
can be determined by calculating how the probability
for the qubit to be in state |1〉 after a pulse, P1(Tl) =
|〈1|ψ(Tl)〉|2, with |ψ(Tl)〉 = Uq(Tl)|0〉, depends on the
precession time Tl. We implement numerically the evolu-
tion operator pertaining to Uq(t) and in Fig. 3(b) we plot
P1(Tl), showing the Rabi oscillations of the qubit for the
parameters δα = 0.05, δθ = 0.1, R = 2.9. An increase in
the precession angle δθ increases the Rabi oscillation fre-
quency as �R ∝ thδθ but in turn reduces its amplitude, as
depicted in Figs. 3(c) and 3(d). The latter is a consequence
of the transformation Uq,2g , which generates a finite weight
c1 ∝ (th/δα)δθ on the state |1〉 for th � δα. Therefore, for
a given �R, the requirement for P1m ≡ max[P1(Tl)] ≈ 1 is
�R � εq, which, coincidentally, is similar to the adiabatic-
ity condition in the first part of the protocol. Moreover, in
the limit Tb � Tq, the transformation Uq,2g is purely geo-
metrical (Appendix E) and thus independent of the details
of the pulse that tilts the classical spin away from the z axis
by an angle δθ . As stressed above, the manipulation can be
fully performed in the antiparallel configuration, in which
case Uq(Tl, 0) ≡ Uq,2. Both the parallel and the antiparal-
lel configurations have been observed experimentally, their
realization depending on the specific implementation and
the distance between the impurities [68,79].

To give some estimates for the time scale of the Rabi
oscillations, let us assume that δθ = 0.1, R = 2.9 and
δα = 0.05. These rather conservative parameter values
result in the Rabi oscillation period TR ≈ 8.5 ns, which is
comparable to the Rabi times observed in implementations
of the Andreev qubits [17]. For the YSR qubit to be use-
ful, the Rabi time should be much shorter than the time
scales over which it loses its coherence, namely the relax-
ation (T1) and pure dephasing (Tφ) times, which, to the
best of our knowledge, are largely unknown for the YSR
states. Nevertheless, we can readily identify several pos-
sible sources of decoherence: (i) quasiparticle poisoning
[80–82], (ii) thermal fluctuations in the magnetic moments
(magnons) that define the YSR states, and (iii) phonon
or photon coupling to the Shiba electrons [83]. Decoher-
ence induced by nonequilibrium quasiparticle poisoning
is highly specific to the system and thus it is difficult
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to provide precise scalings and estimates. Recent studies,
both experimental and theoretical, show that the relaxation
times pertaining to this mechanism can range from mil-
liseconds to even seconds [80–82]. The general consensus
is that their effect can be minimized by improving the
samples and that it can be accounted for by a phenomeno-
logical linewidth of the isolated YSR states, which in
principle can be extracted from STM-ESR measurements
in the limit of weak tunnel coupling [84,85]. The last two
mechanisms, on the other hand, have not been discussed in
the literature for the YSR molecule. In the following, we
give a short account of the magnon-induced decoherence,
while the details of the phonon (and photon) mechanism
is described in Appendices F and G. The Hamiltonian
describing the coupling of the qubit to the magnetization
fluctuations of spins k = 1, 2 reads as follows:

δHq(t) =
∑

k=1,2

δnk(t) · χ k · �, (9)

where the tensor χ k ≡ [χμνk ] quantifies the coupling of
the two orthogonal fluctuations μ = 1, 2 [δnk(t) ⊥ nk] of
each classical spin k to the qubit Pauli matrices ν = x, y, z.
The elements of the tensor χμνk can be found by project-
ing ∂nkHBdG onto the qubit basis (Appendix F). Within
the Bloch-Redfield framework [85], we find the follow-
ing expressions for the dephasing and relaxation times,
respectively:

1
Tφ,m

=
∑

μ,k=1,2

|χμz
k |2Sk

11(0), (10)

1
T1,m

=
∑

μ,ν,k=1,2

χ
μσ

k χνσ̄k Sk
μν(σεq), (11)

where χμσk = χ
μx
k + iσχμy

k and Sk
μν(ω) = (1/2π)

∫
dte−iωt

〈δnk,μ(t)δnk,ν(0)〉 is the noise spectrum pertaining to the
fluctuations δnk,μ(t). Above, the σ = +(−) terms repre-
sent the emission (absorption) rates, which are related by
the detailed balance condition at equilibrium. The spec-
trum of the fluctuations δnk(t) is determined by the specific
form of the classical spin free energy FS(n) and in order to
give estimates for the above decoherence times, we con-
sider the following form (assuming the free energies of the
two spins to be identical):

FS(n) = −κ
2

n2
z − γB · n, (12)

where κ measures the crystal anisotropy (intrinsic
or induced by the surface), B is the externally
applied magnetic field, and γ is the gyromagnetic
ratio. Considering κ > 0, this free energy per spin is
consistent with the perpendicular to the surface con-
figurations observed in experiments. At finite temper-
atures B → B + δB(t), with δB(t) being the stochastic

contribution the Fourier components of which satisfy
the fluctuation-dissipation relations 〈δBμ(ω)δBν(ω′)〉 =
(αg�ω)/(γ

2S) [coth (�ω/2kBT)− 1] δ(ω + ω′) [87], in
which αg and γ are the Gilbert damping and gyromag-
netic coefficient, respectively. By utilizing the Landau-
Liftshitz-Gilbert (LLG) equation that describes the dynam-
ics of classical magnets in the presence of stochastic
magnetic fields δB(t), we can evaluate the correlators
Sk
μν(ω) in terms of 〈δBμ(ω)δBν(ω′)〉 (for more details,

see Appendix F). For simplicity, we focus only on the
static (idle) parallel- and antiparallel-spin configurations,
assuming a spin S = 5/2 at each site [88,89]. In both
cases, we find that the pure dephasing rate is zero and,
furthermore, for θ = 0, the relaxation rate is also zero,
quantitatively justifying our choice for the qubit basis in
the idle phase. However, at θ = π , the longitudinal relax-
ation rate is nonzero and assuming that αg = 0.001, κ =
0.1 meV, α1 = 1.15, α2 = 1.1, R = 2.9, and temperature
T0 = 100 mK < εq, we obtain T1,m ≈ 3.5 μs [90]. Com-
paring that to the Rabi oscillation period, we estimate
that the YSR qubit can undergo a large number of Rabi
oscillations before it decoheres due to magnons.

We find that both the phonon and photon couplings van-
ish in the antiparallel configuration (where the YSRQ is
operated), in stark contrast to the magnons, which have
their maximal effect. That is because neither phonons nor
photons can induce spin flips, which are required for quasi-
particle tunneling between the two YSR states in this
configuration. In the parallel arrangement, the phonon-
induced relaxation is instead maximal and we evaluate it
to be T1,ph ≈ 5.8 μs. This is a slightly longer time than
the coherence time induced by the noise in the magnetic
moments. However, all these sources of decoherence seem
to be of similar magnitude and they are also similar to the
coherence time observed in the Andreev qubits [17].

V. YSR-QUBIT READOUT

The ability to measure the outcome of a computation
efficiently and rapidly is a prerequisite for a practical qubit.
Furthermore, it allows us to initialize the qubit state at the
beginning of the computation. Here, we show that the qubit
state can be measured using STM-ESR techniques via the
torques induced by the YSR states on the classical spins. In
the following, we focus on the case when the measurement
is performed in the parallel spin configuration and the left
spin (target) is interrogated off-resonantly with the qubit
splitting, as shown in Fig. 1. The former condition is con-
sidered in order to minimize the decoherence effects, while
the latter allows us to physically separate the manipulation
and detection.

The dynamics of the left spin, S1, are governed by the
LLG equation

Ṡ1 = −γS1 × B(t)+ τ + αgS1 × Ṡ1, (13)
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where τ = −J1S1 × 〈σ δ(r)〉 is the torque pertaining to
the electrons in the SC that act on spin S1, including the
YSR-qubit contribution, while B(t) is the time-dependent
external magnetic field utilized to drive the precession.

We employ a Green’s function approach that describes
the 8 × 8 Hamiltonian [60] to evaluate the total torque τ σ
for the two YSR-qubit states σ = 0, 1 (for more details,
see Appendix C). Considering S1 to precess with fre-
quency �1 in the adiabatic limit �1 � �, we can write
τ σ ≈ τ σ s + τ σd, where the first term (τ σ s) originates from
the misalignment of the two classical spins and describes
the contribution of the in-gap states to the Ruderman-
Kittel-Kasuya-Yoshida (RKKY) interaction, while the lat-
ter (τ σd ∝ �1) has been unraveled recently in Ref. [65]
and has been found to have a geometrical (Berry-phase)
origin. In Fig. 4(a), we show the magnitudes of the total
torque τ σ , as well as the two individual contributions
τ σ s and τ σd, as a function of δα for each of the two
qubit states. We see that the torques are determined by
the static term τσ s in the limit �1|δα| � t2h, while in the
opposite regime, �1|δα| � t2h, the dynamical contribution
τσd dominates and, moreover, it reaches a universal value
associated with an isolated impurity [65]. We need to men-
tion that throughout the section we neglect the effect of
the bulk states on both the static and dynamical torques. In
Ref. [91], it has been shown that the (static) bulk contribu-
tion, which represents the conventional RKKY interaction,
becomes negligible compared to that of the YSR in-gap
states for separations R ≥ 1. Furthermore, a full nonequi-
librium calculation for a single impurity has shown that
the YSR states dominate the dynamical torque in the deep
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FIG. 4. (a) The total (τσ ), static (τσ s), and dynamic (τσd)
torques as a function of δα for θ = 0.01, �1/� = 0.1, and
R = 2.9. The dotted lines correspond to the asymptotic behavior
of the two contributions to the torque τσ s and τσd for th � δα.
The total torque evaluated analytically (τσa) from Eq. (15) shows
excellent agreement with the numerical result (dotted-dashed
lines). (b) The difference of the resonance frequencies in the two
qubit states, δ� = �r,0 −�r,1, as a function of δα for α2 = 1.1,
�0 = 25 GHz and several separations R = 2.4, 2.9, and 5. The
saturation of δ� for even moderate separations indicates robust
qubit detection. All plots are obtained using kF = 13.55.

Shiba adiabatic regime and, moreover, that a finite YSR
linewidth imprints onto the magnetic impurity linewidth
[65], which could be utilized to measure the coherence
times of the YSR qubit.

In the limit of small cone-angle precession (θ ∼ 0), we
can linearize the LLG equation and extract the renormal-
ized resonance frequency of spin S1 for each qubit state in
terms of the torques as (Appendix D)

�r,σ = �0 − (τ ′
σ s/S)

1 + (τ ′
σd/S)

, (14)

where τ ′
σd = (1/�1) (∂τσd/∂θ) |θ=0, τ ′

σ s = (∂τσ s/∂θ) |θ=0,
and �0 is the bare resonance frequency. The difference
δ� = �r,0 −�r,1 discriminates between the two qubit
states in the STM-ESR measurements and represents one
of our main findings. In Fig. 4(b), we plot δ� as a func-
tion of δα for various distances R. For separations R such
that t2h � �1|δα|, the difference δ� saturates to a con-
stant value, which we find to be δ� ≈ 8S�0/(16S2 − 1)
[65]. That is because the two impurities become practically
decoupled, resulting in τσ s → 0, and only the dynamical
torque from the isolated impurity contributes to the signal.
We see again here that the optimal regime for operating
the YSR qubit is when tunneling between the two iso-
lated YSR states is smaller than their energy difference,
in which case δ� is almost invariable for wide range of
system parameters.

To enrich the understanding of the above results, we
present a heuristic derivation of the YSR-qubit torques
from basic energy considerations. In the readout regime
θ̇ = 0 and �1 = φ̇ �= εq, so that the effective qubit split-
ting is εeff

q = εq + 2βz and we can neglect the βx,y terms
in Eq. (7). Then, the magnitude of the torque acting on the
spin S1 by the YSR qubit in state σ = 0, 1 can be expressed
as τσ = (−1)σ 1

2∂θε
eff
q ≡ (−1)σ (τs + τd), with

τs = − t2h sin2 (kFR + π/4) sin θ
2(2α1α2)2εq

,

τd = −�1
(α2 − α1)

4α1α2εq

[
sin θ − 4τs

εq
sin2(θ/2)

]
.

(15)

We see that for t2h � �1|δα|, the dynamical torque domi-
nates, reaching a universal value τd ≈ (�1/4) sin θ , con-
sistent with the findings in Fig. 4(a). On the other
hand, for t2h � �1|δα|, the torque is controlled by
the static contribution τs and reaches the asymptotic
value τs ≈ −(th/4α1α2) sin(kFR + π/4) sin (θ/2), which
depends strongly on the separation R between the impuri-
ties. This is again consistent with the findings in Fig. 4(a).
Interestingly, while for t2h � �1|δα| the torque τd behaves
similarly around θ = π , for α1 = α2 ≡ α, we obtain τs ≈
−(th/4α2) sin(kFR + π/4), which is a consequence of the
two qubit levels crossing each other: even though the spins
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are antiparallel, a torque is exerted between the two, which
is to be contrasted with the RKKY interactions mediated
by the bulk [91]. This can also be interpreted as a fractional
spin Josephson effect that is protected by the presence of
the inversion symmetry.

To give estimates for the possible frequency shifts
δ�, let us consider the following experimentally perti-
nent values: α1 = 1.15,α2 = 1.1, R = 2.9, � = 1 meV ≈
241 GHz, and S = 5/2. Interrogating the classical spin
with frequencies �0 ∼ 25 GHz results in δ� ≈ 4.9 GHz,
which is well within the state-of-the-art experimental reso-
lution [74]. Note that with the above parameters, the qubit
splitting εq ≈ 9.5 GHz and thus the target spin precesses
off-resonantly, which is essential for noninvasive readout
of the qubit.

VI. YSR-MAJORANA HYBRID QUBIT

The YSR qubits described here could be utilized for
quantum information tasks on their own; for example, by
creating a network of weakly interacting spin dimers on
top of superconductors that can be addressed individually.
More importantly, they could be integrated with Majorana
zero modes hosted at the ends of spin chains in supercon-
ductors and exploited for performing universal quantum
computation. Indeed, the braiding statistics of the Majo-
rana zero modes alone are not sufficient for implementing
the universal set of topological gate operations necessary
for quantum computation and additional nontopological
gates are needed to achieve universality. A viable way
to implement the missing π/8 phase gate is to control
the couplings of the Majorana zero modes [92], e.g., by
varying the magnetic fluxes in the transmon geometries
[23,93,94], and extremely robust geometric [95] and distil-
lation [96] protocols can be utilized if sufficiently accurate
control of the couplings is possible. However, it is not easy
to realize suitable pulses to control the couplings of the
Majorana modes in Shiba chains and to our knowledge no
proposals currently exist for robust protocols to implement
the π/8 gate in these systems. An alternative proposal to
implement the π/8 gate is to integrate the Majorana zero
modes with quantum-dot-based qubits [24,97–99] and here
we show that this idea can be transferred to the context of
Shiba chains by utilizing the YSR qubit.

In Fig. 5, we sketch our proposal for generating a uni-
versal set of gates in a hybrid YSR-qubit (YSRQ) –
Majorana-qubit (MQ) system. A T-junction formed by
three Shiba chains generated by magnetic impurities (or
adatoms) placed on top of an s-wave superconductor inter-
acts via tunnelings tl,r with a spin dimer that encodes a
YSRQ described in the previous sections. The left and
right Shiba chains are topological, hosting Majorana zero
modes γ †

i = γi (i = 1, . . . , 4), while the lower one is in the
trivial regime. Two Majorana zero modes on the left (right)
chain define a fermionic state, which can be occupied

TopologicalTopological

T
ri

vi
al

FIG. 5. A sketch of the hybrid YSR qubit (YSRQ) – Majorana
qubit (MQ). The magnetic adatoms (black arrows) deposited on
the top of an s-wave SC form three Shiba chains in a T-junction
geometry. The left (l) and right (r) chains are assumed to be
topological, hosting Majorana zero modes γi (i = 1, . . . , 4) at
their ends (red), and are coupled via tunnelings tl,r to a spin
dimer that accommodates a YSRQ (green), while the lower Shiba
chain is nontopological. The states of the MQ are defined by the
fermionic occupations nl(r) = 0, 1 of the two Majorana modes
on the left (right) chain and the topologically protected Clifford
gates can be implemented by braiding [steps (1), (2), and (3)]
and fusing the Majorana zero modes. Driving the dimer locally
rotates the YSRQ coherently (see Sec. IV) and by combining this
rotation with the SWAP gates facilitated by tl,r (described in detail
in Ref. [99]), the missing π/8 phase gate can be implemented.
The SWAP gate can also be used for the measurement of the MQ
via the readout of the YSRQ.

or empty. Thus, the states of the MQ can be encoded
either as {|0l0r〉, |1l1r〉} (in the case of even parity) or as
{|0l1r〉, |1l0r〉} (odd parity).

The hybrid qubit can be operated as suggested in
Ref. [99]. The Clifford gates can be implemented in a topo-
logically protected fashion by fusing Majorana zero modes
and by braiding them in a T-junction shown in Fig. 5
[22]. Additionally, the nontopological π/8 gate can be per-
formed by first swapping the MQ state to YSRQ, then
performing the π/8 gate on the YSRQ, and finally swap-
ping the YSRQ state back onto the MQ. The SWAP gate can
be constructed by utilizing the general ideas presented in
Ref. [99]. The tunable couplings tl,r lead to an interaction
Hamiltonian between the qubits

Hint(t) =
∑

i,j =x,y,z

Jij (t)�iMj , (16)

where Mj (j = x, y, z) are the Pauli matrices acting on the
MQ and Jij (t) are time-dependent coupling strengths orig-
inating from tl, tr �= 0. In the case of εq = 0 (a degenerate
YSRQ qubit), a specific sequence of operations for imple-
menting the SWAP gate has been provided in Ref. [99]. In
our case, εq = 0 can be achieved easily in the antiparal-
lel configuration by applying a magnetic field Bz along the
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z axis. Indeed, for θ = π , the tunneling vanishes and we
obtain that εq = 0 at gμBBz = 2δα, with g and μB being
the g factor and the Bohr magneton, respectively. More-
over, since we are assuming the deep Shiba limit (δα � 1),
the condition gμBBz � 1 is satisfied, which means that the
bulk SC remains unaffected. Alternatively, it might be pos-
sible to utilize the dynamics of the classical spin in the
implementation of the SWAP gate. The SWAP gate can also
be used for the initialization and measurement of the MQ
via the readout of the YSRQ.

VII. DISCUSSION AND CONCLUSIONS

In this work, we introduce and study a novel type of
quantum bit, the YSR qubit, that is encoded in the energy
states of a spin dimer coupled to an s-wave superconductor.
We demonstrate theoretically that both the coherent manip-
ulation and the readout of the YSR qubit can be efficiently
implemented by harnessing the dynamics of the spins that
engender it. Furthermore, we scrutinize the effect of the
classical spin fluctuations on the coherence of the YSR
qubit and show robust behavior compared to the manip-
ulation times. Given the ability to manipulate magnetic
adatoms on superconducting substrates with a high degree
of control, the YSR qubit could be utilized together with
Majorana topological qubits to facilitate the performance
of universal quantum computation. We propose one such
hybrid implementation that is based on topological Shiba
chains and a spin dimer hosting the YSR qubit.

There are several avenues for future studies. An imme-
diate objective would be to generalize the time-dependent
formalism described here to account for the spin-orbit
effects originating from both the substrate [69] and the
anisotropy of the exchange coupling between the clas-
sical spins and the superconducting electrons [68]. The
spin-orbit coupling effects can provide the microscopic
mechanism for the easy-axis anisotropy and therefore they
are potentially useful for the operation of the YSR qubit
but, additionally, they can stabilize the ferromagnetic order
in adatom chains and facilitate the realization of the Majo-
rana modes. Thus, these effects are crucial for the operation
of the hybrid qubit.

Another important direction is to establish the Hamilto-
nian of the hybrid qubit from the microscopics in order to
study the possible quantum gates and to optimally engineer
the adatom deposition. Additionally, coherent transfer of
the information between the two types of qubits might be
beneficial for entangling MQs that are separated by a large
distance. The YSRQs could be entangled, for example,
by utilizing cavity quantum electrodynamics in a simi-
lar fashion to the way it has been employed in various
other solid-state qubits [77]. While the coupling of the
YSR qubit to the magnetic field of a microwave cavity
should be weak (<kHz), the stronger electric field com-
ponent could instead couple to the qubit by affecting the

tunneling th or via the spin-orbit coupling. Alternatively,
these interactions could be ignited indirectly, via the cou-
pling of the quantum fluctuations of the classical spins
to the microwave photons [51,100], which could also be
used to drive them into precession. Moreover, such setups
would naturally allow for the YSRQ to interact with other
types of qubits and enhance their functionality.

Further down the road, it would also be interesting
to extend the dynamical framework describing the spin
dimers to Shiba chains and 2D Shiba islands that can
host Majorana end modes and chiral Majorana edges
[58,101], respectively. We believe that by triggering the
magnetic dynamics, it should be possible to both manip-
ulate and detect the Majorana edge modes, the latter by
leaving their fingerprints on the STM-ESR signals. More-
over, such approaches should be advantageous, as they
would allow us to interrogate Shiba systems with well-
established methods from spintronics [102]. As a catalyst
for another direction of future work, we speculate that
the in-gap Shiba states, either in dimers or chains, could
mediate out-of-equilibrium spin interactions in the pres-
ence of external magnetic drives that have no counterparts
in the static situations. Given the nonperturbative nature of
the coupling between the electrons in the superconductor
and the spins, which converts into torques as in Eq. (15),
that would require the self-consistent solution of the com-
bined dynamics of the two systems. This might result in
novel spin configurations that are stabilized dynamically
and, on the electronic side, induce new types of (possibly
dissipative) phases [103].

In conclusion, the YSR qubit proposed in this work
operates well within the current experimental capabilities
and we expect it to open up new possibilities for future
studies on superconducting systems patterned with spins.
We hope that our findings help to create a road map toward
a functional MQ in these systems.
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APPENDIX A: DERIVATION OF THE
LOW-ENERGY HAMILTONIAN

In this appendix, we show the derivation of the Hamil-
tonian describing the YSR qubit given by Eq. (6). The
total SC Hamiltonian written in the Nambu basis �(r) =[
c↑(r), c↓(r), c†

↓(r), −c†
↑(r)

]T
reads

Htot(t) = 1
2

∫
dr�†(r)HBdG(t)�(r), (A1)
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where, as described in the main text [Eq. (1)], the BdG
Hamiltonian is

HBdG(t) = H0 +
∑

j =1,2

Vj (t)δ(r − Rj ), (A2)

H0 = εpτz +�τx,

Vj (t) = Jj Sj (t) · σ , (A3)

while Si(t) = S(sin θi cosφi, sin θi sinφi, cos θi), in which
θi and φi are the (time-dependent) polar and azimuthal
angles for spin i = 1, 2. The time-dependent Schrödinger
equation can be written as i∂tψ(r, t) = HBdGψ(r, t). By
using the Fourier decomposition ψ(r, t) = (1/Ld)

∑
k

e−ik·rψ(k, t), we can recast the BdG equation in the fol-
lowing form:

[
i
∂

∂t
− H0(k)

]
ψ(k, t) =

∑

j =1,2

Vj (t)ψ(rj , t)eik·rj , (A4)

which, in the static limit, pertains to the substitution i∂t →
E and coincides with the equation for the spectrum pre-
sented in Ref. [41]. In the frequency domain, and retaining
only the leading-order terms in ω, we obtain

ψ(ri,ω) ≈ −
∑

j =1,2

[(ω +�τx)I0(rj − ri)+ I1(rj − ri)τz]

×
∫

dω′Vj (ω
′)ψ(rj ,ω − ω′)eik·rj , (A5)

where

I0(r) ≡ I0(r) =
∫

dk
(2π)d

eik·r

ε2
k +�2

;

I1(r) ≡ I1(r) =
∫

dk
(2π)d

εkeik·r

ε2
k +�2

. (A6)

In the above expressions, we retain only the leading-order
corrections in ω, assuming that the time dynamics of the
classical spins as well as those of the emerging Shiba
energies are such that ω � � (adiabatic regime). For a
2D superconductor, the integrals I0,1(r) can be written as
I0(r) = (2ν0/�)Ĩ 0(r) and I1(r) = 2ν0Ĩ 1(r) [41], where

Ĩ 0(1)(r) = Im(Re)K0

[
−i
(

1 + i
�

vFkF

)
kFr

]
, (A7)

ν0 is the density of states, kF is the Fermi momentum, vF is
the Fermi velocity, and K0 is a modified Bessel function of
the second kind. At r = 0, this gives Ĩ 0 = π/2 and Ĩ 1 = 0,
while for kFr � 1 (a limit utilized throughout our work),

the asymptotic expressions are as follows [60]:

Ĩ 0(r) ≈
√

2
π

sin (kFr + π/4)√
kFr

e−�r/vF ,

Ĩ 1(r) ≈
√

2
π

cos (kFr + π/4)√
kFr

e−�r/vF . (A8)

Next, we switch back to the time domain and we obtain

ψ(ri, t) ≈ −
∑

j =1,2

[(i∂t +�τx)Ĩ 0(rj − ri)+ Ĩ 1(rj − ri)τz]

× Vj (t)ψ(rj , t). (A9)

Defining ψ̃(ri, t) = αiψ(ri, t), we can manipulate this
expression further by writing the combined evolution as

i
∂

∂t

(
ψ̃(r1, t)
ψ̃(r2, t)

)
=
(

H1(t) HT(t)
H †

T (t) H2(t)

)(
ψ̃(r1, t)
ψ̃(r2, t)

)
,

(A10)

where

Hi(t) = −�
(

ni · σ

αi
+ τx

)
+ (ni × ṅi) · σ ,

HT(t) = −�(n1 · σ )(n2 · σ )[Ĩ 0(R)τx + Ĩ 1(R)τz],

(A11)

and ni ≡ ni(t) = Si(t)/Si. As mentioned in the main text,
the dynamics of the spins induce an extra term in the local
Hamiltonian matrix element of Berry-phase origin. With-
out this term, the transverse spin expectation values at the
positions of the impurities would have the wrong sign.

To help distinguish the low- and high-energy sectors,
which in turn allows us to eliminate perturbatively the
terms that couple them, it is instructive first to perform
a unitary transformation U0 = exp (iπτy/4) that converts
τx ↔ τz, followed by a (time-dependent) Ui(t) = τ0 ⊗
Ũi(t) that acts on site i = 0(R) and diagonalizes the terms
∝ ni · σ :

Ũi(t) =
(

cos θi/2 sin θi/2
eiφi sin θi/2 −eiφi cos θi/2

)
. (A12)

These rotations affect the terms in Eq. (A11) and they
become

H̃i(t) = Ũ†
i Hi(t)Ũi − iŨ†

i
˙̃Ui = −�

(
1
αi
σz + τz

)

+ φ̇i

2
(1 − cos θiσz + sin θiσx)− θ̇i

2
σy ,

H̃T(t) = Ũ†
1HT(t)Ũ2 = −� Ũ†

1(n1 · σ )(n2 · σ )

× Ũ2 [Ĩ 0(R)τz − Ĩ 1(R)τx]. (A13)

The low (high) 4 × 4 energy sector is spanned by the
σzτz = −1(1) and the corresponding energies of the iso-
lated Shiba states are ±�(1 − 1/αi) [±�(1 + 1/αi)].
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Consequently, we can then project the remaining terms,
i.e., the tunneling and the velocity contributions ∝ φ̇i, θ̇i,
onto the low-energy sector to obtain an effective time-
dependent Hamiltonian.

To simplify the discussion, from here onward we assume
the left spin (1) is static and aligned along the z direction,
or θ1,φ1 = 0, and that θ2 ≡ θ and φ2 ≡ φ. Furthermore,
we also consider that all lengths are expressed in terms of

ξSC = vF/� and set� = 1. Then, the projected 4 × 4 low-
energy Hamiltonian can be written as

Hl(t) ≡ PlH̃(t)Pl = Hl,0(t)+ φ̇Al,φ(t)+ θ̇Al,θ (t),
(A14)

where Pl is the corresponding projector, while

Hl,0(t) =

⎡

⎢⎢⎢⎢⎢⎢⎣

−1 + 1
α1

0 − e−R+iφ cos(θ/2) sin(kF R+π/4)√
πkF R/2

e−R+iφ sin(θ/2) cos(kF R+π/4)√
πkF R/2

0 1 − 1
α1

− e−R sin(θ/2) cos(kF R+π/4)√
πkF R/2

e−R cos(θ/2) sin(kF R+π/4)√
πkF R/2

− e−R−iφ cos(θ/2) sin(kF R+π/4)√
πkF R/2 − e−R sin(θ/2) cos(kF R+π/4)√

πkF R/2 −1 + 1
α2

0
e−R−iφ sin(θ/2) cos(kF R+π/4)√

πkF R/2
e−R cos(θ/2) sin(kF R+π/4)√

πkF R/2 0 1 − 1
α2

⎤

⎥⎥⎥⎥⎥⎥⎦

(A15)

represents the instantaneous projected Hamiltonian, with Al,φ(t) and Al,θ (t) being the projected gauge field terms associated
with the φ̇ and θ̇ contributions in Eq. (A14).

APPENDIX B: EFFECTIVE QUBIT HAMILTONIAN

We can further diagonalize the instantaneous 4 × 4 Hamiltonian Hl,0(t) in order to identify the effective 2 × 2 YSR-
qubit Hamiltonian presented in the main text. This is achieved by another time-dependent unitary transformation,

U3(t) = 1

2
√

BC

⎡

⎢⎣

−s2B+C−eiφ s2B−C+eiφ −s2B+C+eiφ s2B−C−eiφ

s1B−C+ −s1B+C− −s1B−C− s1B+C+
s1s2C+B+ s1s2C−B− −s1s2C−B+ −s1s2B−C+

B−C− B+C+ B−C+ C−B+

⎤

⎥⎦ , (B1)

where

th = 4α1α2√
2πkFR

e−R,

B =
√
(2α2α1 − α1 − α2)

2 + [th cos(kFR + π/4) sin(θ/2)]2,

C =
√
(α1 − α2)2 + [th sin(kFR + π/4) cos(θ/2)]2,

B± =
√

B ± (2α1α2 − α2 − α1),

C± =
√

C ± (α1 − α2),

(B2)

with s1 = sign[sin(kFR + π/4)] and s2 = sign[cos(kFR +
π/4)]. Its effect on Hl(t) can be formally written as

H̃l(t) = U†
3Hl(t)U3 − iU†

3U̇3

= H̃l,0(t)+ φ̇Ãl,φ(t)+ θ̇Ãl,θ (t), (B3)

H̃l,0(t) = U†
3Hl,0(t)U3; Ãl,s(t) = U†

3Al,sU3 − iU†
3∂sU3,

(B4)

with s = φ, θ . Note that while H̃l,0(t) is now diagonal,
with energies ±E1,2, where E1,2 = (B ± C)/(2α1α2), the
gauge field terms can induce transitions between its eigen-
states. More importantly, these terms have two separate
contributions: one from the initial gauge fields, originating
from the first unitary transformations U1,2, and one from
the diagonalization of the 4 × 4 effective (instantaneous)
time-dependent Hamiltonian Hl,0(t). Both are required
to correctly capture the low-energy-sector dynamics and
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starting from the static effective theory by making the
parameters θ and φ time dependent would lead to erro-
neous results.

In order to establish a qubit that is well separated from
the excited states, we assume that both α1,α2 �= 1, as well
as th, δα � 2 min |1 − α1,2|, with δα = |α1 − α2|. Then,
we can further project H̃l(t) to the two lowest-energy
states, resulting in the qubit Hamiltonian presented in the
main text (up to terms that act as identity in this subspace):

Hq(t) = εq

2
�z + β(t) · �,

βz(t) = α2 − α1

2α1α2εq
sin2(θ/2)φ̇, (B5)

βx(t) = th
sin(kFR + π/4) sin θ sin(θ/2)

4α1α2εq
φ̇,

βy(t) = th
(α1 − α2) sin(kFR + π/4) sin(θ/2)

4(α1α2)2ε2
q

θ̇ , (B6)

where εq = C/α1α2 is the qubit splitting energy.

APPENDIX C: DETAILS ON THE READOUT VIA
TORQUES

Here, we provide details on the calculation of the torque
τ = −J1Sn1 × 〈σ (0)〉 acting on the precessing spin S1 by
the SC electrons and its effects on the STM-ESR signal.
We first note that at the operator level, the torque can be
written as τ̂ = −n1 × ĥ, where we introduce the magnetic
field operator ĥ(t) = ∂n1Htot(t). Then, for a given many-
body state |�(t)〉 that acts in the occupation number basis,
we have

h� = 〈�(t)|ĥ|�(t)〉 = 〈�(t)|∂n1Htot(t)|�(t)〉. (C1)

For a static BdG Hamiltonian, we can write Htot =∑
i εi(ni)(γ

†
i γi − 1/2), with εi(n1) being the BdG eigen-

values and γi (γ †
i ) being the Bogoliubov annihilation (cre-

ation) operator found from diagonalization. Then, in such
a case we obtain the average field:

h = 〈ĥ〉 =
∑

i

(fi − 1/2)∂n1εi(n1), (C2)

where fi = 〈γ †
i γi〉 is the occupation of state i. This encodes

both the well-known RKKY interaction mediated by the
bulk states as well as the (static) YSR contribution [91].
The dynamics can induce transitions between different
instantaneous energy levels and, in general, a full diag-
onal form for the BdG Hamiltonian might not be found.

However, in our perturbative scheme in the dynamics,
when εq �= 2βz, we can neglect the transitions caused by
βx and βy . Moreover, since �1 � �, the bulk states are
also unaffected. Then, the many-body Hamiltonian is still
diagonal and the magnetic field reads

h = −1
2

∑

i∈bulk

∂n1εi(n1)+
∑

i=1,2

(fi − 1/2)∂n1ε
eff
i (n1)

≡ hbulk + hYSR, (C3)

where the first and second terms determine the bulk con-
tribution (all levels i empty or fi = 0) and YSR in-gap
states contributions, respectively. Importantly, εeff

i are the
full single-particle energies that include the shifts induced
by the dynamics (which, in more formal language, corre-
sponds to Berry-phase effects [65]). The YSR states that
define the qubit states correspond in the many-body picture
to the configurations f1(2) = 0(1) and f1(2) = 1(0). Thus,
the field for each qubit state is

hσ = hbulk + (−1)σ

2
∂n1 [εeff

1 (n1)− εeff
2 (n1)]

≡ hbulk + (−1)σ

2
(hs + hd), (C4)

where σ = 0, 1. Consequently, one can find the corre-
sponding torques from τ σ = −n1 × hσ , τ s = −n1 × ∂n1εq
and τ d = −2n1 × ∂n1βz, as presented in the main text
(note that these are more general, as they assume arbitrary
changes in the angles θ and φ).

For the numerical evaluation of the torques, we employ
a Green’s function approach that describes the dimer
when the target spin precesses circularly. In this case,
an exact solution can be found, assuming φ(t) = �t and
θ = const, where � is the precession frequency. Indeed,
the dynamical problem in Eq. (A2) can be made static
by rotating it with the time-dependent unitary transfor-
mation U(t) = e−i(�/2)σz t. In this frame, the stationary
Schrödinger equation from Eq. (A2) can be written as

H̃BdG = HBdG(0)− �

2
σz, (C5)

where the second term acts as a fictitious magnetic field on
the superconductor. Following Ref. [60], the wave function
at any point r can be written as ψ(r) = ∑

rj ∈0,R G0(r −
rj , E)Vjψ(rj ), where
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G0(r, E) = −

⎡

⎢⎢⎣

(E +�/2)I+
0 + I+

1 0 I+
0 0

0 (E −�/2)I−
0 + I−

1 0 I−
0

I+
0 0 (E +�/2)I+

0 − I+
1 0

0 I−
0 0 (E −�/2)I−

0 − I−
1

⎤

⎥⎥⎦ , (C6)

with

I±
0 (r) =

∫
dk
(2π)d

eik·r

1 + ε2
k − (E ±�/2)2

,

I±
1 (r) =

∫
dk
(2π)d

εkeik·r

1 + ε2
k − (E ±�/2)2

. (C7)

We then obtain the following set of eigenvalue equations:

[(1 − G0(0, E)V1]ψ(0) = G0(R, E)V2ψ(R),

[(1 − G0(0, E)V2]ψ(R) = G0(R, E)V1ψ(0),
(C8)

and the in-gap spectrum can be found numerically for
arbitrary frequencies �/2 < 1 from the 8 × 8 determinant

∣∣∣∣
1 − G0(0, E)V1 G0(R, E)V2

G0(R, E)V1 1 − G0(0, E)V2

∣∣∣∣ = 0. (C9)

Then, the associated torques (that include all orders in
�/2) can be evaluated as in the previous subsection. The
plots depicted in Fig. 4 in the main text are obtained assum-
ing the deep Shiba limit (α1,2 ∼ 1) and�/2 � 1 (adiabatic
driving), which is the relevant regime in this work. Never-
theless, this approach can be readily employed to study the
effects of the dynamics beyond the adiabatic realm.

APPENDIX D: LINEARIZATION OF LLG
EQUATION AND RESONANCE-FREQUENCY

RENORMALIZATION

The LLG equation describing the dynamics of the clas-
sical spin S1 in the presence of the torque τ σ torque
pertaining to the YSR qubit in state σ = 0, 1 can be written
as

Ṡ1(t) = −γS1(t)× B(t)+ τ σ (t)+ αgS1 × Ṡ1, (D1)

where B(t) = B0z + B⊥(t) is the external magnetic field,
being the sum of a constant term along z, which defines
the bare resonance frequency �0 = γB0, and a weak in-
plane rf component. Specifically, we consider B⊥(t) =
B⊥[cos(�1t), sin(�1t), 0] and B⊥ � B0. In the stationary
limit, the impurity spin can be written as S1(t) = Szz +
δS(t), with δS(t) = S⊥ [(cos(�1t + φ) , sin (�1t + φ), 0],
where S⊥ = S sin θ ≈ Sθ and Sz = S cos θ ≈ S and φ

quantifies the lagging of the spin with respect to the driv-
ing field. In this limit, we can also expand the torque τ σ in
terms of the small parameter θ , which in turn gives [65]

[
αg�1S +

(
�1 −�0 + τ ′

σ s

S
+�1

τ ′
σd

S

)
z×
]
δS(t)

≈ −γ Sz × B⊥(t), (D2)

where τ ′
σ s = (∂τσ s/∂θ) |θ=0 and τ ′

σd = (∂τσb/∂θ) |θ=0, in
which τσb = (∂τσd/∂�1) |�1=0.

From the above equations, we can readily evaluate both
the amplitude S⊥ and the phase lag φ, respectively:

S⊥ = γ SB⊥√
(�1 −�0 + τ ′

σ s/S + τ ′
σd�1/S)2 + (αgS�1)2

,

(D3)

φ = arctan
αgS�1

�1 −�0 + τ ′
σ s/S + τ ′

σd�1/S
. (D4)

The resonance frequency �r,σ of the precessing spin is
shifted depending on the qubit state σ = 0, 1 as

�r,σ = �0 − (τ ′
σ s/S)

1 + (τ ′
σd/S)

≈ �0

(
1 − τ ′

σd

S

)
− τ ′

σ s

S
. (D5)

Note that each type of torque will also contain a constant
contribution, independent of the qubit state, that origi-
nates from the (occupied) bulk states. Hence, we can write
τ ′
σ s → τ ′

bs + τ ′
σ s and τ ′

σd → τ ′
bd + τ ′

σd, where the index b
labels the bulk contribution. Nevertheless, as shown in
Ref. [91], the static bulk contribution is negligible for R ≥
1, whilem as argued in Ref. [65], the dynamical contribu-
tion of the bulk states is negligible in the adiabatic regime.
We can then extract the resonance-frequency difference as

δ� = �r,0 −�r,1 ≈ 1
S
(
�0τ

′
d + τ ′

s

)
, (D6)

which reflects only the in-gap state effects.

APPENDIX E: MANIPULATION OF THE YSR
QUBIT: RABI OSCILLATIONS

1. Behavior of Rabi oscillation period around θ = 0
and π

The Rabi frequency, and hence the time period of the
Rabi oscillation, is determined by βx. Notably, the βi terms
are much weaker for deviation δθ around θ = 0 as com-
pared to such deviation around θ = π , making it inefficient
for manipulation in the parallel configuration. In Fig. 6(a),
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FIG. 6. (a) The Rabi oscillation strength βx in Eq. (7) as a function of the deviation δθ around θ = 0 (blue dashed line) and π (red
solid line) for α1 = 1.15, α2 = 1.1, and R = 2.9. Note that for these parameters, th/δα = 0.34. (b) The probability amplitude of the
qubit initialized in state |0〉 to remain in that state after time Ta, 〈0|ψ(Ta)〉, in terms of Tq = �/εq for δα = 0.05 or th/δα = 0.34 (in
the inset, δα = 0.01 or th/δα = 1.75). The blue curve is the result obtained from the full numerical implementation of the evolution,
while the red-dashed line is 〈0|ψ(Ta)〉 evaluated in the geometrical limit using Eq. (E2). As Ta is increased, the full curve starts to
deviate from the geometric limit that is valid for Ta � Tq and already almost reaches unity for Ta ∼ Tq, consistent with the adiabatic
result. All plots are obtained using kF = 13.55.

we show βx as a function of δθ near θ = 0 and near π ,
suggesting that βx varies linearly (quadratically) around
θ = π (θ = 0).

2. Numerical approach for qubit-state evolution

The time-evolution operator corresponding to the qubit

Hamiltonian can be written as U(t, t0) = Te−(i/�) ∫ t
t0

dt′Hq(t′),
where T represents the time-ordering operator. We imple-
ment the evolution of the qubit state by performing time
slicing with a small increment δt, so that the evolution
operator during one slice can be expanded as U(t, t − δt) =
1 − (i/�)Hq(t)δt. Then, starting from the initial state |0〉,
the qubit state at time t can then be written as

|ψ(t)〉 = U(t, 0)|0〉
= U(t, t − δt)U(t − δt, t − 2δt) · · · U(δt, 0)|0〉,

(E1)

which we evaluate numerically for |ψ(t)〉 by evolving the
state under the sequence of pulses described in the main
text.

3. Analytical approach for qubit-state evolution in the
geometric regime

The qubit-state evolution subjected to the pulse θ(t) =
π tanh(2π t/Ta) can be studied analytically in two extreme
limits: the adiabatic (Ta � Tq) and geometric (Ta � Tq)
limit, respectively. In the adiabatic limit, the qubit evolu-
tion is trivial, as it remains in state |0〉 during the pulse. In
the geometric limit, the energy splitting εq becomes unim-
portant (and thus can be neglected) and the qubit evolution

is solely determined by βy�y ∝ θ̇ . Then, the evolution
operator under an arbitrary rotation of the qubit from θ =
0 to a final θ0 reads Ug(θ0) = e−i

∫
βy�y dt ≡ cos A(θ0)−

i sin A(θ0)�y , where

A(θ0) =
∫ θ0

0
dθ

δαth sin(kFR + π/4) sin(θ/2)
4
{
δα2 + [th sin(kFR + π/4) cos(θ/2)]2}

= 1
2

{
tan−1

[
th sin(kFR + π/4)

δα

]

− tan−1
[

th sin(kFR + π/4) cos(θ0/2)
δα

]}
, (E2)

and thus the first pulse in Fig. 3(a) corresponds to θ0 = π

in the geometric limits.
Figure 6(b) shows the probability amplitude of the qubit

state to be in |0〉 as a function of time Ta (scaled with
Tq), c0(Ta), starting from |0〉. The blue solid line represents
c0 evaluated numerically, while the red dashed line corre-
sponds to the geometric limit evaluated as c0 = cos A(π).
The deviation of the geometric amplitude from the adia-
batic result increases with decreasing δα, this being due
to the effect of tunneling, which makes it easier for the
qubit to explore the Bloch sphere. For δα > εq, the devia-
tion is negligible and c0(Ta) depends weakly on the pulse
length Ta. Thus, this situation is preferable for the qubit
manipulation.

4. Geometric effects around θ = π

The Rabi oscillation amplitude is also reduced because
the geometric pulse θ(t) = (π − δθ) tanh(2π t/Tb) leads to
a probability amplitude c1 to excite the qubit from state |0〉
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FIG. 7. The dependence of c1 on δθ near θ = π for δα =
0.0005, 0.005, and 0.05, and which corresponds to th/δα = 34,
3.4, and 0.34 at R = 2.9. We see that for δα such that th/δα ≤ 1,
the weight c1 increases linearly with δθ , matching well the geo-
metric limit in Eq. (E3), represented by the dashed lines, for a
wide range of deviations δθ .

to state |1〉. Assuming that th < δα and δθ � 1, we obtain

c1 ≈ th sin (kFR + π/4)
4δα

δθ . (E3)

This linear increase of c1 with δθ shows good agreement
with the full numerical results, as shown in Fig. 7 for var-
ious values of δα. In the limit th � δα, c1 → 0 and the
amplitude of the Rabi oscillations approaches unity, as
argued in the main text.

APPENDIX F: DECOHERENCE OF YSR QUBIT

Below, we give the detailed analysis of the decoher-
ence in the YSR qubit induced due to the fluctuations in
the magnetic moments and phonon coupling to the Shiba
electrons.

1. Magnon-induced decoherence

Here, we provide details on the decoherence of the
YSR qubit by the stochastic fluctuations in the magnetic
moment orientations. The fluctuations of the spin k =
1, 2 can be accounted for by performing the substitution
nk → nk + δnk(t), where δnk(t) = ek,1δnk,1 + ek,2δnk,2 ⊥
nk describe the induced fluctuations of the magnetic
moment perpendicular to the deterministic orientations nk.
Here, ek,i and δnk,i, with i = 1, 2, label the orthogonal
fluctuation directions and the corresponding magnitudes,
respectively, with ek,1 = z × nk/|z × nk| and ek,2 = nk ×
(z × nk)/|nk × (z × nk)|.

Then, the coupling between the qubit and the classical
spins changes accordingly, V → V + δV(t), with

δV(t) =
∑

k=1,2

JkSδnk(t) · σ δ(r − rk)

=
∑

k=1,2

∂HBdG

∂nk
· δnk(t) ≡

∑

k=1,2

ĥk · δnk(t), (F1)

where ĥk is the magnetic field operator acting on the
electrons.

Projecting the above Hamiltonian onto the qubit sub-
space leads to the following extra contribution:

δHq(t) =
∑

k

∑

μ=1,2;ν=x,y,z

δnk,μ(t)χ
μν

k �ν , (F2)

where χμνk represent the components of the tensor cou-
pling between the fluctuations and the qubit, which can be
extracted from above:

χ
μν

k = 1
2

Tr[ek,μ · ĥk�ν], (F3)

with the trace being taken over the qubit states. In the fol-
lowing, we assume that the external driving is absent and
only focus on the static coherence properties. Then, we can
evaluate explicitly the matrix elements of the field:

〈σ |ĥk|σ 〉 = −(−1)σ
1
2
∂nkεq = (−1)σ+k 1

2
∂θεqek,2, (F4)

〈σ |ĥk|σ̄ 〉 = (−1)σ εq〈σ |∂nk σ̄ 〉

= −(−1)σ+kεq

[
〈σ |∂θ σ̄ 〉ek,2+ 1

sin θ
〈σ |∂φσ̄ 〉ek,1

]
,

(F5)

where the factor (−1)k reflects the fact that the magnetic
fields are opposite for given relative angles. Note that
for δα �= 0, the diagonal terms vanish at both θ = 0 and
θ = π . From the above expressions, we can write the total
magnetic field operator acting in the qubit subspace as

ĥq
k = (−1)k

[
1
2
∂θεq�zek,2 − εq

(
β ′

y�xek,2 + β ′
x

sin θ
�yek,1

)]
,

(F6)

where β ′
x = βx/φ̇ and β ′

y = βy/θ̇ in the qubit Hamiltonian
in Eq. (B6). From here, the matrix χμνk can be readily iden-
tified. Let us evaluate the above field for the two cases of
interest θ = 0 (parallel) and θ = π (antiparallel) configu-
rations, respectively. In the former case, ĥq

k ≡ 0, meaning
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that no dephasing or relaxation occurs because of the cou-
pling to the magnetic fluctuations, while in the latter case
ĥq

k = (−1)k+1gc
(
�xek,2 +�yek,1

)
, where

gc = th sin(kFR + π/4)
4α1α2

(F7)

is the effective coupling strength of the qubit to the fluctu-
ations, the magnitude of which is dictated by the tunneling
th. For this specific orientation, Eq. (F2) becomes

δHq(t) = gc

∑

k

(−1)k+1 [δnk,2(t)�x + δnk,1(t)�y
]

. (F8)

We are now in a position to calculate the decoherence rates
engendered by this coupling. We first introduce the noise
power spectrum pertaining to the fluctuations δnk(t) in the
Fourier space:

Skk′
μν (ω) = 1

2π

∫
dte−iωt〈δnk,μ(t)δnk′,ν(0)〉δkk′ ≡ Sk

μν(ω),

(F9)

where the averages are taken over the thermal equilibrium
and we assume that the fluctuations of the two spins are
not correlated. Within the Bloch-Redfield framework [85],
the dephasing and the longitudinal relaxation rates read,
respectively,

�φ,m =
∑

k=1,2

(|χ1z
k |2 + |χ2z

k |2)Sk
11(0), (F10)

�1,m =
∑

μ,ν

∑

k=1,2;σ=±
χ
μσ

k χνσ̄k Sk
μν(σεq), (F11)

where χμ±
k = χ

μx
k ± iχμy

k . The pure dephasing rate �φ
vanishes at both θ = 0 and π and �1,m = 0 at θ = 0. The
relaxation rate at θ = π is

�1,m = 1/T1,m = 2g2
c

∑

k=1,2

{
Sk

11(εq)+ Sk
11(−εq)

− i[Sk
12(−εq)− Sk

12(εq)]
}

, (F12)

while the dephasing time satisfies T2,m = 2T1,m. In order
to provide estimates, we need to describe the noise spec-
trum of the magnetic fluctuations. To do that, we start
by employing the stochastic LLG equation describing the
magnets in the presence of magnetic noises (here, we dis-
regard the effect of the qubit on the dynamics, as it would
only manifest in higher orders in the coupling):

ṅk = −γnk ×
[

Bk,eff + δBk(t)
]

+ αgnk × ṅk. (F13)

Here, Bk,eff = −γ−1δFS(nk)/δnk is the effective magnetic
field acting on the impurity, with FS(nk) being the kth clas-
sical spin free energy, and δBk(t) is the stochastic magnetic
field the Fourier components δBk,μ(ω) of which, with μ =
ek,1, ek,2, satisfy the fluctuation-dissipation relation [87]:

〈δBk,μ(ω)δBk′,ν(ω
′)〉

= αg�ω

γ 2S

[
coth

(
�ω

2kBT

)
− 1

]

︸ ︷︷ ︸
S(ω,T)

δ(ω + ω′)δμνδk,k′ .

(F14)

In order to describe the experimental observations [88,90],
we assume z to be an easy axis (the spin orients perpendic-
ular to the surface), so that the free energy can be written
as in the main text:

FS(nk) = −κ
2

n2
k,z − γB · nk, (F15)

where B = Bzz is external magnetic field along z and κ
is the strength of the anisotropy, which is assumed to
be identical for the two spins. Consequently, the effec-
tive magnetic field that determines the dynamics can then
be written as Bk,eff = Bk,effz, with the magnitude Bk,eff =
Bz + (κ/γ )nk,z. For the antiparallel alignment and con-
sidering the deterministic direction of the spins to be
along the z axis, inserting the effective field in the LLG
equation, we can extract the noise spectrum, for which we
find

Sk
11 = Sk

22 = γ 2 (γBk,eff)
2 + (αgω)

2 + ω2

[(γBk,eff − ω)2 + (αgω)2][(γBk,eff + ω)2 + (αgω)2]
S(ω, T),

Sk
12 = −Sk

21 = −2iγ 2 (−1)kωγBk,eff

[(γBk,eff − ω)2 + (αgω)2][(γBk,eff + ω)2 + (αgω)2]
S(ω, T),

(F16)
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where k = 1, 2. To provide some estimates, we assume that
α1 = 1.15, α2 = 1.1, R = 2.9, and αg = 0.001. Consider-
ing the magnetization anisotropy energy κ = 0.1 meV and
�0 = 25 GHz, we find T2,m ≈ 7 μs, allowing around 800
Rabi oscillations to be experimentally observable before
the qubit is hampered by the decoherence stemming from
magnetic fluctuations. In the presence of a small applied
magnetic field—say, Bz = 0.2 T, which corresponds to
�0 = 30.5 GHz—T2,m ≈ 4.5 μs, allowing around 500
Rabi oscillations to be experimentally observable.

2. Decoherence induced by the electron-phonon
coupling

The electron-phonon coupling Hamiltonian can be writ-
ten as [104]

He-ph = 1
2

gph

∫
dr�†(r)τz�(r)�(r), (F17)

�(r) =
∑

q

√
�ωq

2V0
(bqeiq·r + b†

qe−iq·r), (F18)

where �(r) = [ψ†
↑(r),ψ

†
↓(r),ψ↓(r), −ψ↑(r)]T is the elec-

tronic field operator, written in the spin and Nambu basis,
and bq (b†

q) is the phonon annihilation (creation) opera-
tor with momentum q, speed velocity cs, and frequency
ωq = csq (assuming only acoustic phonons) in the SC of
volume V0. This interaction is quantified by the coupling
strength gph = Z�2π2n0/mkF

√
B, where Z, n0, and B are

the electron valence from the SC, the atomic density, and
the adiabatic bulk modulus, respectively [105]. The elec-
tronic field operator describing the low-energy YSR states
can be written as [61]

�(r) ≈
∑

i=1,2

φi+(r)γi + φi−(r)γ
†
i , (F19)

where γi (γ †
i ) are the annihilation (creation) operators for

the in-gap Shiba state at position i = 1, 2, while

φi+(r) = JS√
Ni

Ui

⎡

⎢⎣

(Ei+ +�)I0(r)+ I1(r)
0

(Ei+ +�)I0(r)− I1(r)
0

⎤

⎥⎦ , (F20)

and φi−(r) = τyσyKφi+(r) are the eigenspinors pertain-
ing to energies Ei± = ±� (

1 − α2
i

)
/
(
1 + α2

i

)
, in which

K is the complex conjugation. Here, Ui ≡ U(Si) are uni-
tary matrices that align the quantization axis of the Nambu
spinor with the direction of impurity spin i = 1, 2 and
Ni = (1 + α2

i )
2/2πν�αi is the normalization constant for

the ith YSR state. The electron-phonon coupling Hamil-
tonian acting in the low-energy space spanned by the two

YSR states can then be written as

He-ph = gph

2

∑

q

√
�ωq

2V0
(bq + b†

−q)

× [I o
ij (q)γ

†
i γj + I e

ij (q)γ
†
i γ

†
j +h.c.], (F21)

I o,e
ij (q) =

∫
dr eiq·r[φ†

1+(r)τzφ2±(r)− φ
†
2∓(r)τzφ1−(r)],

(F22)

these being overlap integrals between the YSR states
and the phonon field. In the limit q · R � 1, we can
approximate I o,e

ij (q) with its q = 0 expression. We check
numerically that this condition is met in our setup, as a
consequence of the interplay between the phonon energy
ωq = csq, which needs to match the qubit splitting, and the
interimpurity distance R. Furthermore, the YSR qubit acts
in the odd-parity subspace and thus only the I o

ij (0) integrals
are discussed in the following. Considering kFR � 1,

I o
12(0) ≈ 2th cos(kFR + π/4)(α1 + α2)

(1 + α2
1)(1 + α2

2)
√
α1α2

R
ξ

cos
θ

2
, (F23)

while we obtain I o,e
jj (0) = 0, which is in itself a novel result

(this holds when linearization of the spectrum around the
Fermi level is performed). To evaluate the relaxation, we
need to write the above Hamiltonian in the qubit basis. We
obtain

Hq-ph = gph

2α1α2εq
I o
12(0)

∑

q

√
�ωq

2V0
(bq + b†

−q)

×
[
δα�x + th sin(kFR + π/4) cos

θ

2
�z

]
, (F24)

which vanishes in the limit th → 0, as expected. Moreover,
it entails to both population relaxation (T1,ph) as well as
pure dephasing (Tφ,ph).

The phonon-induced relaxation time T1,ph can be found
analogously to T1,m, pertaining to the impurities fluctua-
tions calculation. Then, from Eq. (F23), the relaxation rate
can be evaluated as

�1,ph = 2πg2
ph(δα)

2

4�ε2
qα

2
1α

2
2

|I o
12(0)|2

×
∫

dq
4π2x

�ωq(2nq + 1)δ(εq − �ωq)

=
[

gph|I o
12(0)|δα

2�csα1α2

]2 1
�x

[
2n(εq)+ 1

]
, (F25)

where x is the thickness of the 2D SC. We can readily
see that �1,ph ∝ cos2(θ/2), which vanishes in the antiparal-
lel configuration, while becoming maximal in the parallel
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one. This is in stark contrast to the relaxation induced by
the impurities fluctuations, �1,m ∝ sin2(θ/2), which van-
ish in the parallel configuration. Consequently, the two
mechanisms do not compete with each other in the two
qubit-operation configurations, allowing us to extract their
effects separately. The reason for such behavior is that
phonons cannot cause spin-flip transitions during the tun-
neling processes. In the antiparallel configuration, the tun-
neling of the YSR quasiparticles involves spin flips and
thus results in zero coupling. The pure dephasing rate
�φ,ph = 0, as a consequence of the phonon power spectrum
Jph(ω) ∝ ω2 in the current 2D setup [85]. Then, simi-
larly to magnons, the phonon-induced dephasing entirely
originates from longitudinal relaxation, or T2,ph = 2T1,ph.

In order to provide estimates, let us focus on a 2D Pb
SC slab. We assume that x = 10 nm, i.e., much smaller
than the coherence length ξ , cs ≈ 104 m/s, and gph ≈
1.2 × 10−8

√
μeV cm3. This leads to �1,ph(θ) = 1.72 ×

105 cos2(θ/2) s−1, reaching its maximum at θ = 0. The
corresponding phonon-induced relaxation time in the par-
allel configuration is then T1,ph ≈ 5.8 μs, which is com-
parable in magnitude to that stemming from impurity
fluctuations.

APPENDIX G: ELECTRON-PHOTON COUPLING
IN A CAVITY-QED SETUP

Next, we evaluate the effect of photons (e.g., originating
from a microwave cavity coupled to the YSRQ for manip-
ulation and measurement purposes). The electron-photon
coupling Hamiltonian reads [61]

He-phot = 1
2

∫
dr�†(r)[A(t) · Ĵ + Ĵ · A(t)]�(r)

≈
∑

i,j =1,2

M o
ij (t)γ

†
i γj + M e

ij (t)γ
†
i γ

†
j +h.c.,

M e,o
ij (t) =

∫
drA(t) · J(r), (G1)

Je,o
ij (r) = e�

2mi
[φ†

i±(r)∇φj +(r)− φ
†
j ∓(r)∇φi−(r)], (G2)

where the Ĵ is the current operator that couples to the
vector potential A(t) of the electromagnetic field via the
substitution −i�∇ → −i�∇ + eA(t). For simplicity, we
assume A(t) to be constant in space over the size of the
YSRQ, since the wavelength of the photons resonant with
εq is longer than the coherence length. We mention that
the diagonal terms M o

jj (t) = 0, since the localized states do
not carry any current. Using E(t) = −∂A(t)/∂t, where E(t)
is the electric field, allows us to write, for the odd-parity

sector term in the Fourier space,

|M o
12(ω)| ≈ e�ξE(ω) · R̂

�ω

th cos(θ/2) cos(kFR + π/4)√
α1α2(1 + α2

1)(1 + α2
2)

×
[

1 + α1α2 + R
ξ
(α1α2 − 1)

]
, (G3)

where we utilize iωA(ω) = E(ω) and R̂ = R/R. To pro-
vide estimates for the coupling strength, we note that in
microwave cavities with frequencies comparable to the
qubit splitting, the electric field can be as large as E ≈ 0.2
V/m [106], which, when using the same YSRQ param-
eters as in Appendix F, leads to a coupling strength of
|M o

12(εq)|/� ≈ 10 MHz in the parallel alignment of the
magnetic impurities.
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