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Abstract
We investigate opinion dynamics and information spreading on networks under the influence of
content filtering technologies. The filtering mechanism, present in many online social platforms,
reduces individuals’ exposure to disagreeing opinions, producing algorithmic bias. We derive
evolution equations for global opinion variables in the presence of algorithmic bias, network
community structure, noise (independent behavior of individuals), and pairwise or group
interactions. We consider the case where the social platform shows a predilection for one opinion
over its opposite, unbalancing the dynamics in favor of that opinion. We show that if the imbalance
is strong enough, it may determine the final global opinion and the dynamical behavior of the
population. We find a complex phase diagram including phases of coexistence, consensus, and
polarization of opinions as possible final states of the model, with phase transitions of different
order between them. The fixed point structure of the equations determines the dynamics to a large
extent. We focus on the time needed for convergence and conclude that this quantity varies within
a wide range, showing occasionally signatures of critical slowing down and meta-stability.

1. Introduction

The collective behavior of a system made of interacting individuals can be successfully analyzed using agent-
based models, as shown in many examples across various disciplines [1–3]. In these models, individuals (or
agents) are often pictured as nodes in a network [4, 5], where the links represent the possible interactions
between them. Each node holds a dynamical state variable whose interpretation depends on the context of the
model. In opinion dynamics this opinion variable [1] can be considered as the political party preference of an
individual (e.g., liberal or conservative), her inclination towards or against some regulation or initiative, etc.
The usefulness of the approach lies in the simplicity of the setting, leading, nevertheless, to complex phenom-
ena due to collective effects. The possibility of considering various elements that are hypothesized to be relevant
for opinion formation (such as structural and dynamical heterogeneities) deeply improves our understanding
of the underlying social phenomena.

In recent years, human communication has changed dramatically, and moved from traditional media (face-
to-face, phone, or mass media like television and the press) to online social media platforms (Google, Twitter,
Facebook, etc) [6, 7]. In contrast to earlier media channels, online social networks control the information that
users see and send to each other by means of personalized filtering algorithms [8]. These algorithms record
individual information about users’ preferences and then filter incoming data accordingly [9, 10]. Hence, peo-
ple tend to be exposed to opinions they already agree with, producing so-called algorithmic bias [11, 12]. This
reinforcement feature changes, ultimately, the global behavior of the population [13–16], promoting phe-
nomena like ‘filter bubbles’ or ‘echo chambers’, where people divide in groups with opposing views that barely
interact with each other. Explaining how and when the polarization of opinion groups emerges within a pop-
ulation is of crucial importance [17, 18]. It is of particular interest to understand how copying or herding
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processes (typical signatures of human social behavior), when coupled to algorithmic bias, may enhance or
decrease polarization. These two ingredients can be implemented in the formalism of agent-based models [1]
leading to a flexible mathematical framework open to analytical and numerical treatments. In our simplified
version of an agent based model the only source of heterogeneity is network structure. Ultimately, the results of
such models can be interpreted to help devise potential strategies to mitigate the negative effects of algorithmic
bias.

Previous modeling efforts [19] have been made to consider algorithmic bias in bounded confidence mod-
els [20], where the opinion variable of individuals is a real continuous variable on an interval. The filtering
algorithm requires the opinions of two individuals to be similar enough to be able to interact, and bias means
that similar people with similar opinions have a greater chance to meet, leading to enhanced polarization and
fragmentation in opinion space. Another class of models considers opinions to be discrete (a binary vari-
able in the simplest case) [21, 22]. Perra and Rocha [23] have studied algorithmic bias in such a model by
considering that the opinion of an individual is influenced by its neighbors in the network, and filtered in
various ways. An alternative implementation of algorithmic bias in binary-state models has been proposed
in [24]. In this case, the social platform records information about all the previous opinions of individuals,
and then influences them to keep the opinion that has been held for the longest time, similarly to a mem-
ory or ‘inertia’ effect [25–27]. All these implementations of algorithmic bias in opinion dynamics modeling
suggest that polarization is a consequence of both the social behavior of individuals and the content filtering
algorithms constraining their actions.

In the present work, similarly to the approach of [23], we consider that a fraction of the neighbors of
an individual holding disagreeing opinions are filtered, and thus interactions with those neighbors are not
possible. Recently we have proposed a general formalism within the binary-state approach that includes this
implementation of algorithmic bias [28]. We have extended previous theoretical tools to describe the macro-
scopic dynamics on networks, including mean-field and pair approximations. We have also explored modular
community structures, a crucial ingredient to characterize opinion polarization, i.e. the division of the popu-
lation into opinion groups. We have studied the static, asymptotic behavior of archetypal models of opinion
formation in the presence of algorithmic bias and concluded that, systematically, pairwise interactions lead
to polarization, while group interactions promote coexistence of opinions. Here we use the same formalism
of [28], but focus on dynamical aspects of the opinion formation process. We also extend the algorithmic
bias mechanism to consider situations in which the online social platform promotes one opinion over the
other, thus unbalancing the dynamics in favor of the preferred opinion by the platform, in what we call bias
asymmetry.

We use a prototypical model of social behavior, the language model [29, 30], which takes into account
both pairwise and group-based (copying) interactions depending on the value of a tunable parameter α. We
also include the possibility that individuals act independently of their neighbors [31–33], which we denote
as noise with intensity Q. This general framework enables us to consider several interaction mechanisms and
leads to various opinion formation scenarios. In [28], we have considered other archetypal models of opinion
formation (including voter-like and majority-vote models), and realized that the language model essentially
interpolates between dynamics with either pairwise or group interactions depending on the value of α, and is
thus a good candidate to explore the effects of bias asymmetry within a single model.

The paper is organized as follows. In section 2 we define the opinion formation model, algorithmic bias,
and social network with community structure we use. In section 3 we derive a set of mean-field equations
that describe the global dynamics of the model, and derive its associated fixed points (stationary states of the
dynamics). In section 4 we explore the local dynamics and stability of the fixed points and build the phase
diagram of the model. In section 5 we present a detailed study of temporal behavior of the considered opinion
dynamics model using numerical simulations and some theoretical tools, with particular emphasis on the role
of initial conditions, and the behavior of the time to reach the final state. Throughout this paper we will pay
special attention to the effect of algorithmic bias and its asymmetry.

2. Model and definitions

We consider the formalism of binary-state dynamics [21, 22] as basic ground for modeling opinion formation.
The model system is composed of a set of i = 1, . . . , N individuals, each one holding a binary-state (opinion)
variable si(t) = 0, 1 at time t (e.g., liberal or conservative in a political setting). We define the macroscopic state
(global opinion) of the system as ρ = N−1

∑N
i=1si ∈ [0, 1], i.e. the density of individuals in state 1. Individuals

are represented by nodes of an (undirected) network, and links in the network correspond to some social
relationship between them, such that the opinion of an individual can be influenced by its neighbors in the
network. The state of node i changes according to rates depending on the specific dynamics and the network
structure: with ‘infection’ rate Fki,mi from si = 0 → 1, and with ‘recovery’ rate Rki,mi from si = 1 → 0, where ki is

2
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the degree of the node in the network and mi ∈ [0, ki] is the number of (nearest) neighbors of i in state sj = 1.
(Here the names of the rates refer to the analogy with epidemic spreading.)

In the following we specify the spreading dynamics, i.e. the functional form of the rates Fk,m and Rk,m, and
the network structure. As for the spreading dynamics, we incorporate algorithmic bias (representing content
filtering as implemented in many online social platforms) that influences and controls the way people interact.
For the network structure, we include modules or communities by dividing the population into groups with
tunable connectivity.

2.1. Transition rates in the language model
As mentioned above, we focus on the language model [29, 30], which is able to describe both pairwise and
group interactions. The transition rates are as follows:

Fk,m = Q + (1 − 2Q)
(m

k

)α

, (1)

Rk,m = Q + (1 − 2Q)

(
k − m

k

)α

, (2)

with Q ∈ [0, 1/2] and α ∈ (0,∞) as tuning parameters. The model takes into account two mechanisms driv-
ing the dynamics: (i) noisy or idiosyncratic changes of state, with intensity Q; and (ii) herding or copying the
states of neighbors with probability proportional to the fraction of neighbors in the opposite state to a power
α. The rates in equations (1) and (2) were first studied in the case without noise (Q = 0) to model the dynam-
ics of language death [29], but the same model has been applied to other types of social human behavior, for
example in the context of opinion formation in social media [34]. The role of noise (Q > 0) has been exten-
sively studied of late, as for the non-linear noisy voter model in [33] with α a real (continuous) number, and
for the q-voter model [35–37] with α = q a positive integer. The language model encapsulates a wide variety
of phenomena depending on the value of α. E.g., for the mean field (complete network) the following regions
can be distinguished (i) low 0 < α < 2 (pairwise interactions); (ii) high 2 < α < 5, (group interactions); and
(iii) very high α > 5. Each of these cases displays a distinct phenomenology [28, 33] and represents a differ-
ent archetypal way for humans to influence each other (either in pairs or in groups). Note that the separation
between pairwise (low α) and group (high α) behaviors, mentioned throughout the paper, occurs smoothly
(as a crossover and not as a sharp transition) for an intermediate value of α ≈ 2, see [28]. This distinction will
help us sort out and interpret the results of the model and the possible effects of algorithmic bias.

Note that the original rates in equations (1) and (2) fulfill the ‘up-down symmetry’ condition Rk,m = Fk,k−m

but, as we will show next, equations (3) and (4) are only symmetric for b0 = b1, where b0 and b1 are formally
defined in the next section 2.2. In other words, unbalanced algorithmic bias breaks the symmetry of the system
and favors one opinion over the other.

2.2. Algorithmic bias
A simple implementation of algorithmic bias has been proposed by us in a previous study [28]. Here we gen-
eralize the definition of that paper by introducing two parameters characterizing the bias, instead of one. The
bias intensities b0 and b1 (where the subscripts refer to state 0 or 1) take values in the interval [0, 1]. These
parameters measure the probabilities that the online platform filters out a neighbor in the opposite state, 0 or
1, (disagreeing opinion) of an individual with a given opinion, so that further interactions with that neigh-
bor cannot take place. This mechanism of content filtering can be implemented in the formalism of any rate
governed binary-state model by considering the following effective transition rates F∗

k,m, R∗
k,m:

F∗
k,m(b1) =

m∑
i=0

Bm,i(1 − b1)Fk−m+i,i, (3)

R∗
k,m(b0) =

k−m∑
s=0

Bk−m,s(1 − b0)Rm+s,m, (4)

with the binomial Bk,m(1 − b) =
(

k
m

)
(1 − b)mbk−m. Equations (3) and (4) express the average rates of chang-

ing state, after removing with probability b0 or b1 a subset of neighbors in the opposite state (b0 if neighbors
are in state s = 0 and b1 for s = 1). We define the total bias intensity b = (b0 + b1)/2, and the bias asymmetry
Δb = b1 − b0, with b0 = b −Δb/2 and b1 = b +Δb/2. For Δb > 0 the social platform favors s = 0, while
forΔb < 0 it favors s = 1. In [28] we have implemented bias in a similar way to equations (3) and (4), but with
b0 = b1 = b (i.e. Δb = 0), such that the role of algorithmic bias is symmetric, or balanced across opinions.

3
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2.3. Modular structure
The social network of interactions between individuals is fully specified by the adjacency matrix Aij, with ele-
ments equal to 1 if i and j are connected and 0 otherwise. For simplicity we consider the degree distribution
Pk as the only relevant structural feature of the network, with average degree z =

∑
k Pkk. We use the standard

configuration model [38] to produce synthetic networks in the corresponding numerical simulations.
When the network displays modular (community) structure, we may classify individuals into groups

with higher connectivity to nodes inside the group than to those outside. There is no unique definition of
community, and for this reason there are several algorithms of community detection in networks that may
lead to different results [39]. Regardless of the details of the chosen definition, link density inside a commu-
nity should be higher than between communities. In social networks, homophily (similarity between some
node attributes) is one of the main tie formation mechanisms leading to communities [40–42]. Since opinion
dynamics might be much faster than the homophilic processes leading to community structure, we consider
such structure as static.

When the population is divided in two asymmetric groups, with different sizes and connectivity, we refer
to them as the majority and minority groups. Assuming for simplicity two modules, nodes i = 1, . . . , N1 are
in group 1 of size N1, and nodes i = N1 + 1, . . . , N1 + N2 = N in group 2 of size N2 (nodes can only belong to
one group). The two groups have different connectivity depending on whether links join nodes of the same or
different groups. In this way, two nodes in the same group are more likely to be connected than if they belong
to different groups. In order to characterize the macroscopic state accordingly, we need at least two variables:
ρ1 = N−1

1

∑N1
i=1 si ∈ [0, 1] and ρ2 = N−1

2

∑N2
i=N1+1 si ∈ [0, 1], the density of nodes in state 1 in groups 1 and

2, respectively, with total ρ = N1
N ρ1 +

N2
N ρ2 ∈ [0, 1]. Additionally, we define polarization as P = |ρ1 − ρ2| ∈

[0, 1], which measures the degree of opinion dissimilarity between groups.
We consider four average degrees, z1, z12, z21, and z2, defining the connectivity inside and between groups.

Parameter z1 (z2) is the average degree only considering links that join nodes within group 1 (2), while z12 (z21)
is the average degree only considering links that depart from group 1 and end up in group 2 (from 2 to 1).
The total number of links that go from group 1 to 2 is the same as those that go from 2 to 1, so we have the
constraint N1z12 = N2z21.

3. Mean-field description

We derive a set of mean-field evolution equations for the two macroscopic variables ρ1(t) and ρ2(t), of general
validity in the thermodynamic (N →∞) and highly connected (z1, z12, z21, z2 →∞) limit, with constant ratios
of the average degrees. Even in a finite system with high connectivity, the mean field description is a good
approximation of the dynamics, and it captures the phenomenology of the model well. For large values of N,
the opinion variables fluctuate slightly around their average values, i.e., ρ1(t) ≈ 〈ρ1(t)〉, ρ2(t) ≈ 〈ρ2(t)〉. Thus,
throughout the following mean-field description, ρ1(t) and ρ2(t) refer to average values over realizations.

In order to derive the mean-field equations [28] we first define the average rate of changing state [22] as

f [x] ≡
∑

k

Pkk

z

k∑
m=0

Fk,mBk,m(x), (5)

where x is the probability of finding a neighbor in state 1, and Pkk/z is the probability that a link connects to
a node with degree k. In order to obtain a closed description of the dynamics, we must relate the probability x
to the description variables ρ1 and ρ2. The probability x depends on the group to which the node belongs. In
the case of group 1 we have

x1 =
N1z1ρ1 + N2z21ρ2

N1z1 + N2z21
=

ρ1 + p1ρ2

1 + p1
, (6)

with p1 = N2z21/N1z1 = z12/z1, and, similarly, for group 2 exchanging the labels 1 ↔ 2, with
p2 = N1z12/N2z2 = z21/z2. Equation (6) is the ratio of the number of links coming out of nodes in
state 1 that connect to nodes in group 1, and the number of links coming out of nodes in group 1.

If we consider algorithmic bias (b1 > 0), we must use the effective F∗
k,m of equation (3) instead of Fk,m to

calculate the average rate f∗[x] in the network using equation (5). Applying an argument based on the highly
connected limit (z →∞) [28], the effective average rate with bias reduces to

f ∗[x] ≈ f

[
(1 − b1)x

1 − b1x

]
. (7)

4
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Figure 1. Schematic representation of fixed points of opinion dynamics in (ρ1, ρ2)-phase space. The left (right) side corresponds
to the low (high) α regime of the model. Joined colored circles inside a square represent the opinion states s = 0 (blue) or s = 1
(red) of each group (e.g., two circles of the same color represent consensus, while circles of different colors represent
polarization). The legend displays the color coding and names of the most relevant fixed points. Pairs of fixed points [circle
(stable) and square (unstable)] have the same color if they disappear/appear together for specific values of the parameters.

When b1 = 0 we recover f∗[x] = f[x]. An analogous procedure can be applied to the effective recovery rate R∗
k,m

of equation (4), leading to r∗[x], which in the presence of up-down symmetry (Rk,m = Fk,k−m) is given by

r∗[x] ≈ f

[
(1 − b0)(1 − x)

1 − b0(1 − x)

]
. (8)

After defining the effective average rates f∗[x], r∗[x] and the probabilities x1,2, we obtain a system of two
differential (mean-field) equations for the dynamics of the state variables �ρ(t) with components ρ1(t) and
ρ2(t):

dρ1

dt
= (1 − ρ1)f

[
(1 − b1)(ρ1 + p1ρ2)

1 + p1 − b1(ρ1 + p1ρ2)

]
− ρ1f

[
(1 − b0)(1 − ρ1 + p1(1 − ρ2))

1 + p1 − b0(1 − ρ1 + p1(1 − ρ2))

]
≡ μ1[ρ1, ρ2], (9)

dρ2

dt
= (1 − ρ2)f

[
(1 − b1)(ρ2 + p2ρ1)

1 + p2 − b1(ρ2 + p2ρ1)

]
− ρ2f

[
(1 − b0)(1 − ρ2 + p2(1 − ρ1))

1 + p2 − b0(1 − ρ2 + p2(1 − ρ1))

]
≡ μ2[ρ1, ρ2]. (10)

This mean-field description of the opinion formation model has the social behavioral parameters (Q,α), the
algorithmic bias parameters (b,Δb), and the group connectivity parameters (p1, p2), together with the initial
condition ρ1(0), ρ2(0).

3.1. Fixed point structure and stationary solutions
The stationary results of equations (9) and (10), i.e. the infinite time limit ρ1(∞) and ρ2(∞), correspond to
the stable fixed points. The fixed points ρst

1 , ρst
2 are obtained from the condition

μ1[ρst
1 , ρst

2 ] = 0, (11)

μ2[ρst
1 , ρst

2 ] = 0. (12)

The study of the solutions of equations (11) and (12) as a function of the parameters is a first step in under-
standing the dynamics and general behavior of the model. In figure 1 we show the positions in (ρ1, ρ2)-
phase space of all possible fixed points in the model, together with color and name coding to identify and
refer to them easily in the following sections and figures. Note the presence of the collective opinion states
most relevant to our discussion: consensus (ρst

1 = ρst
2 ≈ 0 or ρst

1 = ρst
2 ≈ 1), coexistence (ρst

1 = ρst
2 ≈ 1/2), and

polarization (ρst
1 ≈ 0, ρst

2 ≈ 1 or ρst
1 ≈ 1, ρst

2 ≈ 0). All these states are possible in the low (pair) and high (group)
α regimes for certain values of the model parameters (Q,α, b,Δb, p1, p2).

4. Local dynamics and stability

A basic step in understanding the dynamics of the model is to explore the vector fields of equations (9) and
(10) and the associated trajectories close to the fixed points ρ1(t) ≈ ρst

1 , ρ2(t) ≈ ρst
2 . This can be done by means

of a linearization of the dynamical equations. The linearization process leads to an exponential solution,

ρ1(t) ≈ ρst
1 + C1v11 e−λ1t + C2v21 e−λ2t , (13)

ρ2(t) ≈ ρst
2 + C1v12 e−λ1t + C2v22 e−λ2t , (14)

5
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where �v1 = (v11, v12) and �v2 = (v21, v22) are the eigenvectors with associated eigenvalues λ1 and λ2 of the
Jacobian matrix Jij =

∂μi
∂ρj

, evaluated at the fixed point ρst
1 , ρst

2 . C1 and C2 can be calculated from the initial

condition as

C1 =
v21ρ

∗
2 − v22ρ

∗
1

v12v21 − v11v22
, (15)

C2 =
v12ρ

∗
1 − v11ρ

∗
2

v12v21 − v11v22
, (16)

with ρ∗1 = ρ1(0) − ρst
1 and ρ∗2 = ρ2(0) − ρst

2 .
The stability of a fixed point is determined by the sign of (the real part of) the associated eigenvalues: for

λ1,2 < 0 it is stable, for λ1,2 > 0 it is unstable, and for λ1 < 0, λ2 > 0 or λ1 > 0, λ2 < 0 it is a saddle point.
Only when the fixed point is stable, we expect trajectories to converge to the fixed point in the long time limit
[ρ1(t) → ρst

1 , ρ2(t) → ρst
2 ].

The eigenvalues can be calculated as

λ1,2 =
1

2

(
τ ±

√
τ 2 − 4Δ

)
, Δ = λ1λ2, τ = λ1 + λ2, (17)

where τ = J11 + J22 is the trace and Δ = J11J22 − J12J21 the determinant of the Jacobian matrix evaluated at
the fixed point ρst

1 , ρst
2 . If τ 2 > 4Δ the eigenvalues only have a real part (the case for all fixed points in figure 1).

The condition for a transition (bifurcation) is that one of the eigenvalues becomes zero (a so-called marginal
stability), or equivalently Δ[ρst

1 , ρst
2 ] = 0. This condition together with equations (11) and (12) determines the

transition lines and the phase diagrams. At a transition we expect some fixed points to appear or disappear
(usually in couples).

In figure 2 we show the phase diagram and vectors fields in the prototypical scenario of pairwise interactions
(low α) as a function of bias asymmetry Δb. The phase diagrams in figures 2(a) and (b) correspond to the
well-known cusp catastrophe [43], where transitions are saddle node bifurcations in which two fixed points
(stable and saddle point or saddle point and unstable) merge and disappear for high enough bias asymmetry.
In the case of two equal groups (p1 = p2, figure 2(a)), when tuning bias asymmetry, polarization is destroyed
favoring the consensus states. After that, for a specific high value of the asymmetry, one of the two consensus
states disappears (figure 2(c)) and the only remaining state is ρst

1 = ρst
2 ≈ 0 for Δb > 0, or ρst

1 = ρst
2 ≈ 1 for

Δb < 0. Every time a pair of fixed points merge, there is a region in phase space where the dynamics ρ1(t),
ρ2(t) becomes very slow and meta-stable states appear (in section 5 we discuss this in more detail). Note that in
the symmetric version of the model (Δb = 0), when more than one stable fixed point exists, initial conditions
determine the final state. However, when the exogenous ingredient of bias asymmetry is introduced by the
social media (Δb �= 0), it is possible to ‘select and control’ the final opinion of the system.

Another relevant scenario is that of asymmetric groups p1 �= p2, where one of them is either better con-
nected and/or bigger in size, i.e. for p1 < p2 group 1 has more nodes or links than group 2, and the other way
around for p1 > p2. The two polarized states (ρst

1 ≈ 0, ρst
2 ≈ 1 and ρst

1 ≈ 1, ρst
2 ≈ 0) are not symmetric, depend-

ing on which is the opinion of the majority and minority groups. For this reason, there are two transition lines
in the phase diagram of figure 2(b) with cusps at different positions, one for Δb > 0 and the other for Δb < 0.
Thus, bias asymmetry promotes (instead of destroying) polarization in the region between the two cusps. This
result has a clear interpretation: if the social platform favors the opinion of the minority group, polarization will
become stronger as it will be harder for the majority group to convince the other, leading the system towards
consensus. The value of Δb at the cusp is the ‘optimal’ one if we wish to balance such majority-minority
scenario (i.e., asymmetry in group sizes and connections) by using an exogenous algorithmic bias.

In figure 3 we plot the eigenvalues of all fixed points as a function of bias asymmetry in the same case
specified in figure 2. The eigenvalues provide us with a lot of information about the nature of the fixed points
and the dynamics close to them. The sign of the eigenvalues in figure 3 agree with the schematic representation
of the vector fields in figure 2(c), and it determines the stability analysis of the fixed points. Every time an
eigenvalue becomes zero, a pair of fixed points disappears, defining a transition or bifurcation.

In figure 4 we show the phase diagram and vector field in the case of group interactions (high α) as a
function of bias asymmetry Δb. Figures 4(a) and (b) correspond to the so-called butterfly catastrophe [43].
We observe some differences with respect to the pair interaction case, besides the rich phenomenology of
additional fixed points. The first difference is that the coexistence and consensus states can be both stable for
some parameter values, at odds with results in figure 2. With respect to the dependence of the consensus states
on bias asymmetry, for low noise we have a similar behavior as for pair interactions, while for high noise it is
possible that a consensus state, which is not observed for Δb = 0, appears for some value Δb �= 0. Standard
polarization is also destroyed for a critical value of the asymmetry in the group interaction case. The difference
is that new stable polarized states are possible in the group case (pol-coex 2 and pol-coex 4 in figure 1), whose

6



J.Phys.Complex. 2 (2021) 045009 (15pp) A F Peralta et al

Figure 2. Phase diagrams for (a) p1 = p2 = p = 0.1, and (b) p1 = 0.05, p2 = 0.1, and vector fields (c) for fixed values of the
model parameters α = 1 (linear or pairwise regime) and b = 0.8. In the phase diagrams (a) and (b) the varying parameters are
(Q,Δb), i.e. the noise and bias asymmetry. The transition lines (green and blue) delimit the parameter regions where the different
possible fixed points are stable. Circles inside a square indicate the corresponding fixed point following the scheme of figure 1.
The phase diagram (a) corresponds to the case of two equal groups, while in (b) there is a majority (big circle) and minority
(small circle) group. In the region below the green line both consensus states are stable, and above only one of them remains,
while below the blue line polarization is stable. In panel (c), the left vector field is a typical situation below the blue line of the
phase diagram (a) for Δb = 0. The other vector fields (from left to right) show how this changes as we increase Δb and cross the
various transition lines. The elliptical striped zones are regions where the dynamics is very slow and meta-stable states are possible
(see section 5).

behavior with respect to bias asymmetry is non-trivial. Similarly to the consensus states, these new polarized
states may appear for a particular value of the asymmetry, even though they are not present in the symmetric
case.

In figure 5 we show the eigenvalues of the fixed points of figures 1 and 4(c) as a function of Δb for different
values of the noise Q. These figures provide us with information about the stability, dynamics and transitions
that are possible in this case. Note that, depending on the value of Q, we may find some of the fixed points
or not, and that different transitions happen for specific values of Δb, in accordance with the phase diagram
in figure 4(b). The vector field scheme in figure 4(c) is a low-noise scenario where all fixed points are present
(figure 5(c)). For other values of the noise Q (in figures 5(a) and (b)), not all the fixed of figure 4(c) are possible,
and the transitions may occur in different orders as we increase Δb.

5. Global dynamics, convergence times and meta-stable states

The global dynamics ρ1(t), ρ2(t) of the system has a non-trivial dependence on the initial condition ρ1(0),
ρ2(0) and the model parameters (Q,α, b,Δb, p1, p2), besides time t. The determination of the fixed points, the
stability, and the local (linearized) dynamics are a good guideline to predict and understand, at least quali-
tatively, the dynamical behavior of the system. There are other aspects of the dynamics that cannot be fully
explained by the fixed points and the linear dynamics approach. Among these, we study with particular atten-
tion what we call meta-stable states, where the dynamics slows down strongly and stays for a long time around a
determined value of the state variables. This phenomenon is observed in the model, especially when two fixed
points merge and disappear (the elliptical striped zones in figures 2(c) and 4(c)). As there are no fixed points
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Figure 3. Eigenvalues of the various fixed points of figures 1 and 2(c) for parameter values α = 1 (linear or pairwise regime),
b = 0.8, p1 = p2 = p = 0.1 and Q = 0.01, as a function of the bias asymmetry Δb. The color and name coding in the legends is
equivalent to that of figure 1. The lines of the same color (blue) correspond to a pair of polarized fixed points, dashed (saddle
point) and solid (stable), that merge together and disappear for a particular value of Δb.

Figure 4. Phase diagrams for (a) α = 4, b = 0.8, and (b) α = 6, b = 0.75, and vector fields (c) for fixed connectivity
p1 = p2 = p = 0.1. In the phase diagrams (a) and (b) the varying parameters are (Q,Δb), i.e., the noise and bias asymmetry. The
transition lines (green, red, dark and light blue, and yellow) delimit the parameter regions where fixed points are stable. Circles
inside a square indicate the corresponding fixed points following the scheme of figure 1. In panel (c), the left vector field is a
typical situation below the blue line (and above the red, light blue and yellow lines) of the phase diagram (b) for Δb = 0. The
other vector fields from left to right show how this changes as we increase Δb and cross the various transition lines. The elliptical
striped zones are regions where the dynamics is very slow and meta-stable states are possible (see section 5).

around these zones, it is not possible to evaluate the eigenvalues and explore the local dynamics. Thus, we need
to use a different theoretical method to characterize the meta-stable states. We also explore the time needed to
reach the final states and the dependence on the initial conditions, theoretically and by means of Monte Carlo
simulations.

5.1. Numerical simulations
Before introducing the theoretical description of the meta-stable states, we analyze the results coming from
Monte Carlo simulations. Implementing the rules of the model (section 2), we obtain stochastic trajectories
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Figure 5. Eigenvalues of the various fixed points of figures 1 and 4(c) for parameter values α = 6 (group regime), b = 0.75,
p1 = p2 = p = 0.1 and Q = 0.01, 0.005, 0.002, as a function of bias asymmetry Δb. The color and name coding in the legends is
equivalent to that of figure 1. Lines of the same color (light and dark blue, red and yellow) correspond to a pair of fixed points,
dashed (saddle point or unstable) and solid (stable), that merge together and disappear for a particular value of Δb.

ρ1(t), ρ2(t), from which we calculate the average global state of the system 〈ρ(t)〉 and polarization 〈P(t)〉 that
characterize the dynamics. In figures 6 and 7 we show numerical results for pair interactions (α = 1) on a large
(N = 20 000) z−regular type of network with modular structure. In order to compare the simulations with
the phenomenology coming from the theory, we use the same parameter values as in figures 2(a) and 3, i.e.
Q = 0.01, b = 0.8 and p1 = p2 = 0.1.

In figure 6 we show the dynamics coming from numerical simulations of the model for various homo-
geneous initial conditions and bias asymmetries. In the top panels, from left to right, one of the consensus
states becomes unstable for a determined value of the bias asymmetry and then, independently on the initial
condition, all trajectories evolve towards the remaining stable consensus state. This corresponds to crossing
(horizontally) the green transition line in the phase diagram of figure 2(a). Note that before the transition,
when the two consensus states are possible, and depending on the initial condition ρ1(0) = ρ2(0) = ρ(0), the
dynamics evolves towards one state or the other. We can thus define a threshold initial condition ρ0 that sep-
arates the basin of attraction of the consensus states. This threshold depends on the bias asymmetry ρ0(Δb):
for no asymmetry (Δb = 0) it is ρ0 = 0.5, it increases for Δb > 0 (decreases for Δb < 0), and it is not defined
above the transition point as only one consensus state is stable. In figure 7, we show the dynamics coming
from numerical simulations of the model for different polarized initial conditions and bias asymmetries. In
the top panels, from left to right, the polarized state becomes unstable for a determined value of the bias asym-
metry and then all trajectories evolve towards a non-polarized (P = 0) consensus state. This corresponds to
crossing (horizontally) the blue transition line in the phase diagram of figure 2(a). Note that the dynamical
results shown in figures 6 and 7 are in good agreement with the qualitative description of the vector fields in
figure 2(c).

A significant dynamic phenomenon observed in figures 6 and 7 (specially in panels 6(b) and 7(b)–(d)) is
the presence of trajectories that get trapped for a long period of time in some state, but eventually get released
and end in one of the possible final (stable) states. In figure 7(d) we see that such a meta-stable state appears
above the transition point Δb∗, and that its duration decreases as we increase the asymmetry. We represent
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Figure 6. Average density 〈ρ〉 of nodes in state 1 as a function of time t coming from numerical simulations of the model, starting
from a homogeneous initial condition ρ1(0) = ρ2(0) = ρ(0). The model and connectivity parameters are α = 1, b = 0.8,
Q = 0.01, p1 = p2 = 0.1, z1 = z2 = 18, z12 = z21 = 2, and the size of the network is N = 20 000, divided in two groups
(communities) of equal size (N1 = N2 = N/2), averaged over 1000 realizations of the dynamics. In the top panels (a)–(c),
trajectories correspond to various initial conditions ρ(0) for a fixed value of the bias asymmetry Δb (specified in the title). In the
bottom panels (d)–(f), a color gradient is used for bias asymmetry Δb in the range [0, 0.5] for a fixed initial condition ρ1(0),
ρ2(0) (specified in the title).

Figure 7. Average polarization 〈P〉 = 〈|ρ1 − ρ2|〉 as a function of time t coming from numerical simulations of the model,
starting from a polarized initial condition ρ2(0) = 1 − ρ1(0). All model, connectivity and network parameters are the same as in
figure 6. In the top panels (a)–(c) a fixed bias asymmetry is used for different initial conditions, while in the bottom panels
(d)–(f) a fixed initial condition is used for different bias asymmetries (colors).

this meta-stable state as an elliptical stripped zone in the vector fields figure 2(c), and we characterize them
theoretically in what follows (section 5.2).

5.2. Saddle node bifurcations and meta-stability
Close to a critical (bifurcation) point, it is possible to obtain the normal form of the dynamics [44], which
goes beyond the linearization of equations (13) and (14). Assume that we have a fixed point ρst

1 and ρst
2 with an
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eigenvalue equal to zero λ1 = 0, for a determined value of a tuning parameter, e.g. Δb = Δb∗ (bifurcation or
critical point). We perform a change of variables to the eigenvector basis �u(t) = P−1�ρ(t), where the columns
of the matrix P are the eigenvectors �v1,2, that is,

P =

(
v11 v21

v12 v22

)
. (18)

The evolution of the transformed variables �u(t) becomes

d�ρ

dt
= �μ(Δb, �ρ) → d�u

dt
= �U(Δb,�u) ≡ P−1�μ(Δb, P�u). (19)

The transformed vector field fulfills �U(Δb∗,�ust) = 0 (here �ust refers only to the fixed point at the bifurca-
tion point Δb = Δb∗) and ∂Ui/∂uj = −λiδij (again at Δb∗ and �ust), i.e., the linear part is uncoupled. In

this case, when λ1 = 0, there is a center manifold �u(t) = �h(Δb, u1(t)), i.e. a special trajectory where the time
dependence of all variables is governed by the slow u1(t). This satisfies�ust = �h(Δb∗, ust

1 ) and the orthogonality
condition ∂hi/∂u1 = 0. The center manifold can be obtained from equation (19) as a series expansion. Once
the functions �h(Δb, u1) have been determined, we obtain a single equation for u1(t),

du1

dt
= U1(Δb,�h(Δb, u1))

= β(10)(Δb −Δb∗) + β(11)(Δb −Δb∗)(u1 − ust
1 ) + β(02)(u1 − ust

1 )2

+ β(03)(u1 − ust
1 )3 + · · · , (20)

where β(10), β(11), β(02), β(03) are coefficients whose expressions can be derived5 from the series expansion of
the center manifold [45].

We consider the most common bifurcation found as a function of the bias asymmetry Δb (see figures 2(c)
and 4(c)), i.e. the saddle node bifurcation with β(10) �= 0 and β(02) �= 0. In its simplified form we have

du1

dt
= β(10)(Δb −Δb∗) + β(02)(u1 − ust

1 )2, (21)

where the higher order terms can be disregarded. Assuming positive coefficients β(10) > 0, β(02) > 0, and for
Δb < Δb∗, the solution of equation (21) is

u1(t) = ust
1 −

√
β(10)(Δb∗ −Δb)

β(02)
tanh

[√
β(10)β(02)(Δb∗ −Δb)t + C

]
, (22)

while for Δb > Δb∗ it is

u1(t) = ust
1 +

√
β(10)(Δb −Δb∗)

β(02)
tan

[√
β(10)β(02)(Δb −Δb∗)t + C

]
, (23)

where C is determined from the initial condition u1(0). Note how, for Δb < Δb∗ in equation (22), the system
goes to a stable fixed point in the infinite time limit as tanh(∞) = 1 and u1(∞) takes a finite value, while for
Δb > Δb∗ in equation (23) the system slows down close to u1(t) ≈ ust

1 and then diverges (corresponding to a
meta-stable state). According to equation (23), close to the bifurcation point Δb�Δb∗, the solution scales as
u1(t) − ust

1 ∼ (Δb −Δb∗)1/2 and time as t ∼ (Δb −Δb∗)−1/2.
From the previous derivation we infer that, as we increase bias asymmetry Δb, we find a critical value

Δb∗ (see figures 2(c) and 4(c)) where two fixed points, a saddle and a stable point, merge and disappear at
a saddle node bifurcation. At the critical point we observe a meta-stable (slow) region in both variables and
time. The size of this region scales with the distance to the critical point as (Δb −Δb∗)1/2 in the variables and
as (Δb −Δb∗)−1/2 in time. The zone is centered at the position where the two fixed points merge, i.e. the fixed
point at the critical point Δb = Δb∗, and it is elongated along the slow eigendirection �v1.

5.3. Convergence times
An important quantity to analyze the global dynamical behavior of the model is the convergence time needed
to reach the final (stationary) state. Often, when modeling the opinion dynamics of a population, we are not

5 For example, for the polarization transition in figure 3 we obtain β(10) = 0.226 376, β(02) = 0.672 844, β(11) = 0.789 372, and
β(03) = −1.553 56.
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Figure 8. Inverse of convergence time (t−1
f ) as a function of bias asymmetry Δb and initial condition ρ(0), coming from

numerical simulations of the model. We use the same parameters of the model (Q = 0.01, b = 0.8, α = 1 and p = 0.1), networks
and simulation details as in figures 6 and 7. A percentage of %VAL = 10% was used in equations (26) and (27) to determine the
time tf. Top panels show the dependence t−1

f (Δb) for fixed initial conditions specified in the keys: (a) homogeneous
ρ1(0) = ρ2(0) = ρ(0), and (b) polarized ρ2(0) = 1 − ρ1(0) = ρ(0). Bottom panels show the full dependence t−1

f (Δb, ρ(0)) as a
colormap, for (c) homogeneous and (d) polarized initial conditions.

only interested in the possible final states of the system, but also in this convergence time and its dependence
on the parameters of the model.

For reason of convenience, we write the time dependence of the global quantities as follows:

ρ1(t) = ρst
1 + (ρ1(0) − ρst

1 )g1(t), (24)

ρ2(t) = ρst
2 + (ρ2(0) − ρst

2 )g2(t), (25)

such that g1,2(0) = 1 and g1,2(∞) = 0. In the linear regime of equations (13) and (14), g1,2(t) are a sum of two
exponential functions (e−λ1t and e−λ2t) with amplitudes depending on the eigenvectors and initial conditions.
The quantities λ−1

1 and λ−1
2 estimate well the two time scales involved in the time evolution close to the fixed

point. For the general global dynamics g1,2(t), the exponential form is not valid and we have a complicated

time-dependence. We measure the time scale tf of the global dynamics as the smallest of the solutions t(1)
f and

t(2)
f fulfilling the following conditions:

ρ1(t(1)
f ) − ρst

1

ρ1(0) − ρst
1

= g1(t(1)
f ) = %VAL, (26)

ρ2(t(2)
f ) − ρst

2

ρ2(0) − ρst
2

= g2(t(2)
f ) = %VAL, (27)

where %VAL is an arbitrary percentage measuring how close the system is to the final state when the
convergence time tf is reached.

In figure 8 we show the dependence of the convergence time tf, extracted from numerical simulations, on
bias asymmetry and initial conditions in the case of pair interactions, for the same parameters as in figures 6
and 7. Note that the system reaches different final states depending on the values of Δb, ρ1(0) and ρ2(0). This
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can be clearly seen in figures 8(c) and (d), where a dark blue line separates two zones where the system reaches
different final states, and where the behavior of the convergence times changes (in figures 8(a) and (b) it cor-
responds to the minimum of the curves). The line that separates the two behaviors is what we call a threshold
initial condition ρ0(Δb) in section 5.1, i.e. the limit of the basin of attraction of the possible (consensus and
polarization) final states. The dependence of the inverse of the convergence time (t−1

f ) with bias asymmetryΔb,
increasing or decreasing, shows a clear correspondence with the eigenvalues of the final (stable) state (polar-
ization or consensus) in figure 3. When the final state is polarization (Δb < 0.02 in figures 8(b) and (d)) it
seems that the trend, increasing or decreasing, as a function ofΔb is not that clear. This can be also understood
from figure 3, where there is one eigenvalue increasing and another decreasing withΔb. Generally, the smallest
eigenvalue dominates the dynamics, unless the initial condition is aligned with the fast eigendirection. That is
the reason why we mainly observe a decreasing behavior in the simulations, while an increasing trend is also
possible in some situations.

In figures 8(a) and (b) we can identify the characteristic scaling behavior t−1
f ∼ |Δb −Δb∗|1/2, of the

saddle-node bifurcation. Before the transition point (Δb � Δb∗), this is directly related to the eigenvalue of
the final state λ ∼ (Δb∗ −Δb)1/2 and can be considered as critical slowing down, while after the transition
(Δb � Δb∗), the meta-stable state dominates the dynamics (see figure 7(d)) with an equivalent time scaling
as in equation (23). Note that there are two saddle-node bifurcations, figures 8(b) (consensus) and figure 8(a)
(polarization), with different transition points Δb∗.

6. Summary and conclusions

In this paper we have studied the role of algorithmic bias and community structure in the potential rise of
polarization of opinions in online social networks. We have devoted special attention to the temporal behavior
of an archetypal two-state opinion-formation model, the language model, as well as to the role of the bias
asymmetry Δb, i.e. the possibility that the online platform favors one opinion over the other. We have derived
a pair of mean-field differential equations for the relevant variables of the dynamics, the density ρ1(t)[ρ2(t)] of
nodes in group 1 (2) holding opinion 1. This theoretical description accurately captures the phenomenology
of the model and shows a good fit with numerical simulations.

The possible final opinion states reproduced by the model are: consensus (ρ1 = ρ2 ≈ 0 or ρ1 = ρ2 ≈ 1),
coexistence (ρ1 = ρ2 ≈ 1/2), and polarization (ρ1 ≈ 0, ρ2 ≈ 1 or ρ1 ≈ 1, ρ2 ≈ 0). All states are found in the
whole spectrum between pair and group interactions displayed by the language model as the α parame-
ter is changed. For some parameter values in the group interaction case, we also find additional polarized
(polarization-coexistence) states with ρ1 ≈ 0 and ρ2 ≈ 1/2 (and the three equivalent states exchanging the
groups 1 ↔ 2 and states 0 ↔ 1). Using linear stability analysis, we have determined the phase diagrams for
pair and group interactions. In general, we find that sufficiently strong asymmetry in the bias is capable to
destroy first the stability of the polarized states, and then one of the consensus states via saddle-node bifur-
cations. The phase diagram of the consensus states corresponds to the well-known cusp catastrophe for pair
interactions and butterfly catastrophe for group interactions. Thus, bias asymmetry is a means to ‘select’ final
states of the dynamics, controlling the global behavior of the system.

When the population is divided in two asymmetric groups in terms of size or connectivity (which can be
thought of as a majority and minority groups), a somewhat different situation relating to the polarized states
is produced by the model. In a range of values of the bias asymmetry (−Δb,Δb), polarization is not neces-
sarily suppressed but also favored, while above that range it is only destroyed. The two polarized states are
not equivalent, depending on which is the opinion of the majority and minority groups. If the social platform
benefits the opinion of the minority group then polarization is promoted, while in the opposite case polar-
ization is suppressed in favor of consensus. The values of the bias asymmetry that delimit this behavior can
be understood as the case where the structural asymmetry of the network (in group size and connectivity) is
compensated by the ‘favoritism’ of algorithmic bias.

Results of numerical simulations confirm the possible final states predicted by the mean-field theory and
the role of bias asymmetry. We have found that the convergence time (time to reach a stationary final state)
depends on bias asymmetry, initial conditions, and the other parameters of the model in non-trivial ways.
By means of the eigenvalues of the linearized dynamics, we were able to characterize this dependence close
to the final states, gaining a better understanding of the type of transitions we have, and what happens to the
dynamics when one of the final states loses its stability. An unavoidable phenomenon we observe when one
of the stable solutions disappears is the presence of meta-stable states. This means that the system becomes
trapped for a long period of time in a region of the phase space. Using the normal form of the bifurcations we
have derived the scaling relations of the meta-stable zone as a function of the bias asymmetry. This shows a
double square root law: ρ1,2(t) ∼ (tf )−1 ∼ (Δb −Δb∗)1/2.
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In conclusion, we have explored a simplified opinion formation model including some of the arguably
most relevant features driving opinion dynamics on online social networks: spreading processes (pair or group
copying together with independent behavior of individuals), algorithmic bias, and an underlying networked
community structure. The joint effect of these ingredients produces a complex phase space of collective social
behavior including coexistence, consensus, and polarization of opinions. We used this formalism as testing
ground to study the influence of algorithmic bias on online communication dynamics. We showed that bias
imbalance can have a crucial effect on the final opinion state and the dynamics in general. Polarization and
consensus states are destroyed for high enough bias asymmetry at different transitions, while just after the
transition these destroyed final states become meta-stable. We characterized all possible transitions via phase
diagrams. For the local dynamics (close to the final states) we used a linearization of the dynamical equations,
while for the global dynamics the normal form of the bifurcation allowed us to detect meta-stable states. Finally,
we calculated convergence times both from the theoretical description and by means of numerical simulations.

The aim of such simplified modelling cannot be the quantitative reproduction of some empirical observa-
tions, e.g., related to elections. Still, we think that the richness of the behavior of the model, the relatively large
number of relevant parameters, and the non-triviality of the temporal evolution of opinions are all features
with strong relation to real-world systems. For example, the effect of the parameters on polarization is some-
times counter-intuitive: how algorithmic bias influences the outcome of the dynamics depends strongly on the
type of interaction. In our model we can tune interactions from pairwise to group—in reality both are present
and highly heterogeneous. Another relevant observation is the frequent appearance of meta-stable states. As
real-world phenomena evolve over finite times (e.g., opinions matter on election day), meta-stable states may
be crucial in forecasting efforts. In the future we would like to combine modeling with empirical data analysis,
partly from observational data and partly from controlled social experiments, in order to further understand
the interplay between human collective action and online algorithms.
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