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ABSTRACT As the core actuator of an aircraft’s flight control system, the servos’ reliability directly affects
the safety of the flight control system and the whole aircraft. The failure of the rudder will lead to the poor
control effect of aircraft, affect its flight quality and safety, and even cause major flight accidents. In order
to monitor the health status of servo and determine the fault and its degree accurately, this paper presents
a feature learning based health monitoring method using a deep neural network. Firstly, we combine the
wavelet packet decomposition and support vector machine to synthesize the sample segment label. And
then, the sliding window is employed to enlarge the sample size, and the auto-encoder is utilized to reduce
the data dimension. Moreover, the Softmax classifier is used for health monitoring. At last, the numerical
simulations demonstrate the effectiveness of the proposed method.

INDEX TERMS Servo health, wavelet packet decomposition, auto-encoder, softmax classifier, health
monitoring.

I. INTRODUCTION
Servos are the executive mechanism of aircraft attitude con-
trol, which can drive the three main control surfaces of eleva-
tor, aileron, and rudder, and the auxiliary control surfaces of
flap, slat, and spoiler [1]. Once the steering gear fails, espe-
cially the rudder, elevator, and other main control steering
gears, it will pay not only economic costs but also cause seri-
ous air accidents such as engine damage and death, resulting
in heavy losses [2]. Therefore, the daily health monitoring of
servos is helpful to improve the reliability of the aircraft and
reduce the cost of scheduled maintenance.

For aircraft, failure means that one or more performance
indicators are abnormal, leading to its failure to complete
the task [3]. The typical failure types of the rudder include
the stuck rudder surface, the damaged rudder surface, and the
loose rudder surface, whichwill affect themoment coefficient
of the rudder [4]. Therefore, the health monitoring of steering
gear has become an important issue, and it has also become
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the focus of academic and engineering circles. Traditional
health monitoring methods include model analysis, signal
feedback, signal processing, expert system, etc.

Since 1983, the development of artificial intelligence tech-
nology has provided various means and methods for health
monitoring. Because it is difficult to measure and quantify
the health status of bearings and gears in many cases, many
vibration-based methods have been proposed to construct
the health indicators of bearings and gears [5]. For exam-
ple, Yan and Jia proposed a novel fault classification algo-
rithm based on optimized support vector machine (SVM)
with multi-domain feature to improve intelligent diagnostic
accuracy of rolling bearing [6]. Deng et al. proposed a new
fault diagnosis method of motor bearing based on empirical
wavelet transform, fuzzy entropy, and SVM – EWTFSFD to
achieve the fault diagnosis of motor bearing [7]. Liu et al.
proposed an integrated multi-sensor fusion-based deep fea-
ture learning approach to identify the fault severity in
rotating machinery processes [8]. Tang et al. focused on
convolutional neural network (CNN)-based fault diagnosis
approaches in rotating machinery [9], where several main
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techniques applied in CNN-based intelligent diagnosis, prin-
cipally including the fast Fourier transform, wavelet trans-
form, data augmentation, S-transform, and cyclic spectral
analysis. Huang et al. advanced a compound fault intelligent
diagnosis method based on deep decoupled convolution neu-
ral network [10]. To investigate how deep learning can be
applied to infrared thermal video to automatically determine
the condition of the machine, a method from the subfield
of feature learning, namely deep learning, and more specif-
ically convolutional neural networks, was researched [11].
Yang et al. proposed a fault diagnosis scheme combined
of hierarchical symbolic analysis (HSA) and convolutional
neural network (CNN), which achieved laborsaving and
timesaving preliminary feature extraction, and accomplished
automatically feature learning with simplified network archi-
tecture [12]. In order to reduce downtime or avoid the failure
of rotating machinery, an integrated approach of an Adaptive
Neuro–Fuzzy Inference System (ANFIS) and Dimensional
Analysis (DA) was demonstrated to diagnose the size of the
bearing faults [13]. Ajagekar and You applied Quantum com-
puting (QC) based deep learning methods for fault diagnosis,
which exploited their unique capabilities to overcome the
computational challenges faced by conventional data-driven
approaches performed on classical computers [14]. In order to
improve network training, a residual learning algorithm was
advanced [15]. Qi et al. proposed a novel self-decision fault
diagnosis model for power transformer, which combined the
characteristics of faults and adaptability of conventional deep
brief network [16]. Contractive autoencoder (CAE) can easily
grasp the internal factors and directly obtain the hidden robust
features. So Shen et al. raised a method based on stacked
contractive autoencoder (CAE) for automatic robust features
extraction and fault diagnosis of rotating machinery [17].
When testing data in machine fault conditions are not avail-
able for training, a novel cross-domain fault diagnosis method
based on deep generative neural networks can provide reliable
cross-domain diagnosis result [18]. The methods mentioned
in the introduction are only from a single frequency domain or
abstract domain for fault diagnosis. They can’t obtain failure
degree of steering gear or large number of data samples must
be required.

This paper considers both frequency domain and abstract
domain for fault diagnosis. In the paper, a feature learning
based health monitoring method using a deep neural network
is proposed. For the shortage of sample size, a suitable data
expansion algorithm is designed. The wavelet packet decom-
position and power spectral density are used to extract the
data features in the frequency domain, and then the sliding
window and SVM training model is used to expand the sam-
ples and roughly integrate the labels. The automatic encoder
reduces the dimension of the sample data, that is, abstractly
extract data features. And the softmax classifier monitors the
health condition of the actuator. By adjusting the parame-
ters, the satisfactory performance index is finally obtained.
The main contributions of this paper are summarized as
follows:

TABLE 1. Example of steering gear data.

• The sliding window and support vector machine in fre-
quency domain are used to integrate the extended labels
of samples.

• Reduce the dimension of data by automatically extract-
ing features using an autoencoder of the abstract domain.

• Softmax classifier is used for health monitoring to get
whether the failure and its degree.

The rest of the paper is arranged as follows. Section II
describes the data source and data preprocessing methods.
Section III discusses feature extraction of servo faults from
two domains. In Section IV, two health monitoring methods
are presented. Section V shows the simulation results and
evaluation of servo health monitoring before Section VI con-
cludes this paper.

II. DATA SOURCE AND PREPROCESSING
A. DATA SOURCES
The data used in this paper are the measured data of the daily
maintenance of a specific type of steering gear. The original
data of the steering gear has been calibrated, but some data
have not been calibrated. Specifically, 17 available samples
of the rudder were used, including 8 standard steering gear
and 9 jitter steering gear. We can see that the sample size
is relatively small. Therefore, the sample size needs to be
expanded.

In the source data, there are four rudders in each data table.
Several rudders are under test, and the rest of them do not
operate. The interval between sampling points is 5ms. The
data example is shown in Table 1. The position input, position
feedback, and current feedback of four actuators are arranged
horizontally. Each actuator is tested by U and V two-phase
current, and each phase current has five feedback points.
Therefore, each actuator has 10 current feedback, and the
feedback characteristics of these 10 are similar.

B. DATA PREPROCESSING
1) DATA EXPANSION
In order to simplify the work, the unknown actuator is cal-
ibrated by Origin software. Since there are four actuator
data in each data table, but not all actuators are tested, it is
necessary to extract adequate information and re-integrate it.
Due to the limited data of daily maintenance of steering gear,
there are only 17 valid data samples of the steering gear.
Even the SVM suitable for small samples cannot be used
for machine learning and testing. Neural networks and other
methods need a large number of samples, so it is necessary to
expand the samples. There are 10 current feedbacks in the test
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FIGURE 1. Comparison with current feedback of steering gear.

data of each actuator: 5 for U-phase current feedback and 5
for V-phase current feedback. Four of them are selected and
plotted with Origin for comparison. The results are shown in
Figure 1.
It is obvious to see from Figure 1 that although the multiple

current feedback of the actuator is not the same in dynamic
states, the performance of the actuator in steady states is the
same. If each servo uses 10 groups of current waveforms
to extract features and then summarize them, it will cause a
lot of information redundancy. Therefore, there are only two
types of data used in this paper: normal and fault. In fact,
the differences between the normal steering gear and the fault
steering gear are mainly the characteristics when the steering
gear angle is in a steady-state rather than in a transition
process of regulation. Therefore, when there is no differ-
ence in the steady-state performance of all current feedbacks,
the 10 current feedbacks in each data table can be regarded as
different 10 test servos, which increases the sample size of the
actuator and avoids data redundancy to a certain extent. This
method expands the data sample size, and 170 samples are
obtained, including 80 normal samples and 90 fault samples.
The sample size is enough for the SVM method.

However, deep neural networks (DNN) need more sam-
ples. Here, 170 samples are not enough to support the learning
of DNN, so we need to expand the sample size further.
Because the data of the servos consist of normal steering
gear and faulty actuator and the fault characteristics are
in steady-state stage. Therefore, the transition time of the
motion control system is often short. Only a period of signal
extraction can contain fault characteristics. Thus, the selected
sample data of the actuator shall include position command,
position feedback, U-phase current, and V-phase current for
a while. Nevertheless, the duration of each rudder sample
test is different, and the performance reflected in the data
is that the dimensions of each sample are different, and the
data dimensions of the rudder with long time tested are more.
In order to unify the data dimensions, reduce the number of

dimensions of a single sample, and further expand the sample
size, the existing samples should be segmented.

After determining the sample standard format and sam-
pling content, in order to further increase the sample size, the
rolling window method is used to expand the sample based
on the simple sample segmentation method. The basic idea
of this method is to take a certain proportion of overlapped
data when the original actuator is divided by every 1000
sampling points. The window size is set to 1000 × 4. Roll
sampling in the original steering gear data table and the data
overlap rate is set to 80%. The 17 sample actuator data set is
successfully expanded to 4095 sample data set through these
data preprocessing, which lays the data foundation for the
training of DNNs.

2) ELIMINATION OF CURRENT SPIKE
As the actuator of the motion control system, the servos have
the characteristics of rapid response. When the input of the
control system changes, the control system adjusts quickly.
Consequently, the current increases rapidly, the transient time
is very short, and the sampling time is large to generate the
current spike pulse. Although the control system regulation
generates the current pulse, the existence of the pulse will
significantly affect the feature extraction effect of subse-
quent wavelet packet decomposition, so filtering methods are
needed to remove them.

The change of position command input causes the current
pulse of actuator data, so the change of position command is
related to the arrival time of the current pulse. It is easy to
determine the rising edge and falling edge position when the
position command is changed. Due to the pure time lag, the
arrival of the current spike will delay several sampling points.
If the position command information is used, the fixed-point
denoising of the current spike can be completed.

The position commands in the data set used in this paper
are all position inputs in the form of steps. Looking for
the rising edge and falling edge is the time to find when
the position command can be changed compared with the
previous one.

Suppose a column of position command data is writ-
ten as A = {X1,X2,X3,X4, . . . ,Xi}. The other col-
umn of position command data is arranged as B =

{X1,X1,X2,X3,X4, . . . ,Xi−1} Make a difference between A
and B, we obtain C = A−B = {0,X2 − X1,X3 − X2, . . . ,
Xi − Xi−1}.
If B the same as the previous position command A, the

corresponding position of C will be 0, Vice versa. Then
the position that is not 0, where the position command
changes, needs to be found. The idea of extracting the change
point of position instruction is a kind of matrix calculation,
which significantly reduces the calculation time compared
with directly writing the loop to judge whether it is the
same as the previous point. After finding out the position
of the change points, the current is denoised at the fixed
point. Due to a certain pure delay, the current values of the
last 10 sampling points are all set as the sampling values
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FIGURE 2. Fixed point denoising effect.

Yj (n+ 1 < j < n+ 11) = Yj. So far, the denoising at a fixed
point according to the position instruction is completed.

Take a group of servo data as an example to show the
effect of fixed-point denoising based on position commands.
The comparison between the original signal and fixed-point
denoising based on position command is shown in Figure 2.
It can be seen that the effect of suppressing spike pulse is
excellent.

III. FEATURE EXTRACTION OF SERVO FAULTS
A. FREQUENCY DOMAIN FEATURE EXTRACTION
The vibration signal of the daily maintenance of the servo
needs to extract features in the frequency domain before
the model can be established. In classical signal process-
ing, multiscale decompositions produced by discrete wavelet
transform (DWT) provide convincible solutions for many
problems such as denoising and compression [19]. How-
ever, it still has some limitations as it cannot decompose the
high-frequency detail signal. The wavelet packet decompo-
sition (WPD) is a classical signal processing method, which
can decompose the signal into the appropriate components
and detailed components [20].

Mallat tower decomposition is a typical fast algorithm
among the wavelet transforms, which can continuously carry
out binary orthogonal decomposition through high pass filter
and low pass filter. Figure 3 is the schematic diagram of
three-layer wavelet packet decomposition.

Using the ‘‘db20’’ wavelet basis function to decompose the
original signal data into three layers of wavelet packet, eight
wavelet nodes can be obtained. Then the waveforms of each
frequency band are obtained by wavelet packet reconstruc-
tion, as shown in Table 2 and Table 3. It can be seen that the
proportion of energy in the low-frequency band is high, while
that in the high-frequency band is low. And the proportion
of low-frequency energy of normal steering gear is higher
than that of dithering steering gear, so energy can be used as
a feature to distinguish normal steering gear from the faulty
steering gear.

FIGURE 3. Three-layer wavelet packet decomposition.

TABLE 2. Wavelet packet feature extraction result of normal steering gear
after denoising.

TABLE 3. Wavelet packet feature extraction result of jitter steering gear
after denoising.

The power spectral density is a very important property for
vibration signal and has the advantage of fast calculation [21].
Thus, the combination of wavelet packet decomposition and
power spectral density is selected to extract features. The
power spectral density and the proportion of energy charac-
teristics are calculated as

E =
∑

I2 (1)

P(i) =
E(i)∑
E(i)

, i ∈ [1, 8] (2)

where I is the current. E denotes the energy. P represents the
energy proportion of each frequency band, and i is the number
of nodes.

The power spectral density of the reconstructed waveform
of each frequency node is calculated, and then the total energy
of the signal is calculated to obtain the energy proportion of
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FIGURE 4. Structure of the autoencoder.

each frequency band as the feature input to the SVM. After
putting these features into the SVM for training, the fault pre-
diction model can be obtained. Then the data expansion and
label sets are completed to achieve the data preprocessing.

B. ABSTRACT FEATURE EXTRACTION
In Section III-A, the method of using wavelet packet decom-
position to extract vibration characteristics of the steering
gear is introduced, which can effectively distinguish normal
steering gear from fault. Nevertheless, this method needs
professional knowledge as support. In order to reduce the
demand for professional knowledge, this section continues to
study the autoencoder of unsupervised learning for abstract
feature extraction. Because the extracted features are abstract,
we cannot know their practical significance, sowe cannot ver-
ify its feasibility from feature extraction results, so we need
to combine the classifiers to explain. The calibration data is
input into the autoencoder for training. When the network
output and input are approximately equal, the encoder is used
to reduce the dimension of the data.

Autoencoder (AE) is an unsupervised learning method in
machine learning. Its basic structure consists of an input layer,
several hidden layers, and an output layer, a widely used deep
learning model [22], and is mainly used for data dimension-
ality reduction and feature extraction. First, AE encodes the
input features and then decodes them. The encoding process
continuously reduces the dimension to extract the critical
information and restores the initial data by improving the
dimension during decoding [23].

Suppose that there is a set of n-dimensional samples
x(n) ∈ Rd , 1 6 n 6 N , where N represents the number of
samples. The encoder maps this set of data into the feature
space, so that z(n) ∈ Rp, 1 6 n 6 N , p is the dimension of the
feature space. The simplest autoencoder structure is shown in
Figure 4, and the layers are fully connected.
For sample x, the encoding of the active value of the

autoencoder hidden layer is presented as

z = f (W (1)x + b(1)) (3)

where W (1) is the connection weight matrix of the encoder
input layer and the hidden layer. b(1) denotes the offset vector
of the input hidden layer, and f (·) represents the activation
function.

The output of the autoencoder is written as

x ′ = g(W (2)z+ b(2)) (4)

where similarly, W (2) denotes the connection weight matrix
between the encoder hidden layer and the output layer. b(2) is
the offset vector of the output hidden layer, and g(·) denotes
the activation function.

In the autoencoder network, the activation function used
is Rectified Linear Unit (ReLU). This is a left saturation
function, which alleviates the gradient vanishing and speeds
up the convergent speed. ReLU is defined as

ReLU(x) =

{
x, x > 0
0, x 6 0

= max(0, x) (5)

In machine learning, the most commonly used optimiza-
tion algorithm is gradient descent method. The parameter θ0
can be modified as

θt+1 = θt − α ·
1
N

N∑
n=1

∂L(y(n), f (x(n); θ ))
∂θ

(6)

where θt is the parameter value of the t-th iteration, and α is
the search step, also known as the learning rate. It is a key
parameter in neural network optimization.

At present, many adaptive learning rate designs have been
proposed, and different learning rates are set for each parame-
ter. In this case, the Root Mean Square Prop (RMSprop) algo-
rithm is used. The algorithm proposed by Geoff Hinton [24]
can avoid the premature attenuation problem caused by the
monotonous decline of the learning rate.

IV. HEALTH MONITORING METHODS
A. CONDITION MONITORING BASED ON SVM
The feature extraction part extracted from wavelet packet
decomposition is input into SVM for training, and the fault
prediction model can be obtained to complete the data expan-
sion and label set. SVM shows its unique advantages in
solving small samples and nonlinear data classification prob-
lems [25]. It is a classification method based on the principle
of structural risk minimization and statistical learning theory.
Two principles should be followed in classification: correct
classification and large enough classification interval.

The principle of traditional linear SVM is shown in
Figure 5. A training data set is defined as

A = {(x1, y1) , (x2, y2) , (x3, y3) , . . . , (xn, yn)} (7)

where xi is the feature vector and yi is the data label of -1 or 1.
The goal of SVM is to ensure that the sum of the geometric
distance of the support vector nearest to the hyperplane is
maximum.

Let the hyperplane expression satisfy the condition of w ·
x + b = 0. The data set is A, then the geometric interval is
γi =

1
||w||yi (w · xi + b). Support vector means the vector with

the shortest geometric interval γ = min γi(i ∈ [1, n]). So the
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FIGURE 5. Support vector machine in linear classification.

conditions that SVM needs to meetmax γ

s.t.
1
||w||

yi (w · xi + b) > γ, i ∈ [1, n]
(8)

However, in most cases, the nonlinear hyperplane is more
suitable. At this point, we need to derive kernel function K ,
and when kernel function K

(
xi, xj

)
meets Mercer condition,

it can replace the point product in the optimal classification
surface.

B. SOFTMAX CLASSIFIER MONITORING
The goal of classification is to learn a classification function
or model from the manually labeled classification training
samples. When there is new data, it can be categorized into
a given class [26]. Classifier network structure is also com-
posed of input layer, hidden layer, and output layer, but it is
a supervised learning process, which needs one-to-one cor-
respondence between input layer data features and discrete
labels.

In the classifier network, the activation function uses ReLU
and Softmax. Softmax is an activation function, whichmainly
realizes the function of multiple classifiers. The output is the
probability distribution of each class. Multiple scalars are
mapped into a probability distribution [27], and the data is
classified into the category with the largest output value.

For K scalar x1, · · · , xK , the Softmax function is defined
as

Softmax(xk ) =
exp(xk )
K∑
i=1

exp(xi)

(9)

The cross-entropy loss function is used in the classifier
network. For a random variable with the distribution of p(x),
the entropy H (p) represents the optimal coding length. Cross
entropy is the length of the real distribution p information

FIGURE 6. SVM mesh optimization.

encoded according to the probability distribution q optimal
coding, which is defined as

H (p, q) = −
∑
x

p(x) log q(x) (10)

Given p, the closer q is to p, the smaller the cross-entropy
is. By iteratively reducing the value of cross-entropy in the
network, the two are very close such that the accurate classi-
fication can be completed.

V. SIMULATION AND EVALUATION OF HEALTH
MONITORING
A. SIMULATION RESULTS OF HEALTH MONITORING
BASED ON SVM
SVM inputs half of the features extracted fromwavelet packet
decomposition to the SVM classifier for training, and then the
fault prediction model can be obtained for health monitoring.
Figure 6 shows the results of SVM grid optimization. It can
be seen that in the grid optimization graph, large grids are
above 90% accuracy, and only a few of them are in low
accuracy. This shows that the feature extracted by wavelet
packet decomposition has good robustness for the param-
eter selection of SVM. The optimal parameters are set as
c=1.1487; g=2515. Figure 7 shows the SVM classification
results, and the accuracy rate is as high as 98.8235% (84/85).
The simulation results also show that the fault prediction time
of SVM is 1.004 s, which indicates that SVM-based servo
health monitoring is an accurate and efficient method.

B. SIMULATION RESULTS AND ANALYSIS OF HEALTH
MONITORING BASED ON AUTOMATIC ENCODER
1) SIMULATION RESULTS
The trained model is used to expand and label the actuator
data, and the coincidence rate of adjacent sliding windows
is set to 0.8. Finally, 4095 × 4000-dimensional data with
an 80% coincidence rate are obtained. During the training
process, the training set and the test set are 70% and 30%
of the total data, respectively.
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FIGURE 7. Classification results of SVM.

TABLE 4. Different parameters of encoder networks.

TABLE 5. Simulation accuracy results of different neural network
structures and learning rates.

TABLE 6. Loss function results for different neural network structures
and learning rates.

For the optimization of the number of encoder neural net-
work layers and the number of inter-layer nodes, the initial
step size of the classifier network optimization algorithm is
0.00001, 0.0001, and 0.001, respectively, as shown in Table 4.

The average value, the covariance, the loss function and
the model test time are listed in Table 5, Table 6 and Table 7,
respectively.

Among Table 5 to Table 7, the bold values in the tables are
the optimal result when changing the learning rate in Softmax
network when the encoder network structure is fixed, while
data marked with ∗ is the optimal result among all data.
It can be seen from Table 5 that the accuracy of the three
structures is the highest when the learning rate is 0.0001.
The result of the loss function in Table 6 shows that when
the network structure is relatively simple, i.e., in the case of
neural network structures 1 and 2. Moreover, the smaller the
learning rate is, the smaller the loss function is.

TABLE 7. Test time results of different neural network structures and
learning rates.

FIGURE 8. Test accuracy of extended samples.

According to the test simulation time data in Table 7,
when neural network structure 2 is used, and the learning
rate is 0.00001, the running time of single test data is the
shortest. On the other hand, the test time of the softmax
network is almost the same. For the encoder network, the
model prediction time of structure 2 is short because of its
simple structure, but there is little difference among the three
structures. For example, the running time of encoder network
structure 1 is 0.1219 s, structure 2 is 0.0061 s, and structure 3
is 0.1686 s.

For the classification model, accuracy is a crucial parame-
ter, and there is little difference between the loss function and
the test time. Therefore, we choose the network parameters
with the highest accuracy as the optimal parameters. That is,
the encoder uses a 4000-3200-2400-1600-800 five-layer net-
work, and the learning rate is 0.0001. Furthermore, in order
to ensure that using such network parameters can get accurate
health monitoring results, we further expand the sample size
and use other indicators of softmax classification to judge.

2) EXPANDED SAMPLE VALIDATION
By using SVM and sliding window to expand samples and
integrate tags, the coincidence rate of samples is controlled
at 80%, and 4095 samples are obtained. If we want to know
whether the optimal network parameters are suitable for more
samples, we need to expand the sample coincidence rate grad-
ually. By changing the sliding window size, the sample coin-
cidence rate is 90%, 95%, and 98%, respectively. Similarly,
20 simulations were carried out, and two evaluation indexes
of accuracy and loss function were obtained, as shown in
Figure 8, Figure 9, and Table 8.

We can see that the optimal network parameters are
still suitable for multi-samples by expanding the samples.
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FIGURE 9. Loss function of extended samples.

Moreover, the simulation accuracy can reach 98% in both
training set and test set, and there is no over-fitting phe-
nomenon. The loss function finally achieves satisfactory
results. Therefore, the optimal parameters are consistent with
the case of multiple samples.

3) CLASSIFICATION PERFORMANCE EVALUATION
As the last step of classification, the performance evaluation
of classifiers is indispensable. Accuracy refers to the percent-
age of correct classification, but it cannot indicate the poten-
tial distribution of response values and the types of classifier
errors. Therefore, for the data to be classified, the classifier’s
performance depends on the classification effect. Based on
this idea, VanRijsbergen first proposed the evaluation indexes
such as precision and recall in 1979 and obtained the recog-
nition of many scholars. Later, receiver operating charac-
teristic (ROC) and area under the ROC curve (AUC) were
proposed successively. As for performance metrics, these two
metrics have attracted more and more attention in the field of
machine learning due to their superior properties [28].

For classification problems, there may be four possible
classification results: TP (true positive), TN (true negative),
FP (false positive), and FN (false negative). A series of eval-
uation indexes of classification performance can be derived
from these four types of classification, such as commonly
used accuracy, precision, recall, and F1 score [29]. In order
to better understand these evaluation criteria, the confusion
matrix shown in Table 9 is used to represent the four results
of classification.

Based on Table 5, the formula of accuracy rate, recall rate
and F1-score can be given as

P =
TP

TP+ FP
(11)

R =
TP

TP+ FN
(12)

F1−score =
2P · R
P+ R

(13)

Precision rate is used to measure the accuracy of the clas-
sifier. Recall rate is mainly used to measure the recall rate of

TABLE 8. Simulation accuracy and loss function of extended samples.

TABLE 9. Confusion matrix of classification results.

TABLE 10. Text report of classification indicators.

FIGURE 10. Receiver operating characteristic curve.

the classifier. F1-score is an evaluation index that considers
both the accuracy and the recall rate. The larger the value is,
the more effective the classifier becomes.

Another important indicator is the ROC curve, which
depicts the trade-off between TP and FP. The classifier’s
performance varies from 0 to 1 with the threshold value, and
the classifier’s performance at the upper left corner is better
than that at the lower right corner. AUC is the area enclosed by
the ROC curve with the x-axis and (1, 0) and (1, 1). It is scalar
data and makes it easier to compare classifier performance.
The higher the AUC value is, the better the performance
of the classifier becomes. It also has the advantage of the
ROC curve: which can depict the overall performance of the
classification algorithm, independent of the class prior distri-
bution, the class misclassification cost, and the classification
threshold. It can also depict the probability or sorting output
characteristics of the classification algorithm [30].

Using the optimal parameter network structure and using
the data with a sample coincidence rate of 80%, we can get
the classification mentioned above evaluation index results as
shown in Table 10.
It can be seen from Table 10 and Figure 10 that the

precision and recall of the classifier approach to 1 for nor-
mal samples, and the result is satisfactory for fault samples.
The value of AUC is 0.9837, which means that the perfor-
mance of the classifier is excellent enough. It further verifies
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FIGURE 11. Sample health monitoring status.

that the optimal parameter network structure determined in
Section V-B1 is correct.

From the health monitoring of the test set samples, we can
see that the failure probability is obtained by using the soft-
max classifier. When the failure probability is greater than
0.5, it is determined as a failure actuator. On the contrary, it is
healthy steering gear. At the same time, the probability also
reflects the actuator’s failure degree to complete the actuator’s
health monitoring.

VI. CONCLUSION
Due to the importance of the actuator in the aircraft, once
the failure will cause serious consequences, it is necessary to
monitor the health status of the actuator accurately. Due to the
advantages of frequency domain and deep learning methods,
this paper proposed a health status monitoring method based
on deep neural network feature learning, which combines the
two methods. Using the daily maintenance data of steering
gear, the purpose of health monitoring can be achieved by
optimizing the parameters. The specific contribution of this
paper is summarized as follows:

(1) Because the sample data used is insufficient, and the
fault degree needs to be judged, the premise of introducing
a deep network is to preprocess the sample data sufficiently.
In this stage, three-level wavelet packet decomposition and
power spectral density are used to extract features, and then
SVM and sliding window are used to expand the sample and
adjust the label to complete the data processing.

(2) After obtaining the processed data, the automatic
encoder is used to reduce the dimension of the data, which
reduces the unnecessary calculation time for the subsequent
use of the classifier, and the softmax classifier can be used
to determine whether the actuator is faulty and its failure
possibility. In the process of simulation, the number of layers,
the number of nodes, and the initial learning rate in gradient
descent of the encoder neural network are super parame-
ters, which depend on human experience and many times of
optimization.

(3) After several simulations and parameter modification
times, the optimal structural parameters are obtained, and
then the correctness of the selected parameters is further
verified by using the results of expanded samples and classifi-
cation evaluation indexes. Thus, it can provide some effective
suggestions for the structure selection of neural networks
and avoid the useless work caused by multiple parameter
adjustments.

In the follow-up research, practical experiments will be
considered to further verify the proposed method. In addition,
this paper mainly uses deep neural networks to monitor the
health status of servo and determine the fault degree.
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