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Abstract

In machine learning and computer vision, optimal transport has had significant success in
learning generative models and defining metric distances between structured and stochastic
data objects, that can be cast as probability measures. The key element of optimal trans-
port is the so called lifting of an ezact cost (distance) function, defined on the sample space,
to a cost (distance) between probability measures over the sample space. However, in many
real life applications the cost is stochastic: e.g., the unpredictable traffic flow affects the cost
of transportation between a factory and an outlet. To take this stochasticity into account,
we introduce a Bayesian framework for inferring the optimal transport plan distribution
induced by the stochastic cost, allowing for a principled way to include prior information
and to model the induced stochasticity on the transport plans. Additionally, we tailor an
HMC method to sample from the resulting transport plan posterior distribution.

Keywords: Optimal Transport, Bayesian Inference, Uncertainty Quantification

1. Introduction

Optimal transport (OT) (Villani, 2008; Peyré et al.; 2019) is an increasingly popular tool
in machine learning and computer vision, where it is used to define similarities between
probability distributions: given a cost function between samples (e.g. the Euclidean dis-
tance), representing the cost of transporting one sample to another, OT extends it to a cost
of transporting an entire distribution to another. This [lifting of the cost function to the
space of probability measures is carried out by finding the OT plan, which carries out the
transport with minimal total cost.

OT assumes a deterministic and exact cost between samples. This is natural for most of
OT applications in machine learning, such as defining loss functions for learning probability
distributions, e.g., in Wasserstein generative adversial networks (WGANSs) (Arjovsky et al.,
2017), or defining statistics for stochastic data objects, e.g., between Gaussian processes
representing random curves (Mallasto and Feragen, 2017).
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However, the assumption of an exact cost rarely holds in real-life OT applications. This
work is motivated by the lack of tools to solve OT problems in such stochastic settings,
where the transportation cost ¢(x,y) between x and y is a random variable. See Fig. 1 for
an illustration. We consider two such situations: 1. the very definition of ¢ is random, e.g.,
real life logistics, where transport between two points always results in a different cost due
to varying traffic conditions. 2. OT between hierarchical measures, i.e., we have a mass
distribution over a collection of random variables X;,Y; whose values are uncertain and
stochastic, and so ¢(X;,Yj) is also stochastic.

As the transportation cost varies, a natural question arises: how to take this uncertainty
into account in the transportation plan, and which of them should be used in practice?
Furthermore, it is important to include any prior knowledge in the solution. To answer
these questions, we propose to use the Bayesian paradigm in order to infer the distribution
of transport plans induced by the stochastic cost, and name the resulting approach as
BayesOT. As a special case, we show that the resulting point estimates for the OT plan
correspond to well-known regularizations of OT.

We contribute:

1. BayesOT, A Bayesian formulation of the OT problem, which produces full posterior
distributions for the OT plans, and allows solving OT problems having stochastic cost
functions.

2. The resulting formalism, relying on introducing optimality variables to relate a trans-
port plan to a given cost matrix, generalizes earlier regularisation approaches, as these
can be interpreted as maximum a posteriori estimates in our framework.

3. A Hamiltonian Monte Carlo approach for sampling from the transport polytope, i.e.,
the set of joint distributions with two fixed marginals.

Related Work. We are not aware of earlier works on stochastic costs in OT, but
some works are related. For example, Schridinger bridges consider the most likely path
of evolution for a gas cloud given an initial and an evolved state, a problem equivalent to
entropy-relaxed OT (Di Marino and Gerolin, 2019). The evolution is Brownian, thus the
dynamics bring forth a stochastic cost; however, no stochasticity remains as the most likely
evolution is considered.

Ecological inference (King et al.; 2004) studies individual behavior through aggregate
data, by inferring a joint table from two marginal distributions: this is precisely what is
done in OT, using the cost function. Frogner and Poggio (2019) consider a prior distribution
over the joint tables, computing the maximum likelihood point estimate. Our work, in
addition to the prior distribution, adds a likelihood, relating the joint table to the OT cost
matrix. Furthermore, instead of just focusing on the MAP estimates, we also study sampling
from the posterior. Rosen et al. (2001) consider Markov Chain Monte Carlo (MCMC)
sampling from a user-defined prior distribution to estimate the joint table. However, strict
marginal constraints are not enforced, which Frogner and Poggio (2019) speculate is due to
the difficulty of MCMC inference on the set of joint distributions with perfectly-observed
marginals. In contrast, BayesOT takes the marginal constraints strictly into account.

A conceivable alternative to solving the OT problem with stochastic cost would be stan-
dard OT with the average cost. An obvious down-side of this approach would be losing all
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Cost

exact stochastic Prior Uncertainty

oT v X X X
RegularizedOT v X v X
BayesOT v v v v

Table 1: Comparison between vanilla OT, Regularized OT, and our method BayesOT. The
qualities imply whether the approaches are able to incorporate an exact or stochas-
tic cost, prior information, or whether the methods provide uncertainty estimates.

stochasticity, resulting in an average-case analysis. If the measures are hierarchical, i.e., we
have mass distributions p;, ; over spatially varying components given by random variables
X;,Yj. Then, the cost ¢(X;,Y;) would be stochastic, depending on the realisations of the
components. One could then consider extending the sample-wise cost to a component-wise
cost using the OT quantity between the two components, i.e., ¢(X;,Y;) = OT.(X;,Y;) (Chen
et al., 2018). However, we would lose all stochasticity again, and the component-wise OT
cost would be blind to any natural correlation between the components.

Furthermore, one could solve the OT plan associated with each cost matrix sample
C*, and carry out population analysis. This would, however, prevent the use of prior
information, and would not result in a likelihood on the OT plans which could be used to
estimate the relevancy of a given plan.

Minibatch OT (Fatras et al., 2019, 2021) is somewhat related. It has been applied for
example in generative modelling (Mallasto et al., 2019), as it provides a convenient way to
approximate the OT problem (Genevay et al., 2016). Although minibatch OT does include
stochasticity through sampling the minibatches, only the expected OT problem over these
minibatches is considered.

2. BACKGROUND

We now summarize the basics of optimal transport (Villani, 2008; Peyré et al., 2019) and
Bayesian inference (Gelman et al., 2013) in order to fix notation.

Optimal Transport (OT) is motivated by a simple problem. Assume we have loca-
tions of factories {z;}"_; C R? and of outlets {y; T C R, Each of the factories produces
p; amount of goods, and the outlets have a demand of v;, each positive and normalized to
sum to one; p;,v; > 0 and Y ;0 = Z;n:l vj = 1. We represent the distribution of goods
over the factories and demands over the outlets by the discrete probability measures

,u(l‘) = Zuzdm (l‘), V(y) = Zyjéyj (y)v (1)
i=1 Jj=1

where §,(y) stands for the Dirac delta function.
Assume that the cost of transporting a unit amount of goods from z; to y; is c(xs, y;),
where ¢ : R x R? — R* is the cost function, inducing the cost matriz Cij = c(x4,y;j). Then,
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Figure 1: OT with stochastic cost. Assume measures p, v having uniform distribution over
the atoms 1, x2 and y1, yo, respectively, and either of the cost matrices A or B is
observed with equal probability, so that on average C;; = 5 for all 4, j. The average
cost matrix yields an ill-posed OT problem, as any transport plan would solve
the OT problem. On the other hand, the posterior distribution for the transport
plan (on the right, blue gives an empirical histogram for posterior samples, orange
gives posterior likelihood) encaptures the multimodality, which arises, as there are
only two minimizing transport plans for the problem, depending on whether we
witness cost matrix A or B. The transport plan is a 2 X 2 matrix, but can be
parameterized with a single real value ©.

the OT quantity between p and v is given by

. A .
T - )2 TG, 2
OT(u,v,C) 1“6111'[133,1/)<C7 ) Ferg(lﬁy) 2 iCij (2)

)

where the Frobenius inner product (C,T") gives the total transportation cost and the set of
joint probability measures with marginals p and v, the transport polytope, is denoted by

m n
A
M, v) ST Tyy=pi, » Tyj=v;p. (3)
j=1 i=1

Its elements are transport plans, as I';; is the amount of mass transported from z; to y;.
The constraints on II(u, ) enforce the preservation of mass; all the goods produced need
to be transported so that the demand of each outlet is satisfied.

This seemingly practical problem produces a geometrical framework for probability mea-
sures, by lifting the sample-wise cost function ¢ to a similarity measure OT (u, v, C') between
the probability measures. Depending on the cost, a metric distance could be produced (i.e.,
the p-Wasserstein distances), which allows studying probabilities using metric geometry.

Regularized Optimal Transport. The OT problem in (2) is a convex linear program,
often producing slow-to-compute, 'sparse’ transport plans that might not be unique. This
has motivated regularized versions of OT (Cuturi, 2013; Dessein et al., 2018; Di Marino
and Gerolin, 2020), which admit unique solutions. We now summarize regularized OT,
as it turns out that solving certain maximum a posteriori estimates under the BayesOT
framework is equivalent to solving regularized OT, as will be discussed in Sec. 3.4.

Given a strictly convex regularizer R, the regularized OT problem is given by (Dessein
et al., 2018)

OTx(n,r,C) = min {{C.T)+R(T)}. (4)
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With some technical assumptions on R, such as strict convexity over its domain, there
exists a unique minimizer of (4), which in practice can be solved using iterative Bregman
projections. We denote this minimizer by I'(R, C, u, v). A popular choice for the regularizer
is given by R = eH (Cuturi, 2013), where the regularization magnitude € > 0 is a positive
constant, and

H(T)=—) TylogTy, (5)
ij

is the entropy. This specific regularization strategy has gained much attention, as it is fast
to solve with the Sinkhorn-Knopp iterations (Knight, 2008), and enjoys better statistical
properties compared to vanilla OT (Genevay et al., 2019).

Bayesian Inference. Assume we are given a family of models fy, with parameter
6, and a dataset D = {(x;,y;)}l~; C X x Y, produced by an underlying relationship
yi = f(x;) + &;, where g; is a random noise variable, and we want to infer f : X — Y.
Given knowledge about 6 in the form of a prior distribution 6 ~ Pr(6), Bayesian statistics
approaches inferring f by conditioning the parameters via the Bayes’ formula

Pr(D|6)Pr(0)

PrOID) = 5 py (6)

where Pr(0|D) is the posterior distribution, Pr(D) is the evidence, which can be viewed as
a normalizing constant for the posterior distribution, and Pr(D|0) is the likelihood, whose
form is a part of the modelling choices.

The posterior distribution can then be used to estimate the uncertainty of predictions
y = fo(x) by sampling 8 ~ Pr(6|D) and observing the induced distribution of y. This
distribution can also be summarized as a point estimate. A common point estimate for f(z)
is given by the mazimum a posteriori (MAP) estimate fg«(z), where 8* = arg max Pr(6|D).

[4

Another popular point estimate is given by the average prediction Eyp.gp)fo ().

3. BAYESIAN INFERENCE FOR OPTIMAL TRANSPORT

We now detail our approach, BayesOT, to solving OT with stochastic cost via Bayesian
inference. First, we motivate the stochastic cost in Sec. 3.1, and then formulate the prob-
lem from a Bayesian perspective in Sec. 3.2. We then focus on sampling from the resulting
posterior distribution of OT plans in Sec. 3.3, by devising a Hamiltonian Monte Carlo ap-
proach. Finally, we discuss resulting mazimum a posteriori estimates and their connections
to regularized OT in Sec. 3.4.

3.1. Optimal Transport with Stochastic Cost

Consider the scenario where instead of an exact cost matrix, we observe samples C* ~
Pr(C), k = 1,...,N, from a stochastic cost C', which we view as a random variable. This
stochasticity propagates to the regularized OT plan I' via the OT problem

I' ~ argmin {(C,T') + R(I')}, C ~ Pr(C). (7)
rell(p,v)

In the rest of this work, our goal is to infer the distribution I' inherits from C.
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Stochastic costs naturally occur when considering OT between hierarchical models
(i, X5)7 and (l/j,Y');«”:l, where X;, Y, are random variables taking values in R?, re-
sulting in the stochastic cost matrix Cj; ~ ¢(X;,Y;). Here one can view (u;, X;) as a mobile
factory with mass u;, that has a stochastic location according to the random variable X;.

On the other hand, the cost c¢ itself can inherently be stochastic, e.g., when transporting
goods in real life, as traffic congestions behave stochastically, affecting the cost of trans-
porting mass from point ¢ to point j.

The choice to tackle (7) with Bayesian inference provides a convenient way of expressing
uncertainty in parameters, allows the inclusion of prior knowledge on I, alleviating problems
with sample complexity, and provides a principled way of choosing point-estimates as the
mazimum a posteriori (MAP) estimates.

3.2. Bayesian Formulation of OT

To employ Bayesian machinery, we need to define a prior distribution Pr(T" | u,v) for I' with
marginals 4, v, and a likelihood function that relates T' to a given sample C* of the cost.
As we will mention below, priors on the transport polytope have already been discussed in
the literature. Our key contribution is introducing the likelihood, quantifying how likely a
given transport plan I' is optimal for a given cost matrix C*.

The Likelihood for C* is defined using auziliary optimality variables Oy, inspired by
maximum entropy reinforcement learning (Levine, 2018): define a binary variable Oy €
{0,1} indicating whether T' achieves the minimum in OT(u,v,C*), so that O = 1 if it
achieves the minimum, and Oy = 0 otherwise. We consider the distribution

Pr(Oy =11 p,v, C*.T) = exp (—(Ck,D) , (8)

which can be interpreted as the likelihood of I' being optimal for Cl.

The likelihood is motivated by the fact that OT(u, v, C*) > 0 always holds, and so if the
total cost is zero, (C*,T') = 0, then the likelihood of I being optimal for C* (i.e., Oy = 1)
is 1. On the other hand, as (C*,T') decreases, the likelihood increases.

Prior for I'. Any prior whose support covers the transport polytope could be used, such
as the well-behaved ones discussed by Frogner and Poggio (2019): component-wise normal,
gamma, beta, chi-square, logistic and Weibull distributions. The authors also considered
the Dirichlet distribution, which we find to work well in practice in the experimental section.
We also consider the entropy prior, defined as

Pr(T' | p,v) x exp(eH(T')), €>0, 9)

which we use to enforce the positivity of the OT plans.
Posterior for I'. Given the likelihood and the prior, the posterior for a single cost
matriz can now be written as

Pr(T | p, v, 0 = 1,0%) o< Pr(Op = 1| p, v, C¥, T)Pr(T | , v). (10)

On the other hand, a population of cost matrices C*, k = 1,..., N, requires defining a
joint likelihood for O before we can write out the posterior. To this end, we consider two
likelihoods:
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(L1) The first likelihood encourages I' to be optimal for each C*, and is given by

Pr(Ll)(O =1u,v,C,T) = Pr(Ll)(Ol =1,..,0n=1|pv,C....CN I
Al (11)

= HPr(Ok =1 p,v,C* 1),
k=1

(L2) The second likelihood encourages T' to be optimal for some C¥, and is given by

Pr(LQ)(O = 1|p,v,C,T") = Pr(L2)(01 =1,..,0y=1|p,v,C, ...,C’N,F)
(12)

N
= ZPY(Ok =1 p,v,CFT).
k=1

The resulting posteriors will be denoted by Pr(LI) (I'C,0 =1) and Pr,(f,?) (Tc,0 =1),
respectively. The negative posterior log-likelihood can then be written as

Q) = —logPrED(T | C,0 = 1)

N
—log | Pr(T" | p,v H (Or =1 p,v,C*,T)
k=1 (13)
—logPr(T | p,v < > + const.,
k=1
and for the likelihood (L2) we compute
Q) = —logPr{f2(T|C,0 = 1)
N
— log (Pr(F | p,v) ZPr(Ok =1|pv, Ck,F)>
P (14)

—log Pr(T | p,v) — logZeXp(—(Ck, I')) 4 const.

Note that (14) can be viewed as a smooth version of (7). This can be shown as follows.
First, let R(I') = —log Pr(I"), and define a family of distributions with parameter 7:

1

Pr,(D|CF, 0 = 1) (exp (-(n ck>) Pr(r)) " = exp (-i((r, C*) — log Pr(F))) . (15)

Then, assuming R(T) is strongly convex, so that log Pr,(I'|C*, O}, = 1) has a unique max-
imizer, we have the weak convergence Pr,(T|C* Oy = 1) — Ir(r,cpp) (L) as 7 — 0 (Hen-
derson et al., 2003). Then, note that (14) can be written with 7 =1 as

N
Prif(T|C,0 =1) =Y Pr(T|C*, 0 = 1), (16)
k=1
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whereas (7) can be written as

lim [ Pr (I'|C,0O = 1)dPr(C). (17)

T—0

We will discuss the relationship of (13) to regularized OT later in Section 3.4.

3.3. Posterior Sampling

We consider a Markov chain Monte Carlo (MCMC), specifically a Hamiltonian Monte Carlo
(HMC) method to sample from the OT plan posteriors. This requires a novel way to take
the marginal constraints into account, which we do by devising a chart for the transport
polytope in (24).

MCMC methods are the main workhorse in Bayesian inference, allowing sampling from
a given unnormalized distribution. First, a proposal process Pr(I';4;|I';) is devised, where
t is a sequential sample index. Given a proposed transition I'y — I'yy1, we filter it through
the Metropolis-Hastings sampler, ensuring that the resulting Markov chain is reversible with
respect to Pr, ,(I'|C,O = 1) and satisfies detailed balance.

HMC is a popular variant of MCMC, allowing for efficient sampling in high dimensions,
which pairs the state I' with a momentum P € R™ ™ (Neal et al., 2011). One then defines
the kinetic energy T and potential energy U,

T(T, P) = vec (P) diag(M) 'vec (P) = > PM",
]

U(T) = —log det (diag(M)) — log Pr(T") (18)
1
=—3 > “log Myj — Pry,,(TC,0 = 1).

ij
Here diag(M) € R"™*™" is a diagonal mass matriz induced by the matrix M € R}*™. A
default choice would be M;; = 1. The kinetic and potential energies form the Hamiltonian

HIT,P)=T(',P)+ U(), (19)

which induces the Hamiltonian system whose trajectories preserve the Hamiltonian. The
HMC procedure then samples a momentum P;, and evolves the pair (I';, P;) according to the
Hamiltonian with a symplectic integrator, e.g., the leapfrog algorithm Betancourt (2017).
The resulting pair (I'y11, Pr+1) is then accepted with probability

Oé(Ft, Ft+1) = min {1, exp (H(Ft, Pt) - H(Ft—i-l’ Pt+1))} . (20)

Constraints on I', can be taken into account by utilizing the geometry of the trans-
port polytope, which we present below. The positivity constraints I' > 0 can be enforced
coordinate-wise through the prior, assigning zero mass for negative values. For example,
one could consider the uniform distribution over the probability simplex.

Transport Polytope. To accommodate the somewhat complicated constraints on the
transport polytope, we cast the polytope as a set concentrated on an affine plane bound by
positivity constraints. This allows parameterizing the polytope using a linear chart (given
n (24) below), which we put in use when sampling viable transport plans.
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Rigorously, we formulate the constraints on II(u, ) in a linear fashion as
' 0 1 I .
= > :
o o] [ = 2] ezoow @)

where 1,, is the n-vector with all coordinates 1. Hence, II(u, ) is a convex polytope, and
furthermore, it lies on the affine plane (see Fig. 2)

T'g+Vy= Fg+M:ZMij:O, ZMZ‘]':O, Vl,j , (22)
7 ,
for some I'y € II(y,v). Thus, given any I' € TI(u,v), we can find M € Vj, so that
I =Ty + M. The vector space Vj is isomorphic to R(=D*(m=1) yis
) —ef ]
—(@C)T Zij Oy
where O = Z ©;; is the row sum vector of © and @C >; ©4j is the respective column
sum vector. Thus ¢ provides a linear chart for IT(u, v ) through

o RDXD Ly g { (23)

[(6) = Ty + ¢(6) > 0, (24)
where the inequality is enforced for all coordinates.

In practice, we choose I'g to be the independent joint distribution of y and v.
3.4. Maximum A Posteriori Estimation as Regularized OT

We now consider the MAP estimate for the posterior distribution Plrl(f,,1 )(F|C, O = 1) under
the likelihood (L1). The (L2) case is more demanding due to the non-convexity of the
smooth minimum appearing in QL2 whereas QY is convex if — log Pr(I" | p,v) is convex.
Now considering Q“Y) in (13), we see that computing the MAP estimate,

Y = argmin QY(T) = argmin { —log Pr(T" | p, v Z Cck. T (25)
Pell(p,v) Pell(p,v)
is equivalent to solving the regularized OT problem (4) with the regularizer

R(T) = —log Pr(T | p,v), (26)

Figure 2: Tllustration of the transport polytope as described in (22).
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the marginals p, v, and the cost matrix ), Ck.
For the sake of illustration, we discuss the MAP estimate in three example cases.

Constant Prior. With a constant prior Pr(I') = const., solving (25) corresponds to

the vanilla OT problem (2).
Entropy Prior. Assume we have a prior proportional to the exponential of the e-scaled

entropy of I' defined in (9), we get the regularizer
R(T) = —logPr(T" | u,v) = —eH(T). (27)

Thus, solving (25) corresponds to solving the entropy-relaxed OT problem (Cuturi, 2013).
Gaussian Prior. Consider a Gaussian prior vec(I') ~ Pr(T,X) for the vectorized
transport plan, with mean I' and covariance matrix ¥. Then, one gets
1 _ _

R(T) = i(vec(I‘) — )2 Y(vec(T) - T), (28)
and so if I' = 0, the Gaussian prior results in quadratically regularized OT (Lorenz et al.,
2019; Dessein et al., 2018), where the quadratic term is the norm with respect to the
Mahalanobis metric given by %E_l.

No Cost With Cost
Prior Error Correlation 1STD 2 STD Error Correlation 1 STD 2 STD
Dirichlet 1.92 x 1073 0.702 62.8% 82.9% 1.91x1073 0.686 61.6% 82.4%
Tsallis 2.62 x 1073 0.304 47.9%  62.8% 2.54x 1073 0.350 471%  60.8%
Entropic  2.44 x 1073 0.319 454%  60.4% 2.58 x 1073 0.240 474%  63.0%
Gaussian  2.41 x 1073 0.340 44.3% 59.1% 242 x 1073 0.322 46.5%  60.7%
Uniform 2.52 x 1073 0.284 44.3%  583% 2.46 x 1073 0.290 48.2% 61.9%

Table 2: BayesOT yields meaningful uncertainty estimates for the Florida vote registration
dataset. The median error is computed for the mean posterior prediction, the cor-
relation is between standard deviations of the posterior (for an entry in the joint
distribution) and the absolute error, and the two last columns give the percentage
of data points lying inside the confidence bounds given by 1 and 2 standard devi-

=W NN = O

0.0 01

ations, respectively. The first four columns omit the OT likelihood term, whereas

the four last columns include it.

Figure 3: Demonstration of BayesOT between instances of digits 5-9 (columns) and 0-4
(rows). Each histogram shows the posterior of I';;.
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4. EXPERIMENTS

We now demonstrate BayesOT on one toy data set (MNIST) and give empirical results on
two sets: Florida vote registration dataset shows how BayesOT provides useful uncertainty
estimates while building on top of traditional OT approaches. The New York City taxi
dataset presents real traffic data, which we use to transport persons around Manhattan,
comparing the BayesOT posterior to the average case analysis.

We implement BayesOT with the Pyro probabilistic programming framework (Bingham
et al., 2019), and use the NUTS sampler (Hoffman and Gelman, 2014) for HMC to auto-
matically tune the hyperparameters. We typically get 60 samples per second on a Macbook
Pro 2015 in each of the experiments.

MNIST. As a toy-example with real data, we consider transport between two measures
over 32 x 32 images of hand-written digits in the MNIST dataset (LeCun et al., 1998). The
digits 0 — 9 are arbitrarily split into two groups of 0 —4 and 5 — 9, forming two measures p
and v with uniform weights. We sample images of each digit from the dataset to compute
N = 100 samples from the stochastic cost matrix using the squared Euclidean metric. We
sample 10 points from the posterior with 10% burn-in samples with a step size of 1074, and
use the entropy prior with ¢ = 1.

The resulting posterior over the transport plans, with the likelihood (L1), is illustrated
in Fig. 3. The results positively match intuition, as we most often see the mappings 0 — 5,
1— 7,2~ 6,3 — 8and 4 — 9. However, some of the assignments are not as clear-cut
as others. For instance, 0 — 5 is very dominant, whereas 3 + 8 is not that dominant, as
in some cases 3 — 7 might be more favorable, depending on the drawing style of the digit.
This effect is ignored by the MAP solution

Florida Vote Registration. We apply BayesOT to infer a joint table given two
marginals, a common task in ecological inference. On top of point estimates, BayesOT
provides uncertainty estimates, which are shown to be meaningful by the experiment.

The Florida dataset (Imai and Khanna, 2016) describes ~ 10° individual voters in
Florida for the 2012 US presidential elections. From the data, we aggregate two marginals
per county (of which there are 68), namely a marginal of the party vote ("Democrat’, 'Re-
publican’, ’Other’) and another for ethnicity ("White’, 'Black’, "Hispanic’, ’Asian’, 'Native’,
'Other’). Then, we infer a posterior over joint tables between these features (Flaxman et al.,
2015), which we compare to ground truth joint tables for each county.

Muzellec et al. (2017) apply OT to this problem by using side information to compute
a cost matrix as

Cij = \/2 — 2exp <—’vaf - v;fug), (29)

where v = 10, v! is the average profile for party i, consisting of: age normalized to lie within
[0, 1], gender represented as a binary number, and an indicator variable expressing whether
they voted in 2008 or not. The v} is an analogous profile, but for ethnicity j. Muzellec et al.
(2017) employed Tsallis-reqularized OT to infer the joint table, which in our framework can
be viewed as a MAP estimate with Tsallis-entropy prior. We show here how BayesOT,
even when the cost is exact, allows us to provide uncertainty estimates for regularized OT,
including Tsallis-regularized OT.
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Figure 4: Ground-truth assignments against the posterior mean assignments fij for the
10 first counties in the Florida vote registration dataset. The posterior utilizes
Dirichlet prior with the cost matrix computed over the individual counties. A
perfect inference would produce a scatter plot lying on the red diagonal line.

The approach by Frogner and Poggio (2019) discussed in Sec. 1 is also related. They
choose a prior distribution, whose most likely joint table is chosen. Our HMC approach,
which takes the marginal constraints into account, can be applied to their work, by sampling
from the prior distribution, yielding uncertainty estimates for the point estimate.

For each county, we vary the prior distribution between the Diriclet prior, the Tsallis-
entropy prior and the entropy prior, and choose whether to use the likelihood associated
with the OT cost or not (second term in (14) and (13)). In each case, the HMC chain
is initialized with 102 burn in samples with an initial step size of 10~*, after which 10°
posterior samples are acquired. This number of samples is quite low, especially for higher
dimensions, but the results show that meaningful uncertainty estimates are still obtained.

The results are summarized in Table 2, presenting the median error, and to assess the
uncertainty estimates, the correlation between the uncertainty estimates and absolute error,
and how many test values lie within the 1 STD and 2 STD confidence intervals of the point
estimate. Furthermore, the results obtained using the Dirichlet prior and the cost matrix
on the 10 first counties are illustrated in Fig. 4.

The results indicate clearly that the Dirichlet prior performs the best, as it achieves the
lowest median error and highest correlation between the posterior standard deviations and
absolute errors. This might be as the prior is supported on the probability simplex, and
thus concentrates more mass there compared to the other priors. On the other hand, it is
surprising that the cost matrix does not seem to provide meaningful information, as the
results over each prior remain quite unaffected when we leave the OT likelihood term out.

NYC Taxi Dataset. We consider data collected from Yellow cabs driving in Man-
hattan in January 2019, totalling 7.7 million trips. For p, we consider the 5 most common
pick-up zones, and for v the 6-15 most common pick-up zones, presented in Fig. 5. The
weights for 1 (and v) are computed according to the number of trips departing (and arriv-
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Figure 5: u (blue) and v (red) distributions used for taxi zones on Manhattan.

ing) from the location. The cost matrix Cj; is computed by sampling trips between locations
i and 7, and dividing the fare by the amount of passengers on board. Thus, our task is to
transport persons from pick-up locations to drop-off locations in an optimal way.

For this experiment, we pick the uniform prior and obtain 1000 samples from the stochas-
tic cost matrix. We initialize the HMC chain with 2 x 10® warm-up iterations, after which
we sample 10% points from the posterior, induced by the likelihood (L1), which is illustrated
in Fig. 6, alongside with the average cost OT solution.

In many cases where the average case analysis assigns considerable mass (e.g., 1 —
13,2 — 12,5 +— 11), we see a larger variation in the histogram towards larger mass as-
signments. This agrees with intuition, as there should be many individual cost matrices
encouraging a large assignment, if the average OT plan has a large assignment. However,
the histogram also supports low assignments, implying that it is not always optimal to
match these taxi zones together. We do also observe contradicting cases, such as 3 — 14,
which might be caused by a situation, where the assignment on average is optimal, but
otherwise is not. On the other end, we also observe cases where no mass is assigned on the
average (1 — 9,3 — 10), but the histogram still tends to assign some mass. This could be
caused by a similar case as above, where this is suboptimal on average, but in many cases
one should still assign some mass.

5. DISCUSSION

We introduced BayesOT, expanding the scope of OT to systems with stochastic cost, a
common scenario in the real world. The experiments endorse BayesOT as a successful
approach to model the stochasticity propagating to the OT plans from the cost, and proves
to be useful in providing uncertainty estimates for use cases of OT with an exact cost.

A notable challenge for the use of BayesOT is formed by the posterior sampling method
used (see supplementary material), which is orthogonal to the scope of this work, where
the focus was on deriving a general framework for stochastic OT. As we consider marginal
distributions with an increasing number of atoms, the dimensionality of the problem in-
creases, subsequently increasing the mixing time for the MCMC method used. However,
MCMC methodology is still under extensive consideration, and new advances are likely to
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Figure 6: BayesOT posterior with uniform prior for transport plans between zones 1-5 and
6-15. Each histogram shows the posterior of I';;, and the red lines give the
standard OT solution for the average case.

scale BayesOT to even larger problems. As a current example, an alternative to HMC could
be the stochastic gradient Riemann Hamiltonian Monte Carlo (Ma et al., 2015), or more
approximative inference methods such as variational inference (Blei et al., 2017).

Future directions for BayesOT include modelling the joint distribution (C,I") of the
cost and the OT plan explicitly, which allows computing a posterior distribution for the
total OT cost. One could also consider regression problems, where at a given time with no
observations, a distribution over potential OT plans could be inferred based on previous
data. Although advances are needed to scale our approach to large problems, based on the
experiments, we view BayesOT as a useful first step towards making OT-based analysis
possible in uncertain environments.
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