
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Fincher, Sally; Jeuring, Johan; Miller, Craig S.; Donaldson, Peter; Du Boulay, Benedict;
Hauswirth, Matthias; Hellas, Arto; Hermans, Felienne; Lewis, Colleen; Mühling, Andreas;
Pearce, Janice L.; Petersen, Andrew
Notional Machines in Computing Education

Published in:
ITiCSE-WGR 2020 - Proceedings of the Working Group Reports on Innovation and Technology in Computer
Science Education

DOI:
10.1145/3437800.3439202

Published: 17/06/2020

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Fincher, S., Jeuring, J., Miller, C. S., Donaldson, P., Du Boulay, B., Hauswirth, M., Hellas, A., Hermans, F.,
Lewis, C., Mühling, A., Pearce, J. L., & Petersen, A. (2020). Notional Machines in Computing Education: The
Education of Attention. In ITiCSE-WGR 2020 - Proceedings of the Working Group Reports on Innovation and
Technology in Computer Science Education (pp. 21-50). Article 3439202 (Annual Conference on Innovation and
Technology in Computer Science Education, ITiCSE). ACM. https://doi.org/10.1145/3437800.3439202

https://doi.org/10.1145/3437800.3439202
https://doi.org/10.1145/3437800.3439202


Notional Machines in Computing Education:
The Education of Attention

Sally Fincher∗
School of Computing
University of Kent

Canterbury, Kent, UK
S.A.Fincher@kent.ac.uk

Johan Jeuring∗
Department of ICS
Utrecht University

Utrecht, The Netherlands
J.T.Jeuring@uu.nl

Craig S. Miller∗
School of Computing
DePaul University
Chicago, IL, USA

cmiller@cs.depaul.edu

Peter Donaldson
Computing Science

University of Glasgow
Glasgow, Scotland, UK

peter.donaldson.2@glasgow.ac.uk

Benedict du Boulay
Department of Informatics

University of Sussex
Brighton, Sussex, UK

b.du-boulay@sussex.ac.uk

Matthias Hauswirth
Software Institute

Università della Svizzera italiana (USI)
Lugano, Switzerland

matthias.hauswirth@usi.ch

Arto Hellas
Department of Computer Science

Aalto University
Espoo, Finland

arto.hellas@aalto.fi

Felienne Hermans
LIACS

Leiden University
Leiden, The Netherlands

f.f.j.hermans@liacs.leidenuniv.nl

Colleen Lewis
Department of Computer Science

Univ. of Illinois at Urbana-Champaign
Urbana, IL, USA

colleenl@illinois.edu

Andreas Mühling
Institute for Computer Science

Kiel University
Kiel, Germany

andreas.muehling@infomatik.uni-
kiel.de

Janice L Pearce
Department of Computer Science

Berea College
Berea, KY, USA

pearcej@berea.edu

Andrew Petersen
MCS Department

University of Toronto Mississauga
Mississauga, Canada

andrew.petersen@utoronto.ca

ABSTRACT
This report defines notional machines (NMs), and provides a se-
ries of definitional characteristics by which they may be identified.
Over several sections, it includes a first-hand report of the origin
of NMs, reports a systematic literature review to track the use and
development of the concept, and presents a small collection of ex-
amples collected through interviews with experienced teachers.
Additionally, the report presents NMs in a common format, and
makes some preliminary explorations of their use in practice, in-
cluding examples of instructors using multiple NMs in sequence.
Approach and method are fully detailed in evidential appendices, to
support replication of results and adoption/adaptation of practice.

CCS CONCEPTS
• Social and professional topics→ Computing education.

∗Working group co-leaders

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ITiCSE-WGR ’20, June 17–18, 2020, Trondheim, Norway
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8293-9/20/06. . . $15.00
https://doi.org/10.1145/3437800.3439202

KEYWORDS
Notional Machines; Computing education

ACM Reference Format:
Sally Fincher, Johan Jeuring, Craig S. Miller, Peter Donaldson, Benedict du
Boulay, Matthias Hauswirth, Arto Hellas, Felienne Hermans, Colleen Lewis,
Andreas Mühling, Janice L Pearce, and Andrew Petersen. 2020. Notional
Machines in Computing Education: The Education of Attention. In 2020
ITiCSE Working Group Reports (ITiCSE-WGR ’20), June 17–18, 2020, Trond-
heim, Norway. ACM, New York, NY, USA, 30 pages. https://doi.org/10.1145/
3437800.3439202

1 INTRODUCTION
Originating in the work of perceptual psychologist Eleanor J. Gib-
son, there is a thread of work examining the phenomenological
nature of teaching and learning, not always in formal situations. So
the parent points to the place on the paper where a child must write
the answer to a sum [25]; surgeons gesture to indicate important
anatomical areas to medical students [40]; archaeologists kneel
together at the site of an excavation to feel and discuss the nature
of soil [24]; a young hunter is taken to the forest, told what to look
out for, and shown “subtle clues he may otherwise fail to notice”
[36, p. 37].

How does a novice programmer (or an increasingly expert pro-
grammer) know “where to look?”

In the teaching and learning of programming, the artefacts (code)
are symbolic and difficult to apprehend. It is by no means obvious

https://doi.org/10.1145/3437800.3439202
https://doi.org/10.1145/3437800.3439202
https://doi.org/10.1145/3437800.3439202


when looking at some code what the code actually does or even,
indeed, what it is meant to do. Many things that are important
(language, compiler, libraries) are not included with it, are not
visually represented; things that a programmer just has to “know.”

So, for computing education, the process of drawing a novice’s
attention to the things that matter is complex. One of the ways that
educators have found to address this complexity is in the creation
of notional machines (NMs). NMs are representations or analogies
that put a spotlight on those things that are important to look
at, or that do something that makes apparent otherwise invisible
behaviour which, if un-noticed or misunderstood, would cause the
learner to go hopelessly wrong.

The key here is Gibson’s identification of one of the problems
of learning: “Not all of the available information is relevant for the
task at hand . . . The key to perceptual learning is the education
of attention—learning which variables to attend to and which to
ignore.” [1] (emphasis added).

Gibson worked only at the level of perceptual learning, but she
suggested (and others have generalised) that the concept applies to
education more widely [50, p.81].

For the domain of computing education, we claim NMs as a
primary engine for the education of attention.

What is a notional machine?
A notional machine (NM) is a pedagogic device to assist the
understanding of some aspect of programs or programming.

An NM has a pedagogical purpose, its generic func-
tion is to draw attention to, or make salient, some hidden
aspect of programs or computing. It will have a specific focus
within programs or computing, and will adopt a particu-
lar representation that highlights specific aspects of the focus.

Pedagogical Purpose: The purpose of an NM is for
use in teaching to support student learning of computa-
tional concepts. A crucial aspect of an NM is that it should
simplify an actual concept or skill as an aid to understanding.

Function: The generic function of an NM is to un-
cover something about programming, computers or
computation, or to draw attention to something, that is not
obviously apparent in the artefact the student is using.

Focus: An NM typically focuses on a particular as-
pect of programs and their behaviour. As well as programs,
an NM’s focus can also be concerned with computers as
places where programs can be built, run, and stored.

Representation: An NM will have a representation
and this representation will draw attention to certain aspects
of the focus and possibly ignore others.

The aim of this working group was to explore the history, mean-
ings, uses and value of NMs as aids to teach about programming
and computers. There were four objectives:

• To conduct a literature review, to ground and inform the
work;

• To capture examples of NMs in use;
• To catalogue them in a common scheme; and,
• To arrange them in clusters or sequences.

At this time we solely considered NM that teachers use. We did
not consider NMs that students may construct to explain things to
themselves (or each other); neither didwe look at teaching strategies
designed to support students’ metacognitive skills in developing and
representing their own NM. These, and other promising avenues
of investigation, remain for future work.

This report is divided into six further sections. Section 2 outlines
the origin of the term notional machine within its historical context
and disentangles the meanings of the terms notional machine, con-
ceptual model and mental model. Section 3 describes a systematic
literature review that we undertook on the topic of NMs. Section
4 draws on the literature review to clarify the current meaning
and characterisation of NMs. Section 5 describes an illustrative
subset of NMs that we collected via interviews, reflective practice
and from the literature. Section 6 describes ways in which NMs
are used in instruction. Most often, NMs are used as explanatory
devices to accommodate the learner’s current level of knowledge
and avoid unnecessary cognitive load. Section 7 summarises and
concludes. There are four appendices providing: (A) a list of the
NMs we identified, (B) the systematic literature review process, (C)
the literature review extraction spreadsheet, and (D) the interview
protocol.

2 SITUATING NOTIONAL MACHINES:
ORIGINS AND THEORY

This section looks at the origin of the term notional machine in its
context of teaching Logo to novice programmers in Edinburgh in
the late 1970s. Some of the influences on that work are provided. The
section moves on to distinguish the terms notional machine, mental
model and conceptual model, as they have been used somewhat
interchangeably in the literature.

2.1 The emergence of the idea of notional
machines

The specific term notional machine arose in the 1970s following
an increasing interest in the psychology of programming, both
among novices and experts [see, e.g. 51, 70, 71]. This period also saw
the development of high-level languages specifically for teaching
novices programming, notably Basic and Logo. Allied to the interest
in the psychology of programming, work started to emerge on the
pedagogy of teaching programming [see, e.g. 11, 66].

An issue that rapidly developed involved how tomake the largely
hidden actions of a program understandable and perhaps also visi-
ble. The Basic Instructional Program (BIP), for example, provided a
visualisation of the execution of a Basic program by highlighting
each command as it occurred [7]. Mayer [46] described a Basic pro-
gram to learners as if it was a sequence of “transactions” involving
an “object” and a “location”, and Carroll and Thomas [12] argued
that an effective way of teaching programming involved providing



learners with carefully chosen metaphors for different aspects of
programs and programming.1

Building on the work of Mayer [46], du Boulay et al. [17] coined
the term notional machine to describe their strategy for teaching
Logo to children and teachers. Their historical definition of anNM is:
“A notional machine is the idealised model of the computer implied
by the constructs of the programming language.” This idealised
model should be simple enough to learn, but comprehensive enough
to build programs to solve problems of interest:

“Functional simplicity can be achieved by limiting
the set of transactions and by ensuring that each in-
struction does not need too many transactions to de-
scribe its action. This aspect of the simplicity of the
notional machine must be distinguished from two
other aspects of simplicity in a first programming
language, namely logical simplicity and syntactic sim-
plicity. Logical simplicity implies that problems of
interest to the novice can be tackled by simple pro-
grams, i.e. the tools are suited to the job. Syntactic
simplicity is achieved by ensuring that the rules for
writing instructions are uniform, with few special
cases to remember, and have well chosen names.” [17,
page 238]

Their initial attempt at creating NMs was embodied in a man-
ual for learning Logo aimed largely at children but also primary
school teachers [16] (see Figure 1). This used a variety of hand-
drawn representations and analogies, including that of a “worker”
for commands and functions whose ears “heard” parameter values,
whose mouth “spoke” outputs, and whose hands carried out ac-
tions. This representation was gradually built up to explain built-in
commands, user-defined procedures and functions, sub-procedure
calls and recursion.

At that time, the children were working on very noisy Model
33 Teletypes, with what they typed printed on a roll of paper and
turtle movements drawn by either a mechanical turtle on the floor,
a graph-plotter or a visual display. Note that there were no screens
for the users with a desktop or windows or icons to represent the
computer. The actual computing system consisted of a laboratory
containing the input and output devices, a nearby room contain-
ing a mini-computer to control those devices and a mainframe in
the basement to run Logo. So there was a need to provide some
simplified sense of the computer itself, and this consisted of a hand-
drawn representation in the manual of where their user-defined
procedures were “inside” the computer via the differences between
“working memory” and “long-term storage”. The former was the
place where newly built user-defined procedures were stored and
could be run; the latter was where user-defined procedures were
stored in between sessions so long as they had been explicitly
“saved”. Given that the researchers had some control over the nam-
ing of primitives in the version of Logo that they used, they were
able to choose what they hoped were more understandable names
than the standard ones at the time in order to create a sense of unity
between the manual, the names of the primitives in Logo and the
terminology that they used in teaching.

1For a much more detailed account of the early research into learning and teaching
programming, see Guzdial and du Boulay [28].

Figure 1: A page from the 1976 LOGO manual

Under the guidance of JimHowe at Edinburgh, du Boulayworked
with trainee primary school teachers who needed to have a better
understanding of mathematics, and O’Shea worked with children
from a local school. Their aim was to teach mathematics through
Logo and evaluate any increases inmathematical understanding and
motivation. They did not set out to evaluate how far the pedagogy
based on NMs was effective as compared to some other pedagogy.
They had some success in the main goal:

"For example, we have worked with trainee teachers
weak in mathematics, and shown that writing LOGO
programs to explore troublesome topics can promote
understanding of the underlying mathematics. How-
ever, the intrusiveness of the programming activity
could frequently distract the teachers’ attention from
mathematical issues. . . other studies [with children]
at Edinburgh suggest that computer modelling can
improve both the maths performance of some under-
achievers, and their ability to talk about mathematics.”
[35, page 244]

What they did find was that, despite their best efforts, Logo was
harder to learn for some trainee teachers and some children than
they had expected.



2.2 Mental models, conceptual models and
notional machines

With the rapid development of cognitive science and mental mod-
els in the 1980s, the more general notion of a “conceptual model”
evolved. For instance, Greca and Moreira [26] contrast the classic
theoretical literature on mental models and knowledge-representa-
tion in general [e.g. 37] with the educational literature on themental
models of learners and teachers [e.g. 6].

In the case of education, Greco and Moreira distinguish the
mental models of learners from the scientifically informed under-
standings of teachers’ conceptual models. They characterise the
difference between conceptual models and mental models as fol-
lows:

“. . . conceptual models are precise and complete rep-
resentations that are coherent with scientifically ac-
cepted knowledge. That is, whereas mental models
are internal, personal, idiosyncratic, incomplete, un-
stable and essentially functional, conceptual models
are external representations that are shared by a given
community, and have their coherence with the sci-
entific knowledge of that community. These exter-
nal representations can materialize as mathematical
formulations, analogies, or as material artifacts.” [26,
page 5]

They quote Barquero [6] who characterises learners’ mental models
as

“a type of knowledge representation which is implicit,
incomplete, imprecise, incoherent with normative
knowledge in various domains, but it is a useful one,
since it results in a powerful explicative and predic-
tive tool for the interaction of subjects with the world,
and a dependable source of knowledge, for it comes
from the subjects’ own perceptive and manipulative
experience with this world.”

Much more recently, Seel [59] goes further in that he offers a
theoretical account of using models (in general) in teaching and
describes a number of pedagogic strategies for accomplishing this
kind of teaching. He also points out that models and conceptual
models can model processes and procedures as well as static rela-
tions, so that, for example, the teacher can answer questions such as
“what would happen to inflation if the Bank of England prints lots
of money?” or “what would happen if you pressed the accelerator
and the brake on a car at the same time?” Ideally, the learner’s
mental model will develop to also be able to answer these ‘what
if’ questions by mentally simulating the processes or mechanisms
being mastered.

So where do NMs fit into this picture? It seems that conceptual
models are one kind of model and that an NM is effectively a special
kind of conceptual model. A characteristic of NMs is that they rep-
resent something that can be interacted with, even if just mentally,
in other words a machine. So although the term conceptual model
often implies a declarative model, this is not a necessary feature.
They are created in the context of teaching computing (in general)
by teachers as pedagogic devices to help learners understand a
simplified version of a conceptual model (see Figure 2). An NMmay

Figure 2: The relationships between models in general, con-
ceptual models, NMs andmental models. Models in General
refers to the universe of models of all kinds. The black ar-
rows indicate ‘a-kind-of relationship’. The blue arrows indi-
cate a timeline of development. The leftmost blue arrow in-
dicates the teacher’s interpretation of the expert conceptual
model.

remove unnecessary detail, may abstract details into broader con-
cepts, and will often make use of analogies that provide scaffolding
to help understanding.

The learner’s (personal) mental model will initially be ‘incom-
plete, imprecise, incoherent,’ as indicated above and may or may
not cohere, first towards the NM offered by the teacher and perhaps
later towards the more complex, generally accepted technical con-
ceptual understanding of the computing phenomenon ‘caricatured’
in the NM.

Since their original identification and definition, the concept of
NMs has been used and refined by many other researchers and
practitioners. For example, Krishnamurthi and Fisler [41] describe
the interaction of notional machines and programming paradigms,
suggesting that “While notional machines are usually viewed as a
tool for learning to write and trace programs, they are also a useful
way for us to think about language classification: essentially, the
similarity between two languages is the extent to which a notional
machine for one gives an accurate account of the behaviour of the
the other.” In the remainder of this document we trace their appear-
ance in the literature. We also capture and present rich examples
of their use in practice.

3 NOTIONAL MACHINES IN THE
LITERATURE

The notional machine idea has been adopted, refined, and in some
cases re-developed in a number of different areas of computing
education over the past four decades. We conducted a systematic
literature review to explore how the term notional machine has
evolved and to determine how andwhere it has been used. Our focus
is on instructor-defined NMs – not the NMs and mental models
generated by students.

Appendix B provides details on the methods of the system-
atic literature review, namely identifying, filtering, and processing
relevant literature. At a high level, we searched for instances of



Figure 3: The type of published papers that cite or reference
NMs by year. The dotted lines indicate publication of highly-
cited reviews that featured NMs prominently.

the strings “notional machine” and “conceptual machine” in three
databases (the ACM digital library, IEEE Xplore, and Scopus), fur-
ther including expert-identified articles and articles that were often
cited by the identified literature. (The term “conceptual machine”
was suggested by a domain expert. See Appendix B for details.)
Pairs of reviewers ruled out papers that were unlikely to be relevant
to programming using the title and abstract, and then individual
reviewers extracted information from each paper using an extrac-
tion template that was iteratively refined during the systematic
literature review process.

The extraction template is described in Appendix C and includes
fields for entering the type of paper (e.g. literature review, research
study, etc.), explicit research question, definition of notional ma-
chines used, NMs identified, and evaluation performed. A copy of
the paper itself was also collected for analysis of the abstract and
references. Data from a total of 226 papers was extracted.

In the next subsection, we look at the set of papers, as a whole, to
see when papers referring to NMs were published and what might
have driven the spread of the term across the discipline. Then,
in “How and where are notional machines used?” we consider
what role the notional machine concept plays in papers. In “Topics
of papers that refer to notional machines”, we look at the topics
addressed by the papers in our set and identify theories and areas
that are well-connected to the NM literature. Finally, we examine
how the term notional machine is defined and how the theory is
evaluated.

3.1 Timeline of notional machine research
During the extraction process, we classified the papers by type (e.g.
literature review, experience report, or system paper). The goal of
identifying the type is to qualify where the notional machine con-
cept is being used. Some reviewed papers could have been classified
in more than one type, and the reviewer identified the primary goal
of the paper. Figure 3 maps the papers that were extracted over a
timeline. While the term notional machine was introduced in the
early 1980’s, with few exceptions, the term didn’t start to be broadly
incorporated into studies until the mid-2000’s. We suggest that the
prominence of NMs in recent (2016-2019) works is the product of
two catalyzing publications. First, in the early 2000’s, Robins, Roun-
tree, and Rountree [56] featured the concept of virtual machines

Figure 4: Timeline describing the influence of du Boulay,
Sorva, andRobins et al.’s work on the papers being reviewed.

prominently in what became a foundational (and oft-cited) perspec-
tive on computing education. They informally define an NM to be
a “model of the computer as it relates to executing programs” while
also, later, quoting du Boulay’s 1986 definition [15]. Second, and
even more significantly, in 2013, Sorva et al. published a review of
the role of NMs in computing education that argued for greater
awareness and adoption of NMs in research and in practice [63].
Sorva et al. [63] defines an NM to be “an abstraction of the computer
in the role of executor of programs of a particular kind” while also
citing du Boulay’s 1986 paper. They also note that several NMs,
at different levels of abstraction, may describe the execution of a
single program [63]. To get a sense of the influence of these papers,
consider Table 1, which lists the ten papers cited most frequently
by the works we reviewed. (Note: Not all of these papers focus on
instructor-defined NMs; they are just the most cited references from
within our set.) Appendix B describes the process used to extract
these citations. In brief, the process was lossy and only draws from
165 papers published since 2000, so these counts should be treated
as both a lower bound and as generating only a relative ordering.
It’s notable that Sorva’s 2013 work [63] is cited as frequently as
one of du Boulay’s works [15] and more than twice as often as the
original paper on the topic [17]. Robins, Rountree, and Rountree’s
work [56] is the next most cited paper that focuses on NMs.

Furthermore, it’s possible that many recent publications derive
their understanding of NMs from Sorva’s review, rather than from
du Boulay’s original work. Only 29 papers cited both du Boulay’s
“Some Difficulties of Learning to Program” and Sorva’s “Notional
Machines and Introductory Programming Education”, leaving 49
citing only one or the other of these authors. Figure 4 provides
further evidence, showing that, since its publication, Sorva’s paper
has been cited more frequently than the original work introducing
NMs.

3.2 How and where are notional machines
used?

Next, we studied how and when in the identified research literature
NMs are used. Figure 5 presents how the concept of notional ma-
chines is used in these 226 papers. Some used NMs for more than
one purpose (for motivation and in an intervention, for example),



Table 1: Frequency of citation for the papers most commonly referenced from within our review set. The original papers are
highlighted in bold, and the papers we propose contributed to its popularity are italicized.

Paper Citation Year of Included in
Frequency Publication Review?

Some Difficulties of Learning to Program [15] 78 1986 Yes
Notional Machines and Introductory Programming Education [63] 78 2013 Yes
A Multi-National Study of Reading and Tracing Skills in Novice Programmers [43] 45 2004 No
Learning and Teaching Programming: A Review and Discussion [56] 39 2003 Yes
A Review of Generic Program Visualization Systems for Introductory Programming Edu-
cation [65]

37 2013 Yes

The Black Box Inside the Glass Box: Presenting Computing Concepts to
Novices [17]

36 1981 Yes

A Multi-National, Multi-Institutional Study of Assessment of Programming Skills of First-
Year CS Students [48]

30 2001 No

Constructivism in Computer Science Education [8] 26 1998 Yes
Fragile Knowledge and Neglected Strategies in Novice Programmers [54] 21 1986 No
Exploring the Role of Visualization and Engagement in Computer Science Education [53] 20 2002 Yes

Figure 5: Apparent purpose of referencing the notional ma-
chine concept.

so the columns in the figure total to more than the number of pa-
pers. Most (72%) cited NMs either as related work, theoretical basis
for the work, or motivation. Very few (27%) directly engaged with
the concept to identify an NM or to use an NM in an intervention.
This issue is a theme in our analyses: in later sections, we see more
evidence that NMs do not feature in research questions but are fre-
quently found in abstracts, which suggests that the idea of NMs are
assumed to be present and important but are not investigated. As
is typical for computing education, much of the work that refers to
NMs (42%) is situated in the context of the first year of a university
education (CS1/2), and another 12% is based on other courses at
the tertiary level. Another 26% is uncontextualized (e.g. literature
reviews, some theoretical work, and some position papers), leaving
only 21% in the primary or secondary educational contexts. Figure 6
illustrates the breakdown of contexts in more detail.

3.3 Topics of papers that refer to notional
machines

Based on Figure 5, we can infer that the majority of the papers
are focused on another topic; they do not evaluate or develop NMs
directly. To explore where these papers are situated – what research
topics they explore – we performed two independent analyses. For

Figure 6: Educational context featured in the reviewed pa-
pers.

the first analysis, we coded and categorized the explicit research
questions stated in each paper. For the second analysis, we extracted
common words from the abstracts of the papers we reviewed and
then matched the most common words with areas of focus in the
discipline. The results of those two analyses are presented in the
next two subsections.

3.3.1 Topics defined by research questions. Out of the 226 reviewed
articles, 74 articles had explicitly stated research questions (33%),
while the rest of the articles either had no research questions or
stated goals, objectives, or purpose without explicitly framing them
as research questions. This is in line with previous literature re-
views conducted within computer science education research – for
example, a recent ITiCSE working group that reviewed literature on
predicting academic performance [33] observed that approximately
one third of the identified articles had explicitly stated research
questions. A single researcher coded each of the 74 stated research
questions. They used a grounded approach and identified codes
as they emerged. After coding all 74 questions, similar codes were
grouped together and then a second pass was performed to assign
codes that were missed in the initial pass. Overall, the research



topics in the articles with explicit research questions varied consid-
erably, but a few recurring and overlapping topics occurred. The
most common topics were related to understanding and/or com-
prehending concepts and misconceptions (22 articles), tools and/or
IDEs and/or programming environments (12 articles), visualiza-
tions and/or animations and/or program state representations (12
articles), tracing and/or debugging code (8 articles), teacher and/or
lecturer perspectives (7 articles), and syntax and/or logical errors (5
articles). These topics could also appear together, where researchers
could, for example, consider the lecturer perspectives on the useful-
ness of a novel visualization. Including the term notional machine
in the explicit research question was rare – out of the 74 articles
with explicitly stated research questions, 3 explicitly considered
an/the NM, two of them being a part of the same research topic.
This highlights an important issue that we discuss later in a broader
extent. That is, research on NMs is mostly lacking – or at least it is
not phrased using the term notional machine.

3.3.2 Topics defined in the abstract. Since research questions are
often missing or not clearly stated, we also analyzed the paper
abstracts to further identify the topics being explored in the papers
we were reviewing. Content analysis of abstracts is a method for
creating a high-level view of thematic areas and assumptions held
by the research community and has been used in computing [64].
While content analysis often relies on human tagging, here we take
an NLP approach and identify the most common sequences and sin-
gle words. We hoped that this analysis would reveal what concepts
and research areas are most closely linked to the notional machine
concept. In the previous subsection we described a separate but
supporting analysis. There we described our process for analyzing
the research questions as stated and described by researchers, and
in that subsection, we used human tagging.

Table 2 contains the results of our NLP analysis of the abstracts.
We counted the number of instances of each unique word found
in the papers we reviewed, and then we selected the nouns or
noun phrases for further analysis. The top twenty bigrams (pairs of
words) and singletons (single words) are presented in the leftmost
columns. In addition, we removed singleton words that are found in
the most common bigrams; the remaining singletons, which are not
part of a common bigram, are found in the rightmost columns. The
three most common bigrams observed – by a considerable margin
– are computer science, NMs, and introductory programming. This
contrasts starkly with our findings from the analysis of the explicit
RQs, where we observed that NMs are very rarely present in ex-
plicit research questions, while simultaneously aligning with the
observation in Figure 5 that the notional machine concept is more
frequently used as the basis or motivation for work, than being the
focus of the work itself. The presence of the term notional machine
in the abstract suggests that it is seen as important to contextualiz-
ing the work: use of NMs is common in computer science education,
and researchers do not see a need to question it. This explanation
is supported by, for example, the observations of the ITiCSE 2002
working group on the role of visualization and engagement in com-
puter science education [53], which highlighted that over 75% of
survey respondents used dynamic program visualizations, which
seek to present an abstracted model of execution (that is, an NM),
as a part of their teaching. If this is the case, then this data is one

Figure 7: Key elements of NMs in the literature. Papers de-
scribing systems or tools (usually visualizations) have been
indicated.

piece of evidence that NMs may be a signature pedagogy. Review-
ing the entries in Table 2, we see a number of areas of research
interest in computing education. Most of the common bigrams –
introductory programming, computational thinking, etc. – are at a
higher level than the research topics identified in the analysis of
research questions. However, the words misconceptions (76) and
errors (65) show up frequently, as do tools (65) and programming
environments (13) and, to a lesser extent, program visualization
(18).

3.4 Definitions of notional machine used
Only 116 (just under 50%) of the papers defined what the authors
meant by the term notional machine. By identifying common con-
cepts in these definitions, we find the ideas of the NM are that:
it acts as an executor of code, that it is language-dependent, that
it expresses general properties of the abstract machine, that it is
an abstract model, etc. This analysis was carried out via concept-
mapping, not simply words utilised. For example, when an article
described tracing the execution of a program, this was tagged with
the concept “trace” regardless of whether the word “trace” was used.
We also categorized these papers into systems/tools papers when a
major portion of the paper described a system or a tool and its use.
(see Figure 7).

Many of these notions quote or draw from du Boulay, O’Shea, and
Monk’s 1981 definition, “A notional machine is the idealised model
of the computer implied by the constructs of the programming
language.” [17] and from here one can see the origins of idealised
model as well as language dependency. Many others quote or para-
phrase Sorva [63], who drew from du Boulay. Many other articles
conflate NMs which are constructed or utilized by instructors for
pedagogical purposes with mental models which are models con-
structed by learners. Some articles also simply referred to the term
without citing a source or defining the concept.



Table 2: Most frequent nouns and noun phrases found in the abstracts of reviewed papers. Words related to particular areas
of study or theories in computing education are in bold.

Bigrams Count Singletons Count Singletons Not Count
in a Bigram

computer science 68 student(s) 456 student(s) 456
notional machine 63 programming 445 learning 232
introductory programming 54 program(s) 250 paper 126
mental model(s) 34 learning 232 research 108
computational thinking 32 course 147 system(s) 95
programming course(s) 49 computer 133 study 93
novice programmers 32 code 131 understanding 91
programming language 29 paper 126 results 84
computing education 25 language(s) 119 design 78
programming concepts 24 research 108 misconceptions 76
computer programming 21 concepts 105 knowledge 68
source code 21 machine 102 tools 65
science education 18 model 101 approach 60
program visualization 18 education 101 problems 58
object-oriented programming 17 system(s) 95 errors 54
program execution 17 study 93 analysis 46
programming education 15 understanding 91 development 45
problem solving 14 results 84 process 45
programming environments 13 teacher(s) 82 literature 45
spatial skills 13 science 81 instructional 45

3.5 Measurement and evaluation
Relatively few papers performed an evaluation on an NM or its im-
pact on students. As discussed in Section 3.2, only 27% of the papers
we reviewed identified an NM or used one in an intervention, and
most of these performed an evaluation. 42 (19%) performed a quali-
tative analysis of some form, and 38 (17%) performed a quantitative
analysis. 18 (8%) performed both.

The evaluations we saw focused on individual mental models
or their impact on students. For example, in “Investigating and
improving the models of programming concepts held by novice
programmers” [44], the researchers identified that students held
“‘non-viable’ mental models” and proposed and evaluated a method
that used program visualization (reflecting an NM) and cognitive
conflict to repair these models. None focused their evaluation on
the idea of NMs themselves, to test the theory.

3.6 Limitations and threats to validity
When conducting systematic literature reviews, one of the core
challenges is finding and identifying the relevant literature. In our
case, we used multiple approaches to reduce the number of relevant
articles missed: we conducted keyword-based searches on three
article indexes (ACM Digital Library, IEEE Xplore, and Scopus),
augmented the literature based on expert recommendations, and
finally analyzed the bibliographies of extracted articles and included
references that were considered to be in scope. We did not, however,
create a list of known relevant key papers at the beginning of the
systematic literature review process. We were uncertain if the term
notional machine had been widely adopted, so we did not feel
we could a priori identify a reference list of papers that would
represent the breadth of research that needed to be found. Instead,

we crafted our search terms to be as broad as possible: we included
all articles from the literature databases that contained the term
notional machine as well as close variants (notational machine,
conceptual machine). Nevertheless, we know, unfortunately, that
some papers were missed. Figure 3 presented a timeline of the
papers found in our searches, and there’s a noticeable gap in 2009.
A search on Google Scholar using the string “notional machine”
identifies several potentially relevant papers from 2009 that we did
not cite as they were not indexed in the databases we searched,
including [57]. Our decision to not create a list of additional key
papers means that we do not have data on how well our searches
identified those key papers. That is, we do not have data on the
completeness or accuracy of our searches (when compared to a key
reference list).

As observed during the literature review process, the computing
education research community consists of multiple subcommuni-
ties. Adoption of theories across subcommunities can take some
time, and in the interim, related theories may arise, and each com-
munity may adopt its own terminology. As a result, it is likely that
we could have uncovered even more relevant literature had we in-
cluded search terms such as “program visualization,” “mentalmodel,”
and “conceptual model.” We believe, however, that the current set
of papers includes papers that represent research in these areas and
is sufficiently large to create a representative picture of the topic.
The decision of whether to include or exclude an identified paper
is also of importance for building a representative picture. In our
case, when deciding whether an article should be included in the
study or not, two researchers assessed each article independently.
In case of disagreement, the article was included into the study. As
discussed in Appendix B, although the interrater reliability was



only moderate, we believe that the inclusive approach avoided pre-
mature exclusion of articles. The main threat to inclusivity is our
decision to focus on programming. We recognize that ideas related
to NMsmay be found outside of programming education (e.g. in net-
works [3] or training for business software [67]), but we ruled them
out of scope of this effort. The extraction process also involves a
number of decisions that influence the picture that developed from
the review. First, the literature review was focused around three
research questions (see Appendix B) that directed the construction
of the extraction sheet (see Appendix C). If the research questions
had been different, it is likely that the extracted data would also
differ. Second, it is possible that there may be inconsistencies in
how the extraction form was interpreted. The group of researchers
extracted data from the papers individually due to the large number
of reviews required, so inter-rater reliability cannot be calculated.
To mitigate the issue of inconsistency and to maintain a focus on
the research goals during paper extraction, the extraction process
ramped up slowly (the first few weeks were a training period),
and the group met weekly to discuss the process and to identify
inconsistencies.

3.7 The role of notional machines in the
literature

To synthesize our findings from the systematic literature review,
we note that while NMs were introduced in the late 1970’s and
early 1980’s, our analysis suggests that its role in computing edu-
cation is still emerging. It is possible that this could be due to an
early divide between research communities, where the community
centered around the psychology of programming did not initially
succeed in disseminating their ideas to other scientific communities
such as the one focusing on program visualizations, or, for example,
due to the concept being abstract and difficult to grasp. While the
notional machine idea has been naturally present in computing
education, as evidenced in longstanding efforts on building pro-
gram visualizations for teaching purposes, it has taken more than
one prolific review to bring the notional machine term and associ-
ated principles to the mainstream computing education research
vocabulary. Furthermore, as evidenced by recent work using the
related term “conceptual machine” and the lack of a coherent and
consistent definition across papers, the term notional machine has
not yet been adopted and integrated across the entire discipline.
Despite the increased visibility of the term, the notional machine
concept is most often used in the introduction and related works
sections of articles. NMs are rarely explicitly used – or evaluated –
in interventions in the identified articles. This is especially evident
in our analysis of explicit research questions extracted from the
literature. Out of the 74 articles with explicit research questions,
only 3 incorporated the term notional machines into the research
questions. Evidence that the term is becoming a part of mainstream
computing education research terminology may also be found in
the contexts of the articles that use the term. While the term was
originally coined in the context of teaching children (and teachers)
programming (as discussed in 2.1), much computing education re-
search focuses on CS1/CS2 courses in higher education, and the
use of the term has transferred directly to that new context. When

considering the foci of the identified articles, despite the rare oc-
currence of the term in research questions, we observe that NMs
are positioned as a central concept in the work as evidenced by the
abstracts. This suggests that NMs are a (still rarely acknowledged)
signature pedagogy in computing education. As such, studying
the educational effectiveness of (various types) of NMs is called
for. We next provide an overview of educational effectiveness of
NMs, linking it to relevant learning theories. Then, in Section 4, we
respond to the issue that no single, standard definition of an NM
has been adopted by outlining the definitional characteristics of
NMs.

3.8 Educational effectiveness of notional
machines

There is limited literature looking at the educational effectiveness
of NMs, although there are papers that track changes in student
attitude or performance following the introduction of an IDE of
some kind [see, e.g. 9]. There are also papers that observe individ-
ual students as they learn programming, noting their difficulties,
impasses and successes along the way [see, e.g. 13]. There are fewer
papers that compare the relative educational effectiveness of one
NM against another or, for example, compare one modality of NM
vs. another modality.

The closest relevant research comes from the pedagogy of other
STEM subjects. Here the use of simulations to draw attention to
processes that are hard to see or, indeed, impossible to see is large
[see, e.g. 68]. Moreover, general theories of pedagogy have tended
to address teaching issues at a level that does not particularly iden-
tify programming and the pedagogy of using NMs. Some theories
focus on limitations in human mental and perceptual processing
as they apply to learning, e.g. Cognitive Load Theory [14, 39, 58]
and Multimedia Information Theory [47]. Other theories look at
learning largely independently of low-level human information
processing issues, focusing on the kinds of representation and the
sequencing of representations that best promote learning [21], the
coordination of multiple representations in learning [2], or exam-
ination of the role that modelling and analogy play in teaching
and learning [23, 59]. Other work takes a developmental approach
to learning, arguing that the evolution of coming to understand
an abstract concept follows much the same Piagetian sequential
pattern as children go through developmentally [42], in contrast to
a phenomenographic view of learners and learning programming
[10].

In terms of the pedagogy of NMs, these theories all point in
broadly the same direction. These include (i) early concrete exam-
ples and analogies assist the understanding of abstract concepts,
(ii) simplicity of the presentation of the NM with its important
aspects made salient reduces the cognitive load on the learner, (iii)
in the presentation of an NM aims, as far as possible, to keep from
overloading the learner’s perceptual or mental processing.

The above theories only partially account for the way that in
technical subjects, such as programming, learners often have to
move between highly abstract concepts and practical hands-on
activity in order then to fully understand the abstract concepts.



These ideas are explored in semantic wave theory, which is a peda-
gogic theory that considers timing, sequencing and contextualising
central components [see e.g. 69].

4 NOTIONAL MACHINES: DEFINITIONAL
CHARACTERISTICS

The historic description of a notional machine referred to “the
idealised model of the computer implied by the constructs of the
programming language” du Boulay et al. [17] and some of its prop-
erties were expanded in du Boulay [15]. The much cited review by
Sorva [63] built largely on du Boulay et al.’s descriptions, although
it focused only on program execution. However, there has never
been a fully precise definition of the concept. This has supported
the development of a rich literature, but also a confused literature,
since there is no agreed definition and no consistent use of terms.
As one outcome of this working group (drawing on both our theo-
retical and empirical work), we offer these defining characteristics
based on the purpose, function, focus and representation of NMs.

4.1 A notional machine has a pedagogical
purpose

The general purpose of an NM is for use by a teacher to support
student learning of computational concepts. Therefore, a crucial
aspect of any NM is that it should simplify an actual concept or
skill as an aid to understanding. Thus programming language se-
mantics by themselves are not an NM when they are used without
a specific pedagogical intent. It is called “notional” in the sense that
what is being described is a simplified, partially true, version of
the truth. The “truth” about what happens when a program runs is
complex and multi-layered, from quantum mechanics, via electron-
ics, via machine code and upwards through various intermediate
representations to the program as written. To say that an NM is
a partial truth is to say both that it is concerned only with some
layers of description and at any layer with only some details. It
may be partial in various ways. Sometimes an NM omits details
that are not of concern for the learner at that point in their learn-
ing and would confuse or mislead them. Sometimes an NM makes
salient details that the learner needs and that they might otherwise
overlook. Sometimes an NM reveals an aspect or connection that is
not clear from surface features. It is called a “machine” because it
makes a direct and explicit analogy to a mechanism with parts that
interact to produce behaviour, like a clock with its gear wheels or a
food-blender with its motor and blades. A piece of code always has
an action, always does something. Drawing attention to the place
of action is part of the work of an NM. For example, a variable is
like a box with a label, and assignment copies/moves a value into
that box. The machine idea can be applied both to the computer
itself and to describe the behaviour of programs. So one can think
of a computer as a machine that enables a programmer to create,
edit and run other machines. Ultimately “machine” relates to the
specific content area of programming, typically done for and within
a, maybe abstract, machine (see the subsection on Focus below).

4.2 A notional machine’s function is to draw
attention to something

The generic function of an NM is to uncover something about
programming, computers or computation, or to draw attention
to something, that is not obviously apparent in the artefact the
student is using. There are different reasons as to why the focus
of interest might not be apparent. It might be because there is a
lot of functionality and the student is lost in a “fog of relevance”
not knowing which parts are salient for the task in hand [34]. It
might be because the focus of interest isn’t there at all; a compiler
is invisible in the code. It might be because the subject of focus is a
cognitively demanding concept (like references) and the attention
that an NM affords makes the concept more accessible.

4.3 A notional machine has a focus
Typically, NMs focus on programs and their behaviour to explain
various facets of execution. Some might be quite broad in focus, oth-
ers narrower. For example, an NM might elucidate the mechanism
of sub-procedure calls. Within that focus, a particular aspect might
be emphasised, e.g. parameter passing. So an “aspect” is treated
as a part or a property of the focus. The distinction between a fo-
cus and its aspects is useful, rather than definitional, see the next
subsection.

In contrast to [63], we argue that as well as programs and ex-
ecution, an NM’s focus can also be concerned with computers as
places where programs can be built, run, and stored. For example,
the location of the program inside the computer, and the difference
between the locations of (say) the executable version of the pro-
gram and the file that contains the editable version are not obvious,
nor is it obvious why these should be important.

AnNM thereforemay focus also on the associated epiphenomena
of programs and programming, such as the names of program
constructs, the causes and content of error messages, the names
on buttons in the environment (e.g. “save”, “file” etc.), the locations
of files containing programs, the difference between editing and
running a program and so on.

4.4 A notional machine has a representation
An NMwill have a representation and this representation will draw
attention to certain aspects of the focus and possibly ignore others:
for example, elucidating the aspect of parameter passing within a
focus of procedure calls. A representation may simply be verbal,
such as saying “a variable is like a box”, and does not necessarily
need to be visible. In our definition of representation we are much
more concerned with what is being represented than with how it is
being represented. Of course, from a pedagogical point of view the
“how” can be very important.

Thus, two notional machines can draw students’ attention to
the same thing and yet be different notional machines in terms of
their representation. For example, one teacher might use arrows
to address objects (NM1) another might use IDs to address objects
(NM2), or the same teacher might use them on separate occasions.
Both NM1 and NM2 focus attention on object identity/aliasing, but
they are different NMs because their representations draw attention
to different aspects of the focus. In one the ID aspect is implicit, in
the other the ID aspect is explicit.



By contrast, two hand-drawn or machine-drawn representations
that draw attention to the same thing may essentially be the same
NM because, although the surface modes of the representation
may be different, the aspects of the representation are the same.
For example, a teacher may introduce a variable assignment NM
with two representations: a variable table on a whiteboard and the
variable values in a debugger.

4.5 Designing notional machines
Based on the preceding, defining characteristics, an NM draws
attention to some specific aspect of programming, computers or
computation with a pedagogic intent. While it is possible to transfer
the concept of a notional machine to areas of computer science
unrelated to programming, historically - and for the purpose of this
report - we only consider applications that are, at least indirectly,
related to the task of programming. Then, there are three areas of
interest that an NM may place its focus on (see Figure 8): 1) the
programming language itself, 2) the “machine” that one is trying
to control, as in du Boulay’s original definition [15], and 3) the
interaction (or “overlap”) between these two.

"Machine"

Programming language

Interaction

Figure 8: Areas relevant to notional machines

For example, placing a focus on the fact that every value in
Python is an object, is only concerned with the programming lan-
guage. In contrast, looking at how a micro-controller board has
pins that can act as inputs when connected to a switch in the right
way, is only concerned with the “machine”, in this case the actual
hardware that a program will run on. Depending on the context,
this “machine” can also be a programming environment (e.g. for sys-
tems like Scratch), an operating system, a virtual machine, or even
something completely detached from actual computing hardware
and software, for example a set of algebraic rules that fully define
the semantics of some language. Finally, looking at how settings for
virtual memory might differ for JVMs depending on the operating
system or implementation is something that is concerned with the
interplay between programming language and “machine”. In con-
texts where the “machine” is closely related to the programming
language, e.g. because it is the interpreter of a language, the overlap
will have a much larger extent than in other scenarios.

Following its pedagogical purpose, an NM is an idealized (par-
tially true) model that guides students’ attention to aspects related

"Machine"

Programming language

Notional
machine

Focus
of 

attention

Inclusion

O
m

m
is

si
o
n

Figure 9: An NM as a pedagogic model.

to some or all of the three areas of Figure 8. Idealization as a general
process of creating a model from a system can happen both by
omitting aspects of the system not relevant for the model and by
including something that is not part of the system at all (see Figure
9). For example, characterizing a variable as a location in mem-
ory that is addressed by its label is an omission of details whereas
characterizing a variable as a box is an inclusion of something new.

In natural sciences, these two ways of arriving at a model are
known as Aristotelian and Galilean idealizations [20] with the
main difference being that only an Aristotelian model is still a true,
albeit simplified, representation of the original system whereas a
Galilean model typically is a more distorted representation of the
system. The purpose of idealization in NMs is to focus attention
and to aid understanding. Omission helps focussing and inclusion
helps making something comprehensible, for example by forming
analogies. Both processes are driven by the intent of the educator
when designing an NM and, together with the decision of what
(not) to include (i.e. represent) from either of the three areas of
interest, determines the characteristic of the NM. Another way of
looking at the process of designing an NM is that it maps specific
aspects of a real-world system into the (pedagogic) domain of the
NM, while other aspects are not mapped. This mapping defines the
form of the NM, first and foremost, but in doing so also defines the
pedagogic augmentation.

For example, the NM presented in the next section (see Figure
19) that explains variables as an analogy to parking spaces places a
very specific focus on a small aspect of the programming language
but includes the notion of parking spaces from the everyday life
of students. This also introduces the Galilean distortions described
above, as a variable in many aspects is clearly not like a parking
space. An NM focusing on presenting stack diagrams (see Figure
17) for a specific point in program execution, on the other hand,
draws attention to aspects related to the interplay of programming
language and machine and does not add anything extra (see Figure
10).

In general, NMs geared towards novices may add more “extra”
than NMs geared towards advanced learners, or even experts. Tran-
sitioning from a first high-level programming language like Python
to a programming language closer to the system, like C++, may re-
quire a shift in NMs towards those that place more focus on aspects



related to the machine but, as basics might have been mastered by
the students already, may not include as much extras (see Figure
10).

"Machine"

Programming language

NM for 
advanced 
learners 

in systems 
programming

NM for 
novice learners 

in Python

"Machine"

Stack and heap 
diagrams

Variables as 
parking space

Programming language

Figure 10: Specific NMs cover distinct “terrains” in this
space

"Machine"

Control flow

Variables
initallyVariables

eventually
Recursion

Programming language

"Machine"

Initial NM

Intermediate NM

Final NM

Programming language

Figure 11: NMs may be arranged as repertoires and se-
quences as teaching progresses.

As described later in this report, teachers will often not just use
one NM. Instead, they may draw on a diverse repertoire of NMs
that are drawing students’ attention to various different aspects of
programming (see Figure 11, left): One might start with explaining
variables as boxes and then, when introducing references, switch
to an NM built on tables and IDs. Control flow might be introduced
by a worker who follows a given set of rules to determine the line
to be executed whereas recursion might be explained later in the
course without analogies simply by referring to the semantic rules
of function calls.

Alternatively, when following a bottom-up approach of gradually
introducing new concepts along a programming course, the same
NM might be expanded as well, as shown in Figure 11 on the right
and exemplified in our examples by the Python computer (Figure
26).

5 CAPTURING NOTIONAL MACHINES:
EMPIRICAL WORK

As well as situating the work of notional machines theoretically
and historically, we also undertook empirical work to investigate

current usage. We worked to identify the use of NMs in the prac-
tice of teaching, whether in the classroom, as instructional tools,
or in textbooks. While a teacher’s choice to use an NM provides
some estimation of its value, our immediate aim in capturing and
presenting NMs is not to validate their effectiveness. Rather, we
seek to explore common properties that characterise NMs and offer
candidate relationships of how NMs may be connected to each
other, such as in a sequence of use to explain an increasingly com-
plex set of concepts. In this section, we present our empirical work
for capturing NMs, followed by presentations of examples. These
presentations set the stage for the next section where we further
explore their use.

5.1 Methods
We worked to identify NMs from several sources: our own practice,
the instantiated practice of others (by interview), from published
papers and from software (visualisations and IDEs). Each collection
method had its own benefit and advantage, which we summarise
here.

(1) Interviews. By interviewing other educators, we broadened
the pool of possible examples beyond our own practice. In
doing this we could identify exceptional educators, with rich
experience. We were careful to ensure that we focused on the
interviewee’s teaching practice, and asked for instantiated
examples (materials, photographs of whiteboards, screen-
shots etc.) where possible. The protocol we used, together
with details of its development and refinement, is contained
in Appendix D.

(2) Our own practice. We were interested to document our
own practice. It is not an easy task to “interview yourself”;
much of our knowledge is tacit and our classroom skills
taken-for-granted. It is also hard to identify what is impor-
tant for someone else to know about what we do, or what
may be safely left to shared expertise. We devised a struc-
tured form to aid the capture of our own practice, to allow us
to surface and externalise appropriate details of the NMs we
use. Learning from previous projects [18] we were careful
to avoid second-guessing the context of other classrooms,
where we imagined these NMs might be used.

(3) Software. NMs may be represented in software in two ways.
Educators may write their own programs that embody NMs:
we captured these when we encountered them. Mass-market,
sometimes commercial, tools and environments may also
embody an NM. These include program visualization tools
such as Python Tutor [27].

(4) Not found in Literature. In our systematic literature re-
view (reported above and detailed in Appendix A, below) one
of the questions we asked was “if an NM is described, what is
it”. We were surprised to discover that there were relatively
few actual descriptions of NMs. It seems that most of these
are not described or reported in the mainstream research
literature, but rather reside in close-to-practice publications,
like “teachers’ tips” sites, blogs and twitter. At the end of
Section 5.2, we provide an example from twitter (Figure 23).

(5) Other. Although they are occasionally represented in our
collection, we did not seek out examples from textbooks or



other instructional materials, such as online learning reposi-
tories, or online videos.

Our use of these methods was opportunistic, not systematic,
so there should be no expectation that we evenly covered all cur-
riculum areas (although, for organisational convenience, our NMs
are arranged by topic in Appendix A). Our methods also biased us
to collecting examples with an explicitly physical representation;
“talking” examples, where a teacher gives a swift, clear analogy are
largely absent. (For example, “Using a library is like using curry
powder in a recipe, it means you can “buy” the flavour youwant. You
could make your own curry powder, and in certain circumstances
it might be better to do so, but it’s tricky and time-consuming. For
the majority of the time, adding in a standard product that someone
else has made is perfectly good enough.”) Also using our methods
another known, but hard-to-capture practice, is the circumstance
where a teacher adopts an “approach”, perhaps the repeated, system-
atic application of an analogy. Such as consistently using a mobile
phone to illustrate a wide variety of computational concepts. For
example the nature of classes and objects (distinguishing between
text messages in general and the text message I sent to Helen this
morning); last-in first-out lists (ordering incoming messages by
placing the most recent as the first revealing the stack-based nature
of the incoming message list) and exception handling (failure to
send a text message results in an exception being thrown by the
provider) [61]. Interviews may also fail to elicit how teachers ver-
balize programming constructs, which nevertheless convey some
aspect of an NM. For example, an instructor may choose to pro-
nounce a literal string as a sequence of characters, a practice that
we only uncovered as a “self interview” and with the explicit goal
of considering how programming elements are pronounced. Future
development of the interview protocol may include prompts for
eliciting these talking examples.

Our empirical work resulted in a collection of 43 NMs (see Appen-
dix A). We have grouped these into three types, depending on the
form they took – Machine-generated representations automatically
generated by software or environments; Handmade representations
created by teachers, often hand-drawn; and those NMs which are
primarily analogies2. Of course, “analogy” is orthogonal to the form
the representations take, and so the territory NMs inhabit may be
better represented as a quadrant:

Handmade Machine-generated
Representation
Analogy A B

It is, however, misleading to think of these boxes as discrete, with
sharp-edged spaces. Rather the boundaries are blurred and in reality
the columns (in particular) are a gradual spectrum. Nor is the space
equally populated: we have many more Analogy examples in the
Handmade quadrant (A) than in the Machine-generated quadrant
(B).

2The “work” of an NM is always to assist the formation of student understanding, often
as visualisation: "The action or fact of visualizing; the power or process of forming a
mental picture or vision of something not actually present to the sight" [55]. However,
the verb-form of visualisation is easily confused with the product of visualisation, a
picture or model, so we avoid the confusion by avoiding the term.

Because we found machine-generated NMs using analogies to
be empirically scarce (although there are some examples in the
literature, e.g. [60]) in this paper we use the category Analogy
solely in respect of handmade representations. Future work could
explore machine-generated examples and, if warranted, establish
distinguishing labels.

In this way we have identified three groups of NMs, but there
are other candidates. For example, there are recognisable subsets
of “handmade”, there is a grouping of “concrete/tangible” NMs
and another of “unplugged” representations which use students
(bodies) as manipulative objects: these should perhaps be separate
categories. And, of course, there may be others that we have not
even considered (because we have not seen them, or no-one has
drawn our attention to them: “Those phenomena with which we
have no affinity and which we are not in some sense ready to see
are often not seen at all” [49]).

As with all qualitative work, the raw data was unwieldy. We
devised a compact form to present our NMs, initially to each other.
In doing this, we worked to include sufficient information so that
we might grasp what the NM was for, but in a succinct format.
We considered, and discarded, many abstractions. We reached a
stable state with a minimal collection of mandatory fields with some
optional extras (such as “notes”). We found that it was important for
us to have pedagogical rationale represented, hence the “conceptual
advantage” and “draws attention to” fields. Also, where and how
the NM was gathered provided a surprising amount of shorthand
detail, so the inclusion of “origin” and “attribution” proved useful
beyond simple acknowledgement. Our expectation is that we will
continue to work on this form and that it will continue to evolve:
the current form is represented in Figure 12.

5.2 A brief tour of the notional machines
In this section, we present examples of the NMs we discovered, in
three thematic groups: Machine-generated representations, Hand-
made representations, and Analogy. We have also created a website
on which we present many NMs: https://notionalmachines.github.
io/notional-machines.html.

5.2.1 Machine-Generated Representations. Many NMs are embod-
ied in program visualization tools. Such tools automatically gener-
ate representations of program executions and often provide means
to step through the execution. They usually show the state of the
execution at any given step. These tools often can visualize all pro-
gram code written in a certain programming language, and they
often represent many different aspects of program execution. As
such, they do not represent one, but many different, intertwined
MSs, for example they may represent control-flow and data, show
the stack and the heap, and show intra-procedural as well as inter-
procedural aspects of control-flow.

A well known example tool for imperative languages is Python
Tutor [27] (see Figure 13). Python Tutor allows a student or teacher
to enter arbitrary Python code and to step forward (or, more sur-
prisingly, backward) through an execution of that code. At each
step, Python Tutor visualizes the state of the computation: it shows
the state of global variables, the call stack frames with the state of
the local variables, and the heap with the objects and their fields,
and the lists and their elements. Each variable is represented as a

https://notionalmachines.github.io/notional-machines.html
https://notionalmachines.github.io/notional-machines.html


Programming Paradigm:
e.g. imperative / object- oriented / 
functional
Programming Language:
e.g. Java / Python / C / any / ...

Form
Choose from:  Machine- generated representation; Handmade 
representation; Analogy

Attribution
Person who used it, person who collected it

NM Name

Image

Mapping

Notional machine element (e.g. vehicle)PL element (e.g. 
value)

Notional machine element (e.g. parking space)PL element (e.g. 
variable)

NMPL

Conceptual Advantage
Why do you use this? What does it buy you? Why do this and not 
something else? Allows the reader to get at the value of the NM

Draws Attention To
What (of already visible things) does it focus on and/or what (of invisible 
things) does it make visible? What work does it do for the 
teacher/learner? What do they understand after using it that they didn't 
before?

Origin/Source
Whether collected from own practice/by interview/from 
publication/software etc.

Cost
Investment - time/cognitive

Note: The “name” is also a link to more detailed explanatory
material—perhaps extracts from an interview, or a published
paper—that someone would need if they were to actually in-
stantiate the NM.

Figure 12: Template card with mandatory elements

box. Primitive values are drawn inside the box and reference values
are represented as arrows from within a box to the heap object or
array the reference identifies. In some cases, whether something is
an NM or not depends on its use. Python Tutor, for example, is a
visualisation tool. If used in a particular pedagogical context, how-
ever, it can embody NMs, or serve as one, such as the one presented
in Figure 14.

For functional languages, an exemplar of machine-generated
representations is the Dr. Racket Stepper [19] (see Figure 15). The
Stepper shows one step in the evaluation (rewriting) of the func-
tional program. On the left side, it shows the program before the
step, and on the right side, it shows the program after the step. The
term that is about to be rewritten is highlighted. Like Python Tutor,
the Stepper is a tool, but not an NM in itself.

Figure 13: Python Tutor visualizing a moment in the execu-
tion of a Python program

Note that the NMs embodied in these tools can appear in different
forms in other contexts. For example, the Python Tutor represen-
tation can be hand-drawn by a teacher on a whiteboard, it can be
used in a textbook [5], it can be drawn by students in the Informa
Stack & Heap tool [31], or it can be used in the form of diagnostic
probes. Similarly, the “expression rewriting” representation pro-
duced by the DrRacket Stepper can also be hand-drawn by teachers
to explain expression evaluation on a board, or it can be produced
by students on paper as an exercise or an assessment. Thus, while
our investigation of machine-generated representations served as
a way to identify NMs, the identified NMs are independent of their
embedding in the tool.

5.2.2 Handmade Representations. In addition to the machine gen-
erated NMs above, we also found many examples of handmade
ones. These can be hand-drawn, like a manually created flowchart,
as well as concrete or tangible objects to demonstrate concepts
(in talking about “a variable is a box”). Hand-drawn NMs can be
both drawn by students as well as teachers, and similarly, tangible
devices can be used by teachers to draw attention to specific parts
of the real machine, as well as by students to draw their attention
to an aspect via their own practice. A third form of handmade NMs
are activities, where students use their own bodies in unplugged
activities so that they can “play out” concepts, such as recursive
calls or packet switching.

Teachers often hand-draw NMs. Sometimes, these representa-
tions are created ad hoc, to serve an immediate need, and used
only once in a specific situation. But they can also be elaborate
representations, used on multiple occasions, and are the same every
time they are used.

Hand-drawn NMs have impact on the instructional strategies
in several ways. They require the teacher (or student) to “do the
work” and really play out that they are the machine. In addition,
when a teacher draws an NM, this can slow down their instruc-
tion, allowing for students to follow along better, and giving the
teacher the opportunity to explain how the machine works. As
such, hand-drawn forms can be an addition to machine-generated
representations, which can be mechanically “clicked through” with-
out resulting in a deeper understanding. In this context, it is worth
noting the interviewee’s concern about Python Tutor (see the quote
in the Notes field of the Recursion Demo using Python Tutor NM,
Figure 14).

Examples of hand-drawn visualizations are diverse and plentiful
in CS education. Two examples are shown in Figures 16 and 17.



Recursion Demo with Python Tutor

Programming Paradigm: 
imperative
Programming Language:
Python

Mapping

labeled box inside framelocal variable

labeled box inside frameparameter

group of elements with function nameframe

NMPL

Form
Machine- generated representation

Conceptual Advantage
Demonstrates what happens to variable values when they are passed to 
a function. Distinguishes frame elements among each recursive call. 
Shows separate stack frames, each with own parameters and variables, 
for each recursive call.

Notes/Other
Students "tend to use it a little bit mechanically so they tend to just step 
through it and not really think about what's actually happening on the 
screen."

Draws Attention To
Addition of each stack frame as each recursive call is made. Collapse of 
stack frame as function completes and returns value.

Attribution
Used by Amber Settle, collected by Craig

Origin/Source
Interview

Cost
Small, if you use Python Tutor anyway

This NM involves the use of Python Tutor, which provides a
machine-generated representation of memory in an executing
Python program. In this case, an instructor limits the scope of
the presentation by focusing on the runtime stack of recursive
calls.

Figure 14: Recursion Demo with Python Tutor

NMs can also be handmade and tangible. An example of such
an NM is using a paper version of a linked list with list nodes as
shown in Figure 18.

5.2.3 Analogy. We identified a group of NMs whose primary form
is analogical: that is, they draw students’ attention to what is im-
portant by a process of analogical transfer, transporting structural

Figure 15: DrRacket Stepper visualizing a step in the evalua-
tion of a program written in BSL

Programming Paradigm:
imperative
Programming Language:
Java

Form
Handmade representation

Attribution
Used by Matthias, collected by Matthias

Mapping

label on an arrow coming out of a 
condition (e.g., "true", "false")

condition outcomes

arrow from node to nodecontrol- flow between statements

diamond- shaped nodecondition

rectangular nodestatement

NMPL

Conceptual Advantage
Make visible the flow of computation through instructions to introduce 
the structured programming ideas of sequence, selection, and repetition

Notes/Other
Great to detect misconceptions (e.g., that loops do not loop).

Draws Attention To
The idea of a statement, a condition, and how they are used to build 
"sequence", "selection", and "repetition" constructs of structured 
programming

Origin/Source
Own practice: compilers (control- flow graphs) and "flow charts"

Control Flow as Graph

Cost
Small, but e.g., mismatch for short- circuit operators (&&, ||) or 
conditional expressions (c ? a : b), which don't map as naturally.

This NM highlights the semantic structure of nested condition-
als. As a hand-drawn NM, it can be dynamically constructed
calling attention to the semantic components of the code while
omitting the syntactical details.

Figure 16: Control Flow as Graph



Hand- Drawn Runtime Stack

Programming Paradigm: 
imperative
Programming Language:
Java

Mapping

box with label at the bottom of a frame labeled with 
function name

local variable

box with label at the top of a frame labeled with 
function name

parameter

box with label in a frame called mainvariable in main

NMPL

Form
Handmade representation

Conceptual Advantage
Distinguishes between variable values in the main function and the 
parameters and local variables in a called function

Cost
Low: Requires that the instructor writes out variable boxes for each 
function call.

Attribution
Used by John Rogers, collected by Craig

Draws Attention To
Each function call/frame has its own set of stored values.

Origin/Source
Interview

This hand-drawn NM demonstrates how variable and pa-
rameter values are stored separately in their own stack frame.
The instructor can demonstrate how modifying the value for
a parameter does not change the value of the corresponding
variable in another frame. As a modifiable hand-drawn NM,
the instructor can interactively make changes to values and
call attention to what is changing and what is not.

Figure 17: Hand-drawn Runtime Stack

features of a common, understandable situation into a new, unfa-
miliar one. The analogical NMs are often “small” and lightweight,
possibly just an idea of an example or explanation, such as the
Variable as Parking Space NM presented in Figure 19.

One aspect of NMs in this group relates to the concreteness
(or tangibility) of the analogous object. Some NMs are extremely
concrete. Teachers use physical boxes and post-it notes, and bring
actual hanging folders into class (Figure 20).

NMs can also take the form of activities where a teacher rep-
resents parts of the machine that attention will be drawn to. An

Paper List/ListNode (Video)

Colleen

Programming Paradigm:
imperative
Programming Language:
Java

Form
Handmade representation

Mapping

shown in an objectinstance variable

free floating variablelocal variable

X written in a small boxnull

arrow originating from a small boxreference

number written in a small boxint

variable name followed by a small boxvariable

type written/underlined in a rectangleobject

NMPL

Conceptual Advantage
Helps students plan code; avoids confusion of crossed out arrows.

Attribution
Used by Colleen; collected by Colleen

Cost
A pain to cut out all the papers. No increase in class time needed.

Draws Attention To
The effect of resetting references.

Origin/Source
Own practice

These paper versions of Java variables that hold a reference
and List and ListNode Objects can be used to plan or trace code.
A student can move the paper to illustrate resetting a reference
and can fold the paper to cover an arrow with an X, which
would represent a null reference. This NM draws attention to
the constraint that a variable can only reference one thing at a
time.

Figure 18: Tangible NM depicting linked list with paper
sheets

example of this kind of NM is Method-Call Dance (Figure 21), where
a teacher executes a dance to a certain location and then comes
back.

NMs where students represent parts of the machine (e.g. Figure
22) enable rich opportunities for analogical transfer, because such
NMs map programming language ideas to the students’ very own
properties and behaviours.

While we were writing this report, a twitter thread was started
with the question “Imagine you’re talking to someone new to Com-
puter Science. How would you describe a Variable?” [52]. There
were many contributions, and most were extremely concrete exam-
ples: a glass containing some liquid, a containerwith a label, a visitor
parking spot containing a vehicle, a house at an address containing



Programming Paradigm:
imperative
Programming Language:
statically- typed

Form
Analogy

Attribution
Used by Jan, collected by Jan

Variable as Parking Space

Mapping

kind of vehicletype of value

size/shape/constraint on parking spacetype of variable

vehiclevalue

parking spacevariable

NMPL

Conceptual Advantage
Illustrated the concepts of type in programming with an associated 
warning that using the wrong type can cause problems.

Notes/Other
Different types of parking spaces are deigned for different types of 
vehicles. Bad things can happen if you put the wrong type of vehicle into 
a space that is not designed for it.

Draws Attention To
The concept of type and the importance of getting it right. Use when first 
introducing variables in a statically- typed programming language.

Origin/Source
Own practice

Cost
Very low

This NM works as an analogy in that it draws on student
understanding of parking space limitations, where certain
bays are designated for certain sorts (and sizes) of vehicle.

Just as a motorcycle may be restricted to parking in
particular spaces, an integer value may only be assigned to
a variable that is declared for integers. The effectiveness of
the analogy depends on student knowledge of parking lots
and how well that models the semantics of the programming
language.

Figure 19: An example of an analogical NM

one thing, a locker, a bucket, a purse, a file folder, a post-it note,
a pocket, a drawer, a shoebox, a jar containing tea/coffee/sugar, a
pigeon hole, empty labels you can write on, an envelope, a suitcase
. . . and so on. Interestingly, there was also a contribution (Figure 23)
that suggests that these early analogies may be strongly retained.

Programming Paradigm:
imperative
Programming Language:
any

Form
Handmade representation

Attribution
Used by Emily Bakker, collected by Felienne

Variables as Clothespins

Mapping

paper sheet in the pinvalue

label on the pinvariable name

clothespinvariable

NMPL

Draws Attention To
Variables contain *one* value

Cost
Low

Conceptual Advantage
Makes variable tangible, helps prevent multiple values misconception

Origin/Source
Interview

This NM presents a variable as a clothespin holding a value.
This focuses students’ attention on the value going into the
variable, and fits vocabulary commonly used in programming,
such as saying a variable holds a value.

Figure 20: Variables as Clothespins

6 USE OF NOTIONAL MACHINES:
REPERTOIRE AND DIAGNOSIS

As we gathered examples of notional machines, we also gained
insight into how they are used in instruction. In this section, we
review a few recurring themes of their use. They include how NMs
may be sequenced in a course, applied for a short-lived purpose,
and used to diagnose student misconceptions.

Most often, NMs are used as explanatory devices to accommo-
date the learner’s current level of knowledge and avoid unnecessary
cognitive load. Frequently analogical, they also strengthen the “se-
mantic gravity” of a concept, thus making it more accessible to a
learner. Semantic gravity is the degree to which meaning relates to
its context; the more meaning is dependent on context, the stronger
the gravity [45].

Explanations that alter semantic gravity are said to take the form
of ‘semantic waves’ (as in Figure 24), where knowledge is trans-
formed between relatively decontextualized, condensed meanings



Programming Paradigm:
imperative / object- oriented l
Programming Language:
Java / C# / any / ...

Form
Analogy

Attribution
Used by Jeroen Fokker; collected by Johan

Method- Call dance

Mapping

dance back to the previous locationreturn address

dance to another locationmethod call

NMPL

Conceptual Advantage
To illustrate method calls, the teacher dances to another location, 
performs some actions there (changing the memory), and then returns to 
the previous location through the return address, where he continues 
with performing actions.

Draws Attention To
It illustrates that you 'go elsewhere in the memory' when you call a 
method, and that you need to remember where you came from (return 
address) when you go elsewhere.
A dancing teacher helps students to remember the concept.

Origin/Source
Interview

Cost
Hardly any cost involved

This NM uses a dance to illustrate the execution of a method. It
is an embodied form of an NM, drawing the student’s attention
to the fact that you need to remember where you are coming
from.

Figure 21: Embodied NM expressing methods with a dancer

and context-dependent, simplified meanings. As Maton observes,
“... teaching often involves (to put it simply) a repeated pattern of
exemplifying and ‘unpacking’ educational knowledge into context-
dependent and simplified meanings.” [45]. NMs (particularly analog-
ical) are by their very nature designed to reduce semantic density,
and so make a concept more understandable, at the same time they
increase semantic gravity, so they make a concept more familiar.

6.1 Classroom use
Teachers who contributed NMs often said that they did not use
them singly, but as part of a larger repertoire of examples so that a
single course might include a set of NMs, each separately serving
a specific learning objective in the whole course narrative. Others
were based on an “approach”, where NMs were related to each
other.

Recursion Role Play

Programming Paradigm:
imperative
Programming Language:
any

Form
Analogy

Mapping

line of persons (e.g., waiting in amusement part, or 
row in classroom)

linked list

(action of) all other persons in linerecursive case

(action of) last person in line (answering "1")base case

verbal response from next person in linereturn value

verbal request (how long?) to next person in linemethod call

personobject

NMPL

How many students are in this row?

Conceptual Advantage
Makes explicit recursive calls as a form to "delegate" parts of work, base 
case as a situation where delegation stops. Allows unpacking many 
aspects of recursive computation (pairing of call/return, passing info 
down through params, up through return values, tail recursion).

Cost
Difficult for instructor to react to students' actions during role- play, and 
to catch (and exploit) all the teachable moments. May require prior 
introdution of role- play (e.g., with "Object as Student").

Attribution/Origin/Source
Used by Ben and Matthias, Collected by Matthias

Draws Attention To
recursive calls and returns, base case & recursive case, tail recursion

Origin/Source
Based on an original conversation on how to teach recursion with 
Benedict Du Boulay.

This NM presents recursion by having students relay messages
to each other. By playing a role in passing values, students
will experience how a call stack passes messages.

This NM uses analogical transfer in multiple ways: (1)
Students make verbal requests to their friends (method calls),
and they await responses (method return values). The students
know what that means already. (2) The fact that the last
student in the row will not find someone else to talk to also is
obvious to students, and they can transfer this understanding
to the programming world (i.e., the idea of a base case of the
recursion).

Figure 22: Recursion Role Play



Figure 23: Tweet showing a lasting NM

Figure 24: Semantic Wave [69]

Teachers’ explanations naturally and necessarily build upon
students’ prior knowledge. So too, an NMmay build upon a previous
NM. For example, a “Variable as Box” NM can be extended to be
"List as a Line of Boxes" or “Stack as a Stack of Boxes” for use
later in the course. Similarly, an NM showing equality of references
using arrows, may later be built upon to introduce the NM that
every item has a unique ID.

An NM may be nested within another NM. This can be seen
as a special case of building upon. For example, a “Variable as
Parking Space” NM may be explicitly incorporated into an “Array
as a Row of Parking Spaces in a Parking Lot,” presented in Figure
25. NM. Another example, a “Variable as Box” NMmay be explicitly
incorporated into an “List is a Line of Boxes” NM. These are different
from the way in which the NM using unique IDs builds upon an

understanding of equality using an NM with equality represented
with arrows, which does not explicitly incorporate that NM.

Programming Paradigm:
imperative
Programming Language:
any

Form
Analogy

Attribution
Used by Jan, collected by Jan

Mapping

specific car in specific spacearray value

cararray element

space number in lotarray index

row of cars in a parking lotarray

NMPL

Conceptual Advantage
Builds from the notion of a variable as a parking space and leverages the 
notion that spaces in larger parking lots are often numbered.

Notes/Other
If in a statically- typed language one can discuss rows that are for cars 
only, trucks only, motorcycles only, etc.

Draws Attention To
The use of indices in arrays as well as the array's construction from 
contiguous adjacent variables in memory.

Origin/Source
Own practice

Cost
Short time to introduce but learners need to be familiar with parking lots 
and how someone might locate a specific car in a row in a parking lot.

Array as Row of Spaces in Parking Lot

This NM works as an analogy in that it draws on student
understanding of rows of numbered parking spaces in lots,
where consecutive bays are numbered as an analogy of the
index and represent consecutive variables in memory.
The effectiveness of the analogy depends on student knowledge
of numbered parking spaces and how well that models the
semantics of the programming language.

Figure 25: Array as Row of Spaces in Parking Lot

Sometimes NMs are very explicitly sequenced, for example in
the consistent use of an environment to portray a series of NM.
Figure 26 presents an example of the first in such a sequence.

Eventually, this series of NMs (used in a consistent environment)
builds to include concepts such as lists, references, classes, objects
and methods. It is interesting to speculate that this sort of approach
serves a different purpose in the semantic wave framework, in that
it is not to “ground” students’ understanding (on the down side of



Programming Paradigm:
imperative / object- oriented
Programming Language:
Python (adaptable to others)

Form
Handmade representation

Attribution
Used by Andreas, collected by Andreas

Python Computer V1

Mapping

control flow program counter that identifies next line to get 
executed and is updated according to a set of rules.

conditional evaluator (flag) that affects the "program 
counter"

conditional

entry in the tablevariable

memory

update of NMs state according to defined rulesinstruction

a table of identifer and value

NMPL

Conceptual Advantage
Expandable "offline" model of program execution. In its beginning stage 
(V1) it only covers control flow and variables (without references) of 
Python scripts.

Notes/Other
Can be expanded (see V2- V4) and easily adpated to other (imperative) 
languages.

Use When
At the beginning of a typical "walk through" of the different programming 
constructs.

Draws Attention To
Semantics of control flow in Python. Visible effects of each line on the 
"state" of the Python computer.

Origin/Source
Own practice

Cost
Time consuming to prepare. Easy to follow for learners, as it grows in 
complexity. Can be used for exercises (fill out sheets of the computer).

This NM is part of a sequence of four, increasingly complex,
NMs. The increasing complexity follows the educational trajec-
tory of introducing concepts of procedural and object-oriented
programming in Python. At the first stage, only a few concepts
are introduced and conversely a rather simple NM is offered to
students as a means of explaining program behaviour based
on semantic rules and a visualization of stepping through a
program.
In subsequent stages, the model is expanded to allow for e.g.
reference semantics to be incorporated. Each expansion follows
the introduction of some concept or phenomenon that cannot
be explained by the previous stage and each stage is a superset
of the previous one, i.e. nothing is removed or replaced along
the trajectory.

Figure 26: Python Computer V1

the wave) but to elevate it (on the up side), increasing the semantic
density of their knowledge.

These examples of tightly integrated approaches may also sug-
gest that NMs are not best sourced or presented singly - and also
leads to Keith Johnstone’s wry observation on the transfer of teach-
ing knowledge “if you want to apply the methods I’m describing ...
you may have to teach the way I teach.” [38, p29].

6.2 NM lifecycles
Several of the NM examples we collected were very small, very
specific, and deliberately constructed to have a limited lifespan.

The number of times the same NM is used, or maybe
used in a slightly different way, is also part of the story
that we’re telling. Sowe had the idea that there needed
to be a very simple Prolog NM at the very beginning
which you couldn’t do without, but it didn’t have
a very long life. It was necessary, but not actually
sufficient. I think that notion of the role of time in
the exposure of the learners to the NM is also an
important issue here. [BdB, meeting notes]

We also noticed that these “atomic” NMs aimed at beginning
students, most often analogical, are most often based in domains
external to the discipline, in the “real world” of fork-lift trucks
and stacks of paper, whereas those aimed at more advanced stu-
dents were more likely to be drawn from within computing using
technical language and computational concepts:

When I explain more advanced language features –
let’s say I explain lambdas or inner classes in Java, the
way I explain that is not using metaphors or analogies
outside the domain of programming. I’m basically re-
writing code using these new features in code that
is just using existing features that students already
understand. So my NM [now] is just a subset of the
programming language. [MH, meeting notes]

This is perhaps not surprising. As a student learns to program,
they learn what to pay attention to and their focus becomes more
refined, as Gibson and Radar put it, “There is increasing specificity
of correspondence between what is perceived and recognition of
its utility for performance of some task. The task itself becomes
more specific, in the sense that the person progresses in ability to
define it more precisely; and the recognition of a relation between
information in an event and its utility for the task becomes more
precise” [22].

6.3 Diagnosis
We also found evidence of a quite separate sort of use, of which we
did not have as many examples, but they were distinct. Rather than
using NMs to help students build knowledge, some teachers were
using them to expose students’ mental models, and so ensure they
can make appropriate interventions. Figure 27 provides an example
of one such diagnostic NM.

Greg Wilson devised a very simple test to ascertain whether his
incoming students have a programming or spreadsheet background.
The test reliably distinguishes whether students have a sequential
execution or constant evaluation mental model.



How do you tell? 

Form
Handmade representation

Conceptual Advantage
Makes visible students' mental model of program execution, whether 
from programming (sequential execution) or spreadsheet (evaluates 
formulae and updates values on an ongoing basis).

Origin/Source
Interview

Attribution
Used by Greg Wilson; collected by Sally

Cost
Insignificant

Programming Paradigm:
Imperative

Greg Wilson devised a very simple test to ascertain whether
his incoming students have a programming or spreadsheet
background.

The test reliably distinguishes whether students have a
sequential execution or constant evaluation mental
model.

Figure 27: A diagnostic NM

The Informa Clicker system was developed with this diagnostic
goal in mind. Besides the multiple-choice questions of traditional
classroom response systems, Informa provides question types that
embody various NMs [29, 30, 32], including those we captured
here as “Stack and Heap Diagram”, “Control Flow as Graph”, and
“Expression as Tree”. Informa used these NMs to have students con-
struct or complete a diagram of program state (for the “Stack and
Heap Diagram”) or of a program fragment (for the “Control Flow as
Graph” or “Expression as Tree”) during a lecture. This allowed the
instructor to immediately detect and correct possible misconcep-
tions. For example, “Stack and Heap Diagram” allowed diagnosing
the understanding of concepts such as object allocation, references
and aliasing, method calls, parameter passing, and polymorphism,
“Control Flow as Graph” provided insight intomisconceptions about
the semantics of for loops or exception handling, and “Expression
as Tree” helped to detect problems in the understanding of operator
precedence and associativity (see Figure 28).

Other diagnostic uses we found involved presenting students
with an NM (the diagram on the left in Figure 29) and requiring
them to overlay the flowchart on their own code, (the tracing on the
right in Figure 29). The goal of this particular exercise is to highlight

Programming Paradigm:
any
Programming Language:
any

Use When
Distinguishing between expressions and statements, how to determine 
the value of an expression (and explaining associativity, precedence)

Form
Handmade representation

Mapping

child nodeoperand

parent nodeoperator

treeexpression

NMPL

Conceptual Advantage
Makes explicit the tree structure of expressions, which otherwise is quite 
hidden in many text- based languages

Cost
Learn a visual representation

Attribution
Used by Matthias; collected by Matthias

Draws Attention To
Expression structure, how evaluation proceeds, how types are 
determined

Origin/Source
Own practice
(inspired by compiler ASTs)

Notes/Other
High school teachers were excited about this, mentioned this should also 
be used in math

Expression as Tree

This NM allows the diagnosis of misconceptions related to the
structure and evaluation of expressions. The variant embedded
in the Informa Clicker system provides students with an
expression tree diagram editor:

The specific purpose of the above example task is to as-
sess the students’ understanding of array indexing and field
accesses, in combination with previously covered arithmetic
and relational operators.

Figure 28: Diagnostic NM for the structure and evaluation of
expressions



Figure 29: A flow chart teaching students how to execute
code in a while loop, emphasizing checking the condition
at each iteration

that after each execution of the body, the condition is examined
again. This helps the teacher to understand the understanding of the
student, which can be very hard to reach, and serves as a diagnostic
tool to uncover their emerging mental model.

7 SUMMARY/CONCLUSION/FUTUREWORK
The aim of this working group was to explore the history, meanings,
uses and value of notional machines as aids to teaching about
programming and computers. There were four objectives:

• To conduct a literature review, to ground and inform the
work;

• To capture examples of NMs in use;
• To catalogue them in a common scheme; and,
• To arrange them in clusters or sequences.

7.1 Summary and conclusions
The structure of this report has broadly followed the sequence of
these original objectives.

The history section examined the initial development of NMs
in the context of teaching programming in the late 1970s. It also
distinguished NMs from mental models and conceptual models, as
the terms have often been used as if they meant the same thing.

The literature review used a systematic review procedure to
examine papers referring to NMs since the term was coined. The
results of the review have been presented in a number of different
ways that plot the development of the term, the kinds of educational
research within which the term occurs, the degree to which there
were references to specific NMs as opposed to some general mention
of them as a “good idea”, and via the range of terms used to describe
them.

The main lessons from this review section have been (i) that the
term itself has been used in many different ways, and (ii) that there
were surprisingly few papers that examined the evidence in detail
for their strengths and weaknesses in authentic educational settings.
With regard to the first issue, we define an NM as a pedagogic
device to assist the understanding of some aspect of programs or

programming. With regard to the second issue, we noted that some
of the educational literature that is relevant, for example cognitive
load theory, would not have been found via the search terms in our
review procedure that was focused on the computing literature. To
compensate, we have included a brief section that points towards
the educational and psychological literature, which may also help
future researchers in designing studies on the effectiveness of NMs.

Next, in section 4 we characterise NMs using our new definition
of the term (prefaced in the box in section 1). We have created ways
of looking at NMs more holistically in terms of which aspects of
programs and computers are most often referenced, as opposed to
the more pedagogic focus of the previous section. This involves
the generic purpose and generic function of NM, and the particular
focus and particular representation of individual examples of NMs.

Finally, to gain a better sense of the current practice of using
NMs in teaching, we conducted interviews with colleagues, ex-
amined our own teaching, and looked at the literature review to
identify specific examples of NMs. These were found to fall into
two main classes, namely software-generated representations, such
as provided by IDEs, and handmade representations as drawn or
created or described by teachers. In many cases, (particularly the
handmade) NMs often relied on analogy to make salient and visi-
ble some aspect of the largely hidden underlying system. Because
analogy plays such a strong role in pedagogy that uses NMs, we
designated it as a third class, even though technically it is largely
orthogonal to the two representations. We also looked at the tempo-
ral aspect of using NMs, i.e. how explanations at different levels of
abstractness can be sequenced, referring to semantic wave theory
in so doing.

A lesson from this section is that attempting to put NMs into
neat watertight categories is hard and that there are grey areas
between categories. As part of this work, we developed a visual
notation for describing the NMs and have included many examples
in the report.

There are four appendices: a list of NMs uncovered through
our work, a description of the literature review methodology, the
form we used to categorise papers in the literature review, and the
protocol used in the interviews.

7.2 Future work
There are different challenges for the community depending on
where one’s main focus lies. As teachers of programming, much of
actual practice is not documented or is scattered through the grey
literature, so we hope that this report will provide a resource that
will be helpful. But further work is needed to identify the strengths
and weaknesses of particular NMs in specific authentic educational
contexts. There is still much to understand about how to manage
the problems that NMs raise. Two of these involve time. The first is
how to build a coherent set of NMs that can function well together
over a whole introductory course. Allied with this, is the issue of
how best to orchestrate the learner’s exposure to abstract ideas
and hands-on practice in a way that maximises learning. There is
also the ever-present possibility that incidental aspects of the NMs,
especially those involving analogy, may lead the student astray to
form unhelpful mental models.



From a researcher’s point of view, we need to have a more clearly
articulated pedagogic theory about learning and teaching with NMs
that brings together the range of pedagogic and psychological the-
ories that have been applied in other areas of STEM education. In
particular, NMs as a candidate signature pedagogy has not received
enough research attention. Lee Shulman proposes that disciplines
often have a “signature pedagogy” which teachers and learners
recognise as part of knowledge building in their discipline. He says,
“To the extent that we identify signature pedagogies, we find modes
of teaching and learning that are not unique to individual teachers,
programs or institutions . . . ” and that if a signature pedagogy does
exist “. . . we should be able to find it replicated in nearly all the
institutions that educate in that domain.” [62]. Much more work
would have to be done to affirm that NMs are computing’s signature
pedagogy, but based on this work we propose that they should be
considered a good candidate. We call for studies that compare and
contrast the effectiveness of various NMs in teaching and learning.
We hope that our report invigorates new research on NMs – to
name a few examples, significant research gaps exist in identifying
appropriate abstraction levels of NMs, determining why certain
analogies may be more useful than others, determining the effect
of students’ background characteristics such as age and previous
programming experience of learning with NMs, determining the
effect of interactivity and engagement of NMs, identifying appropri-
ate sequencing of NMs and how this should be tied to the broader
learning context, including the available learning materials.

ACKNOWLEDGEMENTS
This work builds on initial activity undertaken at Dagstuhl sem-
inar 19281, Notional Machines and Programming Language Se-
mantics in Education, 7th-12th July 2019. We would like to thank
the interviewees who provided us with insight into their use of
notional machines: Antonio Carzaniga, Luca Chiodini, Steve En-
gels, Jeroen Fokker, Scott Heggen, Steve Jost, Shriram Krishna-
murthi, Michael Liut, John Lynch, James Riely, John Rogers, Dermot
Shinners-Kennedy, Simon Thompson, Amber Settle, Juha Sorva,
Greg Wilson, Daniel Zingaro.

REFERENCES
[1] Karen E. Adolph and Kari S. Kretch. 2015. Gibson’s Theory of Perceptual Learning.

In International Encyclopedia of the Social & Behavioral Sciences (Second Edition),
James D. Wright (Ed.). Elsevier, Oxford, 127–134. https://doi.org/10.1016/B978-
0-08-097086-8.23096-1

[2] Shaaron Ainsworth. 2006. DeFT: A conceptual framework for learning with
multiple representations. Learning and Instruction 16, 3 (2006), 183–198. Type:
Journal Article.

[3] Sabah Al-Fedaghi and Hadeel Alnasser. 2018. Network architecture as a thinging
machine. In 2018 International Conference on Computational Science and Compu-
tational Intelligence (CSCI). IEEE, New York, NY, 884–889.

[4] Anon. [n.d.]. Scholarcy Reference Extraction API. https://ref.scholarcy.com/api/
[5] David John Barnes, Michael Kölling, and James Gosling. 2006. Objects First with

Java: A practical introduction using BlueJ. Pearson/Prentice Hall.
[6] B. Barquero. 1995. La representacion de estados mentales en la comprension de textos

desde el enfoque teorico de los modelos mentales. Thesis. Universidad Autónoma
de Madrid, Madrid, Spain.

[7] A. Barr, M. Beard, and R.C. Atkinson. 1976. The computer as a tutorial laboratory:
the Stanford BIP project. International Journal of Man-Machine Studies 8, 5 (1976),
567–582. https://doi.org/10.1016/S0020-7373(76)80021-1 Type: Journal Article.

[8] Mordechai Ben-Ari. 1998. Constructivism in computer science education. Acm
sigcse bulletin 30, 1 (1998), 257–261. Publisher: ACM New York, NY, USA.

[9] Jens Bennedsen and Carsten Schulte. 2010. BlueJ Visual Debugger for Learning
the Execution of Object-Oriented Programs? ACM Trans. Comput. Educ. 10, 2
(June 2010), 1–22. https://doi.org/10.1145/1789934.1789938 Place: New York, NY,
USA Publisher: Association for Computing Machinery.

[10] Shirley Booth. 1993. A Study of Learning to Program From an Experiential
Perspective. Computers in Human Behavior 9, 2-3 (1993), 185–202. https://doi.
org/10.1016/0747-5632(93)90006-E Type: Journal Article.

[11] A.B. Cannara. 1976. Experiments In Teaching Children Computer Programming.
Report 271. Stanford University.

[12] John M. Carroll and John C. Thomas. 1982. Metaphor and the Cognitive Re-
presentation of Computing Systems. IEEE Transactions On Systems, Man, and
Cybernetics 12, 2 (1982), 107–116. Type: Journal Article.

[13] Jie Chao, David F. Feldon, and James P. Cohoon. 2018. Dynamic Mental Model
Construction: A Knowledge in Pieces-Based Explanation for Computing Students’
Erratic Performance on Recursion. Journal of the Learning Sciences 27, 3 (2018),
431–473. https://doi.org/10.1080/10508406.2017.1392309 Type: Journal Article.

[14] Ton De Jong. 2010. Cognitive load theory, educational research, and instructional
design: some food for thought. Instructional Science 38, 2 (2010), 105–134. Type:
Journal Article.

[15] Benedict du Boulay. 1986. Some Difficulties of Learning to Program. Journal of
Educational Computing Research 2, 1 (Feb. 1986), 57–73. https://doi.org/10.2190/
3LFX-9RRF-67T8-UVK9

[16] B. du Boulay and T. O’Shea. 1976. How to work the LOGOMachine: a primer for EL-
OGO. University of Edinburgh, Department of Artificial Intelligence, Edinburgh,
Scotland. Type: Book.

[17] Benedict du Boulay, Tim O’Shea, and John Monk. 1981. The black box inside
the glass box: presenting computing concepts to novices. International Journal
of Man-Machine Studies 14, 3 (1981), 237–249. http://www.sciencedirect.com/
science/article/B6WGS-4T7YSPP-2/2/ea0352066f4fcc9d43d666d0c872090b Type:
Journal Article.

[18] Sally Fincher, Marian Petre, and Martyn Clark (Eds.). 2001. Computer Science
Project Work: Principles and Pragmatics (2001 edition ed.). Springer, London ; New
York.

[19] Robert Bruce Findler. 2014. DrRacket: The Racket Programming Environment.
https://docs.racket-lang.org/drracket/index.html.

[20] Roman Frigg and Stephan Hartmann. 2020. Models in Science. In The Stanford
Encyclopedia of Philosophy (spring 2020 ed.), Edward N. Zalta (Ed.). Metaphysics
Research Lab, Stanford University.

[21] Emily R. Fyfe, Nicole M. McNeil, and Stephanie Borjas. 2015. Benefits of “concrete-
ness fading” for children’s mathematics understanding. Learning and Instruction
35 (2015), 104–120. Type: Journal Article.

[22] Eleanor Gibson and Nancy Rader. 1979. Attention: The Perceiver as Performer.
In Attention and cognitive development. Springer, Boston, MA, 1 – 21. https:
//doi.org/10.1007/978-1-4613-2985-5_1

[23] John K. Gilbert and Rosária Justi. 2016. Analogies in Modelling-Based Teaching
and Learning. In Modelling-based Teaching in Science Education. Springer, Cham,
149–169. https://doi.org/10.1007/978-3-319-29039-3_8 Type: Book Section.

[24] Charles Goodwin. 2000. Practices of Color Classification. Mind, Culture, and
Activity 7, 1 (May 2000), 19–36. https://doi.org/10.1080/10749039.2000.9677646

[25] Charles Goodwin. 2007. Participation, stance and affect in the organization of
activities. Discourse & Society 18, 1 (Jan. 2007), 53–73. https://doi.org/10.1177/
0957926507069457

[26] Ileana Maria Greca and Marco Antonio Moreira. 2000. Mental models, conceptual
models, and modelling. International Journal of Science Education 22, 1 (2000),
1–11. https://doi.org/10.1080/095006900289976 Type: Journal Article.

[27] Philip J Guo. 2013. Online python tutor: embeddable web-based program visual-
ization for cs education. In Proceeding of the 44th ACM technical symposium on
Computer science education. ACM, New York, NY, 579–584.

[28] Mark Guzdial and Benedict du Boulay. 2019. The History of Computing Education
Research. In The Cambridge Handbook of Computing Education Research, Sally
Fincher and Anthony Robins (Eds.). Cambridge University Press, Cambridge,
11–39. Section: 1 Type: Book Section.

[29] Matthias Hauswirth. 2012. Moving from Visualization for Teaching to Visual-
ization for Learning. InWorkshop on Visualization in University Level Computer
Science Education @ CSERC’12. Wroclav, Poland.

[30] Matthias Hauswirth and Andrea Adamoli. 2009. Solve & Evaluate with Informa:
A Java-Based Classroom Response System for Teaching Java. In Proceedings of
the 7th International Conference on Principles and Practice of Programming in Java
(PPPJ ’09). ACM, New York, NY, USA, 1–10. https://doi.org/10.1145/1596655.
1596657

[31] Matthias Hauswirth and Andrea Adamoli. 2013. Teaching Java programming
with the Informa clicker system. Science of Computer Programming 78, 5 (2013),
499–520.

[32] Matthias Hauswirth and Andrea Adamoli. 2013. Teaching Java Programming
with the Informa Clicker System. Sci. Comput. Program. 78, 5 (May 2013), 499–520.
https://doi.org/10.1016/j.scico.2011.06.006

[33] Arto Hellas, Petri Ihantola, Andrew Petersen, Vangel V. Ajanovski, Mirela Gutica,
Timo Hynninen, Antti Knutas, Juho Leinonen, Chris Messom, and Soohyun Nam
Liao. 2018. Predicting academic performance: a systematic literature review. In
Proceedings Companion of the 23rd Annual ACM Conference on Innovation and
Technology in Computer Science Education (ITiCSE 2018 Companion). Association

https://doi.org/10.1016/B978-0-08-097086-8.23096-1
https://doi.org/10.1016/B978-0-08-097086-8.23096-1
https://ref.scholarcy.com/api/
https://doi.org/10.1016/S0020-7373(76)80021-1
https://doi.org/10.1145/1789934.1789938
https://doi.org/10.1016/0747-5632(93)90006-E
https://doi.org/10.1016/0747-5632(93)90006-E
https://doi.org/10.1080/10508406.2017.1392309
https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9
https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9
http://www.sciencedirect.com/science/article/B6WGS-4T7YSPP-2/2/ea0352066f4fcc9d43d666d0c872090b
http://www.sciencedirect.com/science/article/B6WGS-4T7YSPP-2/2/ea0352066f4fcc9d43d666d0c872090b
https://docs.racket-lang.org/drracket/index.html
https://doi.org/10.1007/978-1-4613-2985-5_1
https://doi.org/10.1007/978-1-4613-2985-5_1
https://doi.org/10.1007/978-3-319-29039-3_8
https://doi.org/10.1080/10749039.2000.9677646
https://doi.org/10.1177/0957926507069457
https://doi.org/10.1177/0957926507069457
https://doi.org/10.1080/095006900289976
https://doi.org/10.1145/1596655.1596657
https://doi.org/10.1145/1596655.1596657
https://doi.org/10.1016/j.scico.2011.06.006


for Computing Machinery, Larnaca, Cyprus, 175–199. https://doi.org/10.1145/
3293881.3295783

[34] Thomas T. Hewett. 2005. Cognitive factors in design: overview and some impli-
cations for design. In Proceedings of the 5th conference on Creativity & cognition
- C&C ’05. ACM Press, London, United Kingdom, 318. https://doi.org/10.1145/
1056224.1056287

[35] James A.M. Howe and J. Benedict H. du Boulay. 1979. Microprocessor Assisted
Learning: Turning the Clock Back? Programmed Learning and Educational Tech-
nology 16, 3 (1979), 240–246. https://doi.org/10.1080/0033039790160309 Type:
Journal Article.

[36] Tim Ingold. 2000. The Perception of the Environment: Essays on Livelihood, Dwelling
and Skill. Psychology Press, London, UK.

[37] Philip N. Johnson-Laird. 1983. Mental Models: Towards a Cognitive Sceince of
Language, Inference and Consciousness. Harbard University Press, Cambridge,
Massachusetts. Type: Book.

[38] Keith Johnstone. 2012. Impro: Improvisation and the Theatre. Routledge, Abingdon,
England. Google-Books-ID: EVmminvaWDQC.

[39] Paul A. Kirschner, Paul Ayres, and Paul Chandler. 2011. Contemporary cognitive
load theory research: The good, the bad and the ugly. Computers in Human
Behavior 27, 1 (2011), 99–105. Type: Journal Article.

[40] Timothy Koschmann, Curtis LeBaron, Charles Goodwin, Alan Zemel, and Gary
Dunnington. 2007. Formulating the Triangle of Doom. Gesture 7, 1 (2007), 97–118.
https://core.ac.uk/display/60531167

[41] Shriram Krishnamurthi and Kathi Fisler. 2019. Programming Paradigms and
Beyond. In The Cambridge Handbook of Computing Education Research, Sally A.
Fincher and Anthony V. Robins (Eds.). Cambridge University Press, Cambridge,
377–413. https://doi.org/10.1017/9781108654555.014

[42] Raymond Lister. 2011. Concrete and Other Neo-Piagetian Forms of Reasoning
in the Novice Programmer. In 13th Australasion Computer Education Conference
(ACE 2011). Australian Computer Society, Darlinghurst, NSW, 9–18.

[43] Raymond Lister, Elizabeth S. Adams, Sue Fitzgerald, William Fone, John Hamer,
Morten Lindholm, Robert McCartney, Jan Erik Moström, Kate Sanders, Otto
Seppälä, Beth Simon, and Lynda Thomas. 2004. A multi-national study of reading
and tracing skills in novice programmers. https://doi.org/10.1145/1041624.
1041673

[44] Linxiao Ma, John Ferguson, Marc Roper, and Murray Wood. 2011. Investigating
and improving the models of programming concepts held by novice programmers.
Computer Science Education 21, 1 (2011), 57–80. Publisher: Taylor & Francis.

[45] Karl Maton. 2013. Making semantic waves: A key to cumulative knowledge-
building. Linguistics and Education 24, 1 (April 2013), 8–22. https://doi.org/10.
1016/j.linged.2012.11.005

[46] R.E. Mayer. 1979. A psychology of learning BASIC. Commun. ACM 22, 11 (1979),
589–593. https://doi.org/10.1145/359168.359171 Type: Journal Article.

[47] Richard E. Mayer. 2014. Cognitive Theory of Multimedia Learning. In The
Cambridge Handbook of Multimedia Learning (2nd ed.), R.E. Mayer (Ed.). Cam-
bridge University Press, Cambridge, England, 43–71. https://doi.org/10.1017/
CBO9781139547369.005 Section: 3 Type: Book Section.

[48] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Ha-
gan, Yifat Ben-David Kolikant, Cary Laxer, Lynda Thomas, Ian Utting, and
Tadeusz Wilusz. 2001. A multi-national, multi-institutional study of assess-
ment of programming skills of first-year CS students. InWorking group reports
from ITiCSE on Innovation and technology in computer science education (ITiCSE-
WGR ’01). Association for Computing Machinery, Canterbury, UK, 125–180.
https://doi.org/10.1145/572133.572137

[49] Iain McGilchrist. 2019. The Master and His Emissary: The Divided Brain and the
Making of the Western World (2, new expanded edition ed.). Yale University Press,
New Haven.

[50] Claire Michaels and Claudia Carello. 1981. Direct Perception. New Jersey, En-
glewood Cliffs: Prentice-Hall. Moggridge, B. (1993). Design by storytelling. Applied
Ergonomics 24 (Jan. 1981).

[51] Lance A. Miller. 1974. Programming by non-programmers. International Journal
of Man-Machine Studies 6, 2 (1974), 237–260. https://doi.org/10.1016/S0020-
7373(74)80004-0 Type: Journal Article.

[52] David Mowatt. 2020. Giving the computer information. https://twitter.com/ItsAll_
Geek2Me/status/1271380040043954176

[53] Thomas L Naps, Guido Rößling, Vicki Almstrum, Wanda Dann, Rudolf Fleischer,
Chris Hundhausen, Ari Korhonen, Lauri Malmi, Myles McNally, Susan Rodger,
and others. 2002. Exploring the role of visualization and engagement in computer
science education. In Working Group Reports from ITiCSE on Innovation and
Technology in Computer Science Education. ACM, New York, NY, 131–152.

[54] David Perkins and Fay Martin. 1985. Fragile Knowledge and Neglected Strategies
in Novice Programmers. Ablex, Norwood, NJ. https://eric.ed.gov/?id=ED295618

[55] Michael Proffitt et al. (Ed.). 2020. Oxford English Dictionary. Oxford University
Press.

[56] Anthony Robins, Janet Rountree, and Nathan Rountree. 2003. Learning and
teaching programming: A review and discussion. Computer science education 13,
2 (2003), 137–172. Publisher: Taylor & Francis.

[57] Pablo Romero, Benedict du Boulay, Judy Robertson, Judith Good, and Katherine
Howland. 2009. Is Embodied Interaction Beneficial When Learning Program-
ming?. In Virtual and Mixed Reality (Lecture Notes in Computer Science), Randall
Shumaker (Ed.). Springer, Berlin, Heidelberg, 97–105. https://doi.org/10.1007/978-
3-642-02771-0_11

[58] Wolfgang Schnotz and Christian Kürschner. 2007. A Reconsideration of Cognitive
Load Theory. Educational Psychological Review 19, 4 (2007), 469–508. https:
//doi.org/10.1007/s10648-007-9053-4 Type: Journal Article.

[59] Norbert M. Seel. 2017. Model-based learning: a synthesis of theory and research.
Educational Technology Research and Development 65, 4 (2017), 931–966. https:
//doi.org/10.1007/s11423-016-9507-9 Type: Journal Article.

[60] Nianfeng Shi, Zhiyu Min, and Ping Zhang. 2017. Effects of visualizing roles of
variables with animation and IDE in novice program construction. Telematics and
Informatics 34, 5 (Aug. 2017), 743–754. https://doi.org/10.1016/j.tele.2017.02.005

[61] Dermot Shinners-Kennedy and David J. Barnes. 2011. The novice programmer’s
"device to think with". In Proceedings of the 42nd ACM technical symposium on
Computer science education (SIGCSE ’11). Association for Computing Machinery,
Dallas, TX, USA, 511–516. https://doi.org/10.1145/1953163.1953310

[62] Lee S. Shulman. 2005. Signature pedagogies in the professions. Daedalus 134, 3
(June 2005), 52–59. https://doi.org/10.1162/0011526054622015

[63] Juha Sorva. 2013. Notional Machines and Introductory Programming Education.
ACM Trans. Comput. Educ. 13, 2 (July 2013), 1–31. https://doi.org/10.1145/
2483710.2483713 Place: New York, NY, USA Publisher: Association for Computing
Machinery.

[64] Juha Sorva. 2019. Splashing the Surface of Research: A Study of Koli Abstracts.
In Proceedings of the 19th Koli Calling International Conference on Computing
Education Research (Koli Calling ’19). Association for Computing Machinery, Koli,
Finland, 1–2. https://doi.org/10.1145/3364510.3366148

[65] Juha Sorva, Ville Karavirta, and Lauri Malmi. 2013. A Review of Generic Program
Visualization Systems for Introductory Programming Education. ACM Trans.
Comput. Educ. 13, 4 (Nov. 2013), 1–64. https://doi.org/10.1145/2490822 Place:
New York, NY, USA Publisher: Association for Computing Machinery.

[66] Joyce Ann Statz. 1973. The Development Of Computer Programming Concepts And
Problem-Solving Abilities Among Ten-Year-Olds Learning Logo. Thesis. Syracuse
University, Syracuse, NY.

[67] Gerrit C van der Veer and Robert Wijk. 1988. Teaching a spreadsheet application:
visual-spatial metaphors in relation to spatial ability, and the effect on mental
models. In Interdisciplinary Workshop on Informatics and Psychology. Springer,
New York, NY, 194–208.

[68] Dimitrios Vlachopoulos and Agoritsa Makri. 2017. The effect of games and
simulations on higher education: a systematic literature review. International
Journal of Educational Technology in Higher Education 14, 22 (2017), 1–33. https:
//doi.org/10.1186/s41239-017-0062-1 Type: Journal Article.

[69] Jane Waite, Karl Maton, Paul Curzon, and Lucinda Tuttiett. 2019. Unplugged
Computing and Semantic Waves: Analysing Crazy Characters. In UKICER: Pro-
ceedings of the 1st UK & Ireland Computing Education Research Conference. ACM,
New York, NY, 1–7. https://doi.org/10.1145/3351287.3351291

[70] Gerald M. Weinberg. 1971. The Psychology of Computer Programming. Van
Nostrand / Reinhold, New York. Type: Book.

[71] E.A. Youngs. 1974. Human errors in programming. International Journal of
Man-Machine Studies 6, 3 (1974), 361–376. https://doi.org/10.1016/S0020-7373(74)
80027-1 Type: Journal Article.

A LIST OF NOTIONAL MACHINES
We collected 43 notional machines. For each NM, we give its name,
its form (analogy, handmade representation, machine-generated
representation), the source from which we retrieved the NM (inter-
view or own practice), and the person who retrieved it (one of the
authors of this paper). We list the NMs under various categories,
primarily describing the targeted programming constructs, such
as data structures or functions. A more accessible version of this
information is available online: https://notionalmachines.github.io
(under construction).

State / variables
(1) Variables as Boxes

Form: Analogy
Source: own practice
Collected by: Felienne

(2) Arrays as Stacks of Boxes
Form: Analogy

https://doi.org/10.1145/3293881.3295783
https://doi.org/10.1145/3293881.3295783
https://doi.org/10.1145/1056224.1056287
https://doi.org/10.1145/1056224.1056287
https://doi.org/10.1080/0033039790160309
https://core.ac.uk/display/60531167
https://doi.org/10.1017/9781108654555.014
https://doi.org/10.1145/1041624.1041673
https://doi.org/10.1145/1041624.1041673
https://doi.org/10.1016/j.linged.2012.11.005
https://doi.org/10.1016/j.linged.2012.11.005
https://doi.org/10.1145/359168.359171
https://doi.org/10.1017/CBO9781139547369.005
https://doi.org/10.1017/CBO9781139547369.005
https://doi.org/10.1145/572133.572137
https://doi.org/10.1016/S0020-7373(74)80004-0
https://doi.org/10.1016/S0020-7373(74)80004-0
https://twitter.com/ItsAll_Geek2Me/status/1271380040043954176
https://twitter.com/ItsAll_Geek2Me/status/1271380040043954176
https://eric.ed.gov/?id=ED295618
https://doi.org/10.1007/978-3-642-02771-0_11
https://doi.org/10.1007/978-3-642-02771-0_11
https://doi.org/10.1007/s10648-007-9053-4
https://doi.org/10.1007/s10648-007-9053-4
https://doi.org/10.1007/s11423-016-9507-9
https://doi.org/10.1007/s11423-016-9507-9
https://doi.org/10.1016/j.tele.2017.02.005
https://doi.org/10.1145/1953163.1953310
https://doi.org/10.1162/0011526054622015
https://doi.org/10.1145/2483710.2483713
https://doi.org/10.1145/2483710.2483713
https://doi.org/10.1145/3364510.3366148
https://doi.org/10.1145/2490822
https://doi.org/10.1186/s41239-017-0062-1
https://doi.org/10.1186/s41239-017-0062-1
https://doi.org/10.1145/3351287.3351291
https://doi.org/10.1016/S0020-7373(74)80027-1
https://doi.org/10.1016/S0020-7373(74)80027-1
https://notionalmachines.github.io


Source: own practice
Collected by: Felienne

(3) Variables as Parking Spaces
Form: Analogy
Source: own practice
Collected by: Jan

(4) Variables as Pigeon Holes
Form: Analogy
Source: Introduction to Computer Programming, 1982
Collected by: Matthias

(5) Typed Boxes Memory
Form: handmade representation
Source: Interview with Jeroen Fokker
Collected by: Johan

(6) Variables as Clothes Pins
Form: handmade representation
Source: Interview with Emily Bakker
Collected by: Felienne

(7) Arrays as Clothes Line
Form: handmade representation
Source: Interview with Emily Bakker
Collected by: Felienne

(8) Stack & Heap Diagram
Form: handmade representation
Source: Interview with Luca Chiodini
Collected by: Matthias

(9) Python Computer V1
Form: handmade representation
Source: own practice
Collected by: Andreas

(10) Computer as Active Actor
Form: Machine-generated representation
Source: http://cs.joensuu.fi/jeliot/description.php
Collected by: Unknown

(11) Variable Trace Table
Form: handmade representation
Source: Interview with Steve Jost
Collected by: Craig

Behavior / Functions / Control-Flow
Data Flow / Evaluations / Expressions
(12) Simulating Software Behavior in Spreadsheet

Form: Machine-generated representation
Source: Interview with Frans Wiering
Collected by: Johan

(13) Operation as Domino Line
Form: Analogy
Source: own practice
Collected by: Matthias

(14) Expression as Tree
Form: handmade representation
Source: Matthias, based on standard abstract syntax tree
representions
Collected by: Matthias

Control-Flow (intra-procedural)
(15) Control-Flow as Graph (Short Circuit)

Form: handmade representation

Source: own practice
Collected by: Matthias

(16) Manual while execution
Form: handmade representation
Source: Interview with Benjamin Turner
Collected by: Felienne

(17) TRACS Structured Code Annotation
Form: handmade representation
Source: own practice
Collected by: Peter

Control-Flow (inter-procedural)
(18) Calls as Sequence Diagram

Form: handmade representation
Source: own practice
Collected by: Matthias

(19) Hand-Drawn Runtime Stack
Form: handmade representation
Source: Interview with John Rogers
Collected by: Craig

(20) Python Computer V2
Form: handmade representation
Source: own practice
Collected by: Andreas

(21) The Shape of Computation
Form: Machine-generated representation
Source: Interview with Shriram Krishnamurthi
Collected by: Sally

(22) Recursion Demo with Python Tutor
Form: Machine-genetrated representation
Source: Interview with Amber Settle
Collected by: Craig

Data structures
(23) Function as Black Box

Form: Analogy
Source: Interview with Scott Heggen
Collected by: Jan

(24) Call Stack as Stack of Papers
Form: Analogy
Source: Interview with Antonio Carzaniga
Collected by: Matthias

(25) List as Stack of Boxes
Form: Analogy
Source: own practice
Collected by: Ben

(26) HashSet as Hanging Folders
Form: Analogy
Source: own practice
Collected by: Colleen

(27) Paper List/ListNode
Form: handmade representation
Source: own practice
Collected by: Colleen

(28) Linked-List Visualization
Form: Machine-generated representation
Source: Interview with James Riely
Collected by: Craig

http://cs.joensuu.fi/jeliot/description.php


Table 3: Results for search of “notional machine OR nota-
tional machine”.

Library Results
ACM Digital Library (ACM Guide to
Computing Literature)

127

IEEE Xplore (Full Text & Metadata) 36
Scopus (All fields) 137
Total 300

(29) Array as Row of Spaces in Parking Lot
Form: Analogy
Source: own practice
Collected by: Jan

Analogies to Humans
(30) Object as Student

Form: Analogy
Source: own practice
Collected by: Matthias

(31) Recursion Role Play
Form: Analogy
Source: own practice
Collected by: Matthias

(32) Method-call Dance
Form: Analogy
Source: Interview with Jeroen Fokker
Collected by: Johan

(33) List Elements as Students
Form: Analogy
Source: Interview with John Lynch
Collected by: Craig

(34) Processor as File Clerk
Form: Analogy
Source: Interview with Antonio Carzaniga
Collected by: Matthias

(35) Blackboard Processing
Form: handmade representation
Source: Interview with (anonymous)
Collected by: Andreas

(36) Worker Analogy
Form: handmade representation
Source: own practice
Collected by: Ben

Other
(37) Grammar as Train Track

Form: Analogy
Source: own practice
Collected by: Matthias

(38) Verbal Expressions
Form: Analogy
Source: own practice
Collected by: Craig

(39) How do you tell?
Form: handmade representation
Source: Interview with Greg Wilson
Collected by: Sally

(40) The Role of Variables
Form: handmade representation
Source: Jorma Sajaniemi, http://saja.kapsi.fi/var_roles/
Collected by: Sally

(41) Real Machines: The Analogy in Your Pocket
Form: Analogy
Source: Interview with Dermot Shinners-Kennedy
Collected by: Sally

(42) Python Computer V3
Form: handmade representation
Source: own practice
Collected by: Andreas

(43) Python Computer V4
Form: handmade representation
Source: own practice
Collected by: Andreas

B SYSTEMATIC LITERATURE REVIEW
PROCESS

This appendix outlines our systematic literature review process,
outlining how the relevant literature was identified, augmented,
filtered, and extracted. The overarching research questions that
guided the review were as follows:
RQ1 How are notional machines defined?
RQ2 How are NMs discussed / used?
RQ3 In which contexts are NMs used?

B.1 Identification of relevant literature
The group used ACM Digital Library (ACM Guide to Computing
Literature), IEEE Xplore (Full Text & Metadata), and Scopus (All
fields) to conduct searches for relevant literature. Initially, the term
”notional machine” was used as the query string. Rare occurrences
where the term “notational machine” was used interchangeably
with “notional machine” was observed, however. As a consequence,
the query string was adjusted to “notional machine OR notational
machine”. The libraries and the results for searching for “notional
machine OR notational machine” are shown in Table 3. The searches
were conducted on 3.3.2020. As shown in Table 3, a total of 300
articles (including duplicates) were identified.

In parallel discussions with domain experts, the term “conceptual
machine” was highlighted as one possible term used to represent
NMs. As the group was already working on the dataset containing
results from the query “notional machine OR notational machine”,
a separate effort to identify articles discussing conceptual machines
was initiated. Searching for the term “conceptual machine” in the
used libraries produced a total of 141 articles (including duplicates),
as shown in Table 4.

Figure 3 presented a timeline of the papers found in our searches.
There’s a noticeable gap in 2009where we found no papers. A search
on Google Scholar using the string “notional machine” identifies
several potentially relevant papers that we did not find in the three
databases we searched. This highlights a limitation of systematic
reviews: while they aim to generate reproducible results, they do not
necessarily produce complete results. There will be works missed
either because they were not indexed in the databases searched or
because the search terms do not uncover them.

http://saja.kapsi.fi/var_roles/


Table 4: Results for search of “conceptual machine”.

Library Results
ACM Digital Library (ACM Guide to
Computing Literature)

36

IEEE Xplore (Full Text & Metadata) 356
Scopus (All fields) 49
Total 141

B.2 Filtering the identified literature
The results from the keyword-based searches were studied in two
phases. In the first phase, the search results from the different
digital libraries were merged and clear duplicates (based on title,
DOI, and abstract) were excluded. This produced a list with 236
articles for the query “notional machine OR notational machine”
and 112 articles for the query “conceptual machine”.

In the second phase, four researchers went through the article
titles and abstracts to identify out of scope articles: we excluded
results that were not written in English, that were not related to
programming, that indicated no content (removing e.g. proceed-
ings forewords), or that were shorter than 2 pages. Each article was
assessed independently by two researchers, who either voted for
including or excluding the article. To avoid premature exclusion
of potentially relevant papers, we used an inclusive approach and
included all articles where the researchers were undecided (one
voted for include and the other voted for exclude). Cohen’s kappa
between pair-wise reviewers varied between .46 and .78, indicating
moderate to substantial agreement. Here, the seemingly low agree-
ment is partially by imbalanced distribution of classes, i.e. low or
high exclusion rate.

After the second phase, a total of 223 articles for the query
“notional machine OR notational machine” and a total of 14 articles
for the query “conceptual machine” were remaining. Merging the
datasets produced a total of 236 articles after one article that was
present in both datasets was removed.

B.3 Augmenting the keyword-based searches
In addition to the keyword-based searches on the digital libraries
described above, the group constructed a list of expert-identified
articles that could be of relevance to the topic but were missing
from the search results. This list contained a total of 14 articles.

At this point, the dataset consisted of 250 articles. Whilst the
group acknowledged that textbooks and instructional materials
could be a good source for additional data, we opted to not include
such sources to our analysis unless they explicitly were identified
by the used search engines. This was decided as our main focus
was on research literature and, in parallel, the group worked on
identifying and characterizing NMs, as described in Section 5.

B.4 Development of the extraction sheet
Four researchers collaborated to develop an extraction sheet based
on the overarching questions of the literature survey. The extraction
sheet was iterated over several meetings, where the researchers
used the preliminary versions of the extraction sheet to extract
details from articles. Each iteration was followed by a joint discus-
sion, where refinements to the extraction sheet were conducted.

The extraction sheet shown in Appendix C was finalized in four
iterations over a span of one month.

B.5 Data extraction
Data extraction was conducted by six researchers, including the
four researchers responsible for the first pass of articles and the
extraction sheet. Following the extraction sheet in Appendix C,
the researchers independently extracted data from the identified
literature. The data extraction was conducted over a time-period
of three months, where a small set of articles were extracted each
week. During data extraction, the researchers held weekly meetings
to consider their findings, and to discuss potential concerns with
the process.

When filtering the articles, as described earlier, the researchers
studied the title and abstract of the article to determine whether
the work was in scope. A scan of the body of 250 articles identified
additional 11 articles that were considered to be out of scope when
starting the extraction process, leaving a total of 239 articles that
were extracted.

From these articles, during reading the articles and extracting
information from the articles, a total of 34 articles were considered
out of scope, and 205 in scope.

B.6 Further augmenting the dataset
To identify articles that were of relevance but did not appear in the
digital library searches and that were not included by experts, we
analyzed the references of the articles (n=205) that were found to
be in scope during data extraction. The process used to extract the
references is discussed in the next section.

Articles that were cited five or more times in the body of articles
identified as being in-scope were manually analyzed for relevance
by two independent researchers. A total of 91 new articles were
identified, out of which 29 were considered potentially relevant
after a first pass considering the title, abstract, and a high-level scan
of the article. When extracting information from the 29 articles
using the data extraction sheet, only 18 were considered to be in
scope.

This brought the total number of extracted articles to 268, of
which 45 were considered being out of scope during the extraction
process. Finally, based on expert discussions, an additional 3 articles
that were in scope were added to the body of articles. In total, the
corpus consisted of 226 articles, which – after extraction – were
further analyzed.

B.7 Extracting citations from the dataset
To explore how the development of NMs has evolved, we extracted
the reference lists of the papers that we reviewed. Due to the variety
of publishers hosting our papers, we determined that we could not
easily extract references from web resources and, instead, extracted
them directly from the PDF files of the papers under review. We
used a service provided by Scholarcy [4] to extract and format the
references.3

Due to the structure of PDF files, extraction of text is non-trivial,
and transformation of the text into an analyzable format (such as a
3The service is available at https://ref.scholarcy.com/api/. We are grateful to Scholarcy
for providing us with an API key at no charge.



bibtex entry) is also challenging due to the number of different ref-
erence formats in use. As a result, the process is lossy and imprecise:
references cannot be reliably extracted from all articles (and cannot
be extracted at all from PDFs that store their pages as images),
and the references that are extracted may contain errors, such as
incomplete titles or missing publication years or authors, which
make matching citations difficult. In our experience, we found that
papers were generally fully extractable or not at all: either most
of the citations were largely correct or some feature of the PDF or
the format of the paper led to many references in the paper being
incorrect or incomplete.

To provide as accurate and representative a set of citations as
possible, we limited extraction to more recent papers (published
at or after 2000), since many earlier papers use an image format.
After the bibliographies were extracted, an author reviewed each
bibliography and discarded any bibliography in which paper titles
were not being accurately extracted. 196 papers from the set were
from 2000 or more recently, and of those, the bibliographies could
be extracted from 165. Finally, the author reviewed all of the titles in
the extracted bibliographies and corrected any remaining extraction
errors identified.

C LITERATURE REVIEW EXTRACTION
FORM

For the literature review extraction form, see Figure 30.

D INTERVIEW PROTOCOL
D.1 Capturing NMs with interviews: goals and

principles
We sought to capture NMs as authentic practices in the classroom
by interviewing instructors of computing courses. The goal was to
obtain accounts of NMs that instructors have actually used in their
teaching practice.

For all interviews, we provided guidance for helping instructors
identify an NM used in their teaching. In particular, we stipulated
that their NM must:

• Be something you’ve used with students
• Have a focus on developing conceptual understanding about
program execution and/or program state

The interviewed instructors were encouraged to bring instruc-
tional materials to the interview and present them during the in-
terview. Interviews were recorded and captured so that we could
identify primary data as original quotes and any drawings or mate-
rials produced by the instructor.

Our initial interview protocol also prompted instructors to pro-
vide the following details:

• “What problem does this avoid / help students resolve?”
• “Do you use this idea regularly / frequently?”
• “Do you use this idea later – do you extend it, pick it up
again in the course, . . . ?”

• “Does using that example create any issues later?”
• “Who do you use this with?”

• “Do you have an artifact that describes this example? (Could
you share it.)”

• “Can you recall an inspiration for coming up with this ex-
ample? When did you start using it and why?”

• “Have you used this with students in a room? How did it
go?”

D.2 Additional development
We conducted 12 initial interviews. We then shared responses and
organized them among ostensibly salient dimensions. We also iden-
tified additional details that came from some of the interviews that
we thought would be of general interest or provide useful context.
We then incorporated these details as prompts in a second version.
Here are examples of additional prompts that were added:

• How did you first come up with this idea?
• Is it a recurring theme that you build upon in your [context
/ course]?

• Do you have a name for your notional machine?
The next section shows the resulting Recruitment Script and

the Final Interview Protocol that resulted from these additions. We
conducted 13 additional interviews with the added prompts. The
chosen interviews were effectively a convenience sample targeting
skilled teachers, although we obtained some diversity by asking
each working group member to conduct at least one interview. In
practice, working group members reached out to colleagues, all
who agreed to be interviewed when asked. Appendix A presents
which NMs were obtained by interviews and who conducted the
interviews.

In addition to asking the interviewee’s permission to share their
NM to the public, we asked permission to attribute their identity to
their NM. All interviewees affirmatively responded to this attribu-
tion. Ethics board reviews were passed with this form of consent
and attribution.

D.3 Final interview script
Recruitment Mail
We are seeking examples of notional machines. A notional ma-
chine is a pedagogic device to assist the understanding of
some aspect of programs or programming. We would like to
interview you about a place in your teaching where you use a
notional machine. It must:

• Be something you’ve used with students;
• Have a focus on developing conceptual understanding about
program execution and/or program state.

Please bring any materials with you that would be helpful for
explaining this teaching practice (e.g. a diagram, slides, a video,
etc.).

[As appropriate, the interviewer may attach additional content
for compliance with the interviewer’s institutional ethics board.]

Interview Script



Field Name Format and Options Notes
Article Bibtex Entry Short answer For extraction of publication information

such as year or authors
Article PDF File chooser For extraction of references
What type of an article is this? Select-multiple from:

Lab-based research study
Classroom-based research study
System paper (e.g. describing a tool)
Methodological discussion
(e.g. describing a method of how
something should be done)
Theory paper (e.g. forming a theory,
perhaps based on evidence)
Literature review
Other (specify)

In what educational context is the article set? Select-multiple from:
Uncontextualized
Primary school
Secondary school
Tertiary education (e.g. college,
university): CS1, CS2
Tertiary education (e.g. college,
university): other courses
Life-long learning (e.g. MOOCs)
Other (specify)

What are the article’s explicit research questions? Short answer Copy-paste or "NA"
What is the purpose of referencing the concept Select-multiple from:
of a notional machine in the article? Motivation

Related Work
Theoretical basis
Identifying or defining a
notional machine
Using a notional machine
in an intervention
Other (specify)

How are notional machines explicitly defined Short answer Copy-paste, ”implicit”, or "NA"
in the article?
If a notional machine is described in the article, Short answer Copy-paste, brief description, or "NA"
what is it?
What is the educational or conceptual benefit Short answer Copy-paste, short description,
of using a notional machine in this article? "unclear", or "NA"
What aspect of computing is being addressed Short answer Copy-paste, short-description,
by a notional machine? "unclear", or "NA"
Does the article evaluate some aspect of a Select-multiple from:
notional machine or its impact? Quantitative

Qualitative
Not measured

In scope? Select-one from: Decision of whether to keep paper
Core paper for notional machines for further analysis
(include in second analyses)
Adds breadth to notional machine
discussion (include in second analyses)
References notional machines
(do not include in second analyses)
Not at all related / exclude

What is the contribution of this paper? Short answer Brief description
Additional Notes Short answer Frequently used to explain “in scope” decision
Additional Resources File Chooser

Figure 30: Questions on the literature review extraction form



Instructions to the interviewer:
Go through each numbered bullet in-order. Ask the main
question for each numbered bullet. Only ask the lettered sub-
questions if the interviewee doesn’t already answer them on
their own. If the interviewee goes deeper at some point, that is
fine. However, try to cover the points in this script if possible.
(1) Welcome!
(2) Before we begin, could you read the consent document and

let me know if you have any questions. Do you consent to
participate in the interview?

To go ahead and get us started, I have a series of questions I’m
going to ask you. To make sure we address all of them, at times, I
will return to them to ask the next question.

(3) What is your background?
(4) Let me restate the definition of "Notional Machine": "A no-

tional machine is a pedagogic device to assist the understanding
of some aspect of programs or programming."

(5) Can you tell me about a Notional Machine you use to help
students understand program execution or program state?
If the interviewee seems confused about the definition of a No-
tional Machine or seems stuck, offer this additional prompt: You
may want to consider diagrams, metaphors, phrases or demon-
strations that you present to students to help them understand
how a program works.

(a) It must be something you’ve used with students.
(b) It must focus on developing conceptual understanding

about program execution and/or program state.
[Note to interviewer: the interviewee might identify several
notional machines with that answer. Identify only one of
them for the following questions.]

(6) Do you have an artifact/example/diagram that describes
this example?

(a) Could you share it?
(b) Could you draw something that illustrates this?
(c) Could I see it?

(7) In what context/course and to what kind of students do
you teach programming?

(a) What prerequisite knowledge does it need?
(8) Howdoes this help students understand the system/programming

language/[..]?
(9) What works about this?
(a) Which concept does this help you teach?
(b) What problem does this help students resolve or avoid?

(10) What does not work about this?
(a) What are the limitations of this notional machine?
(b) Do you make students aware of these limitations?
(c) Does this createproblems later on in the [context / course]?

(11) When/Where do you typically use this idea?
(a) How frequently do you use it?
(b) How much preparation time do you need?
(c) How much time do you spend initially introducing it?

(12) How did you first come up with this idea? / Can you recall
an inspiration for coming up with this idea?

(13) Is it a recurring theme that you build upon in your [context
/ course]?

(a) Do you grow/extend the notional machine throughout
the course (e.g. introducing new features / increasingly
powerful "language levels")?

(14) Do you have a name for your notional machine?
(a) Do you communicate this name to your students?
(b) Did you just come up with it?

(15) Now that we’ve gone through the interview, do you have
anything more that you’d like to add?

[As needed, interviewer may ask about the . . . how the no-
tional machine is used]

(a) students
(b) context
(c) value
[As appropriate, the interviewer may seek additional per-
mission to share interview materials and recording with
colleagues]

(16) Thank you!


