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Surface Integral Equation Method for
Soft-and-Hard/DB Boundary Condition

Beibei Kong, Pasi Ylä-Oijala, and Ari Sihvola, Fellow, IEEE

Abstract—A surface integral equation (SIE) method is devel-
oped to analyze electromagnetic scattering by three-dimensional
(3-D) objects with Soft-and-Hard/DB (SHDB) boundary condi-
tion. The SHDB boundary condition is a generalization of the
Soft-and-hard (SH) and DB boundary conditions, which associate
the normal and tangential field components on the boundary. In
the developed method, the SHDB boundary condition is expressed
in vector form which allows combining it with the tangential field
integral equations. The obtained equations can be discretized
with the standard method of moments (MoM) using the Rao-
Wilton-Glisson (RWG) functions. Different combinations of the
integral equations and boundary conditions are derived and their
numerical performance are studied and compared. It is demon-
strated with numerical experiments that much more stable system
is obtained by considering the boundary conditions as extra
equations, rather than integrating them to the surface integral
equations. The solutions of the proposed non-square integral
equation are verified with the physical optics approximations.

Index Terms—Electromagnetic scattering, Soft-and-Hard/DB
(SHDB) boundary, surface integral equation (SIE)

I. INTRODUCTION

ELECTROMAGNETIC boundary conditions are mathe-
matical models that define the behavior of the electric

and magnetic field at the boundary of the region of interest
in an electromagnetic problem [1]. Modeling the material
interface with a proper set of boundary conditions allows
us to avoid considering the fields on the other side of the
boundary, thus simplifying the electromagnetic problem and
reducing the region of computation. Conventional electro-
magnetic boundary conditions, including the perfect electric
and magnetic conductor (PEC and PMC) boundary conditions
and the impedance boundary condition (IBC) [2], are defined
in terms of the tangential components of the fields. With
the development of artificial electromagnetic materials, non-
conventional electromagnetic boundary conditions are intro-
duced to model complex material structures [3]–[5]. The
expressions of these non-conventional boundary conditions
are more diversified, including tangential fields in specific
directions and even normal field components. For example,
the Soft-and-hard (SH) boundary condition requires both tan-
gential electric and magnetic fields vanish in one direction [6].
In the DB boundary condition the normal components of the
electric and magnetic flux densities vanish on the surface [7],
[8].

Recently, the most general linear and local boundary con-
dition, i.e., general boundary condition (GBC), which asso-
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ciates the tangential field components with the normal field
components, was introduced [9]. As a special case of GBC,
the soft-and-hard/DB (SHDB) boundary condition generalizes
the SH and DB conditions [10], [11]. The SHDB boundary
condition is shown to be one of the most natural and simple
boundary conditions expressed in the form of 4-D formalism
[12]. Moreover, the SHDB boundary exhibits non-conventional
properties to tailor and modify the behavior of electromagnetic
waves and has great potential in future engineering applica-
tions [10], [11].

The plane wave scattering from an infinite planar SHDB
boundary has been investigated analytically [9]–[11]. To be
able to analyze the scattering from an arbitrary finite-sized
object with SHDB boundary, numerical approaches are need-
ed. However, so far no numerical methods exist for arbitrary
SHDB boundaries. This motivates us to develop numerical
methods for modeling the interaction of electromagnetic waves
with the SHDB boundary. In this paper, we apply a surface
integral equation (SIE) method for calculating scattering from
arbitrarily shaped 3-D objects with the SHDB boundary. The
proposed SIE method enforces the SHDB boundary condition
in the weak sense. We express the boundary condition in vector
form and then combine it with the tangential field integral
equations. The resulting formulations can be discretized using
the standard method of moments (MoM) and the Rao-Wilton-
Glisson (RWG) functions [13]. Alternative ways to combine
the field integral equations and the boundary conditions are
investigated. The presented results show that combining the
SHDB with the field integral equations as a non-square integral
equation gives an accurate and stable solution. A physical
optics (PO) approximation is developed to analyze reflection
properties of planar SHDB surfaces and to verify the solutions
of the proposed SIE method.

II. SOFT-AND-HARD/DB (SHDB) BOUNDARY CONDITION

A. Definition of SHDB

The Soft-and-Hard/DB (SHDB) condition, introduced in
[10], is a generalization of the SH and DB boundary con-
ditions. This condition can be written as [10]

Tdn · cB + Tsat ·E = 0 (1)

Tdn · cD − Tsat ·H = 0. (2)

Here D, B are the electric and magnetic flux densities, E, H
are the electric and magnetic fields, Td and Ts are dimension-
less scalar parameters, n is the unit normal vector pointing
outwards the boundary S, at is a unit vector tangential with
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S, c = 1/
√
ε0µ0, where ε0 and µ0 are the permittivity and

permeability of the background medium, respectively.

B. Reflection from SHDB

Consider reflection of an incident time-harmonic plane wave
from an infinite planar SHDB boundary. The time factor is
e−iωt. The incident and reflected electric fields are defined as

Ei(r) = Eie(ik0u
i·r), Er(r) = Ere(ik0u

r·r). (3)

Here k0 = ω
√
ε0µ0, unit vectors ui and ur denote the

incident and reflected directions respectively, and satisfy ur =(
I − 2nn

)
· ui, in which I is the unit dyadic.

The reflection dyadics RE,H can be defined by the relations
between the incident and reflected fields, as

Er = RE ·Ei, Hr = RH ·H i. (4)

For the SHDB boundary, dyadic RE reads [1], [9]

RE =
ur ×

[
cr2c

i
1 − cr1c

i
2

]
ur · cr1 × cr2

(5)

with

ci1 = Tdn× ui + Tsat, cr1 = Tdn× ur + Tsat

ci2 = Tsu
i × at + Tdn, cr2 = Tsu

r × at + Tdn.
(6)

Applying the relations H i = ui ×Ei/η0 and Hr = ur ×
Er/η0 with η0 =

√
ε0/µ0, we can show that

RH = −ur ×RE × ui = RE . (7)

These analytic reflection dyadics are later used to calculate
the surface currents for the physical optics (PO) method, which
is used to verify the results obtained with the SIE method. In
the PO method, the surface of the scatterer is divided into
illuminated and shadow regions. The electric and magnetic
currents are calculated from the total magnetic and electric
field on the illuminated region, as

JPO=n×
[
H i+RH ·H i

]
, MPO=−n×

[
Ei+RE ·Ei

]
, (8)

while on the shadow region, the surface currents are zero.
Discretizing the surface with planar elements, the far field
radiated by JPO and MPO can be calculated in a closed form
[14].

III. SURFACE INTEGRAL EQUATION METHOD FOR SHDB

A. Surface Integral Formulation

The main point of this paper is to develop a SIE method
for the analysis of electromagnetic scattering by arbitrarily
shaped 3-D objects with the SHDB boundary. To this end,
let us consider time-harmonic electromagnetic scattering by
a closed object with SHDB boundary condition in a linear,
homogeneous, and isotropic background medium. For a given
incident wave (Ei,H i), the tangential field integral equations
can be formulated as follows [15][

−γtT γtK

−γtK −γtT

]η0J
M

 =

 γtE
i

η0γtH
i

 . (9)

Here J = n ×H and M = −n × E denote the equivalent
electric and magnetic surface current densities on the surface
S, and γtF denotes the tangential component of a vector field
F on S. The operators T and K are defined as

T {X}(r)= ik0

∫
S

X(r′)G(r, r′)dS′+

i

k0
∇
∫
S,p.v.

∇′s ·X(r′)G(r, r′)dS′− i

2k0
n∇s ·X(r)

(10)

K{X}(r) = −
∫
S,p.v.

X(r′)×∇G(r, r′)dS′+1

2
n×X(r)

(11)
where G(r, r′) = eik0|r−r

′|/4π |r − r′| is the free-space
Green’s function of the background with the wavenumber k0,
∇s· is the surface divergence, and p.v. stands for the principal
value integral.

In order to implement the SHDB boundary condition to the
SIEs, the original form of the SHDB needs to be modified
and expressed in terms of the equivalent surface electric and
magnetic currents. Using well-known identities

n ·B =
1

iω
∇s ·M , n ·D =

1

iω
∇s · J , (12)

Eqs. (1) and (2) can be expressed as

iTd∇s ·M + Tsk0n× at ·M = 0 (13)

iTd∇s · η0J + Tsk0n× at · η0J = 0. (14)

The tangential field integral equations are vector equations,
while the boundary conditions (13) and (14) are scalar equa-
tions. Thus they can not be directly combined to constitute
a SIE formulation for the SHDB problem. To that end, we
multiply Eqs. (13) and (14) with two orthogonal tangential
vectors at and bt (= n× at), similarly as in [16] for the GSH
surface. This allows us to express the SHDB in vector form
as follows

iTdbt (∇s ·M) + Tsk0bt (bt ·M) = 0 (15)

iTd (n× bt) (∇s ·M) + Tsk0 (n× bt) (bt ·M) = 0 (16)

iTdbt (∇s · η0J) + Tsk0bt (bt · η0J) = 0 (17)

iTd (n× bt) (∇s · η0J)+Tsk0 (n× bt) (bt · η0J)=0. (18)

Equations (15)-(18) can be combined with the integral
equations and discretized with standard MoM using Galerkin’s
method and RWG functions.

1) Self-Dual Integral Equation (SDIE): Combining Eqs.
(15)-(18) with (9), the SIE formulation for the scattering of
SHDB boundary can be established as the following self-dual
integral equation (SDIE)−γtT +P γtK−Q

−γtK+Q −γtT +P

η0J
M

=
 γtE

i

η0γtH
i

 . (19)

Here the operators P and Q, according to Eqs. (15)-(18), are
defined as

P{X} = iTdbt (∇s ·X) + Tsk0bt (bt ·X) (20)

Q{X}= iTd (n× bt)(∇s ·X)+Tsk0(n× bt)(bt ·X). (21)
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Eq. (19) has a similar form as the self-dual formulation for
IBC in [17]. Self-dual formulations are also developed for the
Mixed IBC [18] and the GSH boundary [16]. However, unlike
in these other cases, the SDIE for SHDB does not work well,
as will be shown in the numerical examples. Hence, another
integral equation formulation is needed.

2) Non-square Integral Equation (NSIE): Another combi-
nation of the boundary condition and field integral equations
is expressed as

−γtT γtK

−γtK −γtT

P −Q

Q P


η0J
M

=


γtE
i

η0γtH
i

0

0


. (22)

Compared with SDIE, in Eq. (22) boundary condition and
field integral equations are not linearly added with each other,
and the discretized matrix of (22) will be a non-square matrix.
We call this formulation the non-square integral equation
(NSIE). Similar NSIE formulation has been applied previously
in [19] for IBC, and for DB and D’B’ boundary conditions.

B. Numerical Strategy

Both SDIE and NSIE are solved numerically with MoM.
Using RWG functions and employing the Galerkin’s method,
the integral equations (19) and (22) are discretized as the
following matrix equation, respectively[

−T+P K−Q

−K+Q −T+P

][
xJ

xM

]
=

[
bE

bH

]
(23)


−T K

−K −T

P −Q

Q P


[
xJ

xM

]
=


bE

bH

0

0

 (24)

with elements

Tmn =

∫
S

gm · T {gn}dS (25)

Kmn =

∫
S

gm ·K{gn}dS (26)

Pmn= iTd

∫
S

(gm ·bt) (∇s ·gn)dS+Tsk0
∫
S

(gm ·bt) (bt ·gn)dS
(27)

Qmn= iTd

∫
S

(gm × n · bt) (∇s · gn)dS

+Tsk0

∫
S

(gm × n · bt) (bt · gn)dS
(28)

and excitation vectors

bEm =

∫
S

gm ·EidS, bHm = η0

∫
S

gm ·H idS. (29)

Here gl(l = m,n) is the RWG function associated to the edge
l. Vectors xJ and xM include the coefficients of the RWG
basis function approximations of η0J and M , respectively.

We solve the square matrix equation (23) using a direct
solver. For the non-square matrix equation (24), we calculate
the Pseudo inverse of the matrix to obtain the unknown
coefficients of electric and magnetic currents. More specif-
ically, the matrix equation Mx = b is first transformed
as
(
MHM

)
x = MHb, where H denotes the Hermitian

transpose, and then solved using a linear equation solver. The
non-square equation is also possible to be solved with the
iterative and fast methods [20].

IV. NUMERICAL EXPERIMENTS

In this section, we investigate numerical solutions of the
proposed SIE methods. We first compare SDIE and NSIE
with existing methods for the DB and SH boundary conditions
and thereafter analyze the numerical performance of these two
methods for more general cases. At last, we simulate a large
square plate to test the validity and accuracy of the NSIE
method.

A. Comparison of SDIE and NSIE

First, we calculate scattering by a cube with the SHDB
boundary and study the numerical performance of SDIE and
NSIE. The edge length of the cube is 1λ, where λ is the
wavelength of vacuum. The direction of at on the surface of
the cube is shown in Fig. 1. The cube is illuminated by a plane
wave with a frequency of 300MHz. The electric field of the
incident plane wave is x-polarized and propagating along the
−z direction.

(a) (b)
Fig. 1. A cube with SHDB surface. (a) The location of the cube in the
rectangular coordinate system. The blue lines indicate the direction of at on
each face of the cube. (b) The direction of at on each face of the cube.

1) Limit Cases: From the SHDB boundary condition (13)
and (14), it is clear that when Td = 0, the boundary is the SH
boundary, and when Ts = 0, the boundary is the DB boundary.
The bistatic radar cross sections (RCSs) of the SHDB cube
are calculated in these limit cases. Meshing the cube with an
element size of λ/10 gives 2016 edges. For Td = 0, Ts = 1,
the SDIE has the same form as the SIE formulation in [16],
only the coefficients of the boundary term are different. As
shown in Fig. 2 (a), the results of SDIE and NSIE agree with
the results obtained by the SIE method for SH in [16].

The results for Ts = 0, Td = 1 obtained by the proposed
two different SIEs are compared with the results of the existing
method for DB [21]. As shown in Fig. 2 (b), for the DB case,
the results of NSIE agree well with the reference results, while
SDIE fails to give an accurate backscattering (θ = 0◦) result.
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(b)
Fig. 2. Bistatic RCS for the SHDB cube with an edge length of 1λ at a
frequency of 300MHz. The direction of at is shown in Fig. 1. (a) Td = 0,
Ts = 1 (SH surface). (b) Td = 1, Ts = 0 (DB surface).

2) Stability of the Formulations: Next we calculate the
scattering of the cube with Td = 1 and Ts = 1, which is
a more general case of the SHDB boundary. The bistatic RCS
of the cube with two different numbers of edges N = 2016
and N = 3294 are shown in Fig. 3. These results indicate that
the NSIE gives stable solutions while the solutions SDIE with
different mesh densities are totally different.

From Eqs. (13) and (14) we may deduce that parameters
Td = Ts = 1 and Td = Ts = 0.5 represent the same boundary.
Thus we expect that the SIE method gives the same results
when setting Td = Ts = 1 and Td = Ts = 0.5 in (27) and
(28). The bistatic RCS of the cube with N = 3294 and Td =
Ts = 0.5 and with Td = Ts = 1 are calculated by the SDIE
and NSIE formulations. From Fig. 3, it can be observed that
the SDIE fails to give stable results while NSIE is stable with
respect to the scaling of the boundary condition parameters.

Letting Ts = δ and Td = 1− δ, we calculate the condition
number of the matrices for the SHDB cube with N = 3294
as δ increases from 0 to 1. We remind that δ = 0 gives a DB
boundary and δ = 1 an SH boundary. Thus, varying δ from 0
to 1 contains all possible cases of the SHDB boundary. As can
be observed from Fig. 4, SDIE formulation is ill-conditioned
except for δ > 0.9. This is a probable explanation for the
instability of the SDIE results in Fig. 3 (δ = 0.5). Compared
with the SDIE, the condition number of the NSIE formulation
is much lower and less oscillating.

From the above results, it can be concluded that NSIE has
much better numerical performance than SDIE. The tangential
field integral equations define a mapping from the surface
currents onto the tangential fields, while SHDB defines a

-90 -60 -30 0 30 60 90
0
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20

30

40

R
C

S
 (d

B
sm

)

Fig. 3. Bistatic RCS for the SHDB cube with different numbers of edges N
and different SHDB coefficients at a frequency of 300MHz. The edge length
of the cube is 1λ and the direction of at is shown in Fig. 1.
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Fig. 4. Condition numbers of the matrices for the SHDB cube with an edge
length of 1λ and N = 3294 obtained by SDIE and NSIE versus δ. The
operating frequency is 300MHz.

mapping from the currents onto the scalar quantities that
can be interpreted as generalized charges. This mismatch of
the range spaces of the integral equations and the boundary
conditions states that these equations should not be combined,
as in the SDIE formulation. This also explains why the
results of the SDIE are unstable and more robust solutions
are obtained by the NSIE formulation.

B. Scattering from SHDB plate

In the following, we calculate scattering from a square
plate with the SHDB boundary to verify the results of the
NSIE method. To that end we first calculate the co- and
cross-polarized components of the reflection dyadic (5) for
an infinite planar SHDB plane. The geometry with coordinate
system and incident angles is shown in Fig. 5. These reflection
coefficients will help us to evaluate and analyze the results of
PO and NSIE for a finite-sized plate.

Let (ui,θi,ϕi) and (ur,θr,ϕr) be two sets of orthogonal
unit vectors. For normal incidence,

ϕi = ϕr (30)

and for oblique incidence, we have

ϕi = n× ui/|n× ui|, ϕr = n× ur/|n× ur|. (31)

Then θi and θr can be written as

θi = ϕi × ui, θr = ϕr × ur. (32)
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Fig. 5. Geometry of the reflection problem of an SHDB infinite plane. The
direction of at is x. (a) Oblique incidence. (b) Normal incidence.

The relations between the incident and reflected fields can
be expressed in terms of these two sets of orthogonal unit
vectors, as

Er=
(
ϕrϕiRϕϕ+ϕ

rθiRϕθ+θ
rϕiRθϕ+θ

rθiRθθ
)
·Ei. (33)

Let us choose n = z and at = x. Then the reflection
coefficients can be written in terms of the angles of incidence
θi and ϕi in Fig. 5, as

Rϕϕ=Rθθ=


(A)2 − (B)2

D
, oblique incidence

cos
(
2ϕi
)
, Ts 6= 0, normal incidence

(34)

Rϕθ=−Rθϕ=


−2AB
D

, oblique incidence

− sin
(
2ϕi
)
, Ts 6= 0, normal incidence

(35)

with

A = Ts cos θ
i cosϕi, B = Ts sinϕ

i + Td sin θ
i,

D = (Td + Ts sin θ
i sinϕi)2 + (T 2

s − T 2
d )(cos θ

i)2.
(36)

Derivation of the reflection coefficients is presented in the
Appendix.

Fig. 6. An SHDB square plate with an edge length of 3λ and thickness of
0.1λ. The blue lines indicate the direction of at on each face of the plate.

Since with the proposed SIE method it is not possible to
compute scattering by an infinite SHDB surface, we consider
a finite large square plate with an edge length of 3λ and
thickness of 0.1λ, as illustrated in Fig. 6. The SHDB boundary
condition is defined on the surface of the plate so that on the
surfaces parallel to the y-z plane, the direction of at is parallel
to z axis. On the other surfaces, vector at is parallel to the x
axis. The coordinate system is defined similarly as in Fig. 5.

We calculate the RCS of the plate under plane waves with
different incident directions. The incident direction of the
plane wave is the same as ui shown in Fig. 5. The direction
of the incident electric field is θi and the operating frequency
is 300MHz. The mesh size is λ/10 and the number of edges
on the triangular mesh is 6546.

Fig. 7. The reflection dyadic components of an infinite plane for a plane
wave incident at ϕi = 0 as functions of θi. Curves in the figure correspond
to reflection coefficients Rθθ (solid line) and Rϕθ (dash-dot line).

1) Oblique incidence in x-z plane: First, we consider the
scattering from the plate illuminated by an oblique incident
plane wave propagating in x-z plane. For the infinite plate,
the values of the co- and cross-polarized components of the
reflection dyadic with ϕi = 0◦ and as functions of θi are
plotted in Fig. 7 for four sets of parameter values Ts = 1, Td =
(0.1, 1, 2, 10). It is shown that the polarization of a plane wave
reflected from the SHDB boundary with Td = 1, 2, 10 will be
reversed when θi = 45◦, 26.5◦, 5.7◦, respectively.

We next compute numerically the bistatic RCS in x-z plane
of the finite plate with parameter values Ts = 1, Td =
(0.1, 1, 10) under the incident direction θi = 45◦, ϕi = 0◦. The
results obtained by NSIE are plotted in Fig. 8 and compared
with the results of the PO method. It can be observed that for
Ts = Td = 1, the cross-polarized RCS are much larger than
the co-polarized RCS, while the co-polarized RCS are much
larger than the cross-polarized RCS for Ts = 1, Td = 0.1 and
Ts = 1, Td = 10. This is consistent with the results of Fig. 7.
The overall performance of the results obtained by the NSIE
method is in line with the PO results. Fig. 9 shows the results
of the corresponding computations for the incidence direction
θi = 26.5◦, ϕi = 0◦.

At last, we calculate the bistatic RCS in x-z plane of the
plate with parameter values Ts = 1, Td = (0.1, 10) under the
incident direction θi = 5.7◦, ϕi = 0◦. The results obtained by
the NSIE method and the PO method are in good agreement
for Td = 0.1, as shown in Fig. 10. However, the SIE results
for Td = 10 disagree with the PO results, and the property
to reverse the polarization of the plane wave is not observed.
From the dependence of the reflection dyadic on the incidence
angle θi depicted in Fig. 7, we observe that the reflection
dyadic for Td = 10 changes radically as θi varies around
5.7◦. In this case, a slight change of incident direction will
have a great influence on the value of the scattered field. This
is because the edge diffractions have a significant effect on the
scattered field for the plate with finite size. As is well known,
the accuracy of the PO approximation can be poor near sharp
wedges due to the lack of edge diffraction.

2) Oblique incidence in y-z plane: Then, we consider the
scattering from the plate illuminated by an oblique incident
plane wave propagating in y-z plane. For oblique incidence
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(c)
Fig. 8. Bistatic RCS of the plate in Fig. 6 illuminated by plane wave with
θi = 45◦, ϕi = 0◦ at a frequency of 300MHz. The results are shown in x-z
plane. (a) Ts = 1, Td = 0.1. (b) Ts = 1, Td = 1. (c) Ts = 1, Td = 10.

in y-z plane (ϕi = 90◦), Rϕϕ = Rθθ = −1 and Rϕθ =
Rθϕ = 0 for all values of θi, Ts and Td, whence there is no
cross polarization in the case of infinite plane. We calculate
the bistatic RCS in y-z plane of the finite plate with parameter
values Ts = 1, Td = (0.1, 1, 10) under the incident direction
θi = 45◦, ϕi = 90◦. The results obtained by NSIE and the PO
method are plotted in Fig. 11. The value of the cross-polarized
RCS is much smaller compared to the co-polarized one. The
cross-polarized RCS of PO method is very small and is not
shown in Fig. 11.

Except for the special case in Fig. 10 (b), we can also
observe the specular reflection of the plate from the above
results for oblique incidence. The largest value of RCS occurs
at the point of θ = −θi, which is the same as the reflection
angle in the specular reflection.
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Fig. 9. Bistatic RCS of the plate in Fig. 6 illuminated by plane wave with
θi = 26.5◦, ϕi = 0◦ at a frequency of 300MHz. The results are shown in
x-z plane. (a) Ts = 1, Td = 1. (b) Ts = 1, Td = 2.
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Fig. 10. Bistatic RCS of the plate in Fig. 6 illuminated by plane wave with
θi = 5.7◦, ϕi = 0◦ at a frequency of 300MHz. The results are shown in
x-z plane. (a) Ts = 1, Td = 0.1. (b) Ts = 1, Td = 10.
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Fig. 11. Bistatic RCS of the plate in Fig. 6 illuminated by plane wave with
θi = 45◦, ϕi = 90◦ at a frequency of 300MHz. The results are shown in
y-z plane.
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(b)
Fig. 12. Monostatic RCS of the plate in Fig. 6 illuminated by plane wave
with normal incidence at a frequency of 300MHz. (a) Monostatic RCS as a
function of δ with ϕi = 0◦. (b) Monostatic RCS as a function of ϕi with
δ = 0.5.

3) Normal incidence: As a last example, we consider the
scattering from the plate illuminated by a plane wave with
normal incidence. From Eqs. (34) and (35) we know that for
normal incidence to an infinite plane, except for the case Ts =
0, the value of the reflection dyadic is the same for all values
of Ts and Td. Thus, for normal incidence, the boundary acts
as an SH boundary when Ts 6= 0 and suddenly changes to a
DB boundary when Ts = 0 and reflection vanishes.

Let us define Td = 1 − δ and Ts = δ and calculate the
monostatic RCS of the plate as δ is increased from 0 to 1.
The plate is illuminated by a normally incident plane wave
(ui = −z) with ϕi = 0◦. The results computed with NSIE and
PO are plotted in Fig. 12 (a) as a function of δ. The cross-

(a)

(b)
Fig. 13. Components of the reflection dyadic for a plane wave incident at
ϕi = 0◦. (a) Reflection coefficient Rθθ . (b) Reflection coefficient Rϕθ .

polarized RCS of PO is very small and is not shown in Fig. 12
(a). As with the above analysis, the results of PO keep constant
for δ 6= 0 and suddenly become very small when δ = 0. The
results of NSIE are generally consistent with the PO results.
As δ decreases, the difference between the SIE and PO results
increases. The cross-polarized scattering values of NSIE are
low (more than 20 dB below co-polarization) and also due to
the finite size of the plate which is non-symmetric according
to Fig. 6. In order to analyze the results, we plot the value
of the co- and cross-polarized reflection dyadic given in Eqs.
(34) and (35) with ϕi = 0◦ as a function of θi in Fig. 13 for
various values of δ. These results indicate that the smaller the
value of δ, the more drastic the change of the reflection dyadic,
as θi varies around 0◦. In this particular case, the reflection
of an infinite plate differs significantly from the reflection of
a finite sized plate.

Changing the polarization of a normally incident field, the
monostatic RCS of the plate with δ = 0.5 is calculated and
drawn in Fig. 12 (b) as a function of ϕi. The results of
NSIE and PO agree well with each other. From Eqs. (34)
and (35), we can observe that the co-polarized response has
cos(2ϕi) dependence and the cross-polarized one has sin(2ϕi)
dependence, which are consistent with our results in Fig. 12
(b).

V. CONCLUSION

A surface integral equation (SIE) method is developed for
electromagnetic scattering by arbitrarily shaped 3-D objects
with Soft-and-Hard/DB (SHDB) boundary condition. In the
proposed method, the SHDB boundary condition is expressed



8

in a vector form, which can be combined with the field
integral equations to constitute the SIE formulation that can
be discretized using MoM with standard basis functions, such
as RWG functions. Different combinations of the boundary
conditions and integral equations are investigated. Numeri-
cal experiments show that the proposed non-square integral
equation (NSIE) formulation can provide accurate and stable
solutions for SHDB surfaces with different boundary condition
parameters. The reflection properties of the SHDB boundary,
such as the changes of polarization at specific angles of
incidence, are observed by the NSIE method and verified with
the PO approximation.

The proposed method can be applied for any linear bound-
ary condition that can be expressed in terms of the surface
currents. The particularly attractive feature of the method is
that any special numerical methods or basis functions are not
needed. The implementation is based on the standard Galerkin-
RWG approach.

APPENDIX A
DERIVATION OF THE REFLECTION COEFFICIENTS

In this Appendix, we present the derivation of the reflection
coefficients Rϕϕ, Rθθ, Rϕθ and Rθϕ given in Eqs. (34) and
(35).

Let us define the unit dyadics Ii = ϕiϕi+θiθi+uiui and
Ir = ϕrϕr + θrθr + urur. Then by applying the relations
ur ·Er = 0 and ui ·Ei = 0, the relations of the incident and
reflected fields in (4) can be written as

Er = Ir ·RE · Ii ·Ei

=
(
ϕrϕiRϕϕ+ϕ

rθiRϕθ+θ
rϕiRθϕ+θ

rθiRθθ
)
·Ei.

(37)

Here the reflection coefficients

Rϕϕ = ϕr ·RE ·ϕi, Rϕθ = ϕ
r ·RE · θi

Rθϕ = θr ·RE ·ϕi, Rθθ = θ
r ·RE · θi.

(38)

Let ui = u1x + u2y + u3z and ϕi = ϕ1x + ϕ2y + ϕ3z.
Substituting Eqs. (5), (31), (32), and n = z, at = x
to Eq. (38), the reflection coefficients for oblique incidence
simplifies to

Rϕϕ=Rθθ=
T 2
s u

2
3u

2
1 −

[
Td
(
1− u23

)
− Tsu2

]2
(u21 + u22)

[
(Td − Tsu2)2 + u23 (T

2
s − T 2

d )
]
(39)

Rϕθ=−Rθϕ=
−2Tsu3u1

[
Td
(
1− u23

)
− Tsu2

]
(u21 + u22)

[
(Td − Tsu2)2 + u23 (T

2
s − T 2

d )
] .
(40)

For normal incidence, substituting Eqs. (5), (30), (32), and
n = z, at = x to (38), the reflection coefficients can be
expressed as

Rϕϕ = Rθθ = ϕ2
2 − ϕ2

1, Rϕθ = −Rθϕ = 2ϕ2ϕ1 (41)

for Ts 6= 0. When Ts = 0, the boundary is the DB boundary
and there is no reflection from the boundary for normally
incident plane wave.
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