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Objective: The objective was to better understand 
how people adapt multitasking behavior when circum-
stances in driving change and how safe versus unsafe be-
haviors emerge.

Background: Multitasking strategies in driving adapt 
to changes in the task environment, but the cognitive 
mechanisms of this adaptation are not well known. Missing 
is a unifying account to explain the joint contribution of 
task constraints, goals, cognitive capabilities, and beliefs 
about the driving environment.

Method: We model the driver’s decision to deploy 
visual attention as a stochastic sequential decision- making 
problem and propose hierarchical reinforcement learning as 
a computationally tractable solution to it. The supervisory 
level deploys attention based on per- task value estimates, 
which incorporate beliefs about risk. Model simulations are 
compared against human data collected in a driving simulator.

Results: Human data show adaptation to the atten-
tional demands of ongoing tasks, as measured in lane devi-
ation and in- car gaze deployment. The predictions of our 
model fit the human data on these metrics.

Conclusion: Multitasking strategies can be under-
stood as optimal adaptation under uncertainty, wherein 
the driver adapts to cognitive constraints and the task en-
vironment’s uncertainties, aiming to maximize the expect-
ed long- term utility. Safe and unsafe behaviors emerge as 
the driver has to arbitrate between conflicting goals and 
manage uncertainty about them.

Application: Simulations can inform studies of condi-
tions that are likely to give rise to unsafe driving behavior.

Keywords: driving, multitasking, task interleaving, 
computational rationality, reinforcement learning

INTRODUCTION

Interactive technologies, such as smartphones 
and in- car information and entertainment sys-
tems, can serve a driver in various ways but may 
also influence the ability to operate the vehicle
safely. While an interface may be easy to use 
in single- task conditions, it can be distractive 
when the user must timeshare attention with 
driving (Noy et al., 2004). Multitasking and task 
interleaving (switching between concurrently 
conducted tasks) behind the wheel is one of the 
most frequent contributors to driving accidents 
(Dingus et al., 2016). A key reason for this is that 
attending a secondary (nondriving) task quickly 
results in increased uncertainty about the states of 
the driving task, such as the current lane position 
(Horrey et al., 2006). One critical question for 
human factors research is how drivers adapt to the 
uncertainty associated with multitasking, given 
particular factors in the driving environment and 
elements of in- car interactions’ design.

This paper presents a computational model 
in which multitasking is formalized as optimal 
adaptation under uncertainty. We consider the 
driver as a computationally rational agent operat-
ing in a task environment that constrains the said 
agent’s behavior, resulting in bounded optimal 
adaptation (Gershman et al., 2015; Howes et al., 
2009; Simon, 1969). In our model, multitasking 
behavior emerges as adaptation to cognitive and 
task bounds, permitting the investigation of mul-
titasking in various combinations of driving and 
in- car tasks.

In multitasking, two or more interleaved 
tasks compete for limited information- 
processing resources, such as visual attention 
(Meyer & Kieras, 1997; Salvucci & Taatgen, 
2008). Any tasks unattended by the agent have 
limited or no observability, and decreased 
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task performance often follows. The mul-
titasking agent encounters an optimization 
problem: how to allocate limited resources to 
maximize joint task performance (Navon & 
Gopher, 1979). The solution must consider the 
tasks’ attentional demands and what could be 
expected to be achieved if attention is shifted. 
Hence, our goal is a computational model of 
multitasking in driving that explains and pre-
dicts multitasking behavior as optimal adapta-
tion,therebyofferingatoolforresearchersand
practitioners. Models of this sort incorporate 
explicit theoretical assumptions and permit 
testing against empirical results. Generating 
adaptive behavior, they can be used to help 
design new technologies that encourage safer 
driving. They can also be used to explore 
complex interactions between the parame-
ters of the driving task and those of the in- car 
interface without the need to resort to costly 
experiments.

Driver behavior is known to change in 
responsetotraffic,drivingenvironment,in-car
user interface design, idiosyncratic traits, and 
other elements. Interleaving decisions can be 
assumed to result from adaptation under uncer-
tainty: the human visual system is able to sam-
ple accurately from only a small subset of the 
visualfield,andthetaskenvironmentcontains
dynamicsthatcanbedifficultorimpossibleto
predict.Hence,driversdonotobeyfixedrules
for switching tasks, but consider the proba-
ble consequences of switching. For instance, 
Wierwille’s (1993) visual sampling model of 
driving suggests that, on average, drivers adjust 
theiroff-roadglancedurationsbetween0.5and
1.5sasthedynamicdemandsoftrafficdictate.
Drivers tend to prolong in- car glances to reach 
natural breakpoints, such as subtask boundaries, 
for instance to complete visual search (Janssen 
et al., 2012; Lee et al., 2012). Furthermore, 
drivers’ multitasking has displayed strategic 
changes in task performance, based on varia-
tions in the workload and the priority of partic-
ular task-specificgoals (Cnossen et al., 2000). 
Also, theskillof the individualclearlyaffects
multitasking strategies (Janssen & Brumby, 
2015). However, we are lacking a unified
account of the mechanisms behind these adap-
tive behaviors (Gutzwiller et al., 2019).

Computational Models of Multitasking

TheEVandSEEV(salience,effort,expec-
tancy, value) models predict experts’ visual 
sampling from task- relevant information 
sources (Sheridan, 1970; Wickens et al., 
2003). These models are based on the idea 
of expected information bandwidth as one of 
the key factors determining the optimal visual 
sampling frequency for a channel (Senders, 
1964), together with the value functions of 
the related tasks and a threshold of acceptable 
uncertainty about the state of the controlled 
system (Sheridan, 1970). For instance, in a 
lane- keeping task, the decision about mak-
ing a corrective input with the steering wheel 
depends on information about the lane posi-
tion, which contains uncertainty that depends 
on the driving conditions. A high- bandwidth 
condition, such as strong wind turbulence, 
increases uncertainty and thus requires more 
frequent visual sampling. The model is able 
to predict a driver’s safety- relevant behav-
iors based on the information requirements 
of the driving and the in- car task and the rela-
tive priority or value assigned to them by the 
driver. The approach has been utilized for pre-
dicting the effects of task value, uncertainty,
and expectations on allocation of the focus of 
visual attention to in- car tasks (Horrey et al., 
2006). One of the drawbacks of these models 
is that the overall determination of the expec-
tancy and value associated with various tasks 
are based on heuristics from human experts.

Another class of computational visual sam-
pling models emphasizes the uncertainty of 
task- relevant states (e.g., Sprague & Ballard, 
2004; Sullivan et al., 2012; Tong et al., 2017). 
In these, similar to EV/SEEV models, uncer-
tainty is related to the concept of the band-
width of a continuous signal or expected error 
(Senders et al., 1967; Senders, 1964; Shannon, 
1948). The model predicts that drivers shift 
attention based on the accumulating uncertainty 
about the driving task. A more demanding task 
may lead to postponing the secondary task 
(Jamson & Merat, 2005), but an incorrect esti-
mation of this demand may also lead to unsafe 
driving. For instance, Lee and Lee (2019) have 
recently modeled drivers’ task interleaving as 
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an outcome of uncertainty about the roadway 
and subtask boundaries. Close to these natural 
breakpoints, drivers may fail to suspend the 
task at the cost of safety. Typically, models in 
this class are unable to explain how the uncer-
tainty of one’s task- relevant beliefs evolves and 
how behavior adapts to the dynamics of the task 
environment and varying subtask goals.

In cognitive architectures such as EPIC 
(Meyer & Kieras, 1997) and ACT- R (Anderson 
et al., 2004), the use of limited computational 
resources is directed by rules that specify how 
tasks are conducted. Models using these archi-
tectures are able to generate detailed simula-
tions of task behavior, such as glances between 
interleaved tasks. The theory of threaded cog-
nition, based on ACT- R, has been developed 
to understand and predict task interleaving in 
multitasking via the principle of autonomous 
task threads that share attentional resources 
(Salvucci & Taatgen, 2008). Each task thread 
has its own goal, reserving and freeing atten-
tional resources in accordance with availability, 
demand, and urgency. This provides psycho-
logically plausible constraints, and the model 
yields predictions with good fit to aggregate
human data (Salvucci & Taatgen, 2008), includ-
ing drivers’ multitasking performance (Kujala 
& Salvucci, 2015). The model can be used to 
predict how the design parameters of the in- car 
interface impact multitasking strategies and 
driving safety. While this approach formalizes 
the impact of task constraints on multitasking 
behavior, it does not explain the emergence of 
adaptive strategies, which often must be formu-
latedassimpleandfixedrules.Asaresult,the
approach does not predict how task- interleaving 
behavior adapts to changes in uncertainty 
related to the task states.

Cognitive constraint modeling (CCM) com-
plements cognitive architecture–based models 
of multitasking (Howes et al., 2004; Janssen 
et al., 2012). Instead of focusing on the cog-
nitive architecture in an attempt to reproduce 
the internal psychological mechanisms of mul-
titasking, the goal is to predict performance 
from the constraints of the task environment 
(Brumby et al., 2007). Possible interleav-
ing strategies are determined by performance 
trade-offfunctions,dictatedbyamodelof the

environment, and optimal strategies in terms of 
task priority instructions. For instance, Brumby 
et al. (2007) have shown that people are able to 
adjust their task interleaving rationally by con-
sidering task constraints and prioritization. The 
CCM approach informs understanding of the 
variability of multitasking drivers’ strategies. 
This is accomplished by specifying how cogni-
tiveandtask-relatedconstraintsaffectbehavior
andcomputinghowdifferentmultitaskingstrat-
egy choices result in different task outcomes.
Such modeling is silent, however, about how 
the strategy choices are made and how drivers 
dynamically adjust their behavior to particular 
task constraints.

Neither the threaded cognition nor the CCM 
approach formalizes decision making in driving 
under uncertainty caused by limited attention, 
which is a critical factor when several tasks 
compete for the same attentional resources. 
The literature reviewed has established that 
what constitutes optimal multitasking poli-
cy—a mapping from task states to action prob-
abilities—should be defined in relation to the
agent’s uncertainty about the goal- relevant task 
states. For instance, the driving conditions, such 
asspeed, traffic,andvisibility,all impacthow
much visual sampling is needed for the driver 
to have a reliable estimate of the car’s posi-
tion on the road (possibly relative to traffic).
Furthermore, the goals for the tasks should take 
the form of a value or utility function allowing 
the agent to weigh the relevance of the concur-
rent tasks. What prior literature does not suf-
ficiently address is how a multitasking agent
adapts the task- interleaving policy to the vari-
able cognitive and environmental constraints of 
the tasks in an attempt to maximize the expected 
joint task gain.

Goals of This Paper

Viewing human behavior as optimal adapta-
tion to constraints in conditions of uncertainty, 
we developed a model of multitasking in driv-
ing. The model presented in this paper addresses 
the problem of optimal attention allocation in 
terms of a policy, which dictates which actions 
are suitable in various situations. An optimal 
policy maximizes expected (joint) task gain. We 
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assume that this optimal policy emerges from 
the task and cognitive bounds, including the 
uncertainty resulting from partial observability 
of the states and dynamics of the environment. 
This is achieved adaptively using a learning 
algorithm that attempts to optimize behavior by 
preferring chains of actions that generally result 
in desired outcomes. In our task environment, 
these outcomes are safe driving and efficient
performance in the interleaved task. Given the 
specificsofthesetasksaswellashowaccurate
beliefs the agent is able to form about the states 
of the task environment, the discovered behav-
ior can be said to approximate boundedly opti-
mal behavior.

Our model architecture utilizes a hierarchical 
structure, decomposing the multitasking sce-
nario into a series of task environments, goals, 
and corresponding policies. There is a driving 
task, wherein the goal is to keep the car within 
lane boundaries; a visual search task, with the 
goal of visually locating a target element among 
distractors; and a supervisory task, which allo-
cates the limited visual attention resource 
between the two subtask models. The model has 
multiple bounds that compel its adaptive behav-
ior. The driving task is bounded by how quickly 
and accurately the agent can update its belief 
as to the lane position and by how quickly and 
often the agent can act to adjust this position. 
Bounding the visual search task are the limits 
of the human visual system, which allow the 
visual encoding of only one element at a time 
and require time to move the eyes and process 
visual information. When not visually attending 
to the road, the model cannot observe the lane 
position (but can still steer), increasing uncer-
tainty. Conversely, when the attention is on the 
road, the visual search task cannot progress, 
as uncertainty about the location of the visual 
target is not reduced. Finally, there is task- 
switching time in shifting attention between the 
road and the in- car display. Our model simu-
lates adaptation to these bounds by learning a 
policy that manages uncertainty in the subtasks 
by allocating visual attention to the task that 
requires it the most.

Unlike those in some previous work, our model 
makes no assumptions about how long drivers 
should tend to the visual search task or when they 

should return to the driving one (e.g., Kujala & 
Salvucci, 2015). Instead, the glancing behavior is 
conceptualized as emerging when the agent’s opti-
mal task- interleaving policy is resolved via rein-
forcement learning (RL; cf. Brumby et al., 2007). 
This behavior is sensitive to (1) the dynamically 
changing attentional demands of tasks (e.g., faster 
driving implying greater attentional demands), 
(2) the tasks’ relative value (e.g., the importance 
ofdrivingsafelyvs.findingtargetsquickly),and
(3) the constraints inherent to the agent (e.g., the 
duration of task switching, in which attention 
is on neither task). This sensitivity permits the 
model to predict the impact of environmental 
dynamics and cognitive architecture on the driv-
er’s uncertainty and the resulting changes in driv-
ingbehavior.Belowwefirstpresentourmodel
architecture and its computational principles. We 
then demonstrate how we validated the model’s 
predictions via a driving task with human partici-
pants.Themodelsuccessfullypredictstheeffects
ofdrivingspeedandsearchdifficultyondriving
performance, as represented by task time, lane 
deviation, and glancing behavior.

MODELING
A Hierarchical Model of Rational 
Multitasking

A computationally rational agent follows 
a policy that maximizes the expected gain or 
utility of its behavior, given the bounds of the 
task and the agent itself (Gershman et al., 2015; 
Howes et al., 2009).Thefirst step in applica-
tions of computational rationality is to model 
the agent and task environment in a way that 
can account for these bounds and for the agent’s 
actions and goals (Howes, 2018). A partially 
observable Markov decision process (POMDP) 
serves as a flexible formalism that permits us
to define an environment, consisting of states
and a transition function; an agent, making par-
tial observations of the environment and acting 
to change the state of the environment; and a 
reward function, reflecting the preferences of
the agent (Kaelbling et al., 1998). Learning 
algorithms, such as those under the umbrella 
of reinforcement learning, are used to learn 
from interaction with the environment in order 
tofindtheoptimalactionpolicy,satisfyingthe
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condition of the agent behaving rationally, car-
rying out actions with the greatest expected util-
ity (Sutton & Barto, 1998).

In the POMDP formalism, the agent per-
forms sequential actions, maximizing the 
long- term gain through actions  a ∈ A  that cre-
ate changes in the environment’s state  s ∈ S  
(Kaelbling et al., 1998). These changes are 
governedbyatransitionfunctionthatspecifies
the probability  T(s, a, s′) = p(s′ | s, a)  of a result-
ing state  s′  given current state  s  and action  a . 
Driving actions, for instance, include moving 
the steering wheel, which results in changes 
in lane position. The formalism also accounts 
for the agent’s incomplete information about 
aspects of the state of the world, by specify-
ing an observation function that defines the
probability  O(s′, a, z′) = p(z′ | s′, a)  of making 
an observation  z′ . As for the agent’s goals, the 
formalism includes a reward function  R(s′) , pro-
viding a real- valued reward for reaching a state 
 s′ . For instance, succeeding in an in- car search 
task yields a positive reward, while lane devia-
tions carry a negative one. The agent modeled 
by a POMDP learns to perform actions that 
maximize the long- term cumulative reward. A 
policy π  determines the choice of a new action, 
given a history of observations that are summa-
rized as a belief  b . An optimal policy π∗  maps 
beliefs to actions such that an agent following 
that policy maximizes the long- term cumulative 
reward. To model learning from experience, RL 
is employed to record how actions produce state 
changes and rewards; this process lets an expe-
rienced agent approximate an optimal policy 
(Sutton & Barto, 1998).

Our model is based on hierarchical organi-
zation of human cognitive control, which both 
offers neural plausibility and provides a com-
putationally tractable solution for complex 
RL models (Botvinick, 2012; Frank & Badre, 
2012). Hierarchical RL (HRL) can be used to 
break complex behavior into subtasks, which 
permits that the subtask policies are learned 
independently before subjugated to the super-
visory control hierarchy. Each subtask has its 
own associated decision process, including the 
reward function. For instance, driving and in- 
carvisualsearchsubtaskshavedifferentgoals
and therefore reward functions. The key insight 

of this hierarchy is that the outcome of the mul-
titasking episode is the joint function of the sub-
task reward functions. For instance, if the goal 
of the agent is to conduct visual search in an in- 
car interface while driving safely, the problem 
of the multitasking agent is to discover a task 
switch policy that minimizes lane excursions 
while maximizing search performance. The 
total reward of the hierarchical model is deter-
mined as the joint performance from these sub-
task models. The subtask reward functions can 
bechangedtoobtainpoliciesfordifferentgoals,
but also the joint multitasking reward function 
canbemodified.Forinstance,relativeweighing
of how the subtask rewards are summed might 
result in the agent improving its visual search 
performance at the cost of safe driving.

Our hierarchical model of multitasking is 
illustrated in Figure 1. We assume that there 
are independent task-specificmodels (e.g., for
driving and in- car visual search) and a super-
visory model that learns the optimal policy 
for shifting limited visual attention resources 
between these subtask models. Once RL has 
been applied for independently implementing 
andtrainingthetask-specificmodels,thesuper-
visory model is trained to allocate attention 
between the trained task models. An import-
ant feature of our approach is that optimality 
must be understood in terms of bounded opti-
mality, where the bounds and dynamics of the 
task environment and those of the cognitive 
architecture of the agent guide behavioral adap-
tation.Below,webrieflydescribethetaskmod-
els. Full implementation details, addressing all 
parameter values, are explicated in the techni-
cal Appendix A, Algorithms 1–3. The model 
code is available at https:// gitlab. com/ jokinenj/ 
multitasking- driving.

Modeling Driving

For the driving model, we use a simple sim-
ulation Td(s,a,s′), wherein the car’s speed, the 
steering wheel’s position, and previous lane 
position  s ∈ Sd  determine the next lane position, 
 s′ ∈ Sd . The agent can perform an action  a ∈ Ad  
to move the steering wheel so as to adjust 
the car’s position such that it remains within 
the specified limits. A negative reward  Rd  is 
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receivedwhen the car is beyond the specified
lane bounds; the reward value is 0 within them. 
The agent utilizes a transition model,  τd(s, a, s′) , 
which approximates the true transition function 
 Td  and allows it to drive without visual atten-
tion for a short while. The agent’s belief  bd  is 
a distribution over possible lane positions  Sd . 
When the agent is able to make observations, 
 bd  is a joint posterior of τd and the observation 
function  Od(s′, a, o) . The belief that the car is in 
position  s′  for a given action  a ∈ Ad  is

 b′(s′) =
Od(s′,a,o)

∑
s∈Sdτd(s,a,s

′)b(s)
Pr(o|a,b)   

(1)

where  Od  is the probability of a correct obser-
vation. When attention is on the visual search 
task, the driving model is, in essence, “driving 
blind,” relying entirely on the transition model 
( τd ) and prior belief  b .

The driving model is trained in two steps. 
First, it learns the transition model,  τd , by 

performing random actions and fully observing 
the outcomes. Hence,  τd  becomes a stochastic 
prediction model of the physics of the driving 
task. After this, the model starts to drive, mak-
ing observations and updating its belief about 
the car’s lane position by using Equation 1. For 
faster learning, we augment this belief distribu-
tionviaasufficientstatistic,whichinthiscaseis
the most likely road position and belief entropy.

 

−
b =




argmax b(s)

−
s∑

s∈S
(b(s)× log(b(s)))

  
(2,3)

We use RL to train the model to an optimal 
policy  π∗d  , which for any  ̄b  returns an action 
 a ∈ Ad  that is expected to maximize the long- 
termreward.Specifically,weuseSARSA(see
Appendix A, Algorithm 1) to learn state–action 
utilities from previous state  s ∈ S  and action 

Figure 1. Our hierarchical multitasking model is composed of a driving model, a visual search model, and a 
supervisory model. The models’ actions are based on beliefs (b)abouttheworld,giventhepolicylearned(π).
The subtask beliefs are updated via observations of the state of the world. The supervisory model assigns visual 
attention between tasks, granting the ability to make visual observations about the world. The supervisory 
model monitors the current subtask utility values, to track their attentional demands.
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 a ∈ A , the resulting reward  r , and current state 
 s′ ∈ S  and current action  a′ ∈ A  (Sutton & Barto, 
1998).

 Q(s, a) = Q(s, a) + α[r + γQ(s′, a′)− Q(s, a)],  (4)

where α  is a learning constant and  γ  discounts 
future rewards. These Q- values indicate the 
utility or long- term expected gain of a particu-
lar action, for a given state. To balance between 
exploration and exploitation, we employ a 
softmax action selection policy, which selects 
actions on the basis of their relative Q- values. 
The probability of an action’s selection is

 
p(a) = eQ(s,a)/τ∑n

i=1 eQ(s,i)/τ
,
  (5)

where τ   is a real- valued noise temperature 
greater than zero, controlling the exploration/
exploitationtrade-off.

Modeling Visual Search
The visual search model simulates the eyes 

moving over an in- car graphical display. It is a 
POMDP wherein the state,  s ∈ Ss , is a discrete 
two- dimensional grid of visual elements. The 
model can take action  a ∈ As tofixateonanyof
these elements and encode it. The model’s belief 
isaninitiallyemptygridthatgetsfilledwiththe
encoded visual elements. In addition, the belief 
encompassestheeyes’fixationlocation.Weuse
the EMMA model (Salvucci, 2001) to simulate 
eye movements. Time needed to encode a visual 
object is given as

 Te = K[−log(f)]ek·ϵ,  (6)

where K and k are encoding constants; f is the 
frequency of the object; and ϵ  is eccentric-
ity, measured as the target’s distance from the 
current fixation. To reduce eccentricity and
encoding time, the visual system may initiate a 
saccade. Saccade duration is

 Ts = tprep + texec + Dtsacc,  (7)

where tprep, texec, and tsaccare constants related 
to the human visual system and D is the dis-
tance to be covered by the saccade, in degrees. 
If  Te < tprep , the target is encoded without the 
eyesmovingfromthecurrentfixationlocation.

Otherwise, a saccadebrings thefixationpoint
close to the target, with the remaining encoding 
being conducted after this.

For each encoding of the target, the model 
receives a negative reward  Rs  with a value equal 
to the encoding time. In addition, when the tar-
get is eventually found, the model gets a large 
positive reward. As with the driving model, we 
useRLtofindanoptimalpolicy π∗s  , which for 
anycombinationofthecurrentfixationlocation
and the search- observation grid supplies a new 
target to be encoded. We use the same learning 
and action- selection equations as for the driving 
model.

The Supervisory Model

The supervisory (multitasking) model is a 
POMDP wherein the state space contains the 
maximum Q- values for the current state of 
the two task models. This model applies two 
actions, drive and search, determining which 
subtask model receives attention. It learns an 
optimal attention- allocation policy  π∗m , which 
maximizes the joint subtask reward  Rd + Rs

 . The model is designed to maximize the 
number of search tasks completed in a given 
time while attempting to keep the cumulative 
reward for the driving task close to 0, which 
denotes making as few lane deviations as 
possible.

The multitasking model observes  max qd  and 
 max qs : the current expected utility of the best 
available action for each of the two models. 
Together, these values and the task currently 
holding the attention form the current belief for 
the multitasking model. Based on the learned 
utilities, the model chooses an action, either to 
attend to driving or to search. If the previous 
action (referring to the task currently in focus) 
differsfromthenewone,atask-switchcostis
added in the model (Allport et al., 1994). After 
this, if the selected action was to attend to driv-
ing, the driving model is run for one cycle of 
a small constant time while allowed to observe 
its lane position (Salvucci, 2006). If the action 
selected was to search, the search model is 
iterated once and driving is simulated forward 
without attention, for a duration matching the 
eye- movement action.
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EVALUATION OF THE MODEL

Method

Our model can be used to predict key perfor-
mance variables in an in- car visual search task 
during driving. As all model parameters are 
either adapted from literature (e.g., eye move-
ment andencoding times)orfixed to the task
(e.g., car speed or the size of the in- car device), 
the goal of the evaluation was not to calibrate 
the model, but to see if the model predicts cor-
rectlytheimpactofdifferenttaskconditionson
the key performance variables. Correspondence 
of the predictions to human data is therefore the 
result of the realisticmodel specification, not
tuning of parameters to the target data. Based 
on similar existing work (e.g., Horrey et al., 
2006; Kujala & Salvucci, 2015; Wortelen et al., 
2013), we designed an experiment to evaluate 
the model. Human participants used a driving 
simulator while searching for visual targets 
presented by an in- car display. The experiment 
employed a within- subjects  2× 2  design with 
speed (60 and 120 km/hr) and number of search 
items per screen (6 and 9) as the indepen-
dent variables. Condition order was counter- 
balanced over the entire sample. All data and 
analysis code are available at https:// gitlab. com/ 
jokinenj/ multitasking- driving.

Participants. The participants were 12 
volunteers (7 F, 5 M) selected via convenience 
sampling from responses to advertisements 
emailed to university mailing lists. Participants’ 
lifetime driving experience ranged from 10 to 
29 years (M = 18, SD = 6) and age from 28 to 
47 years (M = 36, SD = 5). All participants had 
normal or corrected- to- normal vision, and all 
admitted to using smartphones at least “infre-
quently” while driving. In monitoring through-
out the experiment, none displayed symptoms 
of simulator sickness. The participants were 
compensated for their time with a cinema ticket. 
This research complied with the tenets of the 
Declaration of Helsinki. Informed consent was 
obtained from each participant.

Materials and procedure. Our medium- 
fidelity driving simulator was composed of a
Logitech G25 steering wheel and pedals, an 
adjustabledriver’sseat,andthree40″Samsung
LED displays (4320 × 900) presenting the driv-
ing environment (Eepsoft driving simulation 
software,https://www.eepsoft.fi/;seeFigure 2). 
A slightly leftward- bending highway road with 
three 3.5- m- wide lanes was selected for the 
study. The speed of the vehicle was fixed to
make the task simpler for the humans to per-
form and to model computationally. To display 

Figure 2. Theexperimentusedamedium-fidelitydrivingsimulator,withthein-carsearch
task presented by a smaller display below the driving scene.
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thevisualsearchtask,a7″screen(1920×1080)
was positioned below themain display, suffi-
ciently close to minimize eye- movement time 
between the road vanishing point and the dis-
play but far enough away to inhibit observing 
the road during visual search (separation 34° of 
thevisualfield).The in-car visual search task
involved searching for a target item among 
six or nine items. The task was designed to be 
prototypical of an everyday in- car search task, 
where the driver is searching for visual infor-
mation on a display, such as a navigator, tablet, 
or a smartphone. For the purposes of controlling 
learningeffectsduringthetasks,westrippedthe
task from semantic information, such as icons, 
and visual features, such as colors. The search 
items, three- letter combinations starting with 
“A” (e.g., “AKJ”), were displayed in black on 
a white background, in 28 pt Calibri type. The 
items were randomly distributed on the screen 
to rule out undesirable search strategies that 
were not incorporated into the search model. 
The search task was present on the screen for 
the whole duration of the trial. They were sep-
arated by at least 2° of visual angle, so that the 
participant had to encode each item with a sep-
aratefixation.Therewere24tasks(i.e., trials)
in each task condition, with 12 foil (no- target) 
and 12 target- present screens (order random-
ized). One set of 24 tasks took approximately 
90–150 s.

Gaze data were recorded with the Ergoneers 
Dikablis Essential eye- tracking system (sam-
pling rate 50 Hz) and synchronized with the sim-
ulator log data (sampling rate 10 Hz). We used 
markers by Ergoneers to obtain data on where 
the eyes are in the task, while permitting the 
participants free movement of head (Figure 2). 
D- Lab software was used to automatically 
extract glance data from the recording.

The participants were allowed to practice the 
driving and in- car visual search tasks separately 
in the beginning of the experiment and, after 
eye- tracker calibration, they practiced a combi-
nation of the two. They were instructed to keep 
the car (i.e., the visible gauges; see Figure 2) in 
the center lane as accurately as possible while 
simultaneously searching the in- car screen visu-
ally. The search target was stated aloud by the 
experimenter before each task and remained the 

same throughout each trial (“AJK” or “AFN”). 
When the search item was found (target- present 
trial) or all items had been encoded (no- target 
trial), the participants reported finishing the
trial by pulling a lever behind the steering 
wheel.Thissuppliedthesimulatorlogfilewith
a timestamp. After this, they verbally reported 
whether the target was present to make sure 
that they were not cheating. The experimenter 
switched to the next task immediately after. This 
taskinstructionissimilartothespecificationof
the reward function for the model, where any 
lane deviations are punished, and the model is 
rewardedforfindingthesearchtargetasquickly
as possible.

Model Training and Validation

All adjustable model parameters were set 
on the basis of the literature or the human task 
conditions, apart from the action- related driv-
ing noise parameter  σd  (Appendix A, Algorithm 
1, L22), which was hand- tuned to approxi-
mate reliable but nondeterministic driving. No 
parameterswerefitted to the observed human
data; all but the task parameters were fixed
acrossconditions,andallwerejustifiedbythe-
ory or the task. First, we trained the driving and 
search models separately for each of the speed 
and search- area conditions. Then, we trained the 
four supervisory models to correspond to each 
of the 2 × 2 conditions. We estimate the mod-
el’sfitforthefollowingbehaviormetrics:trial
time, SDoflateraloffsetfromlanecenter,num-
ber of lane deviations, and number and duration 
of in- car glances. All metrics were aggregated 
within participants and then across participants, 
between conditions and task type (target pres-
ent vs. “foil,” i.e., no target). We used various 
fit metrics to assess the model’s predictions,
calculating each for all behavior metrics. First, 
we calculated the error in the model’s predic-
tions relative to the human data, expressing 
this as absolute error, percentage error, and  SD  
values from human data. Second, we regressed 
the human- data observations over the model’s 
predictions, reporting the linear model’s R2 for 
eachbehaviormetric.Thesefit indicespermit
investigating how closely the model’s predic-
tionsfitthehumandataandhowwellthemodel
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reproduces the impact of the various conditions 
on performance.

Results
Analyzing the human data, we found statis-

ticallysignificantmaineffectsoftheconditions
on most of the behavior metrics (see Appendix 
B, Tables 2–6). In a clear exception, lane devia-
tion was not very dependent on the experimen-
talmanipulations;itwasaffectedonlybyspeed

(Appendix B, Table 3). This is because the num-
ber of lane deviations was typically small, and 
there was great variation in this metric across 
participants. The model’s reward function cor-
responded to the instructions to the participant 
in that the model tried to hold the car on the 
road without lane deviations, while conducting 
visual search tasks. Figures 3 and 4 depict the 
overall observed (human) and predicted (sim-
ulated)values for thekeymetrics.Theeffects

Figure 3. Aggregatevaluesoftrialtime,carlateraloffset,andthenumberoflanedeviationsforhumandata
and model prediction. Error bars are standard error with N = 12.
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of the task conditions on the glance metrics are 
consistent with previous findings (Kujala & 
Salvucci, 2015; Wierwille, 1993). Also, these 
figurespresentnewevidence:thenumberofin-
carsearchitemsaffectsallthebehaviormetrics
considered, except lane deviation.

Our model mirrors the experimental find-
ings. Its average prediction error values, along 
with regression R2 s, are presented in Table 1. 
The model’s simulations match the human 
data fairly closely and replicate almost all of 
the effects of the experimental manipulations
on the performance metrics (apart from lane 
deviations, as discussed above). The model is 
faster than humans, as evidenced by shorter trial 

times (Figure 2a and fewer off-road glances,
Figure 3a). This means that the model does 
not identify all bounds under which the human 
participants are operating. Also noteworthy are 
some behaviors that might vary between partic-
ipants, such as deliberation before confirming
the target’s presence or absence, which we did 
not model.

For the 60 distinct pairwise comparisons 
for the performance metrics between condi-
tions, the model predicts the direction of the 
effect incorrectly in only 8 cases, 5 of them
involving lane deviations. For example, for a 
foil task in the high- speed condition, it cor-
rectly predicts a positive correlation between 

Figure 4. Aggregatevaluesofnumberand timeofoff-roadglances forhumandataandmodelprediction.
Error bars are standard error with N = 12.

TABLE 1: Model Fit Indices: Prediction Error in Absolute Terms, Relative to Values From Observed 
(Human) Data, Standardized to Observed SD and Expressed as Linear Model R2

Metric Error Relative Error Error SD R2

Trial time (s) 1.31 0.43 1.63 .95

Offset SD (m) 0.04 0.35 1.15 .88

Lane deviations 0.04 – 1.10 .49

Number of in- car glances 0.60 0.31 1.37 .93

In- car glance duration (s) 0.33 0.29 0.81 .80
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a larger search area (nine items vs. six) and 
car offset (Figure 2b). The high R2s for all 
metrics considered indicate also that the rela-
tive magnitudes of these changes are correctly 
predicted (Table 1). As expected, the model 
generates less variation than was observed in 
thehumandata,largelybecauseoffixed-value
parameters (see the error bars in Figures 3 and 
4). However, because of how the driving task 
is specified (in terms of discrete actions and
position beliefs; see Appendix A, Algorithm 
1), the driving task generates greater variance 
compared to human data. One could tune the 
free parameters (e.g., of the eye- movement 
model and driving model) to adjust the mod-
el’s search times and driving performance. 
However, these parameters are always at least 
somewhat task- dependent, and parameters 
adjustedtospecifictaskswouldnotbe inter-
esting beyond those tasks.

DISCUSSION AND CONCLUSIONS

In this paper, we have presented a model 
to improve understanding of a long- standing 
human factors question: how does a multi-
tasker allocate/shift visual attention between 
tasks? Our grounding assumption is that task 
behavior—single or multitasking—can be 
analyzed as an adaptation to utility, capacity, 
and ecology. Our model’s goals, such as safe 
driving, are expressed in terms of a reward 
function, and the model attempts to maxi-
mize its utility by choosing actions that it has 
learned are rewarding in the long term. This 
choice is, however, bounded by the capacity 
of the model. For instance, we add noise to 
the actions it uses to control the car and obser-
vations it makes about the task environment, 
and stipulate that eye movements between 
and within tasks take time. Finally, the model 
is constrained by ecology, that is, its interac-
tion with the task environment, dictated by 
the simulation of the car movements and the 
design parameters of the in- car search device.

Within these bounds, we implemented a 
computational rational agent, which adapts 
its behavior policy to the task and cognitive 
constraints to maximize the joint task util-
ity of a driving and an in- car search task. Our 

simulation- based model is unlike previous 
models (e.g., Brumby et al., 2007; Kujala & 
Salvucci, 2015) in applying no prior assump-
tions about the task- switching policy. Instead, 
it predicts multitasking strategies as adaptations 
to task constraints, such as driving speed and in- 
car interface design, and to learning the tasks’ 
rewards.

Although we view multitasking behavior as 
boundedly optimal adaptation, the result is not 
a model that takes no risks. This is because 
the model and humans misestimate the envi-
ronment’stransitionsandpayoffs,giventheir
limited experience and observability of the 
situation. More generally, the optimality of 
the model does not mean that it makes unre-
alistic assumptions about the human behav-
ior it attempts to simulate. The key is in the 
definitionoftheboundsoftheagentsuchthat
the optimality assumption holds within these 
bounds. The discrepancies between the model 
predictions and observed human behavior are 
duetotheunderspecificationofthesebounds.
For instance, the model could be augmented 
to simulate the impact of individual differ-
ences, such as expertise, on performance, 
which would permit matching of predictions 
to individuals.

While some other models predict the emer-
gence of visual sampling frequencies from 
informational expectancy and value (Horrey 
et al., 2006; Wickens et al., 2003), these must 
be input as constants determined by experts. 
In our model, the informational expectancy 
is tied to the inherent uncertainty modeled 
by POMDPs, and it results from the partial 
observability of a dynamic simulation envi-
ronment. The SEEV- AIE model similarly 
displays successfully derived expectancies; 
however, these are based on observed event 
rates in a task model simulation within a cog-
nitive architecture (Wortelen et al., 2013). 
Importantly, our model simulates driving 
in varying stages of observability, even full 
occlusion (Kircher et al., 2018), modeling the 
variance of task uncertainty that results from 
partial observability. The model’s multitask-
ing behavior can be characterized as man-
aging driving- related uncertainty, keeping 
it at acceptable levels when given negative 
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sanctions for poor driving and gains associ-
ated with using an in- car interface. More spe-
cifically, the model’s behavior can be seen
as emerging as a rational adaptation to the 
bounds of the task environment and those of 
its own architecture. The model is bounded 
by its ability to observe only one subtask at a 
time, by how quickly it can move its eyes and 
encode targets, and by the noise and speed of 
its driving actions. Given the rewards speci-
fied,suchasthoserelatedtosafedrivingand
subtask goals, the model adapts its behavior to 
maximize the long- term joint cumulative task 
reward within the imposed bounds.

The model was validated against human 
data without any need to adjust parame-
ters for better fit. All parameters’ values 
were adopted from established literature or 
based on the tasks’ specifics. This proves 
that the model’s fit and the simulated 
emergence of multitasking strategies were 
due not to parameter tuning but to the rig-
orous specification (Roberts & Pashler, 
2000). The instructions to the participants 
were matched to the reward function of the 
model: lane deviations were discouraged 
and fast visual search encouraged. Despite 
no parameter tuning, the model replicates 
the observed impact of task constraints 
on multitasking strategies (Table 1). For 
example, when the number of visual ele-
ments in the in- car interface increases, the 
model attempts to encode more elements 
within a single glance (Figure 3b). One can 
explain this observation by appealing to 
the principle of rational adaptation to task 
constraints: task switching is costly, so the 
model (as humans do) maximizes the util-
ity of a glance by devoting more time to 
searching. Even if this noticeably increases 
the car’s lateral instability (Figure 2b and c), 
the joint task utility is greater than in a case 
wherein the agent opts for several shorter 
glances instead. Interestingly, in addition, 
we detected a slight negative interaction 
effect with speed: when the speed doubles, 
the number of items has less impact on 
off- road glance time (Figure 3b). This too 
is understandable: since the driving task is 
more demanding, there are fewer resources 

to devote to adapting to the constraints of 
the in- car task.

Importantly, our model also predicts unsafe 
driving behavior resulting from risk- taking, 
as we observed an increase in lateral instabil-
ity when the in- car search task showed greater 
complexity in terms of more search items or 
faster car speed (Figure 2b and c). Our model 
can therefore be used to assess the impact of in- 
car interface design on driving performance. Its 
general formulation places no constraints on the 
design or the task, as long as an RL algorithm 
can approximate an optimal policy connected 
with it. For instance, the subtask could spec-
ify a computer game that the agent tries to play 
while driving. Further, adding more modalities 
and their supervisory allocation, such as com-
peting manual actions (e.g., steering the car vs. 
playing the game) is also supported within our 
model architecture. Hence, we foresee numer-
ous important applications for our model. In 
addition to testing the impact of particular 
in- car tasks and interfaces on safety, we can 
model the impact of the driving environment. 
For example, one can model various types of 
visibility conditions (e.g., night driving or bad 
weather) by adjusting the observation function, 
and behavior predictions should unfold as the 
model adapts to the changes. This also permits 
theinvestigationofindividualdifferences(Lee 
& Lee, 2019),suchasdriver-specificobserva-
tion capacity and driving ability.

APPENDIX A: ALGORITHMS

Thedrivingmodelfirstinitializesthediscrete
belief distribution over possible road positions 
(line 2 of the listing). We discretize 1 m of lateral 
positioninto8equallywideportionsandfixthe
maximum lateral position to 2 m, which is clearly 
outside the accepted threshold of 0.875 m. In the 
beginning, the driver’s belief distribution is uni-
form over all possible discrete lane positions. 
Similarly,theactionspaceisdefinedasalinearly
spaced vector, allowing the driving agent to set 
the steering wheel at maximum to 0.08 radians 
(4.6°) to left or right (3). We further add an action 
for 0.0 radian turn, allowing the model to drive 
straightforward. The first action is set to this
action,andthefirstaugmentedbeliefstateisset
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to the most probable lane position of 0.0 and the 
maximum belief entropy (4 and 5). The transition 
model is trained by iterating across all lane posi-
tions and actions, and using the driving simulator 
(23) to generate the next position. In the main 
drivingloop,theagentfirstupdatesitsbeliefdis-
tribution  bpos(p)  from the transition model using 
Bayes’ rule (12). Then, if the driver is granted 
attention for this iteration by the task- interleaving 
model, the agent observes the true lane position 
with  pobs  and otherwise a random position. We set 
 pobs = 0.9 toreflecthighvisibility.Again,Bayes’
rule is used to update the belief distribution  bpos(p)
 . This distribution is summarized into an aug-
mented belief as the most probable belief and the 
entropy of the belief distribution (18). Both val-
ues are rounded into one decimal point to enforce 
a limited amount of possible augmented belief 
states. Softmax action selection policy ( τ = 1.0  
for learning and  τ = 0.1  after model convergence) 
is used to balance exploration and exploitation 
(20), and SARSA learning ( α = 0.1, γ = 0.9 ) is 
used to update the Q- values (21). Action- 
dependent noise  σd = 0.5  is added to action  a′  to 
get the true steering wheel angle ω . This parame-
ter value was hand- tuned: with value 0.9, the 
model was able to drive very long with eyes 
closed, and with the value 0.1, it was not able to 
keep lane position even with eyes on the road; the 
value 0.5 was used to balance this. Based on the 
speed (60 or 120 km/hr), the current lane position, 
the duration of one driving iteration (0.150 s), and 
the steering wheel angle, the simulator calculates 
a new position (23). If the norm of this position is 
equal to or larger than the lane violation threshold 
(0.875 m), the model gets a reward of –1, and oth-
erwise 0. The driving model was trained for 
700,000 simulated seconds of driving.

Thesearchmodelisinitializedbyfirstcreating
the observation matrix, one cell for each visual 
element in the device (2). Each cell is initialized 
to –1, meaning that it is unobserved. The model is 
given a randomfixation position on the device
(but note that this cell is not observed yet). If the 
randomly selected task type has the target present 
among the distractor visual elements, one of the 
elements is randomly assigned as the target. In the 
main loop, the model observes the visual element 
under the current fixation, changing the corre-
sponding cell in the observation matrix obs from 

–1 to 0 (11). The belief of the model is the combi-
nation of the updated observation matrix and the 
currentfixationlocation.Newaction,thatis,fixa-
tion location, is selected using softmax policy 
( τ = 1.0  for learning and  τ = 0.1  after model con-
vergence), and SARSA learning ( α = 0.1, γ = 0.9 ) 
is used to update the Q- values. Reward is initial-
ized to the negative of the EMMA- based move-
ment time. All EMMA parameters are taken from 
the original publication: K = 0.006, k = 0.4, f = 0.1, 
 tprep = 0.135 ,  texec = 0.07 , and  tsacc = 0.002  (Salvucci, 
2001). In addition, if the target is present in the 
interface and has just been uncovered, the reward 
is increased by  Rfound = 20 , minus the 0.15 (sec-
onds) for motor response time. This reward value 
is set high enough to have one visual search task 
to generally have a net positive reward. Because 
the trial terminates after the target is found, sim-
ple TD(0) learning (19) is used to update the Q- 
values (same parameter values as in SARSA). 
Alternatively, if the target is not present in the 
device during this trial, but the model has uncov-
ered all objects, it gets the reward and a new task 
starts. The search model was trained for 3,200,000 
simulated seconds.

The supervisory multitasking or task- 
interleaving model is initialized with a reference 
to the driving model and the visual search model, 
which have been initialized and trained to con-
vergence. In the main loop, the belief state of the 
model is the combination of the previously 
selected action  a  and the maximum Q- values 
available for the subtask models, given their cur-
rent belief (7–10). The best Q- values are rounded 
to one decimal point to make the belief state 
space finite. Softmax action selection policy
( τ = 1.0  for learning and  τ = 0.1  after model con-
vergence) is used to balance exploration and 
exploitation (20), and SARSA learning 
( α = 0.1, γ = 0.9 ) is used to update the Q- values 
(21). When the subtasks have been trained, they 
have  τ = 0.1  and no longer update Q- values. Both 
subtask rewards are initialized to zero. If the new 
actionisdifferentfromthepreviousaction,there
is a task switch. In this case, the driving model is 
iterated for 0.150 s without attention to account 
for the saccadic movement time between the 
tasks (Baloh et al., 1975). If the action is to drive, 
the driving model is iterated for 0.150 s with 
attention (Salvucci, 2006). If the action is to 
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search, the search task is iterated once, and the 
driving model is iterated without attention for the 
duration of the search model iteration. The cumu-
lative reward from the driving model and the 
reward of the search model are summed together 
for rewarding the task- interleaving model. The 

multitasking model was trained for 200,000 sim-
ulated seconds. The model was then run 30 times 
(independent instances) for the duration of 1,000 
s to generate multiple simulations of the model 
performance within a time frame similar to that 
of the human participants.
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APPENDIX B: HYPOTHESIS TESTS

All hypothesis test are made using multi-
level linear regression models with task condi-
tionsasfixedeffectsandparticipantsasrandom
effects.ModelsarecalculatedusingR’slme4
package with lmerTest package for approxi-
mating degrees of freedom. The variable Speed 
indicates change from 80 to 120 km/hr. Task 
type indicates change from a “foil” task to a 
“target- present” task. Items refers to a change 
from six to nine items in the in- car interface.

TABLE 2: Multilevel Regression Model for Trial Time

Fixed Effect Estimate  df  T

Intercept    3.2 13 13.3***

Speed    0.1 74 0.7

Task type  −0.9 74 −8.8***

Items    1.1 74 11.2***

Note. ***p < .001.

TABLE 3: Multilevel Regression Model for SD of 
Lane Offset

Fixed Effect Estimate df  T

Intercept 0.08 26 9.8***

Speed 0.06 74 10.3***

Task type −0.03 74 −4.1***

Items 0.03 74 4.8***

Note. ***p < .001.

TABLE 4: Multilevel Regression Model Lane Deviation

Fixed Effect Estimate df  T

Intercept 0.03 23 1.4

Speed 0.05 74 3.1**

Task type −0.01 74 −0.8

Items −0.01 74 −0.6

Note. **p < .01.
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TABLE 5: Multilevel Regression Model for 
Number of In- Car Glances

Fixed Effect Estimate df  T

Intercept 1.8 13 13.6***

Speed 0.1 74 1.2

Task type −0.5 74 −6.4***

Items 0.5 74 7.6***

Note. ***p < .001.

TABLE 6: Multilevel Regression Model for 
Duration of In- Car Glances

Fixed Effect Estimate df  T

Intercept 1.0 12 8.5***

Speed −0.0 29 −0.4

Task type −0.2 29 −2.3*

Items 0.2 29 2.7*

Note. *p < .01, ***p < .001.
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KEY POINTS

 ● Multitasking can be modeled as strategic adapta-
tion to a reward function, for given task- related 
and cognitive constraints.

 ● Multitasking strategy manages the uncertainty 
related to subtasks, attempting to share atten-
tional resources between them to maximize their 
joint utility.

 ● A POMDP represents a powerful formalism for 
modeling and simulating adaptive multitasking 
behavior.

 ● A dual- task model of driving and in- car visual 
search demonstrates that human- like multitasking 

strategies emerge as rational behavior adapting to 
tasks and cognitive constraints.
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TABLE 5: Multilevel Regression Model for 
Number of In- Car Glances

Fixed Effect Estimate df  T

Intercept 1.8 13 13.6***

Speed 0.1 74 1.2

Task type −0.5 74 −6.4***

Items 0.5 74 7.6***

Note. ***p < .001.

TABLE 6: Multilevel Regression Model for 
Duration of In- Car Glances

Fixed Effect Estimate df  T

Intercept 1.0 12 8.5***

Speed −0.0 29 −0.4

Task type −0.2 29 −2.3*

Items 0.2 29 2.7*

Note. *p < .01, ***p < .001.
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KEY POINTS

 ● Multitasking can be modeled as strategic adapta-
tion to a reward function, for given task- related 
and cognitive constraints.

 ● Multitasking strategy manages the uncertainty 
related to subtasks, attempting to share atten-
tional resources between them to maximize their 
joint utility.

 ● A POMDP represents a powerful formalism for 
modeling and simulating adaptive multitasking 
behavior.

 ● A dual- task model of driving and in- car visual 
search demonstrates that human- like multitasking 

strategies emerge as rational behavior adapting to 
tasks and cognitive constraints.
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