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ABSTRACT 

Emulsion technology has been utilized for decades in the food industry to create a diverse 
range of products, including homogenized milk, creams, dips, dressings, sauces, desserts, and 
toppings. Recently, however, there have been important advances in emulsion science that are 
leading to new approaches to improving food quality and functionality. This article provides an 
overview of a number of these advanced emulsion technologies, including Pickering emulsions, 
high internal phase emulsions (HIPEs), nanoemulsions, and multiple emulsions. Pickering 
emulsions are stabilized by particle-based emulsifiers, which may be synthetic or natural, rather 
than conventional molecular emulsifiers. HIPEs are emulsions where the concentration of the 
disperse phase exceeds the close packing limit (usually > 74%), which leads to novel textural 
properties and high resistance to gravitational separation. Nanoemulsions contain very small 
droplets (typically d < 200 nm), which leads to useful functional attributes, such as high optical 
clarity, resistance to gravitational separation and aggregation, rapid digestion, and high 
bioavailability. Multiple emulsions contain droplets that have smaller immiscible droplets inside 
them, which can be used for reduced calorie, encapsulation, and delivery purposes. This new 
generation of advanced emulsions may lead to food and beverage products with improved 
quality, health, and sustainability. 

Keywords: nanoemulsions; nanotechnology; multiple emulsions; Pickering emulsions; HIPEs 
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INTRODUCTION 

Traditional emulsion technology has been widely applied in the food industry to create a diverse range 
of products, including homogenized milk, cream, dips, dressings, sauces, desserts, and toppings. This 
technology can also be used to create delivery systems to encapsulate and protect bioactive 
components, as well as to control their release and enhance their bioavailability.1-2 Recently, however, 
there have been a number of advances in emulsion technology that may extend their range of 
applications within foods.3 Driven by academic, industrial, and government scientists, a number of novel 
emulsion types have been developed that may be suitable for food applications, including Pickering 
emulsions, high internal phase emulsions (HIPEs), nanoemulsions, and multiple emulsions.  

These different kinds of advanced emulsions can all be formulated from edible oils, water, stabilizers 
and additives, however, their potential applications within foods are dependent on their specific 
compositions and structures. For instance, Pickering emulsions, which utilize colloidal particles rather 
than molecules as emulsifiers,4 have strong resistance to droplet coalescence, which may be useful for 
the creation of emulsified foods where the oil droplets are packed closely together for long periods 
(such as dressings) or for food products that are frozen and thawed (such as microwave meals) 5. HIPEs 
are a specialized type of emulsified system where the concentration of the disperse phase is very high (> 
74%), which leads to semi-solid textural properties, a high resistance to gravitational separation, and a 
high loading capacity.6 They may therefore be useful in emulsified foods that should be highly viscous or 
semi-solid, such as dressings, sauces and desserts, or in applications where a large amount of a bioactive 
component must be encapsulated.7 The ability of HIPEs to flow at high shear rates but set at low shear 
rates also makes them suitable for application as edible inks in 3D food printing.8 The extremely small 
dimensions of the droplets in nanoemulsions provide advantages for certain food applications, such as 
improved resistance to droplet aggregation and creaming, enhanced optical clarity, and increased 
bioavailability of encapsulated substances.9 Finally, the fact that multiple emulsions, such as water-in-
oil-in-water (W/O/W) emulsions, have two different hydrophilic domains within the same system 
provides advantages for some applications.10 For instance, two hydrophilic substances that normally 
react with each other can be isolated from one another, or a bitter tasting hydrophilic substance can be 
trapped in the internal phase, thereby reducing its sensory perception during mastication.  Thus, 
different kinds of advanced emulsion technologies have different advantages and disadvantages for 
specific applications in foods.11 Consequently, food formulators should have knowledge about the 
formation, stability, properties, and functionality of these different kinds of advanced emulsion 
technologies so they can choose the most suitable one for a specific application. 

In this article, we review the formulation, fabrication, stabilization, and potential food applications of 
each type of advanced emulsion technology. Moreover, the advantages and disadvantages of the 
different kinds of these emulsions are discussed, as well as areas where future research is still needed. 
For the sake of clarity, only oil-in-water type emulsions are discussed because these are the most widely 
used in commercial foods at present. 
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Figure 1. (a) Possible positioning and contact angle of spherical particles at the oil-water interface. 
Reproduced from ref.13.12 Copyright 2002 American Chemical Society. (b) Schematic illustration of the 
adsorption of spherical particles at the water-oil interface with a contact angle smaller than 90°, towards 
O/W Pickering emulsion.  

The fact that such a large desorption energy is needed to detach colloidal particles from droplet surfaces 
is also important during the formation of Pickering emulsions. Typically, the high energy barrier 
associated with particle desorption must be exceeded by the application of external forces or by altering 
solution conditions.14 Many studies have shown that the intense mechanical forces generated during 
homogenization helps to overcome this energy barrier,15-17 allowing the formation of Pickering 
emulsions containing relatively small droplets. However, if the mechanical forces used are too intense or 
applied for too long, then the structure of a Pickering emulsion may be disrupted, resulting in a high 

PICKERING EMULSIONS 

Pickering mechanism and formation 

The droplets in Pickering emulsions are coated by colloidal particles instead of molecular emulsifiers.5 
The colloidal particles used for this purpose should have an affinity for both the oil and water phases, 
so they have appropriate wetting properties. Indeed, particle wettability is a key factor determining the 
successful formation and stability of Pickering emulsions, which is determined by the contact angle (𝜃) 
of a colloidal particle at an oil-water interface,12 as illustrated in Figure 1a. 

Hydrophilic particles (𝜃 < 90°) predominantly protrude into the aqueous phase, which favors the 
formation of oil-in-water (O/W) emulsions (Figure 1a, upper panel). Conversely, hydrophobic particles 
(𝜃 > 90°) predominantly protrude into the oil phase, which favors the formation of water-in-oil (W/O) 
emulsions (Figure 1a, lower panel). Particles that are equally wetter by both phases (𝜃 = 90°) possess 
the maximum desorption energy (E):12 

Δ𝐸 = 𝜋𝑟2𝛾(1 − |cos 𝜃|) 

Here, 𝑟 is the colloidal particle radius (nm) and 𝛾 is the oil-water interfacial tension (N/m). When the 
particles have a suitable wettability, the desorption energy is considerably higher than the thermal 
energy (𝑘𝐵T). As a result, Pickering emulsions typically have strong resistance to coalescence because 
the colloidal particles are almost irreversibly attached to the surfaces of the droplets (Figure 1b) and 
create a mechanically robust particle coating that generates a strong steric repulsion.13 As a 
consequence, Pickering emulsions are typically much more stable to coalescence than conventional 
emulsions.5 This feature makes them suitable candidates for the generation of emulsion-based foods 
with enhanced quality attributes and shelf-lives. 
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is crucial for the production of Pickering emulsions, as well as for the precise control of their functional 
properties. 

Food-grade stabilizers 

Many of the original studies on Pickering emulsions used synthetic colloidal particles that were not 
appropriate for formulating foods.  More recently, however, researchers have shown that a variety of 
food ingredients can be successfully be used to formulate Pickering emulsions, which may be either 
inorganic or organic particles.19 A number of food-grade colloidal particles that have been used for this 
purpose are reviewed in this section and summarized in Table S1 (Supplementary information). 

Inorganic particles. Silica particles have been widely studied for the formation and stabilization of 
Pickering emulsions.20 This type of inorganic colloidal particle is an accepted food ingredient,21 which can 
therefore be used in formulating food-grade Pickering emulsions.22-23 Other kinds of food-grade 
inorganic particles can also be used for this purpose, including those formed from calcium carbonate 
and titanium dioxide.24-25 The commercial availability and consistent properties of these inorganic 
particles make them highly suitable for the formation of food-grade Pickering emulsions. However, the 
appearance of inorganic particles on food product ingredient labels is often perceived negatively by 
consumers,5 which restricts their commercial implementation. 

Carbohydrate-derived particles. Carbohydrate-derived particles, such as those assembled from starch, 
cellulose, and chitin, have been widely explored as food-grade Pickering stabilizers because they can 
often be obtained from renewable and abundant natural resources.26 Starch is widely found in tubers 
and cereals.  Starch granules themselves, or smaller colloidal particles derived by controlled 
disintegration of them, can be used to form Pickering emulsions.27 Starch particles can also be 
chemically modified using octenyl succinic anhydride (OSA),28-30 which increases their hydrophobicity 
and allows their wetting characteristics to be tailored for specific applications. The hydrophobic octenyl 
group increases the affinity of the starch particles for the oil phase, which promotes the formation and 
stabilization of oil-in-water Pickering emulsions (Figure 2a).  

Chitin is a polysaccharide isolated from the hard shells of crustaceans, where it is present as tightly 
bonded microfibrils consisting of extended linear molecular chains of acetylglucosamine homopolymers 
with varying amounts of primary amines on their surfaces.31 Chitin nanoparticles can be extracted from 
chitin using different approaches: (i) acid hydrolysis,32 which results in highly ordered, rigid rod-like 
chitin nanocrystals (ChNC); (ii) mechanical shearing,33 which results in longer, more flexible chitin 
nanofibers (ChNF) that retain disordered domains within their structure. Both types of these chitin 
nanoparticles can be used to successfully prepare food-grade O/W Pickering emulsions, but ChNF 
appears to be better than ChNC for this purpose.34-36 This difference may be due to increased surface 
coverage of the oil droplets, as well as an increase in network formation in the continuous phase (Figure 
2b).37 Unlike chitin, the solubility of chitosan in water is pH-dependent, which results in the formation of 
chitosan particles under relatively high pH conditions.38 The ability of chitosan particles to facilitate the 
formation and improve the stability of food-grade Pickering emulsions has also been demonstrated.39 
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the main load-bearing component found in plant cell walls.40-41 Controlled deconstruction of cellulose-
rich fibrous structures in plants, either by chemical or mechanical treatments, can be used to extract 
two types of cellulosic nanoparticles: cellulose nanocrystals (CNC) and nanofibrils (CNF). Some bacteria 
are also able to directly produce cellulosic microfibrils that are recognized as bacterial nanocellulose 
(BNC). These three types of nanocellulosic particles have been comprehensively investigated for their 
potential to form food-grade Pickering emulsions,42-45 particularly CNC (Figures 2c and 2d). One of the 
main limitations of nanocellulose-based Pickering emulsions is the fact that the oil droplets generated 
are relatively large, which makes them susceptible to creaming during storage. A series of approaches 
have therefore been developed to reduce the droplet size in nanocellulose-stabilized Pickering 
emulsions.46-48 For instance, combinations of different nanocelluloses (CNC and CNF) have been used 
create Pickering emulsion with extremely good physical stabilities.49 The adsorbed CNC formed a 
protective coating around the oil droplets, while the non-adsorbed CNF induced the formation of a 
droplet network throughout the emulsion through a depletion mechanism. Surprisingly, at a proper 
CNC-to-CNF ratio, the Pickering emulsions formed were stable for over 6 months without any sign of 
instability, which may be useful for increasing the shelf life of some food products. 

Protein-based particles. Proteins are amphiphilic biopolymers that are widely used as molecular 
emulsifiers in the food industry. However, various kinds of protein-based colloidal particles can also be 
used to produce Pickering emulsions, such as protein particles or microgels.19, 50  The interior of protein 
particles consists of tightly packed protein molecules with a relatively low amount of water, whereas 
that of protein microgels consists of an open network of aggregated protein molecules that contains a 
relatively high amount of water. 

Protein particles and microgels can be formed from animal-derived proteins using various methods, 
including controlled heating, sonication, high-pressure treatment, and pH adjustment. For example, 
whey protein microgels have been produced by sonicating a protein dispersion at pH 6.5, which resulted 
in the formation of microgels with an average diameter of around 235 nm.51 These microgels were 
successfully used to form oil-in-water emulsions that exhibited good long-term stability. Whey protein 
microgels fabricated using high hydrostatic pressure treatment have also been used to produce 
Pickering emulsions.52 Colloidal protein particles have been produced by heating solutions of globular 
proteins above their thermal denaturation temperature using carefully controlled ionic strength and pH 
conditions to promote protein unfolding and assembly into small particles.53 As an example, Pickering 
emulsions have been formed from lactoferrin particles produced using this approach.54-55 More recently, 
ovotransferrin fibrils formed by controlled heating have also been used for this purpose (Figure 2e).56  

Colloidal protein microgels or particles derived from plant sources may also be utilized to create and 
stabilize Pickering emulsions, which is important since many consumers are switching from omnivore to 
flexitarian, vegetarian, or vegan diets.57 Many of the approaches used to produce particles or microgels 
from animal proteins can also be used to produce them from plant proteins.  However, some additional 
methods are also suitable for certain kinds of plant proteins. For example, zein is a hydrophobic protein 
derived from corn that has poor solubility in water but good solubility in concentrated ethanol solutions. 
The poor water-solubility of zein allows the fabrication of colloidal protein particles through antisolvent 
precipitation.58 Indeed, a recent study showed that zein nanoparticles could be used to form stable 
Pickering emulsions with oil droplet diameters ranging from 10 to 200 μm.59 A method that involved 
controlled heating and then transglutaminase treatment of peanut proteins was recently developed to 
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Figure 2. Examples of microscopic images of O/W Pickering emulsions that are stabilized by food-grade 
particles. (a) Starch particles. Reproduced from ref. 30.29 Copyright 2011 Elsevier. (b) Chitin nanofibers. 
Reproduced from ref.38.37 Copyright 2019 American Chemical Society. Rodlike Cellulose nanocrystals 
with (c) short and (d) long rod length. Reproduced from ref.69.68 Copyright 2013 Royal Society of 
Chemistry. (e) Ovotransferrin fibrils. Reproduced from ref.57.56 Copyright 2019 Elsevier. (f) Soy protein 
particles. Reproduced from ref.62.61 Copyright 2013 American Chemical Society. 

generate plant protein particles.60 Soy protein particles formed by heating a protein solution under 
controlled ionic conditions have been used to produce stable Pickering emulsions (Figure 2f).61 Similarly, 
pea protein nanoparticles produced using controlled pH adjustment have also been used.62 Recently, 
pea protein particles prepared by controlled shearing of a heat-set gel were also used to form stable 
Pickering emulsions.63  

Other particles. A number of other food-grade substances can form colloidal particles that can facilitate 
the formation and stability of Pickering emulsions. Flavonoids are secondary metabolites from plants, 
and exist as insoluble particles in aqueous solutions that can adsorb to oil-water interfaces in 
emulsions.5 Indeed, flavonoids have been successfully used to produce Pickering emulsions.64 Shellac 
wax is a natural edible wax that can be used in foods. It can be converted into colloidal wax particles 
using antisolvent precipitation under high shear conditions.65 Shellac-based particles combined with 
xanthan gum have been shown to form stable Pickering emulsions.66 Colloidal particles have also been 
produced from phytosterols and whey proteins using the antisolvent precipitation method.67 These 
particles formed platelet-like sheets whose ability to form and stabilize Pickering emulsions depended 
on the particle concentration and oil fraction used.  
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Novel applications in foods 

In this section, potential applications of Pickering emulsions within the food industry are discussed. 

Delivery of active ingredients. Many minor substances found in foods, including vitamins and 
nutraceuticals, may have beneficial effects on human health but their use is currently limited by their 
low solubility, chemical stability, and/or bioavailability. Emulsion technology has been widely used to 
encapsulate these bioactive ingredients so as to protect them from degradation, improve their 
bioavailability, and control their release profiles.69 Compared to conventional emulsifier-based 
emulsions, Pickering emulsions can provide some novel or improved functions due to their unique 
properties.  

Curcumin-loaded Pickering emulsions stabilized by ovotransferrin fibrils were shown to have better 
environmental stability and bioaccessibility than curcumin dissolved in bulk oil.70 Similarly, curcumin-
loaded Pickering emulsions stabilized by whey protein particles were shown to have enhanced thermal 
stability.71 Pickering emulsions stabilized by CNC have been used to encapsulate natural antimicrobial 
oils (oregano oil).72 These emulsions were shown to efficiently inhibit the growth of four tested food-
related microorganisms by destroying the integrity of the microbial cell walls. In a similar study, thymol 
was loaded into zein/gum arabic particle-stabilized Pickering emulsions, which were also shown to be 
effective antimicrobial delivery systems.73 These emulsions could also be designed to control the release 
of thymol, which may be beneficial in some situations. 

In certain food applications, it is desirable to have delivery systems with controlled or targeted release 
functions. Based on the pH-responsiveness of chitosan particles, a reversible chitosan particle-stabilized 
Pickering emulsion was developed whose release properties could be manipulated by lowering the pH.38 
This type of pH-responsive behavior could be used for the release of bioactive compounds in the 
stomach. Nanocellulose-stabilized Pickering emulsions has been developed to achieve targeted delivery 
of short-chain fatty acids after intestinal digestion.74 CNF-stabilized Pickering emulsions have been 
developed to encapsulate and release vitamin D3.75 A high portion of the vitamin remained inside the 
lipid droplets after intestinal digestion because the CNF formed a protective coating around the oil 
droplets, which may be useful for delivering the vitamin to the distal regions of the small intestine or to 
the colon. 

Control of lipid digestion. Researchers are developing strategies to control lipid digestion so as to avoid 
metabolic or hormonal dysregulation.  Food-grade Pickering emulsions have recently been investigated 
for their ability to regulate lipid digestion. For instance, the in vitro digestion of CNC-stabilized Pickering 
emulsions has been compared to the digestion of conventional gum arabic-stabilized emulsions.76 The 
final amount of free fatty acids released was around 40% less for the CNC-coated lipid droplets than the 
gum arabic-coated ones. These results suggest that forming a CNC coating around the oil droplets 
inhibited lipase adsorption and therefore lipid digestion. In another study, the uptake of digested CNC-
stabilized Pickering emulsions by murine intestinal mucosa was evaluated.77 This study showed that the 
CNCs were trapped within the intestinal mucus layer and failed to reach the underlying epithelium, 
which may reduce lipid absorption. In another study, Pickering emulsions stabilized by composite 
particles containing whey protein and CNC were also shown to inhibit lipid digestion (Figure 3a).78  

Chitin nanoparticle-stabilized Pickering emulsions have also been shown to reduce lipid digestion using 
an in vitro human gastrointestinal tract (GIT) model.79 Another recent study using a similar system 
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Figure 3. (a) Free fatty acid release of Pickering emulsions formed using different whey protein/CNC 
composite particles. The whey protein concentration in W1, W1C1 and W1C3 was 1 wt%, and the CNC 
concentration was 0, 1, and 3 wt%, respectively. Reproduced from ref.79.78 Copyright 2018 Elsevier. (b) 
Impact of emulsion type on free fatty acid release under simulated small intestinal conditions. The 
concentrations for stabilizers upon digestion were identical. Reproduced from ref.81.80 Copyright 2020 
Elsevier. 

Inhibition of lipid oxidation. Lipid oxidation is a major problem in foods containing unsaturated lipids 
because it leads to rancidity. A major cause of the oxidation of lipids in emulsified foods is the tendency 
for lipid hydroperoxides located at the surfaces of oil droplets to interact with transition metal ions in 
the surrounding water.81 Pickering emulsions may be used to improve the oxidative stability of 
emulsified oils because the thick particle coating formed surrounding the droplets limits the direct 
contact of the transition metals and lipid hydroperoxides.  In addition, some substances used to form 
Pickering particles, such as proteins, polysaccharides and polyphenols, have inherent antioxidant 
properties.82 Studies have shown that the oxidation of emulsified sunflower oil can be inhibited by 
coating the oil droplets with cellulose nanoparticles, which was presumably because these particles 
could scavenge free radicals present at the oil droplet surfaces, as well as create a steric barrier around 
the oil droplets that inhibited interactions between lipids and pro-oxidants.83 The presence of a layer of 
protein particles around the surfaces of the oil droplets in Pickering emulsions has also been reported to 
protect the lipids from oxidation.84 The antioxidant activity of protein particles is likely to depend on the 
type, number, and location of the different kinds of amino acid present. For example, cysteine and 
methionine groups exposed at the surfaces of protein particles could be effective at scavenging free 
radicals or chelating metal ions, which would effectively inhibit oxidation.5 In a recent study, Pickering 
emulsions formulated using gliadin/chitosan nanoparticles as stabilizers were reported to be more 
resistant to lipid oxidation under conditions where the solution pH was less than the isoelectric point of 

showed that the bioaccessibility of vitamin D3 was also reduced.80 The ability of chitin nanoparticles to 
reduce lipid digestion and vitamin bioaccessibility may be the result of various processes (Figure 3b): (1) 
the chitin nanoparticle coating hindered the ability of lipase to reach the lipid phase; (2) the presence of 
the chitin nanoparticles promoted droplet aggregation in the GIT, thereby reducing the area of lipids 
accessible to the lipase; and (3) the cationic chitin nanoparticles bound to anionic bile acids, fatty acids, 
or lipase, thereby interfering with lipid digestion and vitamin solubilization. This study suggested that 
chitin nanoparticle-stabilized Pickering emulsions may be useful for developing high-satiety foods and 
for targeted delivery systems.  
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gliadin.85  Under these conditions the protein nanoparticles have a high positive charge and so can repel 
positively charged transition metal ions away from the surfaces of the oil droplets. In summary, previous 
research suggests that the oxidative stability of emulsified lipids may be improved by coating them with 
some kinds of particle-based emulsifiers. 

Current and future perspectives 

In this section, the benefits and limitations of using Pickering emulsions for food applications are 
discussed, as well as possible future research directions. As mentioned earlier, Pickering emulsions tend 
to be much more resistance to droplet coalescence than conventional emulsions.4 This attribute is an 
advantage in food products containing relatively large oil droplets that are in close proximity for 
extended periods, such as salad dressings and mayonnaise.  Moreover, it may be advantageous in 
products that have to be resistant to freeze-thaw cycling, such as frozen foods or microwave meals.    
Pickering emulsions can be prepared from a diverse range of plant-based colloidal particles,87-88 which is 
beneficial for the development of plant-based food products.89 However, there are also a number of 
potential limitations associated with the utilization of Pickering emulsions within foods. There are some 
concerns about the potential toxicity of certain kinds of nanoparticles in foods, which may limit their use 
as emulsifiers to formulate Pickering emulsions.90  Consequently, more research on the gastrointestinal 
fate and toxicity of Pickering emulsions stabilized by nanoparticles would be beneficial 91. Another 
limitation of Pickering emulsions is that they typically contain relatively large oil droplets because the 
droplets produced during homogenization are usually considerably bigger than the colloidal particles 
used to coat their surfaces.92 Thus, rapid creaming or sedimentation may occur in products that have 
relatively low viscosities. Moreover, the relatively large droplet size may reduce the bioavailability of any 
encapsulated bioactive substances because the droplets may not be rapidly or fully digested within the 
human gut.  Consequently, there is a need to develop smaller edible colloidal particles and more 
effective homogenization methods that can be used to successfully prepare Pickering emulsions 
containing smaller oil droplets.  In addition, there is a need to understand how Pickering emulsions 
behave when incorporated into real food products, especially their interactions with other ingredients 
and their response to being exposed to food processing operations, prolonged storage, and food 
preparation procedures.  

HIGH INTERNAL PHASE EMULSIONS 

HIPE mechanism and formation 

High internal phase emulsions (HIPEs) have a droplet concentration that exceeds the close packing limit, 
which is around 74% v/v.93 At these high concentrations, the droplets are often deformed into 
polyhedral shapes that are separated by thin films of continuous phase (Figure 4, right panel). HIPEs are 
typically semi-solid materials because the droplets are so closely packed together that they cannot easily 
move past each other when an external force is applied. Moreover, external energy is required to 
deform the droplets. Like conventional emulsions, HIPEs are thermodynamically unstable systems, i.e., 
they have a tendency to revert back to the separated oil and water phases over time. Nevertheless, they 
can be designed to be kinetically stable (“metastable”), i.e., to persist for a long period of time without 
changing their properties or breaking down. Unlike dilute emulsions,5 HIPEs are more resistance to 
gravitational separation because the droplets cannot easily move upwards or downwards.6 However, 
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Figure 4. Schematic showing (not to scale) of the oil phase structure of HIPEs at different internal phase 
volume fractions. Reproduced from ref.94.93 Copyright 2020 Elsevier. 

Typically, HIPEs are fabricated by homogenizing a dispersed phase and a continuous phase containing an 
appropriate emulsifier. Two different preparation methods are commonly used to achieve this goal: the 
one-step and two-step methods.7 The one-step method involves combining the required volumes of 
continuous and dispersed phases together and then homogenizing, often using a high shear mixer. The 
two-step method involves gradually adding the dispersed phase to the continuous phase under 
continuous homogenization (similar to traditional mayonnaise production). The preparation method 
selected is often determined by the nature of the emulsifier and other stabilizers used. HIPEs can be 
prepared using some small molecule surfactants,94 however, the selection of the surfactant type and 
concentration should be made carefully since phase inversion of the emulsion may occur (e.g., O/W to 
W/O or vice versa) at high droplet concentrations when the surfactant has some solubility in the 
dispersed phase. Furthermore, the food industry is increasingly looking for alternatives to synthetic 
surfactants due to consumer concerns about their potential adverse health and environmental effects, 
especially when used at the high concentrations required to formulate HIPEs.95 As a result, there are 
efforts to identify more label friendly emulsifiers that can be used in the food industry to form HIPEs.  

Colloidal particles, which may be organic or inorganic, are particularly useful for creating stable HIPEs 
because they are able to inhibit coalescence of the oil droplets.93 HIPEs formed using colloidal particles 
are referred to as high internal phase Pickering emulsions or HIPPEs. Compared to HIPEs formed from 
molecular emulsifiers, HIPPEs have several potential advantages including higher internal phase 
volumes, reduced stabilizer levels, higher resistance to coalescence, and greater stability to 
environmental changes. As a result, the creation and characterization of HIPPEs has been a major focus 
of recent research in the food, cosmetic, and pharmaceutical industries. In particular, there has been a 
focus on the development of HIPPEs using natural biopolymers as stabilizers.96-97 For this reason, the 
main focus of this section will be on recent research on the development of food-grade HIPPEs from 
natural stabilizers (Table S1). 

Food-grade stabilizers 
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Polysaccharide-based particles. Similar to dilute Pickering emulsions, colloidal particles that are derived 
from starch, chitin, and cellulose can also be used to prepare food-grade HIPPEs. Native starch 
nanocrystals prepared by acid hydrolysis have been reported to be able to form and stabilize soy oil-in-
water HIPEs (𝜑 = 75-85%).98 Increasing the concentration of starch nanocrystals decreased the droplet 
size and increased the stiffness of the HIPPEs. Chitin nanocrystals have also been used as an efficient 
stabilizer in HIPPEs (𝜑 = 75%).7 In our recent study, which utilized a two-step preparation method, a 
relatively low concentration of chitin nanofibrils (0.064 wt %) was used to form and stabilize HIPPEs (𝜑 = 
88%).8 These HIPPEs were also shown to be physically stable for over 90 days. In a more recent study, 
octenyl succinic anhydride (OSA)-modified rodlike cellulose nanocrystals were also shown to stabilize 
HIPPEs (𝜑 = 80%).99 The droplet size and viscosity of the HIPPEs could be tuned by varying the 
concentration of colloidal particles used to formulate them, which means their properties could be 
tailored for different applications.  

Protein-based particles. Protein-based stabilizers for HIPPEs can be derived from animal or plant 
sources. Animal sources include gelatin meat, milk, and egg, whereas plant sources include cereals, 
legumes, seeds, and nuts. Whey protein microgels or nanoparticles have been successfully used for the 
preparation and stabilization of HIPPEs.100 In a recent study, a relatively low concentration of whey 
protein nanoparticles crosslinked by calcium ions (0.2%) were used to form stable HIPPEs (𝜑 = 80%).101 
These HIPEs remained physically stable for over 60 days, which can be attributed to the reduction in 
droplet creaming associated with close droplet packing. Ovalbumin was recently used to prepare 
HIPPEs, which enabled the formation of emulsions with the ability to resist droplet coalescence, lipid 
oxidation, and oil vaporization.102 Bovine serum albumin (BSA) glycated with galactose has been shown 
to form soft colloidal particles that can be used as emulsifiers to prepare HIPPEs that are more stable 
than those prepared from native BSA.103 HIPPEs that remained stable during long-term storage, thermal 
processing, and freeze-thawing could be formed even at relatively low BSA conjugate concentrations 
(0.1 wt%). Gelatin particles have also been shown to be able to form and stabilize HIPPEs (𝜑 = 80%) at 
relatively low concentrations.104-105 In a recent study, a facile and in situ method for the preparation of 
food-grade HIPPEs was developed using sonicated pre-fractured casein flocs.106 This study demonstrated 
that an ultrasound treatment is an alternative method to produce protein particle-stabilized HIPPEs.  

Various kinds of plant-based proteins have also been used to stabilize HIPPEs. Gliadin, a cereal storage 
protein, has been used to fabricate colloid particles through antisolvent precipitation, and their ability to 
form stable HIPPEs (𝜑 = 80%) has been demonstrated.107 In a recent study, peanut protein microgels 
(1.5%), which were prepared by transglutaminase cross-linking followed by gel disruption, were also 
shown to form stable HIPPEs (𝜑 = 87%).60 The morphology of the droplets in the emulsions could be 
tuned by changing the pH of the aqueous phase (Figure 5). In a recent study, native soy β-conglycinin 
was used as a stabilizer to form HIPPEs.108 Even at a relatively low protein concentration (0.2 wt%), 
HIPPEs that were stable against heating and prolonged storage (up to 60 days) could be formed. These 
HIPPEs broke down when exposed to freeze-thawing but they could be re-emulsified again.  
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Figure 5. (a) and (b) cryo-SEM and (c) and (d) confocal images of peanut protein isolate microgel-
stabilized HIPPEs with 85% cold-pressed peanut oil. Inserts in (a) and (b) are enlarged views. The HIPPEs 
in (a) and (c) were obtained at pH 3, and in (b) and (d) was obtained at pH 9. In (c) and (d), the oil phase 
is shown in green and the particles in red. Reproduced from ref.61.60 Copyright 2018 Wiley. 

Composite particles. Colloidal particles comprised of more than one constituent have also been used to 
form food-grade HIPPEs.  Some of the main advantages of using composite colloidal particles for this 
purpose is their customizable functionality, enhanced stabilizing ability, and diverse range of potential 
applications. Recently, an all-protein-based composite particle system was developed by combining 
ovotransferrin and lysozyme through electrostatic attraction.109 The composite particles obtained were 
able to stabilize medium chain triacylglycerol oil HIPPEs (𝜑 = 75%) with tunable droplet sizes. The gel-
like structure of the HIPPEs formed displayed excellent stability during long-term storage and enhanced 
bioaccessibility of encapsulated curcumin.109  

Combinations of proteins and polysaccharides are often used to form composite particles that have 
better emulsifying properties than the individual components.103 Recently, a HIPPE (𝜑 = 85%) was 
prepared using a one-step process that involved simply blending an aqueous solution of gliadin/gum 
arabic nanoparticles with corn oil.110 These HIPPEs were relatively stable to pH, ionic strength, and 
temperature changes. Colloidal particles comprising of soy glycinin glycated to soy polysaccharides have 
also been used to stabilize HIPPEs (𝜑 = 80%) at relatively low particle concentrations (1 wt%).111 Soy 
polysaccharide-soy protein nanoparticles have also been used to form and stabilize HIPPEs, which 
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exhibited good stability over a broad range of temperature, pH, and ionic strength conditions, as well as 
after drying and freeze-thawing.112 A zein/pectin composite particle has also been used to form stable 
HIPPEs.113 In this study, manipulation of the interfacial self-assembly and packing of composite particles 
facilitated the formation of a 3D oil droplet network that promoted the formation of HIPEs with strong 
viscoelasticity, thixotropy and storage stability.  

Composite particles consisting of bovine serum albumin and cellulose nanocrystals have also been 
utilized to create stable HIPPEs. In this system, BSA-covered CNCs were used to create stable, gel-like 
HIPPEs whose stiffness could be tuned by modulating the ratio of CNCs and BSA used.114 As well as 
binary composite particles, ternary composite particles can also be used as stabilizers for HIPPEs. For 
instance, zein/propylene glycol alginate/rhamnolipid particles have been produced by solvent 
evaporation.115 These particles were successfully used to form HIPPEs containing relatively small oil 
droplets that were stable to coalescence over a wider range of pH values, temperatures, and NaCl 
concentrations.  

Novel applications in foods 

Compared to conventional emulsions, HIPEs exhibit high resistance to phase separation, enhanced 
loading capacity, and tunable semi-solid textural properties, which may be useful in some food 
applications. Due to their gel-like textures, HIPEs are most suitable for application in food products with 
this kind of rheological characteristics, such as dressings, mayonnaise, sauces, dips, and spreads. 

Encapsulation and delivery. HIPEs are particularly suitable to encapsulate, stabilize, and deliver 
hydrophobic bioactive ingredients, such as oil-soluble vitamins and nutraceuticals. They typically have a 
much higher loading capacity than conventional emulsions because of their higher oil contents.  In a 
recent study, thermo-responsive starch particles obtained by nanoprecipitation were used to form 
stable β-carotene-loaded HIPPEs using soybean oil as a carrier oil.116 In vitro release experiments 
showed that the release of β-carotene was temperature-dependent, which may be useful for triggered 
release applications. Using genipin-crosslinked ovotransferrin particles as a stabilizer, a HIPPE-based 
delivery vehicle for hesperidin has been fabricated.117 Visual and microscopy analysis indicated that 
these HIPPEs were stable over a broad range of pH and ionic strength conditions. An in vitro digestion 
study showed that these HIPPEs could improve the bioaccessibility of hesperidin, which can be 
attributed to the formation of mixed micelles capable of solubilizing this hydrophobic nutraceutical. 
Whey protein microgel-stabilized HIPPEs have recently been developed to protect probiotics 
(Lactobacillus plantarum) from damage during pasteurization.118 These HIPPEs enhanced the viability of 
Lactobacillus plantarum (7 CFU/mL) after pasteurization compared to conventional emulsions (3 
CFU/mL). The probiotic viability was also shown to increase as the microgel concentration used to 
fabricate the HIPPEs was increased. This study demonstrated the potential of using HIPPEs to deliver 
probiotics to the colon, thereby modulating gut health.  

HIPEs can also be used to inhibit the chemical degradation of encapsulated bioactive agents during 
storage and processing. A recent study showed that chitosan/caseinophosphopeptide particles could be 
used to form HIPPEs, and that these systems were capable of inhibiting the oxidation of linseed oil 
trapped inside the droplets.119 The oxidative stability of algae oil has also been shown to be improved 
when it is encapsulated in HIPPEs stabilized by gliadin/chitosan particles.120 In addition, curcumin 
encapsulated within these HIPPEs was shown to have a higher bioaccessibility after in vitro digestion 
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Figure 6. (a) Visual appearance, (b) microstructure and (c) confocal images of HIPPEs formed with 
soybean oil, corn oil, sunflower oil, and olive oil (from left to right). The protein and oil were dyed with 
Nile red and Nile blue, respectively. Reproduced from ref.123.122 Copyright 2020 Elsevier. 

Zein-sodium caseinate-propylene glycol alginate particles have been used to form semi-solid HIPPEs (𝜑 = 
80%) with textures and appearances similar to mayonnaise.123 HIPPEs stabilized by wheat gluten 
particles have been developed as a plant-based mayonnaise substitute.124 The HIPPEs showed similar 
textural properties to mayonnaise, such as sliminess, creaminess, and smoothness, but a much better 
thermal stability. In another study, semi-solid plant-based HIPPEs (𝜑 = 75%) stabilized by citrus 
fiber/corn peptide particles were prepared,125 which exhibited good heat and freeze-thaw stability. In 
comparison to an egg-based commercial mayonnaise, the plant-based HIPPEs exhibited much less 
friction, suggesting that they might provide more creaminess and smoothness.  This technology may 
therefore be useful for creating high quality plant-based foods.  

then curcumin dispersed in bulk oil.120 Gelatin particle-stabilized HIPPEs have been shown to protect β-
carotene from degradation during storage, which was attributed to the ability of the gelatin particles to 
scavenge free radicals and inhibit pro-oxidants reaching the carotenoids.105  

Fat replacement. Many semi-solid foods owe their desirable textural attributes to the presence of a 3D 
fat crystal network, which often contains saturated or trans fats. Excessive consumption of these fats 
can lead to an increased risk of cardiovascular disease and diabetes.6 Therefore, it is important to 
develop food-grade alternatives to replace saturated and trans fats. It has been reported that the semi-
solid textures produced by HIPPEs may be useful as a replacement for those formed by fat crystal 
networks in some products.121 For instance, a recent study reported that HIPPEs stabilized by meat 
protein particles and various types of oils could be used for this purpose (Figure 6).122  
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3D-printed foods. 3D printing technology has increasingly attracted significant attention for its use in 
additive manufacturing because it provides customizability and flexibility for fabricating structures with 
arbitrary shapes.126 In the food industry, 3D-printing has been recognized as a promising tool for 
creating a new generation of customizable food products.127 In 3D printing, the rheological behavior of 
the “food inks” is critical to the successful creation of a high quality product.128 The semi-solid behavior 
exhibited by HIPPEs makes them good candidates for the creation of versatile food inks.  Recently, the 
influence of particle properties on the rheological behavior of HIPPEs stabilized by zein/tannic acid 
particles was reported.129 The storage modulus of the HIPPEs could be adjusted by modulating the 
colloidal particle properties. A recent study showed that HIPPEs stabilized by zein-propylene glycol 
alginate-rhamnolipid particles could be made to change from fluid to solid by adding NaCl, which offered 
a novel strategy for adjusting their rheological behavior.115 

HIPPEs (𝜑 = 85%) stabilized by cod protein particles (10-50 mg/mL) have also been investigated for their 
potential use as food inks. The yield stress and shear thinning behavior of the HIPPEs could be 
modulated by adjusting the concentration of cod protein particles used, thereby leading to food inks 
with printability and extrudability characteristics suitable for 3D printing.130 In our recent study, a 3D 
printable ink that consisted of chitin nanofibril-stabilized HIPPEs (𝜑 = 88%) was developed.8 The 
rheological properties of these food inks could be tuned by varying pH values because this altered 
surface energy of chitin nanofibrils due to protonation/deprotonation of the amino groups. These 
HIPPEs could be used to create edible products with specific shapes by taking advantage of their 
viscoelastic behavior (Figure 7a). These polysaccharide-based HIPPEs have also been shown to be 
suitable as food inks for 3D printing via direct ink writing (Figure 7b and 7c), which opens up new 
avenues for creating novel functional foods.  
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Figure 7. (a)-(c) 3D printed objects from food-grade HIPPEs that were stabilized by chitin nanofibrils at 
88% sunflower oil volume fraction. Reproduced from ref.8.8 Copyright 2020 American Chemical Society. 

Current and future perspectives 

In this section, the advantages and disadvantages of using HIPEs in foods are discussed, as well as areas 
where research is needed in the future. The novel functional attributes of HIPEs are mainly related to 
their extremely high dispersed volume fraction, which leads to semi-solid textural characteristics, strong 
resistance to gravitational separation, and a high loading capacity.  As a consequence, HIPEs are 
particularly suitable for food applications where semi-solid textures are required, such as dressings, 
mayonnaise, dressings, or desserts.  Moreover, they are useful for applications where high levels of non-
polar bioactive substances need to be encapsulated.131 As mentioned earlier, the fact that HIPEs can 
flow when low stresses are applied to them but they set when these stresses are removed, means they 
are particularly suitable for utilization as edible inks for the 3D printing of foods.132  

One of the main limitations of using O/W HIPEs in food applications is that they have a very high fat 
content, which may be problematic from a nutritional viewpoint. Conversely, W/O HIPES may be used to 
create low-fat and low-calorie versions of highly viscous or semi-solid fatty products like spreads, 
mayonnaise, and dressings.  Another challenge is that HIPEs prepared using molecular emulsifiers are 
highly unstable to coalescence during long-term storage because their droplets are forced together over 
long periods.  For this reason, Pickering emulsifiers are often required to form HIPEs that are more 
resistant to coalescence.  As will other types of advanced emulsion technologies, it will be important in 
the future to establish how they behave in real foods and when exposed to food processing, storage, 
and preparation conditions.  Moreover, more research is required to understand how they behave 
within the gastrointestinal tract, such as their impact on lipid digestion and bioactive bioavailability. 

NANOEMULSIONS 

Nanoemulsion mechanism and formation 

Nanoemulsions are like conventional emulsions but they contain smaller droplets, typically having mean 
diameters below about 200 nm.9 The relatively small size of the droplets in these systems provides some 
potentially beneficial physicochemical and functional attributes,134 including greater resistance to 
gravitational separation and aggregation, increased surface reactivity, enhanced encapsulating 
properties, improved bioavailability, and good optical clarity.135 Even so, nanoemulsions are still 
thermodynamically unfavorable systems because of their positive surface free energy and high surface 
area.  Consequently, they still have a tendency to break down over time as a result of gravitational 
separation, flocculation, coalescence, and/or Ostwald ripening (Figure 8).136 Nevertheless, the rates of 
these processes are usually considerably different in nanoemulsions than in conventional emulsions 
because of particle size and curvature effects.137 For example, nanoemulsions are often more stable to 
gravitational separation, flocculation and coalescence, but less stable to Ostwald ripening. For this 
reason, a major focus in this area is the creation of nanoemulsions that have a sufficiently long kinetic 
stability for commercial applications.  
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Figure 8. Nanoemulsions may break down through a variety of different physicochemical mechanisms, 
depending on the composition and structure, as well as exposing to specific environmental conditions. 
Reproduced from ref.137.136 Copyright 2018 Elsevier.  

Nanoemulsions can be prepared using various approaches, which are conveniently categorized as high- 
or low-energy approaches.9, 138 High-energy approaches are the most widely used for producing 
nanoemulsions in industrial applications. They involve the utilization of mechanical machines that are 
designed to create intense disruptive forces (such as shear, turbulent, and cavitation forces) that break 
up the oil and water phases,139 leading to the formation of tiny oil droplets. The most common 
mechanical machines used for producing nanoemulsions are high-pressure valve homogenization,140 
microfluidization,141 rotor-stator homogenization,142 and sonication.143 There are typically relatively high 
equipment and operating costs associated with high-energy emulsification methods, which are a 
disadvantage for some applications. However, there are also numerous advantages that counterbalance 
these drawbacks for most food applications. They are capable of homogenizing a broad range of oils, 
using a wide range of different emulsifiers. Moreover, they are capable of continuous production of 
nanoemulsions at relatively high throughputs. Low-energy approaches often rely on the spontaneous 
generation of tiny droplets in certain surfactant-oil-water mixtures when their composition or 
environment is altered in a controlled manner.144 The driving force for nanoemulsion formation in this 
case is the release of the internal chemical energy during emulsification.145  The most commonly used 
low-energy approaches are spontaneous emulsification,146 emulsion inversion point,147 and phase 
inversion temperature/composition methods.148-149 Compared to the high-energy approaches, the 
advantages of low-energy ones are that they are simple to implement and no expensive equipment is 
required. However, high levels of surfactant, especially synthetic ones, are typically required to produce 
nanoemulsions by low-energy approaches, which limits their application in many products due to cost, 
taste, and toxicity reasons. 

Nanoemulsion ingredients 



Emulsifiers and other stabilizers are often required to prepare nanoemulsions with desirable functional 595 
attributes and extended shelf lives.  Due to changing consumer preferences, there has been a strong 596 
emphasis on the creation of nanoemulsions from natural label-friendly ingredients, rather than 597 
synthetic ones.  In this section, we therefore provide an overview of the key ingredients required to 598 
form and stabilize nanoemulsion, with an emphasis on natural ones. 599 

Emulsifiers. Emulsifiers are amphiphilic molecules that adsorb to the surfaces of the droplets formed 600 
during homogenization, reduce the interfacial tension, and form a protective coating that inhibits their 601 
aggregation.69 Typically, emulsifier-coated oil droplets are protected from aggregation by generating 602 
steric and/or electrostatic repulsive forces, whose magnitudes depend on interfacial characteristics like 603 
thickness, packing, polarity, and charge.  The selection of a suitable emulsifier for a specific 604 
nanoemulsion application depends on its molecular and physicochemical attributes,150 as well as its ease 605 
of utilization, legal status, and cost.151 A number of different kinds of natural emulsifier have been 606 
identified and successfully applied to form and stabilize food-grade nanoemulsions, including 607 
polysaccharides, proteins, phospholipids, and biosurfactants (Table S1).152 The abilities of emulsifiers to 608 
form and stabilize nanoemulsions varies, and so it is critical to identify the most appropriate one for 609 
specific applications. In our recent study, the relatively effectiveness of different natural emulsifiers (soy 610 
lecithin, gum arabic, quillaja saponin, and whey protein) at fabricating corn oil-in-water nanoemulsions 611 
using microfluidization was compared.153 Although there were distinct differences in emulsifier surface 612 
activity (Figure 9a), they could all form stable nanoemulsions, but different amounts were needed to 613 
create small droplets (Figure 9b). This study highlighted the capability of natural emulsifiers for 614 
efficiently producing label-friendly nanoemulsions. 615 

616 

Figure 9. Influence of emulsifier type (whey protein isolate WPI, gum arabic, quillaja saponin, and soy 617 
lecithin) and concentration on (a) the interfacial tension at corn oil-water interface and (b) the mean 618 
particle diameter of corn oil-in-water nanoemulsions produced by microfluidization. Reproduced from 619 
ref.154.153 Copyright 2016 Elsevier. 620 

Texture modifier. A texture modifier is sometimes incorporated into the aqueous phase of a 621 
nanoemulsion to alter its rheological properties, with the aim of prolonging its shelf life or providing 622 
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desirable textural attributes.69 Two types of texture modifier are typically used for this purpose: 
thickening agents and gelling agents. A thickening agent increases the shear viscosity of a solution 
because it alters the fluid flow profile, thereby leading to more energy dissipation. Typically, thickening 
agents are soluble biopolymers with extended molecular structures.154 Commercially, water-soluble 
polysaccharides, such as xanthan, guar, and gellan gums, are frequently used as thickening agents 
because they can greatly thicken solutions when added at low concentrations.155 Gelling agents are used 
to create semi-solid properties in aqueous solutions be forming a 3D network of cross-linked or 
overlapping biopolymers or colloidal particles. In food industry, proteins and polysaccharides are 
typically used as gelling agents in nanoemulsions. Texture modifiers can increase the shelf life of 
nanoemulsions by slowing down droplet movement, thereby inhibiting gravitational separation and 
droplet aggregation. As an example, polysaccharide-based texture modifiers have been shown to 
improve the stability of essential oil-in-water nanoemulsions by increasing the viscosity of the aqueous 
phase.156 

Weighting agents. A weighting agent is a substance that is added to the dispersed phase of a 
nanoemulsion so as to match its density to that of the continuous phase, thereby reducing the driving 
force for gravitational separation.69 In most nanoemulsions, the density of the oil phase is less than that 
of the aqueous phase. Consequently, weighting agents tend to be dense hydrophobic substances that 
are edible like sucrose acetate isobutyrate, brominated vegetable oil, and ester gum.157  

Ripening inhibitor. A ripening inhibitor is an additive that is incorporated into the dispersed phase of 
\nanoemulsions to restrict droplet growth through Ostwald ripening.158 The application of these 
additives is most important in O/W nanoemulsions formulated from oils that have some solubility within 
water, including essential oils and flavor oils.159  Without a ripening inhibitor, these kinds of 
nanoemulsions would quickly breakdown as a result of the oil molecules moving from the smaller oil 
droplets to the larger ones, as this phenomenon leads to a net increase in droplet dimensions. A 
ripening inhibitor is typically an oil-soluble substance that has an extremely low water-solubility, e.g., 

long-chain triacylglycerol oils like corn oil, sunflower oil, or mineral oil.160 The incorporation of a ripening 
inhibitor into the oil phase slows down Ostwald ripening due to an entropy of mixing phenomenon. 
When the oil molecules move from the smaller to larger droplets, there is a rise in the concentration of 
the ripening inhibitor inside the smaller droplets. This results in a concentration gradient  that favors the 
transport of oil molecules from the large droplets to the smaller ones, thereby opposing droplet 
growth.161 A recent study showed that the stability of antimicrobial nanoemulsions formulated from 
essential oils could be improved by incorporating appropriate types and amounts of ripening 
inhibitors.162  

Novel applications in foods 

The small droplet dimensions and high surface area of nanoemulsions makes them especially suited for 
specific applications within the food industry.9, 163 A few examples of the potential application of 
nanoemulsions in foods are highlighted in this section.     
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Encapsulation and delivery systems. Oil-in-water nanoemulsions are especially suited for introducing 
hydrophobic substances (such as vitamins, nutraceuticals, antioxidants, antimicrobials, colors, or flavors) 
into aqueous-based food and beverage products.164 The hydrophobic substances are mixed with the oil 
phase prior to homogenization, which leads to the formation of nanoemulsions containing active-loaded 
oil droplets dispersed in water. Nanoemulsions that are optically clear or only slightly turbid can be 
produced by ensuring that the mean droplet diameter is much smaller than the wavelength of light (d < 
50 nm), which is valuable for incorporating hydrophobic substances into transparent food or beverage 
products.9, 163 The strong resistance of nanoemulsions to gravitational separation and droplet 
aggregation is beneficial for products that require a long shelf. Moreover, nanoemulsions can be 
designed to be more resistant to environmental stresses than conventional emulsions. For instance, a 
recent study used whey protein isolate (WPI) as a natural emulsifier to form nanoemulsions loaded with 
vitamin E-acetate.165 These nanoemulsion were shown to be stable against flocculation when exposed to 
a wide range of environmental conditions.  

Due to their small droplet size and high surface area, nanoemulsions tend to be rapidly digested by 
lipases in the gastrointestinal tract.163 This phenomenon leads to rapid release and solubilization of 
encapsulated hydrophobic substances, which significantly increases their bioaccessibility and 
bioavailability. As an example, the impact of digestion on the bioavailability of coenzyme Q10 loaded 
into nanoemulsions was evaluated using a simulated gastrointestinal tract.166 The bioavailability of 
coenzyme Q10 was 1.8-fold higher when it was delivered in nanoemulsion-form than in bulk oil-form. 

Nanoemulsions can also be used to improve the efficacy of antimicrobial essential oils against a broad 
range of microorganisms, including bacteria, yeast, and molds. This is because nanoemulsions increase 
the water-dispersibility and transport properties of the essential oils, thereby increasing their ability to 
disrupt the cell membranes of the microorganisms.167 As an example, thyme oil-loaded nanoemulsions 
were recently developed that exhibited good antibacterial activity against two model food pathogens: E. 

coli and S. aureus.168 These results highlight the utility of using nanoemulsions to create antimicrobial 
delivery systems for use in foods.  

Fat and calorie reduction. Nanoemulsions can be used as building blocks for creating novel structures 
and textures in foods.169 In particular, nanoemulsions exhibit solid-like characteristics at much lower 
concentrations than conventional emulsions with the same compositions.170 This phenomenon may be 
useful for creating reduced calorie products that are viscous or gel-like, e.g., sauces, dips, spreads, and 
dressings. The ability of nanoemulsions to gain solid-like characteristics at low droplet concentrations 
may arise due to various physicochemical phenomenon (Figure 10): (a) repulsive gelation: when there 
are long-range repulsive interactions between droplets, these become more important when the 
droplet size shrinks, causing the droplets to become jammed together;171 (b) attractive gelation: when 
there are attractive interactions between similar kinds of droplets, they tend to aggregate, with smaller 
droplets forming 3D networks at lower droplet concentrations;154 and, (c) heteroaggregation gelation: 
when two populations of oppositely charged nanoemulsion droplets are mixed together they tend to 
aggregate and form a 3D particle network.172 Nanoemulsion gels with different textural attributes can be 
created by controlling droplet size, concentration, and charge.173  
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Figure 10. Schematic showing (not to scale) of the possible gelation processes of nanoemulsion droplets. 
Reproduced from ref.175.174 Copyright 2018 Elsevier. 

Current and future perspectives 

In this section, the benefits and limitations of nanoemulsions for food applications are discussed, as well 
as the needs for future research. The main advantages of using nanoemulsions are related to the 
extremely small dimensions of the fat droplets, which leads to greater resistance to creaming and 
aggregation, enhanced optical clarity, and increased bioavailability of encapsulated hydrophobic 
bioactives.  It should be noted that nanoemulsions can be formulated entirely from plant-derived 
ingredients, which is important for the growing market in plant-based foods.175-176 Some of the main 
limitations of using nanoemulsions in the food industry are associated with the fabrication methods 
required. For low-energy emulsification methods, high concentrations of synthetic surfactants are 
required, which is not desirable from a health, cost, or flavor perspective.  In contrast, for high-energy 
emulsification methods, specialized mechanical methods are required, which are often expensive to 
purchase and maintain. Another potential challenge is the regulations associated with incorporating 
nanoparticles into foods in some countries.  In the future, more research is required to understand how 
nanoemulsions behave in real foods and to understand the gastrointestinal fate using in vitro and in vivo 
studies. 

MULTIPLE EMULSIONS 

Multiple emulsion mechanism and formation 

Multiple emulsions consist of small droplets of one immiscible substance embedded within larger 
droplets of another immiscible substance, which are themselves dispersed within another immiscible 
substance (that may be similar or different to the first one).179 The unique structure of multiple 
emulsions makes them particularly suitable for certain food applications, including the development of 
reduced-fat food emulsions, flavor masking, triggered release, and the delivery of oil- and/or water-
soluble active substances.180-182  

Different kinds of multiple emulsions can be formulated but water-in-oil-in-water (W1/O/W2) emulsions 
are currently the most commonly employed in foods, where W1 represents the inner water phase, W2 
the outer water phase, and O the oil phase. Multiple emulsions have two different interfacial 
boundaries 
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that need stabilizing: the W1-O layer for the inner water droplets and the O-W2 layer for the oil droplets. 
As a result, two different types of emulsifier are typically needed to form and stabilize multiple 
emulsions (Table S1). A more hydrophobic emulsifier is used to coat the surfaces of the inner water 
droplets (W1-O), whereas a more hydrophilic emulsifier is used to coat the surfaces of the oil droplets 
(O-W2).179 Like conventional emulsions, multiple emulsions are thermodynamically unstable and are 
therefore prone to failure during processing, storage, and utilization.179 In addition to the usual emulsion 
breakdown mechanisms, such as creaming, flocculation, coalescence and Ostwald ripening, multiple 
emulsions may also breakdown because the internal water droplets are released, collapse, expand, or 
aggregate. Numerous strategies have been identified to tackle these issues,179 including optimization of 
hydrophobic and hydrophilic emulsifiers, adding weighting agents and ripening inhibitors, gelling the 
internal water phase, crystallizing the oil phase, and osmotic balancing of the internal and external 
water phases to prevent water diffusion. In this section, the production and potential applications of 
multiple emulsions in foods are discussed. 

Multiple emulsion production 

Multiple emulsions are commonly produced using a two-step homogenization procedure (Figure 11). 
First, a W1/O emulsion is prepared by blending water, oil, and a hydrophobic emulsifier together. 
Second, a W1/O/W2 emulsion is produced by blending the W1/O emulsion, water, and a hydrophilic 
emulsifier together.183 The emulsification conditions in the second step should be less intense than 
those used in the first step, otherwise the W1/O droplets may be broken down and released. For 
example, a flavonoid-loaded multiple emulsion was recently prepared using a high-intensity jet 
homogenizer for the first-step and a low-intensity spinning disc reactor for the second step.184 The 
dimensions of the water droplets in the W1/O emulsion and of the oil droplets in the W1/O/W2 emulsion 
can be controlled by varying the type and concentration of emulsifiers, as well as the homogenization 
conditions used in the two steps. Moreover, oil and water phase compositions can be varied. Thus, 
multiple emulsions with different compositions and microstructures can be created, which allows one to 
tailor them for different functional applications. For instance, the two-step method has been used to 
prepare W/O/W emulsions with a gelled internal water phase using whey protein as a gelling agent, and 
polyglycerol polyricinoleate, and Tween 80 as hydrophobic and hydrophilic emulsifiers, respectively.185 
The gelation of whey protein within the internal droplets significantly altered the microstructure of the 
multiple emulsions, which made it possible to produce model foods with novel textural attributes.186  
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Figure 11. Schematic diagram showing production of multiple emulsions (W1/O/W2) using the two-step 
emulsification procedure. This process requires serial addition of immiscible phases. Homogenization in 
each step may be carried out using a variety of devices. 

Microfluidic devices have been successfully used to produce multiple emulsions with uniform droplet 
sizes,187 which may have potential for some food applications.188-189 Based on the geometries of these 
devices, two microfluidic emulsification methods have been developed to fabricate multiple emulsions: 
two-step and one-step processes.190 The two‐step process generates W1/O droplets first and then 
disperses them in the continuous phase (W2) using two sequential microfluidic modules.  The one‐step 
process directly produces multiple emulsions by synchronized emulsification of inner (W1) and middle 
(O) fluids under the shear of the continuous phase (W2). Microfluidic emulsification devices allow 
precise control over the composition, dimensions, and internal structure of multiple emulsions. For 
example, monodispersed W1/O/W2 emulsions consisting of oil droplets that contained one or more 
internal water droplets were recently created using a starch-based particle emulsifier.191

Novel application in foods 

Multiple emulsions have a number of potential applications in foods where they have advantages over 
conventional emulsions. 

Encapsulation and delivery. Multiple emulsions can be used to encapsulate, protect, and deliver 
sensitive functional components such as antioxidants, antimicrobials, flavors, colors, vitamins, minerals, 
and nutraceuticals. Sensitive hydrophilic components can be loaded into the inner water droplets at 
high encapsulation efficiencies, where they may be protected from their environment.192 As an example, 
multiple emulsions stabilized by nonionic surfactants and protein/polysaccharide complexes were 
recently used to encapsulate and protect saffron.193 These multiple emulsions were shown to protect 
saffron during storage, but then release it under gastrointestinal conditions. The release of encapsulated 
components within the internal water phase can also be designed to be triggered by specific 
environmental stimuli, such as in pH, ionic strength, temperature, surface active components, or 
enzyme activities, thereby achieving responsive delivery platform.194  
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Figure 12. Optical microscopic image of (a) W1/O emulsion droplets and (b) W1/O/W2 emulsion gels. (c) 
Visual appearance of W/O/W emulsion gels. Reproduced from ref.197.196 Copyright 2018 American 
Chemical Society. 

Recently, a W1/O/W2 emulsion was fabricated using 2 wt% polyglycerol polyricinoleate as a hydrophobic 
surfactant and 2 wt% saponin as a hydrophilic surfactant, with iron (ferrous sulfate) encapsulated in the 
inner aqueous phase.197 The anionic saponin-coated oil droplets in these multiple emulsions were 
further coated with a layer of cationic chitosan to increase the resistance of the droplets to aggregation. 
The W1/O/W2 emulsions were highly effective at retaining iron within the internal water phase. Indeed, 
the iron even remained stable when the emulsions were exposed to an osmotic stress gradient, which 
was attributed to the protective chitosan coatings.  

Multiple emulsions can also be used as dual-delivery systems that encapsulate both water-soluble and 
oil-soluble bioactives.181, 195 In a recent study, particle-stabilized W1/O/W2 emulsion gels designed for 
this purpose were fabricated using a two-step procedure.196 First, a W1/O emulsion was formed that 
contained saccharose and gelatin in the internal aqueous phase and polyglycerol polyricinoleate (a 
hydrophobic emulsifier) in the oil phase (Figure 12a).  Second, the W1/O emulsion was homogenized 
with an external water phase containing wheat gliadin nanoparticles (a hydrophilic emulsifier). After 
preparation, the gelation of the gliadin nanoparticles in the external aqueous phase led to the formation 
of particle-stabilized W1/O/W2 emulsion gels with good stability to phase separation (Figure 12b). The 
authors showed that these emulsions could be used to trap a hydrophilic bioactive (epigallocatechin-3-
gallate, EGCG) in the internal aqueous phase and a hydrophobic bioactive (quercetin) in the oil phase 
(Figure 12c). The chemical stability of EGCG and the solubility of quercetin were improved under 
simulated gastrointestinal conditions, thereby increasing their bioaccessibilities.196 This study therefore 
highlights the potential of multiple emulsions as food-grade delivery vehicles for co-loading multiple 
bioactives.  
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Anthocyanins have been identified as plant-derived pigments that exhibit strong antioxidant, 
anticarcinogenic, and immune modulating effects, but they are extremely unstable when extracted from 
their natural environment.198 Encapsulating them in multiple emulsions has been explored as a way to 
stabilize them for use in functional foods.198 A recent study showed the possibility of protecting 
anthocyanin from degradation by encapsulating them within the inner water phase of a multiple 
emulsion using polyglycerol polyricinoleate as a hydrophobic emulsifier and quillaja saponin as a 
hydrophilic emulsifier.199 These results indicated that anthocyanin encapsulation in the multiple 
emulsions significantly slowed down pH-induced color changes, which suggested that multiple 
emulsions may be useful for protection of natural colors.  

Another advantage of multiple emulsions is that hydrophilic cargos can be protected from chemical 
degradation by incorporating them in the inner aqueous phase, which isolates them from other water-
soluble ingredients in the outer water phase that they might otherwise react with.200 This unique 
function has been demonstrated by a multiple emulsion delivery system encapsulating fish oil in the 
inner water phase, where the oxidation stability of the fish oil was significantly improved.201 Another 
application is to encapsulate hydrophilic ingredients that have undesirable sensory qualities (e.g., bitter, 
astringent, or metallic flavors) in the inner water phase so that they are not perceived in the mouth 
during mastication.  

Fat and salt replacement. Multiple emulsions can be used to produce healthier foods, e.g., the 
formulation of foods with reduced fat or sodium levels. The overall fat and calorie content of emulsified 
foods can be reduced by incorporating water droplets into the oil phase. Moreover, the viscosity of 
multiple emulsions is usually higher than the that of the conventional emulsions with the same fat 
contents,202 leading to a fact that the physicochemical and sensory properties of multiple emulsions are 
similar as full-fat products, showing the implications for the development of products with reduced 
fat.203 Reduced-fat cheeses have been formulated using W1/O/W2 emulsions stabilized with 
hydrocolloids, which mimicked some of the desirable textural characteristics of their full-fat 
counterparts.204 In a similar study, a multiple emulsion prepared from soybean milk and sunflower oil 
was used as a reduced-fat substitute for whipped dairy cream.205 Another study reported the use of 
multiple emulsions to formulate reduced-fat meat batters, which exhibited stability, cooking yield, 
hardness and lightness values similar to the control.206 Other researchers have shown that the bioactives 
from berries can be encapsulated in the internal aqueous phase of multiple emulsions, which led to a 
prolonged antioxidative effect.  

Over-consumption of salt (sodium) is a major factor contributing to increases in blood pressure and 
cardiovascular disease.207 Consequently, it is important for food manufacturers to develop products with 
reduced sodium levels, without changing their sensory acceptability to consumers. Multiple emulsions 
have the potential to reduce sodium levels in foods since salt can be encapsulated within the internal 
aqueous phase and released in burst in the mouth.203 A recent study addressed the correlation between 
the physical characteristics of multiple emulsions and the sensory perception of salt.208 The multiple 
emulsions were prepared using different volumes of the internal aqueous phase but the same fat and 
sodium contents. It was found that the saltiness perception could be modulated by changing the 
structure of the multiple emulsions, which may be useful for developing reduced sodium foods.  
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The potential advantages and disadvantages of using multiple emulsions in food applications are 
discussed in this section, as well as possible areas for future research. One of the most promising 
applications of multiple emulsions is for the creation of reduced calorie products, since some of the oil 
within the disperse phase of O/W emulsions can be replaced with water, without altering the overall 
disperse phase volume fraction.  As a result, reduced-fat products with similar textures and optical 
properties as the original version can be produced.  Another unique aspect of multiple emulsions is that 
they contain multiple phases within a single system, which is useful for the encapsulation, protection 
and release of multiple active ingredients.209-210 For instance, hydrophilic substances can be trapped 
within the internal water phase of W/O/W emulsions, while hydrophobic ones can be trapped within 
the oil phase of the same system.211 The internal aqueous phase can also be used for flavor masking 
purposes, e.g., by trapping bitter peptides within it so they are not exposed to the tongue during 
mastication. Moreover, active ingredients encapsulated within the internal aqueous phase can be 
released in response to specific environmental triggers, such as changes in temperature, osmotic stress, 
or enzyme activiy, which may be beneficial for some applications.  The main disadvantage of multiple 
emulsions is that two homogenization steps and two types of emulsifier are used to fabricate them, 
leading to more production time and costs.  Moreover, the final product is often less robust than other 
forms of emulsions because there are a number of additional instability mechanisms.  In addition, there 
are only a limited number of hydrophobic emulsifiers suitable for application in W/O/W emulsions, with 
the most effective being synthetic surfactants (such as PGPR), which are not label friendly.  
Consequently, further research is needed to find more label friendly, preferably plant-based, emulsifiers 
for utilization within multiple emulsions.  As will the other kinds of advanced emulsion technologies it is 
important to carry out more research on their performance in real food products, as well as to 
understand the impact of their composition and structure on their sensory perception and 
gastrointestinal fate.   

CONCLUSIONS AND FUTURE OPPORTUNITIES 

There have been a number of important advances in emulsion science and technology that can be 
applied within the food industry to improve the quality, sustainability, or healthiness of foods.  For 
instance, Pickering emulsions and HIPEs that are semi-solid materials with a high resistance to 
coalescence during storage and processing can be produced from food-grade colloidal particles.  These 
types of emulsion are useful in applications where highly viscous or gel-like foods are required, such as 
dressings, mayonnaise, sauces, desserts, and dips. Nanoemulsions are particularly useful in low-viscosity 
products where good resistance to creaming and aggregation is required during storage, which can be 
achieved because of their small droplet sizes. Moreover, these systems are useful when one needs to 
incorporate an oil-soluble substance into a transparent aqueous-based product, such as a vitamin-
fortified water. In addition, nanoemulsions are particularly useful if rapid release or a high bioavailability 
of an encapsulated substance is required because they are rapidly digested under gastrointestinal 
conditions. Multiple emulsions may also have some niche applications in the food industry, such as 
creating reduced calorie products, co-encapsulation of multiple ingredients, and flavor masking 
purposes. One of the main challenges now is to translate much of the work that has been carried out in 
research and development laboratories into large scale commercial production of these novel 
emulsions. As colloid and interface science advances there are likely to be other new emulsion 
technologies developed that may also be advantageous for utilization in the food industry.  Again, it will 
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