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ABSTRACT

The Extensible Authentication Protocol (EAP) is used for authen-
ticating client devices to WiFi networks, and it is designed to be
extensible with new authentication methods. We look at ways to
extend the protocol to support credential provisioning and con-
figuration of new client devices. As large numbers of IoT devices
are deployed, the task will be simplified by combining the network
connectivity, identity and certificate provisioning, and application-
layer connectivity to one process. The solution will also allow the
use of a one-time credential for the initial authentication, so that
the long-term device certificate is issued automatically after the
first connection to the network. The paper analyzes the require-
ments and architectural design options that implement such a user
experience. We consider solutions that transfer short bootstrapping
data inside the EAP session and then implement the provision-
ing and configuration with web APIs over HTTPS. This allows
future flexibility and speed of development in the provisioning and
configuration steps. We designed and implemented several archi-
tecturally different solutions and present the comparison results
and also compare with previous proposals that have similar goals.
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Figure 1: Entities participating in EAP session.

1 INTRODUCTION

This paper investigates how to extend the Extensible Authentica-
tion Protocol (EAP) [21], which is typically used for authenticating
wireless network clients in order to grant them network access, with
features for managing the client devices. Device management oper-
ations include provisioning of the device’s long-term credentials
and configuration of the device, i.e., setting of device parameters,
as well as installation of software updates. These operations take
place when the device joins its home network for the first time.

EAP is a framework for authenticating network clients. It pro-
vides a uniform way to integrate existing authenticated key-ex-
change mechanisms to network access authentication. The most
common application of EAP is WPA-Enterprise in WiFi networks.
An EAP method is defined for each authentication mechanism, e.g.,
EAP-TLS for the TLS protocol. The authentication takes place be-
tween the network client, called the peer or supplicant, and an
authentication server on the backend network (see Figure 1). The
network access server, which is typically the WiFi access point, is
called the authenticator in EAP. It conveys EAP messages between
peer and authentication server. If the authentication succeeds, the
server informs the authenticator, which grants network access to
the peer device. Tens of different EAP methods exist, and EAP is
widely adopted in enterprise wireless networks. Some EAP meth-
ods consist of two layers: the outer or wrapper method typically
authenticates the server with its TLS certificate while the inner
method authenticates the user, for example, with a username and
password.

The Internet of Things (IoT) consist of large numbers of network-
connected smart objects, ranging from simple sensors to home
appliances and industrial machinery. The growing number and di-
versity of the connected devices within both homes and enterprises
makes their management a challenging task. It becomes important
to manage the networks access for individual devices. Devices that
are not fully trusted should be isolated from others on the network,
and when a device is decommissioned or lost, its access to the
network should be revoked. This means that the current security
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mechanisms, such as shared WiFi passphrase or authentication
with the user’s personal credentials, are no longer acceptable. In-
stead, each device needs to have an individual identity and access
credentials.

EAP authentication with device-specific credentials is the read-
ily available standard solution for authenticating the individual
devices. However, a second problem arises: the manual configura-
tion of each device with vendor-specific methods becomes tedious.
In order for this solution be deployable, the device configuration
and credential provisioning for network access need to be auto-
mated and streamlined in a vendor-independent way. This paper
investigates the different ways to integrate the automated provi-
sioning and configuration step to EAP. The idea is to bootstrap the
network connectivity with any easily available method and then
automatically issue the device-specific credentials for long-term
use.

Two existing EAP methods include an optional step for provision-
ing long-term credentials to the device. In both, the provisioning is
protected by a TLS tunnel. Tunnel Extensible Authentication Proto-
col (EAP-TEAP) [22] includes a sub-protocol for optionally issuing
a certificate to the peer. Credentials Provisioning and Management
via EAP (EAP-CREDS) [13] is a draft proposal for running several
provisioning protocols as an inner EAP method inside the TLS
wrapper. Both EAP-TEAP and EAP-CREDS provision the long-term
credentials within the EAP session. This means that the provision-
ing protocol becomes a part of the EAP implementation in the
network stack. These methods also need to support fragmentation
of the provisioning messages and retry in case the process fails.

We consider a slightly different approach: Only send short boot-
strapping data from the authentication server to the peer within
the EAP session, and run the actual provisioning protocol over
HTTPS after the EAP authenticator (i.e., WiFi access point) has
granted network access to the peer device. The bootstrapping data
includes a management server address and a client token, which
the client will use to authenticate itself to the server. The access
point can initially restrict the device’s access to the network using
standard techniques [5, 12], so that it is only able to connect to the
management server. Full network access can be granted after the
device re-authenticates with the newly-provisioned device-specific
credentials.

One advantage of our approach is the ease of implementation. It
is easier and faster to implement the credential provisioning and
device configuration on the application layer over web protocols
and REST APIs, compared to coding them in C as part of EAP.
Moreover, several IoT platforms already use REST APIs for device
management [2, 8]. Another advantage of this approach is that
it adds flexibility to the choice of the credential provisioning and
configuration methods. There is no need to standardize the full
provisioning and configuration process inside EAP.

The contributions of this paper are the following:

o We design and implement the bootstrapping framework as
described above.

e We identify several (4) architecturally different technical
solutions for extending the EAP protocol to transfer the short
bootstrapping data within the EAP session. We implement,
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analyze and evaluate these different solutions experimentally.
Based on the evaluation, we arrive at a preferred solution.

e We compare the preferred solution with the previously ex-
isting provisioning technologies.

We implemented the framework using standard web technolo-
gies and extended the open-source hostapd and wpa_supplicant
software. Raspberry Pi was used as the hardware platform in the
experiments.

The rest of the paper is organized as follows. Section 2 provides
background information. In Section 3, we list requirements for
the system. In Section 4, we describe the system architecture, the
bootstrapping process, and four different options for transferring
bootstrapping data in an EAP session. Section 5 provides the details
of their implementation. Section 6 contains a summary of evaluation
results, which is followed by the discussion in section 7. Finally,
Section 8 concludes the paper.

2 BACKGROUND

2.1 Cloud-based device management solutions

The are many ongoing efforts to develop and deploy solutions
for managing the growing numbers of network-connected smart
devices. Many of them have management servers in the cloud. Sam-
sung SmartThings, AWS IoT, Arm Pelion are some of the proprietary
cloud-based solutions. There are also hub devices aimed primarily
at home networks, such as Samsung Smart Hub and Google Nest
Hub, which provide local provisioning and management features
and mediate the connection to the cloud. On the standards side,
the Lightweight machine-to-machine (LwM2M) [2] protocol by
Open Mobile Alliance, FIDO Device Onboard Specification by FIDO
Alliance [6], and Open Connectivity Framework Specifications by
Open Connectivity Foundation [7] are attempts at standardizing
ToT device management. These specifications were designed to suit
the need of resource-constrained IoT devices and provide protocols
for bootstrapping, management, and control of IoT devices.

2.2 Extensible Authentication Protocol (EAP)

Already briefly introduced, EAP [21] is a generic framework for
transporting messages of different authentication methods, such as
TLS or 3GPP AKA, which are called EAP methods. EAP is a request-
response protocol where the authentication server always sends a
request to the peer (client) and the peer returns a response. Each
method specification defines how the authentication protocol mes-
sages are sent over this communication pattern. EAP can operate
directly on top of a wireless LAN, such as 802.11, or Point-to-Point
(PPP) protocol [20] without needing the IP layer. EAP is used in
wireless networks, and sometimes in wired ones, to authenticate
the client before granting it network access.

EAP does not natively support message fragmentation. That is,
EAP messages must fit into the network-specific maximum transfer
unit (MTU), which according to EAP specification [21], should
be at least 1020 bytes. However, some EAP methods, implement
fragmentation of longer messages into multiple frames. Methods
that make use of the TLS handshake for authentication must support
fragmentation to be able to carry the handshake messages.
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Figure 2: EAP-TEAP and EAP-CREDS protocol stacks

2.3 EAP-TEAP

Tunneled Extensible Authentication Protocol (TEAP) [22] is an EAP
method that allows provisioning a certificate to the peer over a se-
cure encrypted channel established through mutual authentication.
EAP-TEAP operates in two phases:

Phase 1: The peer authenticates the server and establishes a
secure encrypted tunnel to it with the TLS handshake.

Phase 2: Additional information is exchanged in the encrypted
tunnel. This can include execution of another EAP method for peer
authentication and provisioning of new credentials to the peer.

Thus, EAP-TEAP allows another EAP-method to be executed in
phase 2 so that the inner EAP messages are wrapped inside EAP-
TEAP messages and protected by the TLS tunnel. Multiple inner
protocols can be executed sequentially in phase 2. Like other TLS-
based methods, EAP-TEAP implements message fragmentation.

Two kinds of credentials can be provisioned: a certificate to be
used as a long-term credential by the peer, and a Protected Access
Credential (PAC), which contains a session ticket and a shared key
for fast re-authentication. In the certificate provisioning, the peer
sends a PKCS #10 Certification Request to the server and receives
the certificate in return. In the optional Server Unauthenticated
Provisioning Mode, the peer is unable to validate the server identity
in phase 1, but mutual authentication in phase 2 confirms the iden-
tity. A limitation of EAP-TEAP is that the outer method is fixed
and must use TLS. Also, EAP-TEAP only provisions credentials and
cannot provide other configuration data to the peer.

2.4 EAP-CREDS

Credentials Provisioning and Management (CREDS) [13, 14] is a
draft specification for secure provisioning and configuration of the
peer through EAP; i.e., it shares the goals with the current paper.
A single authentication server may perform the authentication,
provisioning, and configuration within the EAP protocol.

EAP-CREDS can operate within different outer EAP methods,
such as EAP-TLS or EAP-TEAP. The EAP-CREDS specification fo-
cuses on the communication of credentials after the outer method
has established a secure mutually-authenticated channel. The end-
points can negotiate the credential management protocol, and they
can validate the credentials after they have been provisioned. Var-
ious credential types can be provisioned including an X.509 cer-
tificate, public key, symmetric key, username and password, or
one-time password. EAP-CREDS relies on the fragmentation mech-
anism of the outer EAP method for sending longer messages.

The protocol stacks of EAP-TEAP and EAP-CREDS are illustrated
in Figure 2. Note especially how the former implements the outer
method while the latter implements the inner method. The puzzling
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difference between these design choices was one of the observations
that motivated the current paper.

3 REQUIREMENTS

As outlined in Section 1, we plan to transfer of short bootstrapping
data within the EAP session after the initial authentication and use
this data to enable secure credential provisioning and device con-
figuration over HTTPS. We considered making changes to the base
EAP protocol, making changes to existing methods, and defining a
new tunneled method.

Our system design was driven by the following requirements:

R1. After initial authentication between the peer and the server,
the solution should transfer short bootstrapping information
over EAP. The bootstrapping information should be suffi-
cient to enable the use of common web technologies for the
provisioning of long-term credentials and configuration of
the device.

The bootstrapping information is sensitive and should be
protected for confidentiality, integrity, and authenticity.
The initial authentication should not be restricted to a single
EAP method. It should be possible to use a wide range of
EAP methods, i.e., various authentication mechanisms and
types of credentials, for the initial authentication.

As always in EAP, the solution should not require changes
to the WiFi access point, i.e., the EAP authenticator.

The changes to the base EAP framework should be small or
none.

The changes to the existing EAP methods and their imple-
mentations should be minimized to make adoption of the
solution easier.

The solution must ensure backward compatibility. A peer
and server not updated to support the new design must be
able to interoperate with the updated end-points — naturally
without the new provisioning and configuration functional-
ity.

The additional payloads sent over EAP should be small
enough to not require message fragmentation.

R2.

R3.

R4.
R5.

R6.

R7.

R8.

4 SYSTEM DESIGN

We first present an example usage scenario in section 4.1 and then
describe the generic system architecture and assumptions in sec-
tions 4.2-4.4. The bootstrapping process is outlined in section 4.5.
The bootstrapping data and different ways of transferring it in the
EAP session are described in sections 4.6-4.8.

4.1 Example usage scenario

Alice, who works in the IT support of a university, needs to install a
batch of new IoT devices to the campus network. First, she gets the
device identifier and the symmetric key of each device by scanning
a QR code that shipped with the device. She saves this information
to the IT asset-management database. Alice then installs the devices
in their intended locations on the campus and powers them on. The
rest happens automatically. Within a couple of minutes, all the new
IoT devices have been provisioned with long-term credentials and
configured to connect to the correct online servers. Each device
reboots and joins the campus WiFi network with its long-term
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Figure 3: System model.

credentials. The bootstrapping credential in the QR code is no
longer valid.

4.2 System architecture

The system architecture is shown in Figure 3.

Active entities: The new device trying to connect to the net-
work comprises the EAP peer, provisioning client, and configuration
client. The authentication server verifies the initial credentials of
the EAP peer and decides whether to grant network access. The
provisioning server provides a certificate or other long-term creden-
tials to the provisioning client upon valid request. The configuration
server provides additional data to the configuration client, such as
application-layer parameters or a device software update. Both the
provisioning and configuration server verify the access rights of
the client upon connection.

The WiFi access point (AP) provides and controls physical ac-
cess to the network. Its EAP authenticator component conveys EAP
messages between the peer and the authentication server by tun-
neling them over the RADIUS protocol. It also executes the access
decisions made by the authentication server.

Restricting network access: The access point always blocks net-
work access by the peer until it receives a RADIUS Access-Accept
message from the authentication server. This message contains the
session key MSK created in the EAP method, i.e., the authenticated
key exchange. The message both instructs the access point to allow
the IoT device to connect to the wired network and gives it the
session key for encrypting the wireless connection.

Depending on the capabilities of the access point, it may restrict
the client’s network access by isolating it to a specific virtual net-
work (VLAN) or by filtering its connections. These restrictions are
not decided by the access points itself but, rather, they are based
on instructions it receives from the authentication server over the
RADIUS protocol. Not all access points support such per-station
access control for the wireless clients. However, most access points
support multiple wireless network names (SSID) and can restrict
access based on the SSID to which the clients connect. Only inex-
pensive home wireless routers with integrated access point may
not have even this capability.

The bootstrapping process depends on a couple of assumptions
that need to be explained next.
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4.3 Network discovery

The device needs to know to connect to the correct wireless network.
The problem is that an off-the-shelf IoT device does not know the
name of its new owner, organization, or their networks. There are
several different approaches to the network selection. If the device
has a sufficient user interface, the simplest approach is to scan the
WiFi channels and let the user select the SSID from a list. This will
not work for small IoT devices that sometimes only have a static
bar code for configuration, though.

Another approach is for the networks to advertise their sup-
port of the bootstrapping process. While the 802.11 beacon frames
have a mechanism for advertising the network capabilities, using
it would require a lengthy standardization process and is not a
realistic path forward. Instead, we can standardize an SSID, such
as "provisioning_and_configuration”, for the initial connection. The
AP does not need to broadcast this SSID; instead, it should respond
to probe messages from wireless clients. Note that there may be
multiple access points within the wireless range that respond to
the probe, and they may not all belong to the correct organization.
Thus, the new device may need to try to connect to several access
points before it finds one where the authentication succeeds.

Several different network discovery mechanisms can be deployed
in parallel. We believe the user selection approach and the hidden
well-known SSID approach are two practical ones that are sufficient
to cover most usage scenarios.

4.4 Initial authentication credential

We assume that the new IoT device has some way of performing an
initial mutual authentication with the authentication server. This
can be based on a preconfigured secret, user-assisted out-of-band
channel [4, 19], or any other method available. Indeed, it was one
of our design requirements (R3) that we should not limit the initial
authentication methods that may be used.

In the example usage scenario, the initial authentication is done
with a preconfigured secret (random number of at least 16 octets),
which the manufacturer has stored in the device and printed on the
QR code that is included in the packaging. Since this secret could
leak, it should only be used for the initial authentication during
bootstrapping and discarded once the device has been configured
and successfully tested network access with the newly provisioned
long-term credentials. (A new recovery secret can be provisioned
in the device configuration stage to prepare for failure recovery
and device reuse after hard reset.)

Since the secret in the QR code could leak from or be tampered
within the supply chain, this mechanism may not be suitable for
high-security systems. For most applications, the risk is relatively
low because the same attacker needs to be physically within the
wireless range of the device or access point on the right day to
spoof the other in the bootstrapping process.

4.5 Bootstrapping process

The bootstrapping process includes the following three stages,
which correspond directly to the client and server components
in Figure 3.

Initial authentication. When the new IoT device is powered
on, it uses one of the available discovery mechanisms to select
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the WiFi network. In our example scenario, the device probes for
the well-known SSID. The device then tries to connect to the dis-
covered network(s). The EAP peer on the device tries to perform
initial authentication with an EAP method that is chosen by the
authentication server and supported by the peer. After successful
authentication, still during the EAP session, the server transfers
bootstrapping data to the IoT device. (The contents of bootstrapping
data will be described in section 4.6 and the methods for transferring
it in section 4.8.)

After the success successful initial authentication, the EAP au-
thenticator also grants the device access to the wired IP network so
that it can connect to the provisioning and configuration servers.
Ideally, the access would be restricted to only these servers. This
restriction can be implemented either with advanced features in
the access point or by isolating all access through the well-known
bootstrapping SSID to a virtual or physical network that has no
other connectivity.

The device then connects to the provisioning and configuration
servers over secure web protocols, i.e., HTTPS APIs. The device
authenticates the servers based on certificate hashes received in the
bootstrapping data. To authenticate itself to the servers, the device
attaches a token received in the bootstrapping data to the HTTP
request. It sends the token in the Authorization: Bearer header.

Provisioning. In the credential provisioning, the device sends a
certificate signing request to the provisioning server, which issues
an X.509 certificate to the device. The certificate serves as its long-
term credential for network access and possibly for other services.
This stage establishes the identity of the device in the network.
Other types of credentials could be issued in addition to or instead
of the certificate.

Configuration. The minimum configuration data which the
client must retrieve from the configuration server includes the
SSID, the root CA certificate, and the authentication server’s do-
main name. With these, the device can identify and authenticate the
correct wireless network for future network access. The device may
access multiple HTTP APIs at the configuration server. The API
endpoints for the most common configuration information should
be standardized, but there may also be need for manufacturer-
or industry-specific configuration APIs. The configuration stage
may also include downloading of software updates which must
be installed before connecting to the actual access network. After
receiving and processing the configuration data, the device recon-
nects to the access network SSID and authenticates itself with the
newly-acquired certificate and network information.

Why are the provisioning and configuration servers separate? In
fact, these services are just API endpoints identified by URLs and
server certificate hashes, and the two may reside on same server. We
allow the separation because many organizations want to isolate
certificate provisioning to a separate high-security server that has
no other functions.

4.6 Contents of bootstrapping data

As already mentioned, the bootstrapping data includes the API
endpoint addresses (HTTPS URLs) of the provisioning and configu-
ration servers. There can be either domain names or IP addresses
in the URLs. The bootstrapping data also includes the hashes of
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the two server certificates. The reason is that the new device does
not know the owner’s preferred root CA before completing the
configuration stage. We do not want to rely on the common web
PKI; while it may be acceptable for some users and applications, it
is not for all.

The client token is a JSON Web Token (JWT) [10]. It has three
fields: (1) the header, which indicates the purpose of the access,
e.g., "provisioning’", or "configuration"; (2) the payload, which con-
tains the long-term identity of the device in the network and an
expiration time that limits the validity time of the token to, e.g.,
five minutes; and (3) the authentication server’s digital signature
over the previous fields. The clocks in provisioning and configura-
tion servers have to be roughly synchronized with the time in the
authentication server, so that they can check the validity time of
the client token. The signature algorithm in our implementation is
ES256; it is an Elliptic Curve Digital Signature Algorithm (ECDSA)
using the P-256 elliptic curve and SHA-256 cryptographic hash
function [9].

The total size of bootstrapping data in our implementation is
about 800 bytes. Therefore, the bootstrapping data structure fulfills
the requirement R7 about avoiding fragmentation.

4.7 Security of the bootstrapping data

The short bootstrapping data needs to be protected for integrity
and authenticity as well as for confidentiality. This is the task of
the EAP method that transfers the data to the peer. There are two
ways to achieve this protection. The first is to use a TLS-based outer
method and transfer the data inside the TLS tunnel. The second is
to use authenticated encryption and a key derived from the session
key MSK which was created in the same EAP method. In the latter
case, the transfer of the bootstrapping data needs to take place at
the end of the EAP session when the MSK is available.

The confidentiality protection for the bootstrapping data is need-
ed because the included JWT token is a critical secret. The posses-
sion of the signed token is what authorizes the peer to access the
provisioning server and to obtain a secure long-term identity. The
limited lifetime of the token does, however, reduce the risk of the
token leaking.

The integrity and authenticity protection for the bootstrapping
data is needed to ensure that the peer receives the correct URLs and
certificate hashes. These ensure that the peer connects to the correct
HTTPS servers and API endpoints after the initial authentication.
Moreover, the JWT token needs the same integrity and authenticity
protection during its transfer from the authentication server to the
peer. This is because swapping tokens could confuse the provision-
ing and configuration servers (and the peer itself) about the peer
identity. Note that the token signature is not checked by the peer.

4.8 Transferring bootstrapping data in EAP

We have identified four architecturally different ways of trans-
ferring the bootstrapping data in an EAP session: (1) in an EAP
notification message; (2) as an additional attribute in an existing
EAP method-specific message; (3) in a new inner EAP method; and
(4) using a combination of an outer and an inner EAP method. We
implemented all four methods to ensure that they are feasible.
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Table 1: Comparison of the four methods for transferring
bootstrapping data

Requirement from 1. Notification | 2. Method g.;;ner i'u?;tg;;nd
section 3 message attribute method method

R1 (bootstrapping data) Yes Yes Yes Yes

R2 (protect the data) Yes Yes Yes Yes

R3 (any initial method) Yes No No Yes

R4 (unmodified AP) Yes Yes Yes Yes

R5 (unmodified EAP) No Yes Yes Yes

R6 (unmodified methods) Yes Partially Yes Yes

R7 (backward compatibility) | Partially Yes Yes Yes

R8 (no fragmentation) Yes Yes Yes Yes

Figure 1 summarizes how these solutions fulfill the requirements
of section 3. All the solutions achieve the basic goals (R1), there
is no impact on the WiFi access point (R4), and the bootstrapping
data is smaller than one kilobyte (R8). The other requirements will
be discussed below. We obviously limit the discussion to solutions
that protect the bootstrapping data (R2).

4.8.1 EAP notification message. The EAP framework defines a
notification message type for conveying a human-readable message
to the peer. The default maximum length of a notification message
is 1020 bytes. Since this message type is part of the EAP framework
itself, it is available in all EAP methods [21]. It could be used to
transfer the bootstrapping data to the peer just before the final
success message in the EAP session.

R3 and R5 are fulfilled because the mechanism is independent
of the EAP method. A legacy EAP peer that receives a notification
message with bootstrapping data will be able to successfully com-
plete the EAP session with the authentication server. However, it
may try to display the bootstrapping data, which could cause some
confusion for the end-user. Thus, R7 is only partially fulfilled.

Since the notification message is not secured by default, the
bootstrapping data should be protected cryptographically. We have
worked out how to do this with the session key produced by the
authentication in the EAP method and implemented the protection
(see section 5.2), thus fulfilling R2. The trade-off is that this is a
change to the base EAP specification and, thus, R5 is not met.

Some issues arise with using notification message for the boot-
strapping data. First, the server does not receive any meaningful
feedback from the peer. The peer acknowledges the notification
with an empty response [21]. Second, since EAP is widely deployed
and all existing EAP methods rely on the EAP framework specifica-
tions [15, 21], even small changes in the EAP framework may be
difficult to standardize.

4.8.2  New attributes in method-specific messages. Several EAP
methods send optional attributes in their EAP message payloads.
For example, EAP-TTLS uses Attribute-Value Pair (AVP) objects
after the completion of the TLS handshake, while EAP-PEAP, EAP-
TEAP, EAP-FAST, EAP-POTP use a Type-Length-Value (TLV) for-
mat. A new attribute could be added to convey the bootstrapping
data.

R3 and R6 are not fulfilled because this method is specific to the
EAP method and requires at least small changes to its implementa-
tion. In addition, when sending the attribute in the middle of the
EAP session, we do not have access to the session key. For that
reason, we cannot provide a separate mechanism for securing the
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attribute and need to depend on security provided by the under-
lying EAP method. This limits the set of EAP methods where this
solution can be used without compromising R2.

No changes to the base EAP are necessary (R5), and a legacy
client will simply ignore an optional attribute containing bootstrap-
ping data (R7).

4.8.3 New inner EAP method. Several existing EAP methods set up
a TLS tunnel for communication (e.g., EAP-TTLS, EAP-PEAP, EAP-
TEAP and EAP-FAST), and it is possible to execute another, inner
EAP method within that TLS tunnel. We created a new inner EAP
method, called EAP-iPROV (EAP-Inside PROVisioning), for sending
the bootstrapping data. The protocol stack with EAP-iPROV is
shown in Figure 4.

The three pairs of messages exchanged in the inner method EAP-
iPROV are shown in Figure 5. The first is a standard EAP Identity
request. The server then requests the peer to run the EAP-iPROV
method, and the peer agrees. The transfer of the bootstrapping data
takes place in the last request, which the peer acknowledges.

The use of EAP-iPROV is negotiated between the server and
peer, and the bootstrapping data is sent to the peer only if the peer
indicates that it is able to receive it. More specifically, when the
authentication server initiates the inner EAP method (EAP-iPROV),
a legacy peer will reply with a NAK message. The peer can then
complete outer EAP method authentication. Thus, requirement R7
is fulfilled.

Requirement R2 is fulfilled assuming that the EAP-iPROV mes-
sages are sent inside a secure tunnel created by the outer EAP
method. This assumption is true for the TLS-based EAP methods.
The requirement R3 is not fulfilled, since only a TLS-based subset
of existing EAP methods have the mechanism to invoke an inner
EAP method. We also say that R8 is fulfilled because the TLS-based
methods implement fragmentation and EAP-iPROV does not need
to consider it.

Inner EAP method: EAP-iPROV

Outer EAP method
EAP
Link layer

Figure 4: EAP-iPROV protocol stack

Peer Server

i EAP-Request: Identity i

EAP-Response: [dentity

EAP-Request: iIPROV: TLV(version)
EAP-Response: iIPROV: TLV(version)

EAP-Request: iPROV(bootstrapping data)

EAP-Response: IPROV: TLV(ACK)

Figure 5: Messages in EAP-iPROV when the peer wants the
configuration data
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‘ EAP ‘

Figure 6: EAP-oPROYV session timeline

EAP for authentication l EAP-iPROV
EAP-oPROV
EAP

Link layer

Figure 7: EAP-oPROV protocol stack

Requirements R5 and R6 are fulfilled because there is no need
to modify the base EAP or any existing EAP method. Of course,
the inner EAP method, EAP-iPROV, needs to be standardized and
implemented, and the outer method needs to be configured to use
this new inner method.

4.8.4 Combination of outer and inner EAP method. This method,
called EAP-oPROV (EAP Outside PROVisioning ), is an outer EAP
method that first (phase 1) invokes another EAP method for the
actual authentication and then (phase 2) uses the created session
keys to protect the bootstrapping data. For modular implementation
of the latter step, it invokes the EAP-iPROV method describe above.
The EAP-oPROV session timeline is illustrated in Figure 6, and the
matching EAP-oPROV protocol stack is shown in Figure 7.

One advantage of this solution is that it supports most EAP
methods for the initial authentication and requires no changes to
them or to the base EAP protocols (requirements R3, R5 and R6).

The backward compatibility requirement R7 is met because,
when the authentication server initiates EAP-oPROV method, a
legacy peer will reply with a NAK message; and the server will then
be able to initiate another EAP method. Fragmentation is avoided
(R8) if the bootstrapping data is limited to about one kilobyte.

Based on the comparison in Table 1, this solution meets the
requirements best.

5 IMPLEMENTATION

This section describes our implementation of the bootstrapping
process.

5.1 Authentication server and WiFi client
implementation

The EAP authentication server is implemented by extending hostapd.
The EAP peer, i.e., WiFi client, extends wpa_supplicant. Both are
open-source implementations by Jouni Malinen [11]. Our imple-
mentation adds the EAP-oPROV and EAP-iPROV methods. The
source code can be found in [1].

Depending on the solution version, the server and client are
configured to support one or both of the new methods and to also
invoke EAP-TTLS as the TLS-based method when needed. Recall
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Payload data | Cypher algo. :
‘ Verslon ‘Message length type: JSSON AES-GCM \% Encrypted data Tag
2bytes 2bytes 2 bytes 2 bytes 12 bytes n bytes 16 bytes

Figure 8: Encrypted bootstrapping data and AAD in phase 2
of EAP-oPROV

that several EAP methods may be called in a single session one
after the other. This requires adding configuration parameters in
order to describe the more complex session.

5.2 Protection of bootstrapping data

Section 4.7 concluded that the authenticity and confidentiality of
client tokens must be protected by the EAP method. EAP-oPROV
protects the token confidentiality by deriving a symmetric key from
the Master Secret Key (MSK), which is produced by the success-
ful conclusion of the phase 1 EAP method, and using the derived
symmetric key to encrypt the EAP-iPROV messages in phase 2 of
EAP-oPROV.
The symmetric key K is derived from MSK as follows:

K = hmac_sha256_kdf(MSK, label, salt, length),

where label is a string consisting of the concatenation of "Derive
EAP-iPROV message key", the name of EAP method used in phase
1, and the identifier of EAP-oPROV; salt is the peer identifier; and
the requested output length is 16 bytes.

The derived symmetric key K is used in authenticated encryption
of the messages with the AES-GCM algorithm that outputs the
encrypted payload enc and the verification tag tag:

(enc, tag) = aes_gcm(message, AAD, K, IV).

The additional associated data (AAD) includes information on the
encryption algorithm, version, and payload data type; and the IV
parameter consists of 12 random bytes.

The encrypted message in EAP-oPROV phase 2 contains the
elements AAD and IV, the encrypted payload, and the verification
tag. Its structure is shown in Figure 8. The total size of the protected
bootstrapping data in our implementation is about 800 bytes.

5.3 Provisioning and configuration servers and
clients

The EAP peer conveys the received client tokens to the provisioning
and configuration clients in the same machine. We implemented
both clients as Python scripts. The clients uses the tokens to access
the provisioning and configuration servers over HTTPS.

The provisioning of the certificate to the IoT device is done with
the Enrollment over Secure Transport (EST) protocol [16]. We used
Simple Python EST server + CA [18] as the provisioning server. We
implemented the configuration server as a simple web API server
in Python. Both the provisioning and configuration servers have
REST APIs and they are accessed over HTTPS.

5.4 Implementation complexity

Table 2 summarizes the coding work for the combined EAP-oPROV
and EAP-iPROV solution. In total, we added about 4000 lines of C
and 1000 lines of Python to existing open-source software. About
half of the new C code (~ 2000 lines) is in the wpa_supplicant (EAP
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peer), and the other half is in hostapd (authentication server) [11].
The bulk of the new Python code is in the provisioning client written
by us. Less than 10 lines of Python were added in the provisioning
server [18] to validate the client tokens.

All in all, the coding effort needed to implement our approach
is small. This is partly due to our ability to reuse the existing EAP
framework and methods to compose the new solution. Even more
importantly, our early design choices meant that we could imple-
ment the provisioning and configuration clients and the configu-
ration server in a high-level language and modern web software
frameworks, which help to minimize the amount of code.

6 EXPERIMENTS

This section reports on the experiments made with our implemen-
tation of the two solutions that use HTTPS the provisioning and
configuration stages: EAP-iPROV and combined EAP-oPROV and
EAP-iPROV. We also compare them to the fully EAP-based EAP-
TEAP, which was modified to convey some configuration data. We
are unable to compare with EAP-CREDS, because the specification
is still work in progress and there are no implementations available.

6.1 Experimental setup

Our experimental setup and software components are represented
in Figure 9. The IoT device is Raspberry Pi 4 model B. The WiFi
access point (AP) and all three servers run on Raspberry Pi 3 model
B+. The servers have the same IP address but different port num-
bers. The two devices communicate with each other over WiFi. For
development and testing, both devices were also connected to a
router with Ethernet cables, so that the developer can connect to
them with ssh. The file systems of both Raspberry Pi devices were
also mounted to the developer’s computer.

During the experiments, we recorded messages exchanged on
the WiFi interface of the server Raspberry Pi with tcpdump, and

Table 2: Implementation sizes

Entity Total code New code
; 1127 i
Hostapd 751 x 10° lines C code EAP-oPROV (33 klg)es
authentication (22 MB) 791 Tines
server and C code EAP-iPROV (20 kB)
authenticator " T
Python code Token 118 lines
Y generation (4 kB)
1025 lines
37 5
Wpa_supplicant 747(;; ;3\/{]131;1 es C code EAP-oPROV (30 kB)
peer . . 797 lines
C code EAP-iPROV (21 kB)
Provisioning 600 lines (19 kB)
client Python code
(custom made) y
209 lines (8 kB)
Provisioning Python code, Python Token 5 lines
server [18] 86 lines (6 kB) code verification (< 1kB)
Bash code
Configuration 70 lines (3 kB)
client Python code
(custom made) Y
Configuration 79 lines (3 kB) Python Token 5 lines
server Python code code verification (< 1kB)
(custom made)
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Raspberry Pi 1: IoT device Raspberry Pi 2: WiFi AP and servers

EAP peer EAP EAP RADIUS | hostapd
(wpa_suplicant) WLAN Authenticator P RADIUS server
«
= EST EST
= R -
EAN P rOZiiS;i‘t‘l“g HTTPS WiFi AP |HTTpg| [rovisioning
3 . P (hostapd) P server
@ (Python script) (Python script)
& WLAN
. HTTPS .
Conﬁguratlon P HTTPS Configuration
(> client < > + > server
(Python script) WLAN P (Python script)
SSH SSH
Router Developer’s computer
SSH

Figure 9: Development environment and experiment setup

then parsed these traces in the developer’s computer with Wire-
shark. This simple method allowed full view of the communication
between the servers and the peer.

6.2 Experiment results

We conducted a series of experiments in order to compare our
approach with the case were the authentication, provisioning, and
configuration are all done in EAP-TEAP in the same EAP session.

As explained in section 2.3, EAP-TEAP can send a certificate
to the peer over a TLS tunnel that is established by the method.
There is no mechanism for sending configuration data, but it is
possible to send a Vendor-Specific TLV over the TLS tunnel, and
we implemented this extension to EAP-TEAP [11]. Naturally, both
the peer and the authentication server have to understand how to
interpret this non-standard TLV.

We conducted a series of experiments to evaluate the latency and
communication overhead of different protocol options. Configura-
tion data sizes can range from a few bytes to a full firmware update.
First, we varied the size of the configuration data. In the tested
implementation of EAP-TEAP, the EAP peer exited with failure
when the configuration data was about 16 kB or larger. The reason
is that the hostapd implementation of EAP-TEAP limits the size of
any message to 16 kB. The probable reason for this limitation is
that the maximum record size in TLS is 214 bytes [17]. Our solution
variants that retrieve the configuration over a web API and not in
the EAP session have not such limitations.

Second, we fixed the sizes of the provisioned certificate and
configuration data to about one kilobyte and 400 bytes, respec-
tively. Such configuration data could include, for example, network
parameters.

i. As a baseline, we measured the performance of EAP-TEAP with
and without provisioning and configuration. A shell script invoked
EAP-TEAP repeatedly for 20 minutes, and tcpdump was used to
collect the network traces. EAP-TEAP was configured so that both
client and server use certificates for the TLS handshake. We ran
EAP-TEAP both with and without provisioning and configuration.
The results of this experiment are summarized in rows (0) and (1)
of Table 3.
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Table 3: Comparison of provisioning and configuration with EAP-TEAP, EAP-oPROV, and EAP-iPROV with EAP-TTLS

[ Protocol

Messages from server [

Bytes from server [ Messages from client [ Bytes from client [ Duration (seconds) ]

0. EAP-TEAP without provisioning or configuration 10 1862 9 2196 0.42 [0.302, 0.659]

1. EAP-TEAP with provisioning and configuration 10 3092 9 2989 0.4635 [0.367, 0.621]

2. EAP-TTLS / EAP-iPROV 10 [10, 11] 2400 [2392, 3177] 99, 10] 2094 [2094, 2167] | 0.943 [0.856, 1.094]

3. EAP-0PROV / EAP-TTLS + EAP-iPROV 11 [11, 12] 2432 [2416, 3179] 10 [10, 11] 2150 [2150, 2193] | 0.981 [0.879, 1.148]

4. HTTPS provisioning 15 9594 9 3257 [3256, 3257] | 0.23 [0.22, 0.34]

5. HTTPS configuration 7 3875 3874, 3876] 5 1759 0.03 [0.029, 0.031]

6. HTTPS provisioning and configuration 22 [15, 23] 13468 [10260, 14918] | 14 [10, 14] 5016 [3343, 5016] | 0.88[0.83, 1.18]
[ 7. EAP-TTLS/ EAP-iPROV + HTTPS provisioning and configuration | 32 [25, 34] [ 15868 [12452, 18095] [ 23 [19, 24] [ 71105337, 7183] [ 1.823[1.686,2.274] |
| 8.EAP-oPROV / EAP-TTLS + EAP-iPROV + HTTPS prov and conf | 3326, 35] | 15900 [14676, 18097] | 24 [20, 25] | 7166 [5493, 9376] | 1.69 [1.709,2328] |

ii. Next, a similar script repeatedly invoked EAP-oPROV with
inner methods EAP-TTLS (for mutual authentication) and EAP-
iPROV (for sending provisioning and configuration tokens), fol-
lowed by provisioning and configuration over HTTPS. EAP-TTLS
was configured so that both the client and server have certificates
for the TLS handshake. The results of this experiment are summa-
rized in rows (3) and (8) of Table 3.

iii. The measurements were repeated with EAP-TTLS as the
outer method and EAP-iPROV as the inner method, followed by
provisioning and configuration over HTTPS. The results of this
experiment are summarized in rows (2) and (7) of Table 3. About
100 runs were done for each protocol option during the experiment.

Table 3 shows the number of messages and bytes sent in each
protocol variant. When there was variation in the results, we show
the median value as well as the observed value range in brackets. To
summarize, rows 0-4 show results for protocols that communicate
only in the EAP session, rows 4-6 show only the HTTPS API access,
and rows 7-8 show solutions that only send short bootstrapping
data over EAP and then continue with HTTPS. Note that the HTTPS
communication has not been optimized: the client creates a new
TLS session with the server for each EST protocol request.

Looking at Table 3 we can observe the following:

- Comparing protocol (0) and (1) we see that adding provisioning
and configuration to EAP-TEAP authentication adds about 2 kB,
and less than 0.1 s.

- Protocol (1) takes roughly 0.5 s, while protocols (2) and (3)
take about one second. The reason for the additional time in the
latter is the initialization of the two EAP methods: EAP-TTLS and
EAP-iPROV.

— The number of messages in protocols (1), (2), and (3) is about
10. Note that (3) has one message and 32 bytes more than (2), and
it takes 0.04 second more time. This is because there is one extra
EAP Hello message in EAP-oPROV.

— Less data is exchanged in protocol (2) or (3) than in (1) because
in (2) and (3) the actual provisioning and configuration happen
outside of the EAP exchange.

- Protocol (4) has more messages and takes longer than (5) be-
cause the EST protocol used in (4) includes several round trips,
while (5) is completed within a single round trip.

— The time for running (4) and (5) is about 0.3 second; but (6)
takes about 0.9 second. The reason is that in (6), the operations (4)
and (5) are run inside a Python script in the IoT device, which adds
the overheads of context switching and compilation.

— The transfer of configuration and provisioning data over HT TP
adds about 14 kB. This overhead could be reduced. For example,
since each TLS handshake involves exchange of about two kilobytes,
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reducing the number of TLS handshakes from three to one in EST
provisioning, would reduce the amount data by about four kilobytes.
We leave these optimizations to future work.

Allin all, in our experiments, the provisioning and configuration
with EAP-TEAP is faster (by about 0.5 s) than EAP-oPROV/EAP-
iPROV. The amount of data exchanged inside EAP-TEAP is larger
(by about 600 B) than that inside EAP-oPROV/EAP-iPROV. The
reason is that, in the latter protocols, the actual provisioning and
configuration take place over HTTPS after EAP-oPROV success.

We argue, however, that the performance differences are not
great enough to affect the usability of a provisioning and config-
uration process that takes place automatically and only once for
each device. On the other hand, the observed limit in the size the
configuration data in the fully EAP-based solution is indicative
of the difficulty of implementing generic and flexible solutions as
binary protocols inside the protocol stack, in comparison to using
web technologies whenever possible.

7 DISCUSSION

We have shown that the idea of transferring small bootstrapping
data inside EAP and then using HTTPS for most work is a flexible
and easily implementable design strategy. We also explained the
need for protecting the authenticity and confidentiality of the data
transfer.

Attacker model: Considering the attacker model on a higher level,
we assume that an attacker has full control of the radio channels
between 10T device and WiFi access point. Most importantly, the
attacker is within the wireless range, it can connect to the WiFi
access point and establish EAP sessions with authentication server,
and it can set up a fake access point with the same SSID as the
authentic one.

Since IoT devices come from various manufacturers and levels of
quality, they cannot be fully trusted. Trusting a device for a specific
application is a user decision and outside the scope of the current
paper. However, a rogue device should not be able to compromise
the security of other devices. That is why the bootstrapping process
carefully protects the device identity information from the initial
authentication via the token to the certificate provisioning. The
attacker most not be able to create counterfeit tokens, capture the
token of an honest device, or to cause the honest device to present
the wrong token.

The one remaining threat that we cannot solve is that an attacker
or a rogue user in control of multiple devices can swap and transfer
the identities between these devices — either by swapping the
tokens during the bootstrapping or by leaking the devices’ private
keys after certificate provisioning. A potential countermeasure
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against these residual threats is an attestable hardware-based device
identity. For example, the Keystore Attestation feature in Android
devices assures that the private key has been stored inside secure
device hardware [3].

Future extensions: Most extensions to our solution should be
implemented as extensions to the configuration stage by defining
new configuration API endpoints. The outer method EAP-oPROV
presented in this paper does, however, provide a generic mechanism
for extending the functionality of EAP. The primitives it provides
can be used to add further secure messages between the peer and
authentication server to the EAP session.

8 CONCLUSION

EAP is widely used for peer authentication in wireless networks.
On the other hand, its use for client management is limited to
one method, EAP-TEAP [22], which can send a certificate to the
client. A draft proposal EAP-CREDS [13] suggests broadening the
functionality with more diverse credential provisioning and client
configuration features. Both protocols transfer all data inside the
EAP session.

We suggest a simpler and more modern approach: send only
short bootstrapping data inside the EAP method and implement the
provisioning and configuration using web APIs. The bootstrapping
data consists of the next server addresses and client tokens for
accessing them. We show that this approach can be implemented
with very reasonable coding effort and results in a highly flexible
solution that allows free choice of the initial authentication method,
can make use of existing standard credential provisioning protocols,
and is easy to extend by creating new web APIs.

We compared four architecturally different protocol designs for
sending the bootstrapping data: (1) EAP notification message, (2) us-
ing method-specific extensible attributes that are available on some
methods, (3) a new EAP method EAP-iPROV that is invoked inside
a secure tunnel created by an outer TLS-based method and only
transfers the bootstrapping data, and (4) a new outer EAP method
EAP-oPROV that wraps first the actual authentication method and
then EAP-iPROV for transferring the bootstrapping data. These
designs were implemented by extending the open-source hostapd
and wpa_supplicant software components and evaluated by build-
ing an experimental testbed on Raspberry Pi devices. We provide a
thorough comparison of the solutions, with (4) coming out on top.
We also compare with EAP-TEAP, which has somewhat better raw
performance but loses on flexibility and ease of future development.
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