
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Duran, Rodrigo; Rybicki, Jan-Mikael; Hellas, Arto; Suoranta, Sanna
Towards a Common Instrument for Measuring Prior Programming Knowledge

Published in:
ITiCSE 2019 - Proceedings of the 2019 ACM Conference on Innovation and Technology in Computer Science
Education

DOI:
10.1145/3304221.3319755

Published: 01/07/2019

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Duran, R., Rybicki, J.-M., Hellas, A., & Suoranta, S. (2019). Towards a Common Instrument for Measuring Prior
Programming Knowledge. In ITiCSE 2019 - Proceedings of the 2019 ACM Conference on Innovation and
Technology in Computer Science Education (pp. 443-449). ACM. https://doi.org/10.1145/3304221.3319755

https://doi.org/10.1145/3304221.3319755
https://doi.org/10.1145/3304221.3319755

Towards a Common Instrument for Measuring Prior
Programming Knowledge

Rodrigo Duran
Aalto University

Finland
rodrigo.duran@aalto.fi

Jan-Mikael Rybicki
Aalto University

Finland
jrybicki@cc.hut.fi

Arto Hellas
University of Helsinki

Finland
arto.hellas@cs.helsinki.fi

Sanna Suoranta
Aalto University

Finland
sanna.suoranta@aalto.fi

ABSTRACT
Computing education researchers and educators use a wide range
of approaches for measuring students’ prior knowledge in program-
ming. Such measurement can help adapt the learning goals and
assessment tools for groups of learners at different skills levels
and backgrounds. There seems to be no consensus on if and how
prior programming knowledge should be measured. Traditional
background surveys are often ad-hoc or non-standard, which do
not allow comparison of results between different course contexts,
levels, and learner groups. Moreover, surveys may yield inaccurate
information and may not be useful due to lack of detail. In contrast,
tests can provide much higher detail and accuracy than surveys
about student knowledge or skills, but large-scale tests are typically
very time-consuming or impractical to arrange. To bridge the gap
between ad-hoc surveys and standardized tests, we propose and
evaluate a novel self-evaluation instrument for measuring prior
programming knowledge in introductory programming courses.
This instrument investigates in higher detail typical course con-
cepts in programming education considering the different levels of
proficiency. Based on a sample of two thousand introductory pro-
gramming course students, our analysis shows that the instrument
is internally consistent, correlates with traditional background in-
formation metrics and identifies students of varying programming
backgrounds.

CCS CONCEPTS
• Social and professional topics→ Computer science educa-
tion; Model curricula; Student assessment.

KEYWORDS
Self-evaluation, assessment, CS1, introductory programming, prior
experience
ACM Reference Format:
Rodrigo Duran, Jan-Mikael Rybicki, Arto Hellas, and Sanna Suoranta. 2019.
Towards a Common Instrument for Measuring Prior Programming Knowl-
edge. In Innovation and Technology in Computer Science Education (ITiCSE
’19), July 15–17, 2019, Aberdeen, Scotland Uk. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3304221.3319755

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITiCSE ’19, July 15–17, 2019, Aberdeen, Scotland Uk
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6301-3/19/07. . . $15.00
https://doi.org/10.1145/3304221.3319755

1 INTRODUCTION
With the increase of computer science and programming related
initiatives that seek to make computing accessible to all1, an in-
creasing number of students have some background in program-
ming when they enter tertiary education. Computing education
researchers share a general agreement that prior programming
experience influences student performance in introductory pro-
gramming courses [13, 29, 31, 37, 38, 40], while certain teaching
approaches may reduce the difference [36]. Information on prior
programming experience could be used to providemore challenging
options for more experienced students [5].

Prior programming experience has been measured using nu-
merous approaches [11]. Students have been asked, for example, if
they have any prior programming experience [2]; how many pro-
gramming languages they have used [13]; and what is the largest
program they havewritten [25]. Furthermore, a range of approaches
exist where students are asked to read code, answer a set of ques-
tions, and/or to write short programs [26, 34]; however, these are
often used as tests and can thus be learned, as answers may be
predictable. Researchers have also suggested using data from stu-
dents’ problem-solving processes to automatically infer students’
programming experience [20, 35].

To address these issues, this article introduces and evaluates an
instrument for measuring students’ prior programming knowledge.
Drawing inspiration from general scales used in language assess-
ment, such as The Common European Framework of Reference for
Languages (CEFR) [8], in which students’ knowledge of a particular
language can range from beginner to mastery level, we constructed
an instrument for assessing elementary programming knowledge.
Using the instrument, students can evaluate their programming
knowledge from beginner to mastery level in topics typically taught
in introductory programming courses.

While Feigenspan et al. [11] presented a work similar to ours,
their work focuses on more advanced topics and self-ratings of
experience, whereas our instrument is targeted at concepts within
introductory programming courses. Their results, however, sup-
port our notion that self-evaluation questions can be useful for
measuring experience. With our instrument, students can observe
their gradual knowledge increase, which also allows them better
understand course objectives and view their own progress – that is,
our instrument can be used multiple times during a course. The in-
strument offers teachers information on students prior and current
knowledge, which is useful in course design, decision making, and
in guiding students towards particular content areas. In addition,

1Such as Code.org, CSforALL, CS Principles Project, Hour of Code, Khan Academy,
and MOOCs.

https://doi.org/10.1145/3304221.3319755
https://doi.org/10.1145/3304221.3319755

the instrument can, in principle, be used at all educational levels,
including open education.

This article conducts an exploratory analysis focusing on stu-
dent responses in our data collection with the following research
questions:
RQ1 Is the instrument internally consistent?
RQ2 What types of knowledge patterns does the instrument iden-

tify?
RQ3 How does the instrument compare with traditionally used

ad-hoc measures of programming background?
This article is organized as follows. Section 2 presents the related

work regarding instruments of evaluation, such as questionnaires
in CS and other contexts as well as validated tests in CS. Section 3
discusses how our instrument is constructed. Section 4 describes the
course and data collection methods. Section 5 outlines the results of
our work, which are further discussed in Section 6. Finally, Section
7 concludes the article and suggests future research directions.
2 RELATEDWORK
Self-evaluation have been researched in various contexts, including
health professions [12], classroom teaching [27], language teaching
[8] and MOOCs [19]. Although students with little experience in
self-assessment may over- or underestimate their abilities or knowl-
edge, self-assessment can contribute to higher student achievement,
particularly when students are guided in this process. For example,
rubrics provide a criterion-based self-assessment, which helps to
understand the goals and requirements of a course [27].

Since self-evaluation is a skill, research has shown that the
validity, accuracy, and effectiveness of self-assessment can also
be improved using qualitative formative feedback, and triangula-
tion between self-, peer- and teacher assessment [12, 19, 27]. Self-
evaluation can also function as a self-reflection tool, supporting
self-regulation of learning [41].

In Europe, educational institutions across different levels are
encouraged to adopt the Common European Framework of Ref-
erence (CEFR) [8] for assessing the language ability of learners.
The CEFR framework includes both extended descriptions of skills
levels allowing instructors to reach a common understanding of lan-
guage skills as well as practical self-assessment grids for common
reference levels in CEFR for languages [8, p. 26-27].

In the CEFR, the language skills levels range between A1 (be-
ginner) and C2 (mastery). The skills are categorized into separate
areas, such as listening, speaking, reading and writing skills. These
grids are typically translated into different languages, but skills
definitions and ranges remain the same or similar. This allows both
students to estimate their own skills and teachers to gain a quick
understanding of each student’s approximate skills. When offering
standardized language tests, such as TOEFL [10] and IELTS [1], the
test results can be linked with the CEFR levels, allowing instructors
to understand the overall skills levels of students in different skills
areas.

Prior knowledge is essential to learning, and CS is no different;
perhaps, the gaps between experienced and inexperienced learners
are even more pronounced. Research shows that at the beginning
of the course learners with some prior knowledge in CS outper-
form learners with no experience by a fair margin [14, 39], and
prior knowledge can be used (with moderate effects) to reduce the

gap between experienced/inexperienced learners by introducing
intermediate level CS1 courses [18]. Even if at the end of the course
this gap is mostly closed, students with no prior experience face a
great amount of psychological stress and pressure to keep the pace
of experienced students. If this gap is not diagnosed at early stages,
learners can feel demotivated or even drop-out from courses [16].

Most current methods used to evaluate prior knowledge in CS
are questionnaires. Usually, programming experience is treated as
a single construct evaluated by metrics associated with experience
in generic terms [11, 15, 17]. There is little consensus on what and
how to ask participants and how representative is this information.
Feigenspan et al. [11] presented one of the most complete, and clos-
est to our study, investigations of the relationship between prior
knowledge and performance, examining programming experience,
familiarity with programming languages and paradigms, and educa-
tional background. Their findings show that these metrics correlate
highly with performance on programming tasks, suggesting that
students are able to self-evaluate reliably.

While these questionnaires use metrics that show interesting cor-
relations, richer and robust methods used in personalized learning
[2] demand a deeper understanding of how prior experience trans-
lates into the comprehension of concepts present in CS1 courses.
Recent work towards more reasonable and granular assessment
questions [9, 24] in CS1 exams points to the importance of knowing
in detail the concepts learners are familiar with. Detailed informa-
tion could be used to set more realistic expectations and design
assessment instruments matching learner’s ability (as captured by
Vygotsky’s zone of proximal development [28]), with the difficulty
of concrete programs used in assessment instruments [9]. This
kind of personalized learning approach can assist learners with less
prior knowledge by directing them to activities that enhance their
comprehension of a particular topic.

Computer Science Education recently produced validated CS
tests, such as the FCS1 [34] and SCS1 [26], which could accurately
and reliably provide a high degree of insight into learner’s knowl-
edge. However, these tests still have some limitations. They are
not generally available since making them public could decrease
their validity. Longitudinal studies with repeated measurements of
the test could be affected by its limited pool of questions and low
flexibility in arranging them. Tests are time-consuming and hard to
scale to very large courses. Although the FCS1 and SCS1 introduce
some agnosticism with the pseudocode used in tests, these cannot
be considered language independent. Students with different back-
grounds (e.g. visual blocks or functional programming language
users) could be disproportionately under-evaluated. These tests can
also be considered difficult and not suited as a pre-test.

3 CONSTRUCTION OF THE INSTRUMENT
Our instrument for self-evaluation (at https://goo.gl/nGR9Th) was
designed to resemble the self-assessment grid for common reference
levels in CEFR for languages [8, p. 26-27]. For this first version of
the instrument, we chose to focus on code comprehension and
reading skills. While we believe that in the future it is possible
to design an instrument aimed at programming writing skills, at
this initial stage of development reading/comprehension can be
considered a less demanding cognitive skill [9, 21, 23]. To some

https://goo.gl/nGR9Th

extent, the hierarchical structure of developing skills and knowledge
also resemble Bloom’s taxonomy of educational objectives [3].

To fill the gaps in earlier approaches, our instrument aims to
provide a fast, easy to apply and widely available way to evaluate
prior knowledge in programming that covers much of the common
introductory programming course content. This instrument can be
used by anyone several times, including longitudinal evaluations
within the same cohort without losing its validity. The instrument
can be language agnostic since it does not use or depend on concrete
code written in a particular language and paradigm. Although the
instrument can use of support information (e.g. guidelines, exam-
ples in concrete code, etc) that can be bound to a specific language
or paradigm, its framework is flexible enough to be easily adapted
and refined, accommodating different aspects of programming at
different levels of ability. The self-evaluation also can benefit stu-
dents at the beginning of the course by making expectations and
self-reflection evident [27].

The instrument has two dimensions: concepts and levels. The
vertical axis contains the concepts related to programming in a CS1
course, based on the list of content areas provided by FCS1 [34]:
variables and assignment (var), input and output (io), expressions
and arithmetic operators (exp), conditional statements (sel), loops and
iteration (loops), data collections (lists), functions and methods (funcs)
and classes and objects (objs). Although FCS1 does not explicitly
order the areas in increasing levels of complexity, our instrument
uses an order that is consistent with concepts’ order of complexity
of a program written in an imperative paradigm [9]. However, the
order of the concepts do not necessarily impose a hierarchy (they
can be used in any order) and learners with different backgrounds
and knowledge in these concepts will not be affected.

The horizontal axis contains the estimated proficiency levels of
programming concepts, inspired by the CEFR scale of proficiency
in language skills [8] adapted to programming contexts. The levels
were designed using the principles of the stage of cognitive develop-
ment in the programming context [9, 22, 32]. Every level matches
the description of a stage of cognitive development, complexity
levels or familiarity with the concept. We defined complexity in
terms of the number and quality of interacting elements [4, 9, 30],
learner’s expertise level and the number of available higher-order
schemas [9] and ability to summarize a program [6, 9, 33]. Overall,
the levels describe the path the learner takes to be fully proficient
in a concept: from total unfamiliarity with the concept, to famil-
iarity with the concept drawn from other contexts, being able to
recognize and comprehend the syntax of the concept in a concrete
program, tracing a program using concrete values with meaningful
naming conventions and finally explain a program using abstract
values in plain English without meaningful conventions. Each level
is assigned with a letter to define its stage and a number for a degree.
Each level has a statement (in quotes, below) to be evaluated by the
learner, who self-assigns to a level.

• "I am unfamiliar with this concept": unfamiliar level (A0);
• "In general, I know what this concept means": At the beginner level
(A1), learners are able to relate to a concept without being able
to identify it in the code. For example, a learner can relate to the
concept of objects without being able to recognize it in the code
or be able to work with it.

• "In general, I can recognize the syntax used by the programming
language to represent this concept": At the elementary level (A2),
learners can recognize the syntax related to a concept in the
code without being able to comprehend it as a whole or transfer
it overall meaning to other contexts. For example, learners can
recognize the term "class" in the code without understanding
how it works or be able to manipulate its functionality.

• "I can read and trace code that uses this concept with a few elements.
I can correctly predict the output of the code using concrete values,
and the code uses descriptive naming conventions": At the interme-
diate level (B1), for example, learners can understand that "for
cont in range of 10" will repeat 10 times, or the function
"uppercase(’ITiCSE’)" will return the capitalized input.

• "I can read and trace code that uses this concept with several dif-
ferent elements. I can correctly predict the output of the code when
this concept uses concrete values, and the code uses descriptive nam-
ing conventions": At the upper intermediate level (B2), learners
can cope with code having multiple abutted loops with inner
conditional structures, for example.

• "I can mostly recognize patterns of using this concept in different
types of code even if the naming conventions are not always stan-
dard or clear. I am able to comprehend the purpose and behavior of
code that uses this concept receiving a range of distinct inputs": At
the advanced level (C1), for example, when tracing the following
code snippet

1 def b(x):
2 n = []
3 for e in x:
4 if (e >= 0):
5 n.append(e)
6 return n

learners can, after careful consideration of elements in the code,
recognize lower-level patterns, such as traversing a collection
(line3), checking for negative numbers (line4), and adding ele-
ments to a list (line 5).

• "I can easily recognize and explain the logic of code using this
concept even if the naming conventions are not always standard or
clear. I can generalize the purpose and behavior of code using this
concept receiving a range of distinct inputs. I am able to summarize
the purpose of the code using this concept in plain English": At the
mastery level (C2), using the above code snippet as an example,
learners can immediately summarize in their own words that the
code represents a filter function which takes a list as input and
outputs all non-negative numbers.

4 CONTEXT AND DATA
This study was conducted during an open online course in program-
ming offered at the University of Helsinki. The course is offered free
as a MOOC and covers the principles of programming in the Java
language. The course is taken both by degree students and students
not affiliated with the University of Helsinki. At the beginning of
the course, students fill in a research consent form, our concepts
instrument, a questionnaire with age, gender and metrics of their
prior programming experience, similar to Feigenspan et al. [11]:
elementary level school courses (elemC), secondary level school

courses (secC), programming courses attended not at elementary
or secondary levels (including online) (otherC), hours programmed
in total (hpt), hours programmed per week (hpw), programming
languages (langs), programming languages you consider yourself
a beginner (beginL), names of the programming languages you
consider yourself a beginner, programming languages you consider
yourself an advanced user (advancL), names of the programming
languages you consider yourself an advanced user, programming
languages you consider yourself an expert (expL), names of the pro-
gramming languages you consider yourself an expert and largest
program code (lp).

The original instrument and questions were created in English
and later translated to Finnish by an expert language instructor and
an expert programming instructor. Answering the questionnaire is
voluntary but includes an incentive raffle of movie tickets. Students
could skip any question, and they could also choose to not to give
research consent and still be included in the raffle.

From a total of 2853 course participants, 2468 answered the
questionnaire2. From respondents, 2249 gave research consent. To
curate the data, we set as exclusion criteria responses in which more
than 2 variables were left unanswered in the concepts instrument, or
if a value considered unreasonable (e.g. hundreds of programming
courses taken) was inserted in more than two variables. If only
one field fitted the exclusion criteria, a value NA was assigned to it.
Open questions with free text were cleaned to remove typos, and the
programming language names had the nomenclatures standardized.
The final data set contains 2196 responses, of which 54.05% reported
to be male, 43.85% female and 2.09% other. The average age of
respondents is 36.93 years (ranging from 11 to 88 years old).

5 RESULTS
Data was collected using an online form and aggregated into a
data set with all 23 variables (n = 2196), which were divided into
three main groups: 8 variables in the concepts group, 2 in personal
information group, and 13 in traditional background questions.
Data was then analyzed using R Studio version 3.5.0.

Due to the nature of the course, respondents have heterogeneous
backgrounds and levels of expertise. Regarding the programming
languages, respondents reported knowledge in (at least) Java (n=561,
25.54%), Python (n=437, 19.89%), C/C++ (n=332, 15.11%), JavaScript
(n=208, 9.47%), C# (n=137, 6.23%), Scala (n=36, 1.63%), Basic (n=35,
1.59%), Assembly (n=25, 1.13%), Lua (n=10, 0.45%), Arduino (n=6,
0.27%), and Scratch (n=3, 0.13%). To investigate if the data is nor-
mally distributed, we performed the Shapiro-Wilk test for all vari-
ables, which are not normally distributed. The concepts variables
have W values equal 0.9, p-value < 0.001, except for objects with
W=0.8. In background variables, W ranged from 0.3 to 0.02; thus, all
tests account for such limitation. Table 1 shows basic descriptive
statistics for all numeric variables from the concept instrument and
background information.

To answer RQ1, we first investigated standard metrics of con-
sistency. The inter-item (II) correlation was estimated using the
corr.test function from the psych package using the Spearman
rank method. Although the data is not normally distributed, the

2We consider a participant being in the course if they complete at least one program-
ming assignment.

Table 1: Descriptive statistics for each variable in the study.

var io exp sel loops lists funcs objs
median 2.00 2.00 2.00 2.00 2.00 2.00 1.00 1.00
mean 2.36 2.27 2.33 2.41 2.26 2.03 1.89 1.53

std.dev 2.06 2.03 2.00 1.97 1.97 1.85 1.82 1.71
elemC secC otherC hpt hpw lp langs beginL advL expL
0.00 0.00 0.00 10.00 0.00 5.00 5.00 1.00 0.00 0.00
0.15 0.33 1.51 511.80 3.32 18119.81 7.66 2.06 0.61 0.12
0.50 0.93 4.00 3290.97 35.16 539470.64 22.90 4.15 1.29 0.59

variances and covariances of variables are finite, making this ap-
proach appropriate. Cronbach’s alpha (CA) was calculated using
the alpha function from the psych package. Table 2 shows II and
CA values of the concepts instrument.

Table 2: Internal consistency metrics.

var io exp sel loops lists funcs objs Mean
II 0.86 0.87 0.87 0.88 0.88 0.85 0.86 0.82 0.86
CA 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

While II correlation and CA metrics provide a good overview
of the internal consistency of the instrument, we also analyzed its
construct validity. To investigate the theoretical latent factors in the
data, a Factor Analysis (FA) was performed using a Principal Axis
Factor with Varimax rotation. The Kaiser-Mayer-Olking measure
(KMO=0.944) and Bartlett’s test of Sphericity (p<0.001) suggested
that the sample is factorable. After three iterations, the analysis
yielded a two-factor solution, when loadings less than .30 were
excluded, as presented in Figure 1. The first factor contains 10 items,
including all variables in the concept instrument, accounting for 65%
of the variance with factor loadings from .300 to .923. The second
factor contains four items, accounting for 12% of the variance with
factor loadings from .362 to .708. The first factor can be labeled as
"concepts" and second as "prior knowledge".

Figure 1: Factor Analysis.

va
r

io ex
p

se
l

lo
op

s

lis
ts

fu
nc

s

ob
js

hp
t

%
of

 V
ar

ia
nc

e

1 0.90 0.91 0.91 0.93 0.92 0.87 0.89 0.82 0.30 0.51 65.37
2 0.53 0.71 0.36 0.62 11.95

Factor

ot
he

rC

ad
va

nc
L

ex
pL

The FA and the Principal Component Analysis (PCA) are tech-
niques often applied in the construction of multi-scale tests to
determine which items load on which scales [7]. While the FA
tests a theoretical model of latent factors causing observed vari-
ables, the PCA reduces correlated observed variables to a smaller
set of important independent composite variables. The PCA was
performed using the pcrcomp function applied to all numeric vari-
ables in the data set. The first component (PC1) explains 44% of the
variance, and the first nine components have a cumulative propor-
tion of variance of 84%. The first component is composed by the
concepts instrument, and the remaining components are a mix of
background variables (e.g. elemC and advancL; age, expL, lp, hpt,
hpw and otherC; beginL and secC).

Since the FA and PCA results suggest that the concepts instru-
ment explains most of the variation in the data, we investigated if
a set of components could emerge within the concepts instrument.
The PCA of the concepts instrument shows a PC1 explaining 88%
of the variance in the data, followed by a PC2 with 4.1% of the
variance. Figure 2 shows the biplot of the components over the
variables, indicating three distinct groups: basic (var, io, exp, sel,
loops), advanced (lists, functions) and expert concepts (objects).

Figure 2: Component analysis of the concepts instrument.
To improve clarity, the image is cropped to remove outliers.

PC1 (88% Explained var.)

PC
2
(4
.1
%
Ex
pl
ai
ne
d
va
r.)

Since the PCA and FCA suggest the existence of three distinct
groups of concepts in the instrument, we investigated RQ2 by
analyzing patterns arising from responses. More specifically, since
these groups suggest a hierarchy of concepts (basic, advanced and
expert), we investigated if the patterns of responses supported such
hierarchy. While it is not possible to generalize this hierarchy to
every learner (e.g. Scala learners in a functional paradigm could
show higher levels of proficiency in functions and objects than
loops), we aimed to identify patterns that suggest a prevalence of
groups identified in the FA and PCA analysis (perhaps more akin
to traditional imperative paradigm instruction).

We filtered the original data set to remove all respondents with
missing values in any concept (n = 2190) and evaluated for each
respondent if the sequence of answers, analyzed by each concept (la-
beled as single in Table 3), could be classified as strictly increasingly
monotonic, increasingly monotonic, strictly decreasingly mono-
tonic, decreasingly monotonic, constant or other. We hypothesized
that patterns of constant, strictly decreasingly monotonic and de-
creasingly monotonic responses could indicate a hierarchy of con-
cepts (basic concepts with high scores, gradually decreasing to low
scores in objects). Of the 538 respondents classified as constant, 269
(50%) evaluated themselves as A0 in all concepts, 98 (18.21%) as A1,
24 (4.46%) as A2, 36 (6.50%) as B1, 24 (4.46%) as B2, 31 (5.76%) as C1,
and 56 (9.85%) as C2.

Given the high amount (56.34%) of non-classified responses, we
investigated if the components described in the PCA could improve
the classification methods. For each respondent, we calculated the
mean of variables within each of the three groups (basic, advanced

Table 3: Patterns in students responses, analyzed by con-
cepts (single) or by groups of concepts (beginner, advanced,
mastery). N = 2190.

Single Ratio Groups Ratio
Monotonically increasing 29 1.32% 119 7.2%Strictly monotonically increasing 0 0
Monotonically decreasing 389

43.28%
490

64.53%Strictly monotonically decreasing 0 576
Constant 538 538
Other 1234 56.34% 469 28.39%

and expert) and observed if this sequence of three values followed an
increasing or decreasing pattern. Respondents previously classified
as constant were excluded from this analysis. In Table 3, the group
column represents this second analysis. The results show a decrease
in the number of non-classified responses (56.34% - 28.39%) and an
increase in the ratio of responses that can be classified as part of a
hierarchy (43.28% - 64.53%).

To answer RQ3, we calculated the correlations between the
concepts instrument and traditional background variables. A corre-
lationmatrix was calculated for the overall data set. For correlations,
we used the Spearman rank method in the rcorr function. Figure 3
shows the correlations among all variables, with non-significant cor-
relations (at p=0.05) marked as crosses. All p-values were adjusted
using the Bonferroni correction method. The strongest correlations
are between concepts and the weakest with age.

Figure 3: Correlation matrix of the overall data, excluding
names of PL variables.

el
em

C

se
cC

hp
w

be
gi

nL

ot
he

rC

np
ct

ot
al

la
ng

s

ob
js

lis
ts

fu
nc

s

lo
op

s

se
l

su
m

ex
p

va
r

io ad
va

nc
L

hp
t

lp

age

elemC

secC

expL

hpw

beginL

otherC

npctotal

langs

objs

lists

funcs

loops

sel

sum

exp

var

io

advancL

hpt

−0.08 0.05

0.29

0.1

0.08

0.14

−0.08

0.1

0.2

0.31

0.14

0.08

0.23

0.2

0.38

0.25

0.1

0.2

0.27

0.36

0.39

0.19

0.37

0.53

0.28

0.38

0.42

0.86

0.05

0.15

0.26

0.3

0.48

0.49

0.49

0.53

0.11

0.11

0.25

0.32

0.53

0.44

0.51

0.53

0.56

0.12

0.13

0.26

0.34

0.51

0.45

0.53

0.56

0.56

0.81

0.11

0.12

0.25

0.33

0.54

0.44

0.53

0.55

0.57

0.86

0.88

0.13

0.14

0.27

0.34

0.54

0.47

0.58

0.61

0.6

0.8

0.85

0.85

0.12

0.14

0.27

0.34

0.54

0.47

0.57

0.6

0.61

0.79

0.86

0.85

0.94

0.11

0.14

0.28

0.34

0.57

0.49

0.58

0.61

0.63

0.87

0.92

0.92

0.95

0.96

0.12

0.15

0.27

0.34

0.53

0.46

0.56

0.59

0.6

0.78

0.84

0.85

0.88

0.89

0.95

0.06

0.13

0.26

0.33

0.56

0.47

0.55

0.57

0.6

0.78

0.82

0.83

0.87

0.88

0.94

0.89

0.09

0.13

0.26

0.32

0.55

0.47

0.55

0.58

0.61

0.79

0.81

0.82

0.88

0.89

0.94

0.89

0.91

0.06

0.14

0.26

0.39

0.56

0.41

0.49

0.52

0.54

0.58

0.61

0.62

0.63

0.64

0.65

0.63

0.64

0.63

0.07

0.18

0.28

0.34

0.63

0.46

0.62

0.65

0.65

0.63

0.64

0.65

0.71

0.71

0.73

0.69

0.7

0.71

0.66

0.11

0.18

0.32

0.37

0.62

0.47

0.59

0.63

0.65

0.63

0.65

0.66

0.71

0.71

0.73

0.7

0.7

0.7

0.7

0.85
−1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1

Non-significant correlations (p = 0.05)

ex
pL

6 DISCUSSION
It is still not usual to collect previous knowledge information of
students in CS courses [5]. The results presented here could support
a larger adoption of prior knowledge investigation methods by pro-
viding a richer and reliable set of instruments. Internal consistency
analysis provides evidence to answer RQ1, showing that the instru-
ment is highly internally consistent. PCA and FA analysis also show
that the instrument is measuring similar but distinct components
of knowledge. PCA also shows that within the instrument there is
fair discrimination among three groups that align very well with
established notions of basic, advanced and expert concepts (at least
in an imperative programming paradigm).

In RQ2, we investigated patterns of responses in the instrument.
More specifically, we wanted to examine if a hierarchy of concepts
(assuming an imperative paradigm with a certain style of code
composition) could be extracted from data. We were able to show
that, overall, responses reflected patterns matching this hierarchy
(a constant or decreasing pattern in scores), matching the FA and
PCA analysis that yields three distinct groups of concepts. While
these findings could be useful to instructional designers and supply
additional information of students evaluations of certain topics,
we are careful to make strong claims of its generalization. Table
3 shows that many responses could not be classified (56.34% and
28.39%). We speculate that some responses may be incoherent (e.g.
responses where the var concept was marked as A0 but all other
concepts marked as C2) and can be attributed to mistakes in filling
the form. Some non-classified answers could reflect different learner
backgrounds (e.g functional programmers rating functions and
objects higher than loops). The instrument itself can be considered
agnostic (programming language and paradigm), and its data allows
the investigation of more diverse patterns.

To answer RQ3, we observe that traditional metrics still have a
low to moderate correlation with each other and the instrument.
Within the instrument, while all variables have a high correlation,
objects can be regarded as a distinct element (also supported by
the PCA). Given the diverse programming languages background
of respondents and the high mean of their ages, we conjecture
that, in general, learners were exposed to imperative paradigms
with little (or at late stage) exposure to objects. Concerning the
background variables, the largest code produced and total hours of
experience still have high correlations with the instrument variables
and background variables.

It is worth noting how little the courses at elementary and high
school levels correlate with other variables. Given the age of some
respondents, it is possible that a very low number of them were
actually exposed to programming at these levels. Our data also
indicates a very small number of students exposed to languages
currently presented at ES or HS, such as Scratch or Arduino. A
number of respondents reported a very high number of courses (up
to 50 courses). It is likely that the emergence of micro-courses that
may take just a few hours to complete biases these results. Inter-
estingly, the number of programming languages in which learners
consider themselves as advanced users have a strong correlation
with the instrument. We conjecture that learners with these levels
of exposure and ability have enough knowledge to self-evaluate
more reliably.

In language education, these kinds of instruments have been
adopted for administrative and educational purposes. In administra-
tive contexts, universities may require that students need to prove a
certain minimum language skills level in a foreign language before
accepted to begin their studies, such as B2 or C1 level. The official
estimation of language skills is provided by language professionals.
However, students can use a CEFR grid to self-evaluate their skills
and estimate whether they should participate in language courses
to obtain required skills. In educational contexts, language courses
can specify a prerequisite level that students should have before en-
tering a course. This ensures students do not enroll in courses that
exceed their skills level. In computing education, a widely adopted
common framework for skills levels could offer similar benefits for
learners, instructors and administrators.

As limitations of this work, we acknowledge that self-evaluation
can suffer from poor reliability and accuracy. It is not clear how
truthful students are in their responses, how well they compre-
hended statements in the instrument or how much effort they
devoted to answering the questions. It is also possible that learn-
ers with distinct backgrounds have different standards and self-
evaluate in different ways. Learners with high competency may
underestimate and learners with low competency overestimate
their knowledge.

7 CONCLUSION
This article has introduced and evaluated an instrument for lan-
guage independent evaluation of prior programming knowledge for
introductory programming courses. The instrument was inspired
by language learning self-evaluation instruments, such as CEFR.
Unlike traditional approaches and instruments measuring prior
programming knowledge, our instrument focuses on core areas
relevant to learning programming. The instrument can provide a
teacher with an overview of students’ prior knowledge on core
areas and gives students an opportunity to evaluate and reflect on
their current level of knowledge.

Our analysis with 2196 responses suggests that the instrument
is internally consistent. Principal component analysis of the re-
sponses identifies three main components: (1) basic programming
concepts, (2) advanced concepts (or perhaps, functional program-
ming concepts?), and (3) object-oriented programming concepts.
Metrics used by previous studies are still relevant and correlate
well with the instrument.

Our future work aims to analyze how responding to the instru-
ment influences student behavior in introductory programming
courses and how these responses correlate with other instruments
for assessing programming competency, such as course grades and
the SCS1 [26]. We plan to investigate if this instrument allows the
detection of distinct patterns in students answers, which could be
matched to backgrounds in different paradigms and programming
languages, yielding distinct hierarchies. Finally, we plan to investi-
gate pertinent issues with self-reporting, focusing on how students’
self-reported knowledge evolves as they proceed in introductory
programming courses. We will refine the instrument by adding
detailed descriptions and examples for each concept and each level,
creating statements more contextualized. We will continue to ex-
tend the instrument to include measures of code writing ability in
the future.

REFERENCES
[1] [n. d.]. The International English Language Testing System (IELTS). https:

//www.ielts.org
[2] Alireza Ahadi, Raymond Lister, Heikki Haapala, and Arto Vihavainen. 2015.

Exploring machine learning methods to automatically identify students in need
of assistance. In Proceedings of the eleventh annual International Conference on
International Computing Education Research. ACM, 121–130.

[3] Lorin W Anderson, David R Krathwohl, Peter W. Airasian, Kathleen A. Cruik-
shank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock.
2001. A taxonomy for learning, teaching, and assessing: A revision of Bloom’s
taxonomy of educational objectives (abridged ed.). Addison Wesley Longman. 302
pages.

[4] Jens F Beckmann. 2010. Taming a beast of burden–On some issues with the con-
ceptualisation and operationalisation of cognitive load. Learning and instruction
20, 3 (2010), 250–264.

[5] Janet Carter, Su White, Karen Fraser, Stanislav Kurkovsky, Colette McCreesh,
and MalcolmWieck. 2010. ITiCSE 2010 working group report motivating our top
students. In Proceedings of the 2010 ITiCSE working group reports. ACM, 29–47.

[6] Tony Clear, Anne Philpott, Phil Robbins, and Simon. 2009. Report on the Eighth
BRACElet Workshop: BRACElet Technical Report 01/08. Bulletin of Applied
Computing and Information Technology 7, 1 (2009).

[7] Andrew L Comrey. 1988. Factor-analytic methods of scale development in per-
sonality and clinical psychology. Journal of consulting and clinical psychology 56,
5 (1988), 754.

[8] Council of Europe. 2001. The Common European Framework of Reference for Lan-
guages: Learning, teaching, assessment. Strasbourg. https://rm.coe.int/1680459f97

[9] Rodrigo Duran, Juha Sorva, and Sofia Leite. 2018. Towards an Analysis of Pro-
gram Complexity From a Cognitive Perspective. In Proceedings of the 2018 ACM
Conference on International Computing Education Research. ACM, 21–30.

[10] Educational Testing Service (ETS). [n. d.]. The TOEFL®Test. https://www.ets.
org/toefl

[11] Janet Feigenspan, Christian Kästner, Jörg Liebig, Sven Apel, and Stefan Hanen-
berg. 2012. Measuring programming experience. In Program Comprehension
(ICPC), 2012 IEEE 20th International Conference on. IEEE, 73–82.

[12] Michael J Gordon. 1991. A review of the validity and accuracy of self assessment
in health professions training. Academic medicine 66, 12 (1991), 762–769. http:
//dx.doi.org/10.1097/00001888-199112000-00012

[13] Dianne Hagan and Selby Markham. 2000. Does It Help to Have Some Program-
ming Experience Before Beginning a Computing Degree Program?. In Proceedings
of the 5th Annual SIGCSE/SIGCUE ITiCSEconference on Innovation and Technology
in Computer Science Education (ITiCSE ’00). ACM, New York, NY, USA, 25–28.
https://doi.org/10.1145/343048.343063

[14] Edward Holden and Elissa Weeden. 2003. The impact of prior experience in an
information technology programming course sequence. In Proceedings of the 4th
conference on Information technology curriculum. ACM, 41–46.

[15] Edward Holden and Elissa Weeden. 2004. The experience factor in early program-
ming education. In Proceedings of the 5th conference on Information technology
education. ACM, 211–218.

[16] Päivi Kinnunen and Lauri Malmi. 2006. Why students drop out CS1 course?. In
Proceedings of the second international workshop on Computing education research.
ACM, 97–108.

[17] Päivi Kinnunen, Maija Marttila-Kontio, and Erkki Pesonen. 2013. Getting to know
computer science freshmen. In Proceedings of the 13th Koli Calling International
Conference on Computing Education Research. ACM, 59–66.

[18] Michael S Kirkpatrick and Chris Mayfield. 2017. Evaluating an Alternative CS1
for Students with Prior Programming Experience. In Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science Education. ACM, 333–338.

[19] Chinmay Kulkarni, Koh Pang Wei, Huy Le, Daniel Chia, Kathryn Papadopoulos,
Justin Cheng, Daphne Koller, and Scott R. Klemmer. 2013. Peer and self assessment
in massive online classes. ACM Transactions on Computer-Human Interaction 20,
6 (2013), 1–31. https://doi.org/10.1145/2505057

[20] Juho Leinonen, Krista Longi, Arto Klami, and Arto Vihavainen. 2016. Au-
tomatic Inference of Programming Performance and Experience from Typ-
ing Patterns. In Proceedings of the 47th ACM Technical Symposium on Com-
puting Science Education (SIGCSE ’16). ACM, New York, NY, USA, 132–137.
https://doi.org/10.1145/2839509.2844612

[21] Raymond Lister. 2011. Concrete and Other Neo-Piagetian Forms of Reasoning in
the Novice Programmer. Proceedings of the Thirteenth Australasian Computing
Education Conference Ace (2011), 9–18.

[22] Raymond Lister. 2016. Toward a Developmental Epistemology of Computer
Programming. In Proceedings of the 11th Workshop in Primary and Secondary
Computing Education. ACM, 5–16.

[23] Mike Lopez, Jacqueline Whalley, Phil Robbins, and Raymond Lister. 2008. Rela-
tionships between reading, tracing and writing skills in introductory program-
ming. In Proceedings of the fourth international workshop on computing education
research. ACM, 101–112.

[24] Andrew Luxton-Reilly, Brett A Becker, Yingjun Cao, Roger McDermott, Claudio
Mirolo, Andreas Mühling, Andrew Petersen, Kate Sanders, Jacqueline Whalley,
et al. 2018. Developing Assessments to Determine Mastery of Programming
Fundamentals. In Proceedings of the 2017 ITiCSE Conference on Working Group
Reports. ACM, 47–69.

[25] Matthias M Müller. 2004. Are reviews an alternative to pair programming?
Empirical Software Engineering 9, 4 (2004), 335–351.

[26] Miranda C. Parker, Mark Guzdial, and Shelly Engleman. 2016. Replication, Val-
idation, and Use of a Language Independent CS1 Knowledge Assessment. In
Proceedings of the 2016 ACM Conference on International Computing Education
Research (ICER ’16). ACM, New York, NY, USA, 93–101. https://doi.org/10.1145/
2960310.2960316

[27] John A. Ross. 2006. The Reliability , Validity , and Utility of Self-Assessment.
Practical assessment, research and evaluation 10 (2006), 1–13. https://doi.org/10.
1016/j.aspen.2014.06.014

[28] Wolfgang Schnotz and Christian Kürschner. 2007. A reconsideration of cognitive
load theory. Educational psychology review 19, 4 (2007), 469–508.

[29] Judy Sheard, Angela Carbone, Selby Markham, A J Hurst, Des Casey, and Chris
Avram. 2008. Performance and Progression of First Year ICT Students. In Proceed-
ings of the Tenth Conference on Australasian Computing Education - Volume 78
(ACE ’08). Australian Computer Society, Inc., Darlinghurst, Australia, Australia,
119–127. http://dl.acm.org/citation.cfm?id=1379249.1379261

[30] John Sweller. 2010. Element interactivity and intrinsic, extraneous, and germane
cognitive load. Educational psychology review 22, 2 (2010), 123–138.

[31] Harriet G Taylor and Luegina C Mounfield. 1994. Exploration of the relationship
between prior computing experience and gender on success in college computer
science. Journal of educational computing research 11, 4 (1994), 291–306.

[32] Donna Teague. 2015. Neo-Piagetian theory and the novice programmer. Ph.D.
Dissertation. Queensland University of Technology.

[33] Donna Teague, Malcolm Corney, Alireza Ahadi, and Raymond Lister. 2013. A
qualitative think aloud study of the early neo-piagetian stages of reasoning in
novice programmers. In Proceedings of the Fifteenth Australasian Computing
Education Conference-Volume 136. Australian Computer Society, Inc., 87–95.

[34] Allison Elliott Tew andMark Guzdial. 2010. Developing a Validated Assessment of
Fundamental CS1 Concepts. In Proceedings of the 41st ACM Technical Symposium
on Computer Science Education (SIGCSE ’10). ACM, New York, NY, USA, 97–101.
https://doi.org/10.1145/1734263.1734297

[35] Richard C. Thomas, Amela Karahasanovic, and Gregor E. Kennedy. 2005. An
Investigation into Keystroke Latency Metrics As an Indicator of Programming
Performance. In Proceedings of the 7th Australasian Conference on Computing
Education - Volume 42 (ACE ’05). Australian Computer Society, Inc., Darlinghurst,
Australia, Australia, 127–134. http://dl.acm.org/citation.cfm?id=1082424.1082440

[36] Phil Ventura and Bina Ramamurthy. 2004. Wanted: CS1 Students. No Experience
Required. In Proceedings of the 35th SIGCSE Technical Symposium on Computer
Science Education (SIGCSE ’04). ACM, New York, NY, USA, 240–244. https:
//doi.org/10.1145/971300.971387

[37] Arto Vihavainen, Jonne Airaksinen, and Christopher Watson. 2014. A systematic
review of approaches for teaching introductory programming and their influ-
ence on success. In Proceedings of the tenth annual conference on International
computing education research. ACM, 19–26.

[38] SusanWiedenbeck, Deborah Labelle, and Vennila NR Kain. 2004. Factors affecting
course outcomes in introductory programming. In 16th Annual Workshop of the
Psychology of Programming Interest Group.

[39] ChrisWilcox andAlbert Lionelle. 2018. Quantifying the Benefits of Prior Program-
ming Experience in an Introductory Computer Science Course. In Proceedings of
the 49th ACM Technical Symposium on Computer Science Education. A, 80–85.

[40] Brenda Cantwell Wilson and Sharon Shrock. 2001. Contributing to Success in an
Introductory Computer Science Course: A Study of Twelve Factors. In Proceedings
of the Thirty-second SIGCSE Technical Symposium on Computer Science Education
(SIGCSE ’01). ACM, New York, NY, USA, 184–188. https://doi.org/10.1145/364447.
364581

[41] Barry J Zimmerman. 2002. Becoming a Self-Regulated Learner: An Overview.
Theory into practice 41, 2 (2002), 64–70. https://doi.org/10.1207/s15430421tip4102

https://www.ielts.org
https://www.ielts.org
https://rm.coe.int/1680459f97
https://www.ets.org/toefl
https://www.ets.org/toefl
http://dx.doi.org/10.1097/00001888-199112000-00012
http://dx.doi.org/10.1097/00001888-199112000-00012
https://doi.org/10.1145/343048.343063
https://doi.org/10.1145/2505057
https://doi.org/10.1145/2839509.2844612
https://doi.org/10.1145/2960310.2960316
https://doi.org/10.1145/2960310.2960316
https://doi.org/10.1016/j.aspen.2014.06.014
https://doi.org/10.1016/j.aspen.2014.06.014
http://dl.acm.org/citation.cfm?id=1379249.1379261
https://doi.org/10.1145/1734263.1734297
http://dl.acm.org/citation.cfm?id=1082424.1082440
https://doi.org/10.1145/971300.971387
https://doi.org/10.1145/971300.971387
https://doi.org/10.1145/364447.364581
https://doi.org/10.1145/364447.364581
https://doi.org/10.1207/s15430421tip4102

