
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Heinonen, Ava; Hellas, Arto
Exploring the instructional efficiency of representation and engagement in online learning
materials

Published in:
UKICER 2020 - Proceedings of the 2020 Conference on United Kingdom and Ireland Computing Education
Research

DOI:
10.1145/3416465.3416470

Published: 03/09/2020

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Heinonen, A., & Hellas, A. (2020). Exploring the instructional efficiency of representation and engagement in
online learning materials. In UKICER 2020 - Proceedings of the 2020 Conference on United Kingdom and
Ireland Computing Education Research (pp. 38-44). ACM. https://doi.org/10.1145/3416465.3416470

https://doi.org/10.1145/3416465.3416470
https://doi.org/10.1145/3416465.3416470


Exploring the Instructional Efficiency of Representation and
Engagement in Online Learning Materials
Ava Heinonen

ava.heinonen@aalto.fi
Aalto University
Espoo, Finland

Arto Hellas
arto.hellas@aalto.fi
Aalto University
Espoo, Finland

ABSTRACT
Using two 2 x 3 in-situ experiments in an introductory program-
ming course, we study the effect of representation and engage-
ment on the instructional efficiency of learning materials. In the
experiments, we controlled for used representation and the level
of engagement and accounted for prior experience and prior cog-
nitive effort. We observe that analogical representations with little
engagement are more beneficial for those already familiar with the
topic. No significant effect from engagement or prior experience
was observed when students studied using traditional representa-
tions. Low cognitive effort before studying was related to studying
being less cognitively demanding, regardless of the condition. No
single way of presenting information seems to work better or worse
universally for all participants.

CCS CONCEPTS
• Social and professional topics → Computer science educa-
tion; • Applied computing → Interactive learning environ-
ments; E-learning.
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1 INTRODUCTION
A variety of pedagogical practices that can increase students’ re-
tention and learning in introductory programming courses ex-
ist [19, 30, 41]. These include crafting learning materials that are
relevant to the particular audience, such as contextualizing the
topic using e.g. media as the main theme [12], as well as using
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practices that pace students’ learning and increase classroom col-
laboration [30]. One particular form of support is the instructional
materials. The way how materials are structured and presented can
improve learning outcomes [21, 38], and the type of engagement
constructed into the learning materials, e.g. reading vs answering
questions, also has an effect on learning outcomes [26, 35, 42].

In the last decades, there has been an increase in the number
of blended and online opportunities for learning programming.
Currently, there are several initiatives both in the UK and around
the world that aim to bring computing to the masses [2, 6, 10].
With the increasing number of participants and consequently a
broader variety of learners’ backgrounds, it is crucial to re-assess
how instructional materials should be constructed. In this work,
we are interested in the role of representation and engagement in
introductory programming materials.

Our work focuses on the instructional efficiency of learning
materials in an introductory programming course. Instructional
efficiency is measured using a procedure proposed by Tuovinen and
Paas [37]. In our experiments, students were shown instructional
materials with two different representations (analogical vs tradi-
tional) and three different engagement levels (plain text, static visu-
alizations and text, interactive slideshow with embedded text and
questions). Our goal is to quantify the combined effect of representa-
tion and engagement on the instructional efficiency of instructional
materials used in learning programming.

The closest matches to our work are the works on engagement
taxonomy, e.g. [14, 25], observing that increased engagement leads
to better learning, the works on notional machines [9], which study
pedagogical devices for teaching programming, and the work on
cognitive load on e-learning, e.g. [40], suggesting ways for con-
structing instructional materials. Our work takes steps towards
combining these threads of research.

This article is structured as follows. Next, we outline the theo-
retical frameworks on which this work builds, including relevant
theories from learning and cognition and designing instructional
materials. Section 3 outlines the methodology of this research, in-
cluding the research questions and details of the context in which
this study took place. Section 4 outlines the results of our experi-
ments, which are further discussed in Section 5. Finally, Section 6
summarizes our findings and outlines directions for future research.

2 BACKGROUND
2.1 Learning and cognition
The most widely used framework for representing human cognitive
architecture divides memory into three sections: sensory memory,
working memory, and long-term memory [15, 22, 27]. Learning
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occurs when information is processed in working memory and
stored in the long termmemory. While long-termmemory is almost
unlimited in capacity, the working memory can hold only a few
pieces of information at a time [22]. Learning complex knowledge
involves processing information in working memory, chunking that
information into information structures, i.e. schemas [36], which
are then stored into the long-term memory. A schema can be later
retrieved from long-term memory, and although it may consist
of complex structured information, it will take only “a single slot”
from working memory.

In essence, schemas govern the way we acquire new knowl-
edge [20]. If no existing schema for a problem exists, we apply
generic problem-solving strategies to find appropriate solutions,
creating a new schema. If a relevant schema exists, we recall it to
our working memory and either remodel the existing schema to in-
corporate any new relevant information, or if the new information
does not fit within our existing schema, reject it [20, 29].

Processing too many pieces of information at the same time
overloads the working memory capacity, which leads to a situation
where information cannot be processed effectively, compromising
learning [29]. The burden that processing of information causes
to the working memory is referred to as cognitive load. Cognitive
load can be caused by properties of information itself (intrinsic
cognitive load), properties of instructional material (extraneous
cognitive load), or the burden to the working memory caused by
processing information (germane cognitive load) [24].

2.2 Instructional materials
Ideally, instructional materials should aim to decrease extraneous
and intrinsic cognitive load and promote germane cognitive load.
Multiple ways of how the design of instructional material affects
cognitive load have been identified [39]. For example, intrinsic cog-
nitive load can be managed using a low-to-high-fidelity strategy,
increasing the number of interacting elements over time by increas-
ing the details in the material [40]. This strategy aids novices with
no existing schema on the topic as low-fidelity material with less
interacting elements causes less intrinsic cognitive load.

In the context of computer science education research and pro-
gram visualizations, one particular theory of interest to us is the
engagement taxonomy. It argues that learning from visualizations
is improved when the visualization engages students in an active
learning activity [26]. In principle, higher levels of engagement
between a student and a visualization lead to higher levels of un-
derstanding and consequently better learning [26]. The taxonomy
details six levels of engagement between a student and a visual-
ization, ranging from no viewing, where there is no visualization
to engage with, to presenting, where self-constructed visualiza-
tions are presented to others [25]. In our work, we consider the
first three levels of the engagement taxonomy, which are: (1) No
viewing (no visualization), (2) viewing (visualization is passively
viewed), and (3) responding (student is prompted to interact with
the visualization) [26].

2.3 Notional machines
Teaching and learning programming is heavily intertwined with
learning the inner workings of a computer – or an abstraction of

it – to form an understanding of how a program is executed. In
computer science education research, such abstractions are often
referred to as notional machines [7, 8, 33], originally framed as
“the idealised model of the computer implied by the constructs of the
programming language” [8].

More recent research refers to the notional machine as a ped-
agogical device used for supporting the understanding of some
aspect of a program or programming, often used in the context of
learning e.g. a programming concept [9]. Such notional machines
include e.g. tools that generate visualizations from code such as
Jeliot [18], UUhistle [34] and Online Python Tutor [11] as well as
manually drawn visualizations present e.g. in textbooks. In our
work, we use two types of hand-drawn visualizations, where one
type links the learned concepts to real-world phenomena, and the
other type follows a more traditional textbook-like format with
arrows and boxes.

2.4 Evaluating instructional efficiency
Instructional efficiency can be evaluated in multiple ways. On a
macro level, one can use course pass rates [32] to measure the
instructional efficiency of teaching approaches [41]. A step further,
leading to micro-level assessment, is the use of pre- and post-testing
to assess learning gain (difference in knowledge between pre- and
post-testing) of instructional activity. Neither of these approaches,
however, account for the mental effort invested during learning.

Several approaches for measuring the mental effort and cognitive
load exist. These range from subjective rating scales [13, 23, 27, 28]
to dual-task methodology, where the performance in a secondary
task is used as a proxy for cognitive load [3, 31], and to using
physiological measures such as skin conductivity or heart rate
variance for assessing mental effort [1, 27].

The cognitive load caused by a learning task and the learning out-
comes can be used to calculate instructional efficiency scores [39].
They can be used to measure the quality of learning outcomes –
acquisition of efficient cognitive schemata is indicated by combi-
nations of high performance and low mental effort [39]. In our
work, for assessing instructional efficiency, we use the instructional
efficiency formula by Tuovinen and Paas [37] which is as follows.

𝐸𝑓 𝑓 𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑃 − 𝐸𝑙 − 𝐸𝑡√

3
In the formula, 𝐸𝑓 𝑓 𝑖𝑐𝑖𝑒𝑛𝑐𝑦 stands for instructional efficiency, 𝑃

is normalized test performance, 𝐸𝑙 is normalized learning effort,
and 𝐸𝑙 is normalized test effort.

3 METHODOLOGY
3.1 Research questions
The research questions of our work are as follows:
RQ1 How do representation and engagement level affect the in-

structional efficiency of learning materials?
RQ2 How does prior experience on the topic under study affect

the instructional efficiency of the learning material?
RQ3 How does cognitive effort prior to studying affect the in-

structional efficiency of the learning material?
In this work, the term representation refers to two representation

types (see Fig. 1): Analogical representations anchor the presentation
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to real-world artefacts and concepts such as presenting a list as a
(shopping) list on a notepaper. Traditional representations follow
a format typically seen in programming text-books and program
visualization tools, such as presenting a list as a horizontally aligned
set of boxes. Traditional representations are also the main format
in the context in which the study was conducted. Conversely, the
term engagement level refers to the Engagement taxonomy (dis-
cussed in subsection 2.2). Our focus is on the first three levels of
the engagement taxonomy; no viewing, viewing, and responding.
The no viewing level corresponds to plain text (i.e. no visualiza-
tions), viewing corresponds to plain text and static visualizations,
and responding refers to interactive slideshow with embedded text,
visualizations, and questions.

3.2 Study context
The study was conducted in two instances of a 14-week introduc-
tory Java programming course, offered in Finnish. The difference
between the course instances was the delivery format; one was
offered fully online, while the other had voluntary lectures and
labs. Both instances use the same materials: an online workbook
that contains text sections detailing programming concepts blended
with questionnaires and programming exercises. When students
create an account to the course system, they are asked for permis-
sion to use their data for research. Data only from students who
gave permission for research was used for this study. In this article,
we have merged the responses from the two instances and refer to
them as one course.

3.3 Experiments and participants
Two experiments were conducted on the 11th week of the course.
The part teaches internal implementations of ArrayList andHashMap
and working with multidimensional data using arrays. Experimen-
tal instructional materials were embedded into the two chapters,
referred later to as the “Hash table experiment” and the “Multidi-
mensional arrays experiment”. Students in the course had previ-
ously learned to work with Java’s HashMap class and with one-
dimensional arrays.

The study followed a 2 x 3 design with representation type and
engagement level as the factors. A total of 123 unique students
were included in the study. 121 students completed the hash table
experiment and 114 completed the multidimensional arrays experi-
ment. Students were randomly assigned to one of the six treatment
groups (controlled by a learning management system), resulting in
group sizes shown in Table 1.

The materials used for the experiment consisted of a pre-test
questionnaire, treatment group -specific learning materials, and a
post-test questionnaire. Students received course points for answer-
ing the questionnaires.

The pre-test questionnaire contained three multiple-choice ques-
tions about the experiment topic, a self-evaluation prior knowledge
question about the topic, the NASA Task Load Index questionnaire
(NASA-TLX) [13] asking students to rate their mental and physical
effort during the last hour, and the Paas mental effort scale [28] used
for rating their mental effort answering the pre-test questionnaires.

Once the students had studied the instructional materials, they
were given a post-test questionnaire. Students were asked to rate

Figure 1: Example showing a list using analogical represen-
tation style (on top) and traditional representation style (at
the bottom).

Table 1: Treatment groups and their sizes. Ht refers to Hash
table experiment, and Ma Multidimensional arrays experi-
ment. Total column has the total number of participants in
each group.

Group no. Representation Engagement Ht Ma Total

1 Analogical No viewing 16 15 31
2 Analogical Viewing 15 12 27
3 Analogical Responding 24 23 47

4 Traditional No viewing 30 21 51
5 Traditional Viewing 16 21 37
6 Traditional Responding 20 22 42

the mental effort of studying the material using the Paas mental
effort scale, answer three multiple-choice questions that assessed
students understanding of the topic, and rate the mental effort of
answering the multiple-choice questionnaire again using the Paas
mental effort scale.

3.4 Analysis
Instructional efficiency was measured using the approach proposed
by Tuovinen and Paas [37] (discussed in subsection 2.4). To measure
the learning gain for each treatment group, the average difference
between the pre- and post-test scores was calculated.

Statistical significance of the effects was tested using a linear
model. The dependent variable was instructional efficiency, and
the explanatory variables were treatment group, experiment, prior
knowledge, pre-test score, pre-test cognitive load, NASA-TLX an-
swers, and interaction of treatment group and experiment. Interac-
tions among the other explanatory variables were examined, but
they were not statistically significant. Moreover, the homogeneity
of the variance and the normality of the distribution of the residual
term was checked using scatterplots and normal probability plots.

Unless otherwise noted, group comparisons are conducted using
ANOVA. When reporting results, up to 4 digits of the F-test statistic
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are presented, and the p-value is rounded to three decimals. When
discussing statistical significance, we use p < 0.05 as a boundary for
statistical significance. When reporting p-values, we do not correct
for multiple comparisons, but instead outline all conducted tests
for transparency.

4 RESULTS
4.1 Overview
Table 2 describes the mean prior knowledge, pre-test score, pre-test
cognitive load, study cognitive load, post-test score, test cognitive
load and learning gain for combined data and for both experiments.

Table 2: Mean values of measured variables in the combined
data set, Hash table (Ht) experiment, and Multidimensional
arrays (Ma) experiment.

Measurement (max) Combined Ht Ma

Prior knowledge (3) 1.39 1.96 0.78
Pre-test score (3) 1.14 0.93 1.35
Pre-test cognitive load (9) 2.98 3.22 2.73

Study cognitive load (9) 3.30 3.63 2.96
Post-test score (3) 2.46 2.70 2.19
Post-test cognitive load (9) 2.99 2.77 3.23

Learning gain (3) 1.32 1.77 0.84

4.2 Engagement and representation
When combining data from both experiments, there were no statis-
tically significant differences between the treatment groups in mean
instructional efficiency (F(5,220)=0.6406, p=0.669) or learning gain
(F(5,220)=0.6483, p=0.663). Table 3 describes the mean instructional
efficiency, study cognitive load, test cognitive load and post-test
scores by treatment group for the two experiments.

The differences in mean instructional efficiency between the
treatment groups in the hash table experiment were not statisti-
cally significant (F(5,112)=2.166,p=0.064), and there were no statis-
tically significant differences between the mean post-test scores
(F(5,115)=1.637, p=0.156) or learning gain (F(5,115)=1.249, p=0.291)
between the treatment groups.

In the multidimensional arrays experiment the differences in
mean instructional efficiency (F(5,105)=0.8264,p=0.510) or in mean
learning gain (F(5,108)=0.5379, p=0.747) between the treatment
groups were also not statistically significant.

4.3 Prior knowledge
Three measures of prior knowledge were used: self-reported prior
knowledge, pre-test score, and experiment identifier. In the pre-test
questionnaire, participants rated their knowledge on the upcom-
ing topic and answered a multiple-choice questionnaire about the
topic, providing prior knowledge and pre-test score respectively.
The participants’ backgrounds coming into the experiments were
also different - they had studied an introductory chapter on hash
tables previously on the course, which gave all participants some

Table 3: Instructional efficiency, study cognitive load, test
cognitive load and test result means by treatment group.
Group labels are A=Analogical, T=Traditional, N = No view-
ing, V = Viewing, and R Responding.

Hash table experiment

Group Inst. eff. Study CL Test CL Post-test score

A-N 0.75 2.94 2.19 2.88
A-V 0.64 3.20 2.53 3.00
A-R 0.03 3.38 3.04 2.55

T-N -0.13 4.00 3.03 2.61
T-V -0.01 3.94 2.94 2.70
T-R 0.12 4.00 2.55 2.70

Multidimensional arrays experiment

Group Inst. eff. Study CL Test CL Post-test score

A-N -0.27 3.07 3.27 2.13
A-V -0.74 3.42 3.75 1.92
A-R 0.05 3.09 2.91 2.40

T-N -0.15 2.71 3.29 2.31
T-V -0.17 2.76 3.29 2.31
T-R -0.10 2.91 3.14 2.22

prior knowledge on the topic, while the they had not studied mul-
tidimensional arrays on the course yet, making it a new topic to
majority of the participants.

In the hash table experiment, from the 121 participants, 116
evaluated their prior knowledge as high, 5 evaluated their prior
knowledge as mediocre, and no participant considered that they
had no prior knowledge. In the multidimensional arrays experi-
ment from the 114 participants, 18 evaluated their prior knowledge
as high, 53 evaluated their prior knowledge as mediocre, and 43
considered that they had no prior knowledge. Self-evaluated prior
knowledge had no significant effect on the instructional efficiency.

When combining data from both experiments, there were sta-
tistically significant differences in mean instructional efficiency
between participants with different pre-test scores (F(3,220)=9.48,
p=0.002). Similarly, statistically significant differences were ob-
served in the hash table experiment (F(1,112)=5.00,p=0.003). Post-
hoc comparisons using Tukey HSD indicated that the mean instruc-
tional efficiency was significantly different for participants with pre-
test score of 0 (M=-0.27 SD=1.53 in combined data, M=0.07 SD=1.53
in hash table experiment) than for participants with pre-test score of
3 (M=0.25 SD=1.23 in combined data, M=0.80 SD=1.18 in hash table
experiment). In the multidimensional arrays experiment the differ-
ences were not statistically significant (F(1,105)=3.47,p=0.065). The
pre-test score did not have any significant interaction effect with
the treatment group in any data-set. Figure 2 shows instructional
efficiency by pre-test score for both experiments.

The interaction between the treatment group and the experiment
(F(5,210)=3.89,p=0.002) is shown in Figure 3. Post-hoc comparison
using Tukey HSD indicates significant differences in mean instruc-
tional efficiency of treatment groups 1 and 2 between the two
experiments.
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Figure 2: Instructional efficiency by pre-test score for both
experiments

Figure 3: Instructional efficiency by treatment group for
both experiments. Treatment groups 1-3 correspond to ana-
logical representations with No viewing, Viewing, and Re-
sponding. Treatment groups 4-6 correspond to traditional
representations with No viewing, Viewing, and Responding.

4.4 Prior cognitive load
Participants’ cognitive load prior to the test was measured using
two approaches. First, participants reported on their effort invested
during the last hour using the NASA-TLX questionnaire. After
answering the pre-test questions participants were also asked to
rate the mental effort of answering the questions.

There were no statistically significant differences in mean in-
structional efficiency between participants who reported different
levels of prior cognitive load in the NASA-TLX questionnaire.

There were statistically significant differences in mean instruc-
tional efficiency between participants who reported different levels
of cognitive load related to responding to the pre-test questions
(F(8,210)=84.010, p < 0.001). Post-hoc comparisons using Tukey HSD
confirm that there are significant differences in mean instructional
efficiency between participants who reported low cognitive load
answering the pre-test questions and participants who reported
high cognitive load. No significant interaction effect was observed
between the cognitive load related to responding to the pre-test

questions and the treatment group. Figure 4 shows the relationship
of instructional efficiency and pre-test cognitive load.

Figure 4: Instructional efficiency by pretest cognitive load
score (combined)

When considering the hash table experiment and the multidi-
mensional arrays experiment separately, there are also statistically
significant differences in mean instructional efficiency between
participants who reported different levels of cognitive load an-
swering the pre-test questions (F(8,112)=63.56,p<0.001 in the hash
table arrays experiment and F(8,105)=34.16,p < 0.001 in the multidi-
mensional arrays experiment). Again post-hoc comparisons using
Tukey HSD confirm that there are significant differences in mean
instructional efficiency between participants who reported low cog-
nitive load answering the pre-test questions and participants who
reported high cognitive load.

5 DISCUSSION
5.1 Engagement and representation
Concerning the compound effect of engagement and representation,
we expected that higher engagement would lead to greater learning
efficiency, evidenced by lower test cognitive load and higher test
results for both representation types. We also expected analogi-
cal representations to lead to lower study cognitive load for all
engagement levels, leading to higher instructional efficiency.

Our expectations were largely proven wrong. We did not identify
statistically significant differences between the treatment groups
when looking at the combined data. This indicates that although
certain treatment groups performed better for certain subcategories
of participants, no single way of presenting information seems to
work better or worse universally for all participants.

5.2 Prior knowledge and instructional
efficiency

Concerning the effect of prior knowledge on instructional efficiency,
we expected that analogical representations would outperform tra-
ditional representations for those with low or no prior knowledge.

When the data from the two experiments was analyzed together,
we did not see any differences between the treatment groups for
participants with different levels of prior knowledge but high pre-
test scores led to better instructional efficiency overall. We mea-
sured significant differences in the instructional efficiency of the
no viewing and viewing groups with analogical representation
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between the two experiments. In the hash table experiment, ana-
logical representations with no viewing outperformed all other
groups, while higher engagement levels led to a decrease in instruc-
tional efficiency. Overall we measured lower study cognitive load
on analogical representations than on traditional representations.

For the multidimensional arrays experiment, where students
mostly had no previous knowledge on the topic, we saw lower in-
structional efficiency in treatment groups 1 and 2 compared to the
hash table experiment, but within the experiment no statistically
significant differences between the treatment groups were identi-
fied. For both representation types, the viewing group performed
slightly worse than the no viewing or responding groups, and the
responding group performed the best. For the multidimensional
arrays experiment, we measured lower study cognitive load on
traditional representations than on analogical representations.

We hypothesize that the high performance of analogical repre-
sentations with no viewing in the hash table test can be explained by
the expertise reversal effect [17]. The analogical representations are
easily understandable for participants with some prior knowledge
and visual or interactive elements may be redundant and hinder
learning. Overall, the results between the experiments indicate that
participants with higher self-reported prior knowledge achieve
higher instructional efficiency with analogical representations in a
text format. On the other hand, participants with low self-reported
prior knowledge achieve higher instructional efficiency on tradi-
tional representations that prompt students to engage with them.

5.3 Prior cognitive load and instructional
efficiency

Cognitive load caused by previous tasks can limit the available cog-
nitive resources [4, 5]. Thus we expected that participants reporting
high prior cognitive load would benefit from the limited intrinsic
cognitive load of analogical representations. Our expectations were
proven wrong. Participants’ rating of their mental effort expended
before the test did not have any effect on the instructional efficiency.

High cognitive load on answering the pre-test questionnaire
led, in general, to worse instructional efficiency. There was no
difference between the treatment groups which indicates that no
type of instructional material was better or worse for participants
with high pre-test cognitive load. We hypothesize that this, too,
could be related to previous knowledge: it is possible that answering
questions is less demanding for those who already know the topic.

5.4 Limitations
The study was conducted in-situ within one course. We do not
know how the participants completed the experiments and cannot,
for example, make claims about the generalizability of the results,
account for factors present in the participants’ environment, and
we also do not know to what extent the participants were engaged
to studying the learning materials. In addition, we do not know if
participants in the different groups used the same amount of time
for studying.

We used instructional efficiency as a measure of the goodness
of the instructional material. The time-tested cognitive load instru-
ment and the instructional efficiency formula by Paas [27] do not,
however, differentiate between the types of cognitive load. High

study cognitive load could, in some situations, be germane cogni-
tive load, and thus high study cognitive load does not always mean
ineffective learning. We also acknowledge that there is research
that considers that cognitive load has only two factors, intrinsic
load and extraneous load (e.g. [16]).

It is also possible that the representations used in the materials
do not match the view of the world of the students, i.e. what the
material authors considered as analogical real-world examples may
not match the views of the students. We sought to mitigate this
concern by testing the materials with our colleagues before the
study, but it is possible that some of the differences between the
representation types can be explained by differences in the material
design. Moreover, as the study was conducted close to the end of the
introductory programming course, it is possible that the students
were already accustomed to the default representations, which were
traditional. That is, it is possible that the analogical representations
may have been better in some cases, but that the students may have
been used to the traditional representations, and thus have had to
spend more effort on studying the analogical representations.

6 CONCLUSION
We studied the compound effect of representation and engagement
on the instructional efficiency of an online instructional material in
the context of a university-level introductory programming course.
To summarize, our research questions and answers are as follows.

RQ1: How do representation and engagement level affect the
instructional efficiency of learning materials? Answer:When com-
bining data from both experiments, none of the treatments outper-
formed others in terms of learning gain or instructional efficiency.

RQ2 How does prior experience on the topic under study affect
the instructional efficiency of the learning material? Answer: In
the hash table experiment, where students had previous knowl-
edge on the topic, analogical representations without engagement
yielded the highest instructional efficiency. At the same time, when
participants had no previous experience on the topic in the multi-
dimensional arrays experiment, responding conditions performed
the best. In addition, lower study cognitive load was observed on
traditional representations.

RQ3 How does cognitive effort prior to studying affect the in-
structional efficiency of the learningmaterial?Answer:While prior
effort, when measured using the NASA-TLX scale, had no impact on
learning gain or instructional efficiency, with the exception of prior
physical exertion marginally improving instructional efficiency,
cognitive load related to answering the pre-test questionnaire con-
tributed significantly (negatively) to instructional efficiency of the
learning materials.

Overall, we did not identify any single way of presenting infor-
mation that would be universally good for all participants. Based
on our observations, it is possible that adjusting representation
and engagement level for individual students could lead to higher
instructional efficiency. As a part of our future work, we are looking
into replicating our experiments in another course material as well
as studying the differences in the representations in more detail: for
example, the traditional representations often also imply something
about the underlying memory model, which may be absent in the
analogical representations – if we choose one representation type
over another, what are the implications in the longer run?



Exploring the Instructional Efficiency of Representation and Engagement in Online Learning Materials UKICER ’20, September 3–4, 2020, Glasgow, United Kingdom

REFERENCES
[1] Lauri Ahonen, Benjamin Cowley, Jari Torniainen, Antti Ukkonen, Arto Vi-

havainen, and Kai Puolamäki. 2016. Cognitive collaboration found in cardiac
physiology: Study in classroom environment. PloS one 11, 7 (2016), e0159178.

[2] Neil CC Brown, Sue Sentance, Tom Crick, and Simon Humphreys. 2014. Restart:
The resurgence of computer science in UK schools. ACM Transactions on Com-
puting Education (TOCE) 14, 2 (2014), 1–22.

[3] Roland Brünken, Jan L Plass, and Detlev Leutner. 2003. Direct measurement
of cognitive load in multimedia learning. Educational psychologist 38, 1 (2003),
53–61.

[4] Ouhao Chen, Juan C Castro-Alonso, Fred Paas, and John Sweller. 2018. Extend-
ing cognitive load theory to incorporate working memory resource depletion:
evidence from the spacing effect. Educational Psychology Review 30, 2 (2018),
483–501.

[5] Ouhao Chen and Slava Kalyuga. 2020. Cognitive Load Theory, Spacing Effect,
and Working Memory Resources Depletion: Implications for Instructional De-
sign. In Form, Function, and Style in Instructional Design: Emerging Research and
Opportunities. IGI Global, 1–26.

[6] Tom Crick and Sue Sentance. 2011. Computing at school: stimulating computing
education in the UK. In Proceedings of the 11th Koli Calling International Conference
on Computing Education Research. 122–123.

[7] Benedict Du Boulay. 1986. Some difficulties of learning to program. Journal of
Educational Computing Research 2, 1 (1986), 57–73.

[8] Benedict du Boulay, Tim O’Shea, and John Monk. 1981. The black box inside the
glass box: presenting computing concepts to novices. International Journal of
Man-Machine Studies 14, 3 (1981), 237–249.

[9] Sally Fincher, Johan Jeuring, Craig S. Miller, Peter Donaldson, Benedict du Boulay,
Matthias Hauswirth, Arto Hellas, Felienne Hermans, Colleen Lewis, Andreas
Mühling, Janice L. Pearce, and Andrew Petersen. 2020. Capturing and Char-
acterising Notional Machines. In Proceedings of the 2020 ACM Conference on
Innovation and Technology in Computer Science Education (Trondheim, Norway)
(ITiCSE ’20). Association for Computing Machinery, New York, NY, USA, 502–503.
https://doi.org/10.1145/3341525.3394988

[10] Joanna Goode, Julie Flapan, and Jane Margolis. 2018. Computer science for all.
Diversifying digital learning: Online literacy and educational opportunity (2018),
45.

[11] Philip J Guo. 2013. Online python tutor: embeddable web-based program visual-
ization for cs education. In Proceeding of the 44th ACM technical symposium on
Computer science education. 579–584.

[12] Mark Guzdial. 2003. A media computation course for non-majors. In Proceedings
of the 8th annual conference on Innovation and technology in computer science
education. 104–108.

[13] Sandra G Hart. 2006. NASA-task load index (NASA-TLX); 20 years later. In
Proceedings of the human factors and ergonomics society annual meeting, Vol. 50.
Sage publications Sage CA: Los Angeles, CA, 904–908.

[14] Tim N Höffler and Detlev Leutner. 2007. Instructional animation versus static
pictures: A meta-analysis. Learning and instruction 17, 6 (2007), 722–738.

[15] Weidong Huang, Peter Eades, and Seok-Hee Hong. 2009. Measuring effectiveness
of graph visualizations: A cognitive load perspective. Information Visualization
8, 3 (2009), 139–152.

[16] Dayu Jiang and Slava Kalyuga. 2020. Confirmatory factor analysis of cognitive
load ratings supports a two-factor model. 16, 3 (2020), 216–225.

[17] Slava Kalyuga, Paul Chandler, and John Sweller. 2000. Incorporating learner
experience into the design of multimedia instruction. Journal of educational
psychology 92, 1 (2000), 126.

[18] Ronit Ben-Bassat Levy, Mordechai Ben-Ari, and Pekka A Uronen. 2003. The Jeliot
2000 program animation system. Computers & Education 40, 1 (2003), 1–15.

[19] Andrew Luxton-Reilly, Ibrahim Albluwi, Brett A Becker, Michail Giannakos, Am-
ruth N Kumar, Linda Ott, James Paterson, Michael James Scott, Judy Sheard, and
Claudia Szabo. 2018. Introductory programming: a systematic literature review.
In Proceedings Companion of the 23rd Annual ACM Conference on Innovation and
Technology in Computer Science Education. 55–106.

[20] Sandra P Marshall. 2009. Schemas in Problem Solving. Cambridge University
Press.

[21] Richard E Mayer. 2002. Multimedia learning. In Psychology of learning and
motivation. Vol. 41. Elsevier, 85–139.

[22] George A Miller. 1956. The magical number seven, plus or minus two: Some
limits on our capacity for processing information. Psychological review 63, 2

(1956), 81.
[23] Briana B Morrison, Brian Dorn, and Mark Guzdial. 2014. Measuring cognitive

load in introductory CS: adaptation of an instrument. In Proceedings of the tenth
annual conference on International computing education research. ACM, 131–138.

[24] DuyguMutlu-Bayraktar, Veysel Cosgun, and Tugba Altan. 2019. Cognitive load in
multimedia learning environments: A systematic review. Computers & Education
141 (2019), 103618.

[25] Niko Myller, Mikko Laakso, and Ari Korhonen. 2007. Analyzing engagement
taxonomy in collaborative algorithm visualization. In ACM SIGCSE Bulletin,
Vol. 39. ACM, 251–255.

[26] Thomas L Naps, Guido Rößling, Vicki Almstrum, Wanda Dann, Rudolf Fleischer,
Chris Hundhausen, Ari Korhonen, Lauri Malmi, Myles McNally, Susan Rodger,
et al. 2002. Exploring the role of visualization and engagement in computer
science education. In ACM Sigcse Bulletin, Vol. 35. ACM, 131–152.

[27] Fred Paas, Juhani E Tuovinen, Huib Tabbers, and Pascal WM Van Gerven. 2003.
Cognitive load measurement as a means to advance cognitive load theory. Edu-
cational psychologist 38, 1 (2003), 63–71.

[28] Fred GWC Paas, Jeroen JG Van Merriënboer, and Jos J Adam. 1994. Measurement
of cognitive load in instructional research. Perceptual and motor skills 79, 1 (1994),
419–430.

[29] Jan L Plass, Roxana Moreno, and Roland Brünken. 2010. Cognitive load theory.
Cambridge University Press.

[30] Leo Porter and Beth Simon. 2013. Retaining nearly one-third more majors with a
trio of instructional best practices in CS1. In Proceeding of the 44th ACM technical
symposium on Computer science education. 165–170.

[31] Cornelia Schoor, Maria Bannert, and Roland Brünken. 2012. Role of dual task
design when measuring cognitive load during multimedia learning. Educational
Technology Research and Development 60, 5 (2012), 753–768.

[32] Simon, Andrew Luxton-Reilly, Vangel V. Ajanovski, Eric Fouh, Christabel Gon-
salvez, Juho Leinonen, Jack Parkinson, Matthew Poole, and Neena Thota. 2019.
Pass Rates in Introductory Programming and in Other STEM Disciplines. In Pro-
ceedings of the Working Group Reports on Innovation and Technology in Computer
Science Education (Aberdeen, Scotland Uk) (ITiCSE-WGR ’19). Association for
Computing Machinery, New York, NY, USA, 53–71. https://doi.org/10.1145/
3344429.3372502

[33] Juha Sorva. 2013. Notional machines and introductory programming education.
ACM Trans. Comput. Educ. 13, 2 (2013), 8–1.

[34] Juha Sorva and Teemu Sirkiä. 2010. UUhistle: a software tool for visual program
simulation. In Proceedings of the 10th Koli Calling International Conference on
Computing Education Research. 49–54.

[35] Juha Sorva and Teemu Sirkiä. 2015. Embedded questions in ebooks on pro-
gramming: useful for a) summative assessment, b) formative assessment, or c)
something else?. In Proceedings of the 15th Koli Calling Conference on Computing
Education Research. 152–156.

[36] John Sweller, Jeroen JG Van Merrienboer, and Fred GWC Paas. 1998. Cognitive
architecture and instructional design. Educational psychology review 10, 3 (1998),
251–296.

[37] Juhani E Tuovinen and Fred Paas. 2004. Exploring multidimensional approaches
to the efficiency of instructional conditions. Instructional science 32, 1-2 (2004),
133–152.

[38] Eunjoon Um, Jan L Plass, Elizabeth O Hayward, Bruce D Homer, et al. 2012.
Emotional design in multimedia learning. Journal of educational psychology 104,
2 (2012), 485.

[39] Tamara Van Gog and Fred Paas. 2008. Instructional efficiency: Revisiting the
original construct in educational research. Educational Psychologist 43, 1 (2008),
16–26.

[40] Christa M van Mierlo, Halszka Jarodzka, Femke Kirschner, and Paul A Kirschner.
2012. Cognitive load theory in e-learning. In Encyclopedia of cyber behavior. IGI
Global, 1178–1211.

[41] Arto Vihavainen, Jonne Airaksinen, and Christopher Watson. 2014. A System-
atic Review of Approaches for Teaching Introductory Programming and Their
Influence on Success. In Proceedings of the Tenth Annual Conference on Inter-
national Computing Education Research (Glasgow, Scotland, United Kingdom)
(ICER ’14). Association for Computing Machinery, New York, NY, USA, 19–26.
https://doi.org/10.1145/2632320.2632349

[42] Arto Vihavainen, Craig S Miller, and Amber Settle. 2015. Benefits of Self-
explanation in Introductory Programming. In Proceedings of the 46th ACM Tech-
nical Symposium on Computer Science Education. 284–289.

https://doi.org/10.1145/3341525.3394988
https://doi.org/10.1145/3344429.3372502
https://doi.org/10.1145/3344429.3372502
https://doi.org/10.1145/2632320.2632349

