' Aalto University

Duran, Rodrigo; Rybicki, Jan Mikael; Sorva, Juha; Hellas, Arto
Exploring the value of student self-evaluation in introductory programming

Published in:
ICER 2019 - Proceedings of the 2019 ACM Conference on International Computing Education Research

DOI:
10.1145/3291279.3339407

Published: 30/07/2019

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:

Duran, R., Rybicki, J. M., Sorva, J., & Hellas, A. (2019). Exploring the value of student self-evaluation in
introductory programming. In ICER 2019 - Proceedings of the 2019 ACM Conference on International
Computing Education Research (pp. 121-130). ACM. https://doi.org/10.1145/3291279.3339407

This material is protected by colpyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by ?/ou for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other tuhse: Elgctronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

https://doi.org/10.1145/3291279.3339407
https://doi.org/10.1145/3291279.3339407

Exploring the Value of Student Self-Evaluation
in Introductory Programming

Rodrigo Duran Jan-Mikael Rybicki
Aalto University Aalto University
Finland Finland
rodrigo.duran@aalto.fi jrybicki@cc.hut.fi
ABSTRACT

Programming teachers have a strong need for easy-to-use instru-
ments that provide reliable and pedagogically useful insights into
student learning. Currently, no validated tools exist for rapidly as-
sessing student understanding of basic programming knowledge.
Concept inventories and the SCS1 questionnaire can offer great ben-
efits; this article explores the additional value that may be gained
from relatively simple self-evaluation metrics. We apply a light-
weight self-evaluation instrument (SEI) in an introductory pro-
gramming course and compare the results to existing performance
measures, such as examination grades and the SCS1. We find that
the SEI has a similar correlation with a program-writing examina-
tion as the SCS1 does, although both instruments correlate only
moderately with the examination and each other. Furthermore, stu-
dents are much more likely to voluntarily answer the lightweight
SEI than SCS1. Overall, our results suggest that both the SEI and
other instruments need to be greatly improved and outline future
work towards that end.

CCS CONCEPTS

« Social and professional topics — Computer science educa-
tion; Model curricula; Student assessment.

KEYWORDS
Self-evaluation, assessment, CS1, introductory programming

ACM Reference Format:

Rodrigo Duran, Jan-Mikael Rybicki, Juha Sorva, and Arto Hellas. 2019. Ex-
ploring the Value of Student Self-Evaluation in Introductory Programming.
In International Computing Education Research Conference (ICER ’19), Au-
gust 12-14, 2019, Toronto, ON, Canada. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3291279.3339407

1 INTRODUCTION

Teachers assess students for many reasons. For example, they want
to provide feedback, evaluate their own teaching, attend to a class’s
prior knowledge in course design [18, 42, 46, 52, 56, 57], recommend
suitable learning activities or modules to individual students [7],
help students assess themselves and self-regulate their learning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICER 19, August 12—14, 2019, Toronto, ON, Canada

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6185-9/19/08....$15.00
https://doi.org/10.1145/3291279.3339407

Juha Sorva Arto Hellas
Aalto University University of Helsinki
Finland Finland
juha.sorva@aalto.fi arto.hellas@helsinki.fi

[60], identify at-risk students [54], and compare students to cross-
institutional benchmarks [11, 38].

These ambitions create a need for a range of assessments. Some-
times, a detailed assessment is necessary; at other times, a numerical
overall grade will do. It is sometimes fine for students to self-assess
their abilities; at other times, an external evaluator or formal test
is required. While certain assessments must be mandatory, others
should remain voluntary. In some cases, it is acceptable that assess-
ment takes time; in others, the assessment must be quick even at
the expense of accuracy.

In some fields of education, validated assessment tools are avail-
able for teachers to use, such as the Common European Frame-
work of Reference for Languages (CEFR) [11], while computing
education still lacks such tools. Nevertheless, the assessment of
computing skills has attracted much interest. One strand of prior
research aims to build concept inventories and similar tests of stu-
dents’ programming ability and knowledge. The SCS1 questionnaire
[35], for instance, uses a set of 27 multiple-choice questions about
pseudo-code programs to measure students’ knowledge of impera-
tive programming. Such instruments, which directly target student
knowledge, are potentially very valuable. However, taking such a
test is time-consuming and can be stressful for students; moreover,
heavyweight tests are poorly suited for repeated assessment within
a single study module.

Other researchers have indirectly assessed students’ computing
skills through the lens of self-efficacy: the students’ belief in their
ability to perform certain tasks. Danielsiek et al. [12] validated
an instrument for measuring self-efficacy in algorithms courses.
Self-efficacy has been shown to correlate strongly with successful
learning [4, 24, 40] and can be assessed rapidly. However, it is not
a direct measure of students’ conceptual understanding.

To measure students’ prior knowledge, skills, and conceptual
understanding, students could self-assess their own skills. Self-
assessment is the evaluation or judgment of "the worth" of one’s
performance and the identification of strengths and weaknesses
with a goal of improving one’s learning outcomes [38]. In short,
self-evaluation is particularly suited for assessing past or current
work, and self-efficacy attempts to estimate the confidence and
extrapolate future performance.

Ross [38] reviews evidence from previous research suggesting
that self-assessment contributes to higher student achievement
and improved behavior. Furthermore, there is evidence that sup-
ports the reliability of self-assessment in terms of internal consis-
tency, consistency across tasks and items, and over short periods
of time. However, age, experience, the expectancy of grading, and
prior achievement impact on how students self-evaluate. Thus,

https://doi.org/10.1145/3291279.3339407
https://doi.org/10.1145/3291279.3339407

self-assessments tend to correlate only moderately with teacher as-
sessments. Miller [30] shows that ceiling effects in self-assessment
studies are related to overly vague or difficult to understand scoring
criteria. Instrument sensitivity can be increased by adding measure-
ment levels and precisely defined criteria.

Self-assessment is also a key element of self-regulated learn-
ing [22] and closely related to self-efficacy. In literature, the terms
self-assessment and self-evaluation are often used interchangeably;
we will use the term self-evaluation when discussing our work.

This article continues the work of Duran et al. [13] to develop
and validate a self-evaluation instrument (SEI). The SEI comple-
ments existing assessment tools by rapidly surveying students’
understanding of introductory programming concepts.

We aim for the SEI to include the following characteristics: (1)
It can be answered quickly. Students volunteer to answer the SEI
when prompted and complete it; (2) It captures pedagogically useful
information about students’ prior programming knowledge and
the growth of this knowledge as they learn, reflecting students’
progress along a learning trajectory of code-comprehension skills;
(3) It highlights differences between programming concepts (rather
than being a single generic measure of programming ability or
self-confidence); (4) Despite not being a rigorous test of ability, it
provides some insight into the actual performance as measured
by more heavyweight instruments; (5) It does not “feel like an
exam” but promotes reflection and self-evaluation; (6) It is easy
for students to understand without prior training: students need
not answer questions about highly abstract concepts and generic
learning objectives; (7) Instead, it is phrased in terms of learning
objectives, programming language, and other contextual factors of
a particular CS1 course; (8) Its generic structure can be adapted to
different courses; (9) It is easy to administer at scale.

In practice, our SEI is an online survey that asks students to rate
their own understanding of selected programming concepts. By
administering the SEI repeatedly at different stages of an introduc-
tory programming MOOC, we explored the practicality of the SEIL
Furthermore, while investigating the SEI, we also administered the
SCS1 at the end of the MOOC and checked whether our student
cohort is comparable in terms of SCS1 performance to other cohorts
reported in the literature. This gave us an opportunity to replicate
some of the results from the nascent body of research on the SCS1.
Our research questions are as follows:

RQ1 How do students answer the SEI and SCS1: do they volunteer
to answer and complete them?

RQ2 Does the SEI capture CS1 students’ growing confidence in their
programming knowledge as they learn?

RQ3 Does the SEI reveal concept-specific differences in students’
evaluations of their ability?

RQ4 Does the SEI have external validity: to what extent do students’
self-evaluations agree with existing performance metrics, such
as examination grades and the SCS1?

RQ5 Do our students find the same SCS1 questions difficult as the
students in earlier studies did?

2 RELATED WORK

The computing education research (CER) community has intro-
duced numerous instruments for assessing students’ knowledge

and skills (e.g. [2, 12, 16, 17, 21, 27, 31, 33, 36, 37, 39, 41, 45, 55]).
Margulieux et al. [28] provide a comprehensive list of the validated
ones. In this section, we comment on selected studies that either
provide useful benchmarks or are similar to the present work by
exploring self-evaluation or self-efficacy in a computing context.

Some of the best-known validated tests of programming knowl-
edge include the FCS1 [49] and SCS1 [6, 35]. The FCS1 is a multiple-
choice test of concepts commonly covered in CS1 courses: students
answer questions about programs written in imperative pseudo-
code. It was validated and shown to be reliable and positively cor-
related with course grades. The SCS1 [35] is a more easily available
isomorphic version of the FCS1; it has a similar internal consistency
and a strong correlation with the FCS1. Since their introduction,
the FCS1 and SCS1 have been used in many other studies as perfor-
mance benchmarks [23, 32, 50, 51, 58].

Danielsiek et al. [12] developed and validated a questionnaire
for assessing self-efficacy in an algorithms course. This instrument
prompts students to evaluate themselves by rating 21 short state-
ments about their algorithm-related abilities. The authors admin-
istered it several times, demonstrating that students’ self-efficacy
increased as they learned.

Murphy and Tenenberg [31] examined upper-level CS students’
ability to self-assess their knowledge of data structures. They com-
pared a single question that asked students to self-assess their per-
formance on a test with the students’ actual test score. The results
revealed a moderate correlation between students’ (n=61) estimates
and quiz performance; students with higher scores were more accu-
rate. In another study, Kallia and Sentance [21] used a combination
of two self-efficacy measures and a single self-assessment question
to investigate relationships between function-related misconcep-
tions and self-efficacy for programming. They found that students
who hold misconceptions about programming demonstrate signif-
icantly lower levels of self-efficacy than students who have few
or no misconceptions and overestimate their performance in the
self-assessment.

Ngai et al. [33] sought to alleviate CS1 students’ assessment
anxiety by teaching them to self-evaluate. The students in the
pilot study (n=13) used a given rubric to rate themselves on three
programming skills — debugging, coding and programming — and
even gave themselves an overall grade. Ngai et al. found that the
self-evaluations correlated strongly with instructor-given grades
(.78) and the grades from a final examination (.85).

Alaoutinen and Smolander [2] created a survey instrument in-
tended for teachers to assess student knowledge as well as for
students to self-evaluate their development. Based on Bloom’s Tax-
onomy [3], the instrument asks students to evaluate their knowl-
edge and skills in the context of introductory programming in the
C language. Students were to estimate at which level they could
successfully operate, selecting a different Bloom level for each con-
cept. The students’ self-evaluations correlated strongly with exam
grades (.54), and the topics considered more difficult by teachers
were also rated more difficult by the students.

While many studies above overlap with ours in one respect or
another, none address the same combination of goals as we do. The
study by Alaoutinen and Smolander [2] is arguably the most similar
to ours; our work can be seen as an effort to refine theirs. Compared
to their study, we aim to (1) phrase our SEI in more concrete terms

(as suggested by the literature on self-evaluation), thus relieving
students from the burden to interpret Bloom levels, which is known
to be difficult even for teachers [29]; and (2) connect our SEI to a
learning trajectory of code-comprehension skills.

The next section summarizes the development and structure of
our SEI, as originally presented by Duran et al. [13]. The subsequent
sections present our study design and answer the five research
questions listed above.

3 DEVELOPMENT OF THE INSTRUMENT

Our prototype SEI (available at https://goo.gl/nGR9Th) is intended
for imperative object-oriented programming in Java but can be
adapted to other contexts. The SEI is inspired by the self-evaluation
rubric of the Common European Framework of Reference (CEFR)
for languages [11, p. 26-27] and the theoretical and empirical works
in CER that suggest a hierarchy of code-comprehension skills
[9, 14, 25, 26, 47, 48, 59]. The framework levels are organized in a
hierarchy of skills from comprehending the meaning, syntax, and
semantics of a concept (A), to predict the effect of syntax on pro-
gram behavior, i.e., tracing (B), and the ability to comprehend and
summarize patterns (C). We introduce granularity to those levels by
adding sub-levels of complexity as the number and quality of inter-
acting elements [5, 14, 44] and students’ familiarity with the code.
Instructional designers can use as many levels as necessary in their
adapted instrument. Each sub-level includes a statement reflecting
the conceptual level of code comprehension and its associated skill,
including the level of complexity.

As we expected students to have varied backgrounds and levels
of expertise, we introduced three sub-levels to the first level (A):
an unfamiliarity level (A0), a familiarity with the general meaning
of a concept (A1), and comprehension of syntax and semantics of
a concept (A2). By mastering level A, students can conceptually
comprehend a concept (e.g loop) and recognize its syntax in the code
(e.g. the for keyword) without being able to predict its functionality
when applied to a concrete case.

After mastering level A, students can trace code on level B. Stu-
dents at level B1 can trace code with few elements, predicting the
code output when using concrete values and code with descriptive
naming conventions (e.g. the code "for count in range of 10"
denotes “repeat 10 times”). At level B2, students can achieve the
same results as in level B1 but can also deal with several simultane-
ous interacting elements (e.g. code including many abutted loops
with inner conditional structures). Recognizing patterns and sum-
marizing code are the most advanced code comprehension skills.
At level C1, students can recognize patterns using a concept even if
code-naming conventions are non-standard and comprehend code
with a variety of abstract inputs (e.g. recognize lower-level patterns,
such as traversing a collection, checking for negative numbers,
or adding elements to a list). Finally, at level C2, students should
master all other levels and can generalize the purpose of the code,
and summarize it in plain English (e.g. summarize code as "a filter
function that takes a list as input and outputs all positive numbers").

We evaluated programming concepts typically found in impera-
tive CS1 courses: variables and assignment (var), input and output
(io), expressions and arithmetic operators (exp), conditional state-
ments (sel), loops and iteration (loops), data collections (dc), functions

and methods (func) and classes and objects (objs) [49]. The original
instrument and questions were created in English and then trans-
lated into Finnish by an expert language instructor and an expert
programming instructor.

The CEFR companion volume for new descriptors [34] describes
three validation phases for new instrument scales: initial research
and development (intuitive phase), improving the categories and
quality of descriptors (qualitative phase) and calibrating the best
descriptors to a mathematical scale, and confirming the cut-offs
between levels (quantitative phase). Our intuitive phase consisted
of exploratory work to define the number of levels, sub-levels,
and phrasing of statements by the first and second authors. The
qualitative phase iteration was conducted by the authors until a
saturation point was reached and an overall agreement achieved.

Our prior work [13] explored the metrics of internal consistency
in a pilot by analyzing the prototype SEI answers of 2196 students at
the beginning of week 1. These results indicated that the instrument
is highly reliable (Cronbach’s @ = .98) and could distinguish itself
from traditional metrics [15], while strongly correlating with them.
In this article, we further explore the quantitative data.

4 STUDY SETTING AND DATA COLLECTION

This study was conducted during a programming online course
(available at https://ohjelmointi-19.mooc.fi), offered as a MOOC
by the University of Helsinki. The basic course lasts seven weeks
(December to February) covering the principles of programming in
Java. Each week covers the following concepts:

Week 1: Stdin/Stdio, variables, conditionals, while loops.
Week 2: Logical operators, methods and parameters, call stack.
Week 3: Lists and arrays, loops, strings, testing.

Week 4: Files, file system, classes and objects.

Week 5: Primitive and referential variables, method overloading,
comparing objects, lists as objects.

Week 6: Classes and objects, methods, hashmaps.

Week 7: Sorting and searching, unit testing.

The course is taken by both degree and non-affiliated students at
the University of Helsinki. When starting the course, students fill in
aresearch consent form and background questionnaire (Duran et al.
[13] explores the relationship between the SEI and background
questions in more detail). Answering the questionnaire was vol-
untary but included an incentive raffle of movie tickets. Students
could skip any question and choose not to give research consent.
The mean age of respondents (n=3801) is 35.26 years, of which
54.35% reported themselves as males, 44.41% as females, 0.63% as
not specified and 1.6% did not answer. Students’ prior CS experience
was heterogeneous (median = 10, mean = 370.17, std.dev = 1897.87
total hours programmed) as was CS prior education (median = 0,
mean = 1.68, std.dev = 4.23 courses completed).

The SEI was an optional task. Data was collected using an online
form that presents all levels simultaneously, and students could
skip any concept. As typical with MOOCs, the dropout rate was
high, and the number of respondents decreased over the weeks.
The SEI was applied at the beginning of week 1 (n=3807) and week
4 (n=1379) in the course, and at the end of week 7 (n=867).

The SCS1 (27 questions) was translated into Finnish by an expert
language instructor and an expert programming instructor and

https://goo.gl/nGR9Th
https://ohjelmointi-19.mooc.fi

then presented online as an optional task at the end of week 7
(simultaneously with the SEI). From the 640 students who answered
the SCS1, 477 gave permission to conduct research with their data.
We only considered test-takers those who answered at least 10
questions [58], yielding a total of 440 respondents. At the end of
week 7, students (n=740) took an online exam (3 questions, weighted
20%, 30%, and 50%, respectively) to determine the final course grade.
While only a part of the final grading, participating in the exam
was voluntary. The course exam included three questions:

Q1 was a modified version of the Rainfall problem [43] done
with String lengths.

Q2 asked students to create a set of static methods that create
and handle lists and maps.

Q3 asked students to create an object (e.g. a musician) and then
another object that contains such objects (e.g. a band). Addi-
tionally, students were expected to construct a set of methods
ranging from getters to methods that iterate over the nested
objects, such as asking the musicians of the band to play and
to output the average experience of the musicians.

Due to the voluntary nature of the tasks, there was much varia-
tion in the way students completed them. A total of 283 students
completed the SCS1 and course exam, while 261 also completed
the SEI on week 7. Considering the whole course, 205 students
completed all tasks on week 7 and also answered the background
questionnaire and the SEI on week 1.

5 RESULTS

RQ1: Student Responses to the SEI and SCS1

To investigate student answers to the prototype SEI and SCS1 (RQ1),
we compared the completion rates of the SEI in Week 7 with those of
the SCS1 and course exam. Of the 867 respondents who attempted
the SEI in Week 7:

867 (100%) completed the SEL

498 (57.43%) completed the exam.

376 (43.36%) answered > 10 questions of SCS1 (test-takers).
319 (36.79%) answered at least half of SCS1 questions.

84 (9.69%) answered all questions of SCS1.

Of the 740 respondents who attempted the course exam:

740 (100%) completed the course exam.

498 (67.3%) completed the SEL

254 (34.32%) answered > 10 questions of SCS1 (test-takers).
216 (29.19%) answered at least half of SCS1 questions.

55 (7.43%) answered all questions of SCS1.

Of the 477 respondents who attempted at least one question of
SCs1:

422 (88.47%) completed the SEL

283 (59.33%) completed the exam.

440 (99.24%) answered > 10 questions of SCS1 (test-takers).
365 (76.52%) answered at least half of SCS1 questions.

92 (19.29%) answered all questions of SCS1.

Students answered both the SEI and SCS1 within the same survey
system and links to the instruments were placed into the material
next to each other. While expecting the shorter questionnaire to re-
ceive more answers than the lengthier SCS1, we were nevertheless

surprised by the large difference in the numbers of respondents.
To better understand this phenomenon, we considered the written
feedback received by the course staff. There was no student feed-
back about the SEI This was in stark contrast to the SCS1, on which
the students volunteered to give a noticeable amount of negative
feedback. For example, some students complained about the unclear
purpose of the test; a mismatch between SCS1 questions and course
content urged them to make assumptions about the constructs of
the language. Some argued that the SCS1 is, perhaps, testing how
to read other people’s code, something not practiced in the course.
Students also complained about the 1-hour time frame to complete
the test, arguing that it requires very quick reasoning and good
problem-solving skills.

Students also stated that fill-in-the-blanks exercises were good
and tested their logic understanding, but tracing questions felt
like "processing speed and memory tests". Questions that checked
variable output after method calls were considered difficult since
students felt that this behavior is particular to a given programming
language and hard to assess in pseudocode. Some even noted that
if the course exam difficulty was as high as the SCS1, they could
even consider withdrawing from the course. In some cases, students
removed their research consent after seeing the SCS1.

RQ2: Students’ Growing Confidence

To investigate if students’ confidence in their programming ability
increased during the course (RQ 2), we examined the descriptive
statistics of the SEI on weeks 1, 4 and 7 (Table 1). Table 2 shows
that the differences between each week’s means by concept (§) are
all significant at p < .001 using a Mann-Whitney U-Test. The effect
size (Cohen’s d [10]) of changes from week 1 to week 4 and week 1
to week 7 is large. The changes from week 4 to week 7 were much
smaller, except for classes and objects with a large effect size. Figure
1 shows that these findings match the timeline of course contents,
particularly the small effect size of A in all concepts from week 4 to
7, except for classes and objects, introduced in week 4, which could
still be considered as a "new content” for students.

Figure 1: Content timeline and mean levels of SEI concepts.

Classes and Objects
Functions and Methods
Data Collections

Loops
Selection
Expressions
10

Variables s m m m m m m e e e e e e e e S S S S S S S SESESESSESES

-»
5.3Q

Level

Table 1: Descriptive statistics of SEI concepts.

Week 1 Week 4 Week 7
Var /O Exp Sel Loops DC Funct Obj | Var I/O Exp Sel Loops DC Funct Obj | Var I/O Exp Sel Loops DC Funct Obj
Mean 222 213 217 223 210 1.86 1.77 142 | 496 517 4.86 4.84 480 4.26 4.27 291 | 519 530 5.08 517 5.11 4.62 471 4.59
Std. Dev. 2.06 204 202 20 1.98 185 1.84 172 | 1.14 096 1.13 1.09 110 121 1.32 198 | 1.03 091 1.08 0.96 0.99 116 1.12 1.18
Median 2 2 2 2 2 1 1 1 5 5 5 5 5 4 4 3 5 6 5 5 5 5 5 5
Instrument Mean 1.99 4.51 4.97

Table 2: A of means by SEI concept and effect size of A.

Week 4 - Week 1 | Week 7 - Week 4 | Week 7 - Week 1

A Cohen’s d A Cohen’s d A Cohen’s d
Var. 2.75* 1.477 23 21% 2.97* 1.55F
/0 3.04* 1.67F 13* 4% 3.17* 1.69F
Exp. 2.7¢ 1.487 22 2% 2.92* 1.55F
Sel. 2.61* 1.45% 33* 32% 2.94* 1.59%
Loops 2.71* 1.51F 31 .29% 3.02* 1.647
DC. 24* 1.41% 35* 3% 2.75* 158+
Func. 2.5% 1.467 44* .35% 2.94* 1.7F
Obj. 1.49* 83F 1.68* 98+ 3.16* 1.94%

*=p <.001. T = large, ¥ = small and * = negligible effects.

RQ3: Concept-Specific Differences in Ability

To investigate if the instrument can distinguish between concept-
specific differences in students’ evaluations of their ability (RQ3),
we examined if the evaluations could be better understood as single
or multiple factor models. We conducted an Exploratory Factor
Analysis (EFA) to examine possible factor structures that fit the
SEI data. A parallel analysis using a minimum residual method
suggested between 1 and 4 factors for week 1, and between 2 and 4
factors for weeks 4 and 7.

We performed a Factor Analysis (FA) to investigate the struc-
ture of concepts. Believing that factors were correlated and data
distribution was not normal, we used an oblique rotation and Or-
dinary Least Squared/Minres factoring method. Week 1 analysis
determined that only the one-factor model exhibited acceptable
factor loadings (>.3), as shown in Figure 2(a)(i). Week 4 analysis
showed acceptable factor loadings using 2, 3 and 4 factors and week
7 showed acceptable factor loadings using 2 and 3 factors.

Figure 2: Factor loadings on weeks 1 and 7 for overall data
(a) and experienced students (n=51) (b).

0.93 0.84 0.92 0.97
0.94 AR 0.83 ‘ 0.91 R 0.80
: 1/0 : : 1/0 :
0.94 EXP 0.86 0.93 EXP 0.86
0.97 SEL 0.95 0.98 SEL |« 092

_0.95 _0.94 (094
0.86 e 0.92 H 0.92 - 0.96 H
: OB] |« 7% P75 oB] |0
i) Week 1 ii) Week 7 i) Week 1 ii) Week 7
a) b

)

We performed a Confirmatory Factor Analysis (CFA) fitting the
data into the FA suggested models using Maximum Likelihood (ML)
as an estimation method. Model parameters suggest that the one-
factor model fits week 1 data well [20]. The Comparative Fit Index

(CFI) of .92 shows that the one-factor model is a better fit than a
more restricted baseline model (values > .9 are usually accepted).
The Root Mean Square Error of Approximation (RMSEA), which
measures how closely the model reproduces data patterns (penaliz-
ing more complex models), has a value of .11, which is very close
to the suggested value of acceptance (< .1). A Standardized Root
Mean Square Residual (SRMR) is an absolute measure of fit, defined
as the standardized difference between the observed and predicted
correlations. The one-factor model shows a good fit for the data,
with an SRMR of .021 (< .08 is considered a good fit).

Since the models suggested for weeks 4 and 7 had different num-
bers of factors and factor structures, they could not be considered
nested. To test which model more accurately describes the data,
we performed a Vuong test [53] and analyzed estimators of fit
when necessary. The test showed that the four-factor model was
distinguishable from the other models with less factors and was
considered a better fit for week 4 data (z = —2.01,p = .02), and
model fit indicators can all be considered acceptable: CFI = .99 (>.9),
RMSEA = .063 (< .1), SRMR = .016 (< .08) .Factor one concepts
(loadings) are: variables (0.85), I/O (.8) and expressions (.88). Factor
two concepts are selection (.95) and loops (.96). Factor three consists
of data collections (1), while functions (.93), and classes and objects
(.68) loaded into factor four.

Vuong tests further showed that three and two-factor models for
week 7 could not be considered distinguishable (w2 = .001, p = .54),
and parameter indicators were very similar for both models. In
general, models with smaller Akaike Information Criterion (AIC)
and Bayesian Information Criterion (BIC) can be considered better
fits to data. The three-factor model showed smaller (non-significant)
values for AIC (-1.46) and BIC (-6.23). Overall, both models can be
accepted. Since the only difference between model structures is a
factor with a single component (variables) with very high loading
(1) in the three-factor model, we suggest a simpler two-factor model
fit, as presented in Figure 2(a)(ii).

To further examine how the SEI could reveal concept-specific
differences, we investigated if the previously described factors and
loadings would remain when focusing on expert students (measured
by students’ self-reported total hours programmed, i.e. HPT). Since
HPT was collected in week 1, we considered in this analysis only
students who completed all course tasks (n=205).

For experienced students (upper quartile), the EFA analysis rec-
ommended 1, 2 or 3 factors for week 1. The Vuong test showed
that the three models are distinguishable, the three-factor model
was a better fit (z = —0.98,p = 0.16), and its indicators were within
the recommended parameters (SRMR = .03, RMSEA = .16,CFI =
.96, TLI = .94, y* = 40.78,p = 0). For Week 7, the EFA analysis
suggested 2 or 3 factors. The Vuong test showed that the two and
three-factor models are not distinguishable, but the indicators of the
three-factor model (SRMR = .03, RMSEA = .08,CFI = .99, TLI =

.98,)(2 =516.26,p = 0, AIC = 374.57, BIC = 426.72) were a better
fit than the two-factor model (SRMR = .04, RMSEA = .15,CFI =

.95, TLI = .93,){2 = 516.26,p = 0, AIC = 388.99, BIC = 437.29).

Figure 2 (b) shows the factor loadings for the best fit models for
experienced students on weeks 1 and 7.

RQ 4: External Validity

Many studies have investigated the student performance using
the FCS1/SCS1 [23, 32, 50, 51, 58]. One main advantage of using a
validated instrument is to produce comparable and generalizable
results, providing meaningful information about the investigated
context. To study the external validity of the SEI (RQ4), we first
examine metrics reliability over the weeks and later show how the
instrument correlates with the course final exam and SCS1.

The metrics of internal consistency and construct validity show
that the SEI is very reliable. Cronbach’s « reliability test is very
high: @ = .98 on week 1, @ = .92 on week 4 and a = .96 on week 7.
Removing items from the instrument does not increase its reliability,
except for an increase of .03 when removing classes and objects
on week 4. The composite reliability of the instrument is also very
high: .98 for week 1, .94 for week 4 and .95 for week 7. Figure 3 shows
Spearman’s correlations (corrected with Bonferroni’s method for
multiple observations) between the concepts during the course.

Figure 3: Correlations of SEI concepts on weeks 1, 4 and 7.

Size and color of circles correspond to size of correlation.

PO 00000® 000000 L
v Q00000000000
0.89 0.88 EXI’...

0.88 0.89 0.89 SEL .. []
0.87 089 0.87 a.qsmmw... [) 0900000
082 0.82 0.84 0.85 0.85 DC... 000000
0.84 0.82 0.85 0.84 0.84 uzmw('. [] 000000
078 0.79 0.79 0.8 0.81 0.81 0.86 OBJ o0 . .

0.57 053 0.56 0.54 0.54 051 051 0.46 \,\R. ”. . . o0 . ‘ 000
0.38 041 039 039 0.39 036 036 0.32 0.72 10 . . . o0

0.56 055 0.6 0.57 0.56 054 0.53 0.48 0.7 0.68 LXI"‘.. 000 . . 000

0.55 055 057 0.57 0.57 053 0.53 0.49 0.7 0.69 0.8 SEI .. . 09000 . . [] ‘ []
0.56 0.54 0.55 0.56 0.56 0.54 0.53 0.51 0.75 0.68 0.78] 0.92 100 . . 09000 ‘
0.55 055 0.56 0.57 0.57 057 0.56 0.52 0.66 0.6 0.69 0.75 078 DC . . 00000 . . ‘
0.57 055 057 0.58 0.58 0.58 0.58 0.55 0.68 0.6 0.71 0.76 0.7 0.81 FUNC . [) 00 . . ’
054 0.56 0.52 055 0.56 0.57 0.6 0.61 0.46 0.39 05 0.53 055 0.62 0.65 OBJ

0.49 045 045 0.46 044 0.4 042 038 0.62 047 058 0.59 0.59 056 0.55 0.41 \:\u‘.‘....
036 0.36 0.34 035 035 0.31 0.33 031 052 05 0.51 0.53 053 0.5 048 0.35 076 10
0.46 044 0.48 0.46 0.44 0.42 0.41 0.37 0.58 046 0.63 0.6 059 053 0.54 0.38 076 0.71 liXI’.’ . . .
0.47 044 0.45 0.46 0.45 041 042 04 0.6 047 0.6 065 0.65 059 0.6 045 0.76 073 0.8 SEL....

0.44 043 044 0.45 0.44 0.4 041 04 059 047 058 0.65 0.65 059 0.59 0.44 077 0.74 0.79 09 mm'\.’ .
047 0.45 045 0.47 0.46 0.46 0.43 0.42 052 0.44 0.55 057 0.6 0.66 0.64 0.5 0.68 0.63 0.69 0.75 0.77 DC ..
0.51 0.48 049 0.51 05 0.48 0.48 0.46 0.56 0.43 0.5 0.62 063 0.63 0.67 0.5 0.7 064 07 075 0.76 083 uw.

0.46 044 0.44 046 046 042 043 0.42 05 043 049 058 0.6 0.62 0.63 0.49 0.63 0.63 0.62 0.71 0.73 0.82 0.88 OBJ

B Week 1 M Week4 M Week 7
-1 075 -05 025 [J 025 05 075 1

The scaled final score (min = 0, max = 100) of the 440 SCS1
test-takers showed a mean of 36.98 (1.06 standard error) points
and a standard deviation ¢ = 22.15, similar to Parker et al. results
(m =35.85, 0 = 13.1) and higher than Timmermann et al. [50] (m
= 22). Cronbach’s a of our SCS1 data (a = .87) was higher than
Xie et al. [58]’s (o = .7) and Parker et al. [35]’s (@ = .59) values.
Examining a changes when removing items, question 6 was the
only one considered problematic with a .01 increase in a (Xie et al.

[58] found that items 20, 24 and 27 were problematic). By analyzing
the factor loadings, we found that questions 6 (.08) and 20 (.18) had
a poor loading while Xie et al. [58] reported questions 20, 24 and
27 with poor loadings. Figure 4 shows the Spearman’s correlations
(Bonferroni’s corrected) of all 27 items of SCS1 and its mean score.

Figure 4: Correlations between SCS1 questions (1-27) and the

test mean (M). Several questions showed non-significant cor-

relations and could be considered problematic (e.g. 6, 20).
LXXXKX - XXXXX - XXX X XXXXXXXX

X2 XoxXe X X X

oz 3 XXXX XX - XXXX - XX XXX XXXX

MK 4 XXXXXXXXXXXXX§X§XXXXXXX

Moo 5 X e Xeo X X XXXXX X
X%X%%GXXXXXXXXXXXXXXXXXXXXXX
022 nn)(}(ozs)@ X X

%023 021%022%041 8 X XX
SOOGORC 0 XXX XX XX
Non%%o.ﬁ)ﬁozz u.s%]o XX X X.
Nom 0.19}(0.29% 03028 O 029 11 X X []
No.zz){}é)(—)(monuzsxu,zs 02612 X X.
02 ozz)@% o.wx 03024024023 023 02 13 XXX X x
MO%I%N"ZINUM{1240240’15031 035027 14 X []
%027)6%021%038 03021 03 029034 02 036 15 X []
}éozs 02 M%No.zs 02 %023 02028 0.190.27 026 16 X

02022 M% 02 Nou 0.27/0.26 0.27/0.26 0.28 0.22|0.28 044 0.35 17 X o
)4023)(%%%}{){% 0.22}@0.24%0.27 035019035 18 X X

0.19 0.24 023 O 02 M“SN 02025 03 u.saNu.u 0.28 0271038027 19 X []
SOOI 20 XXX XX
%u.w%}é%%o.% 0.19.¢)@u.ze 03021 0.24 031 027 0.35 0.24 D”X 21 []
%ozx%%%){lozs%}(0.24/0.24 036 0.2 0.31 0.28 026 0.32 0.23 0.42%033 22 []

NM 02 %XX%MMM”Z 0.27 O 0.21 021 0.2 0.23 0.22 oax}(oﬂ 033 23>< X
% 0.27 %%NM 03 022 0.2 0.29 0.19 0.25 0.24 0.37 0.31 0.25 032 0.34 0.25 % 0.25 0.28 M 24
Nozz%%%}é 0.24 OZZN 03 0.23 0.28 0.23 0.25 0.29 0.36 033 OO 037%0.35 038033 0.27 25 []
M O‘SSXM 0.19—)(@4034% 0.22/0.41 0.26 0.29 027 0.35 0.35 0.22 0.37 0.35 0.34/0.19 0.32 0.34 021 0.41 0.36 26 []
% 027%}(%% 0.22 %MM 0.21 %)(02 0.260.230.27 0.21 0.21 0.28/0.29 0.23 M 02 02026 27

035 0.54 0.36 0.29 038 % 056 0.47 0.41 054 0.54 0.56 0.43 058 0.55 0.49 0.59 0.4 0.66 0.2 |0.53 0.55 0.48 0.48 0.55 0.57 0.38 M|

X Non-significant correlations I
-1

-0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

The final course exam test-takers (n=740) achieved a mean of
76.16 (.86 standard error) points (min = 3.33, max = 100) and a
standard deviation o = 23.26. The Cronbach’s « reliability test
showed that the course exam was reliable (¢ = .79). A Spearman
correlation test was performed to check how each programming
question correlated with the final score and each other. Question 1
showed a moderate correlations with questions 2 (.46) and 3 (.47),
and question 2 showed a strong correlation (.62) with question 3
(all at p < .001). Questions 1 (.54), 2 (.79) and 3 (.82) were strongly
correlated with the course exam grade (p < .001).

Figure 5 presents the Spearman’s correlation between the course
exam, SCS1 and SEI on week 7 (n=205). The SEI on week 7 and
SCS1 had a very similar correlation with course exam grades while
being moderately correlated with each other (.31). Whereas Parker
et al. [35] does not provide a correlation of SCS1 with course grades,
Tew and Guzdial [49] reported the same correlation (.51) between
the FSC1 and a final exam.

RQ5: Replication of SCS1 Results

As noted above, we found similar student performance on the SCS1
and similar metrics of the SCS1’s internal reliability as earlier stud-
ies. We now seek to provide a more nuanced analysis to investigate
if our data suggests difficulties in the same questions (RQ5) by

Figure 5: Distribution and Spearman’s correlations between
the SCS1, course exam, and SEI (*** p <.001)

* k% *k*
| 0.50 0.51

Course Exam

*%k%
0.31

SEI W7

conducting an Item Response Theory (IRT) analysis using previous
research [35, 58] as benchmarks for methods and results.

As the test was provided online, one question at a time, we argue
that the conditional independence of items is still accepted [58].
To test the unidimensionality of data, one requirement for IRT, we
performed a Confirmatory Factor Analysis (CFA), fitting the data
into a single latent factor model using Weighted Least Squares
(WLSMV) as the estimation method [58]. The single latent model
indicators (CFI = .931, RMSEA = .039 and SRMR = .048) suggest
an acceptable fit, very close to Xie et al. [58]’s values (CFI = .98,
RMSEA = .014 and SRMR = .079).

An ANOVA test confirmed that a three-parameter (3PL) model
was a better fit than restricted models, with all items fitting our
data. The SCS1 can be considered moderately difficult with a mean
difficulty 6j = .81 (Table 3). Students’ ability (f) ranged from
0 = [-1.74,2.76] with a mean value of .018. The first quartile
students showed an ability estimation § = —0.65, while fourth
quartile students showed an ability estimation 6 = .66. All discrim-
ination values («j) can be considered meaningful (>.4)[58]. Since
our analysis used a 3PL (as opposed to a 2PL by Xie et al.) some
questions showed a positive value in the third parameter, which
can be interpreted as a pseudo-guessing value where students at
lower levels of ability no longer show a 0 probability of having a
correct answer, but instead a (yj) probability.

Table 3 shows that questions 6 and 20 were the most difficult (65),
but no question was considered too difficult (§;j > 3), as opposed
to Xie et al. [58] results (6k) where questions 5, 13, 15 and 18 were
regarded as too difficult. Using Parker et al. [35] methodology (%
of correct answers), questions 3 (.8), 11 (.51), 12 (.55), 19 (.61), and
23 (.64) could be considered moderately difficult and all other items
hard. Parker et al. found that questions 1, 2, 3, 19 and 23 could be
considered moderately difficult and all other questions hard.

6 DISCUSSION

Our RQ1 concerned student responses to the SEI and SCS1. We
expected that students would more likely volunteer to answer the
SEI than take a test, which was clearly the case. Even when com-
pared to the course exam (which was optional but affected grading),
the number of SEI answers is almost two times higher than for the

\
(

Table 3: Parameters of SCS1 questions using a 3PL model.

293(1.16) .99 1.29(1.17) 31|19 -033(08) .74 251(33) 0
83(11) 233 21(44) 06|20 2(19 NA 481(4.06) .09
1.02(13) 1.6 224(7) 19|21 77(12) 158 1.66(31) .03
9 78(32) 116 1.04(34) .1 |22 45(09) 136 157(19) 0

10 71(21) 127 324(216) .23 |23 -0.55(11) .08 128(17) 0

11 41(15) 19 212(49) .2 |24 131(11) NA 22(42) .02

12 -016(.09) 063 158(19) 0 |25 .49(09) 78 156(19) 0

13 146(19) 399 1.18(36) .01 |26 .84(1) 177 255(52) .05

27 1.6(16) NA 206(61) .04

j 6j(SE) b6k «ajSE) yj | j Sj(SE) Sk aj(SE) yj
1 89(23) 116 64(13) 0 |14 52(12) 113 202(38) .05
2 62(16) .89 203(52) .15 |15 .98(.09) 3.11 281(52) .05
3 -1.7(58) .27 .92(18) .01 |16 .86(16) 128 137(33) .03
4 176(37) 226 .87(49) .16 |17 7(1) 168 233(44) .05
5 125(14) 391 216(58) .18 |18 136(15) 507 139(2) 0
6
7
8

SCS1. Possible explanations for such behavior include that students
generally dislike being tested, even when not graded [19]; a mis-
match between the course content and what the SCS1 measures;
low sensitivity of pseudocode; or even the perspective of having a
low test score stored for future research. We suggest that the SEI
may reduce test anxiety, providing more opportunities for students
to self-reflect and improve their meta-cognition skills [38] as well
as plan their learning.

While we did not specifically collect information regarding the
SEI application (e.g. feedback and time on task), students voluntarily
provided (negative) feedback on the SCS1. One obvious weakness
of testing is that, while potentially more accurate, it can be a time-
consuming and strenuous task (only 19.29% of those who attempted
the SCS1 completed it in full). Students particularly commented on
the short time limit of the SCS1 (an opinion shared by the authors).
Recent research shows that extensive mental effort can interfere
with learning by depleting cognitive resources [8]. Our results sug-
gest that the SCS1 may put off students; thus, we encourage new
approaches that alleviate this behavior, such as self-evaluations or
lighter versions of the SCS1 [6]. Given the simplified nature of the
SEL based on the extremely high completion rates (i.e. everyone
who attempted the SEI also completed it) and comparable correla-
tions with course grades, we suggest that the SEI can be an efficient
additional tool in the assessment process of learning.

Students’ growing confidence as measured by the SEI matches
the course structure (e.g. very limited effect sizes from week 4 to 7
in all concepts, except for the still "new" ones. See Figure 1). Future
research should investigate if such increase and discrimination
between the concepts would be even more evident in a course
timeline that introduces concepts at a slower pace. The results
suggest that the instrument can distinguish between concepts and
that this distinction improves with repeated measurements, which
corroborates the findings that self-evaluation can improve with
practice [38]. While week 1 showed similar loadings for all concepts
(except for classes and objects. See Figure 2), the distinction between
the concepts became more pronounced and the factor structure
changed as students became more knowledgeable and experienced
with the contents. Factor loadings and structure of experienced
students on week 1 are similar to the entire cohort at the end of the
course. This implies that the SEI discriminates concepts early and
not only follow the course content timeline.

Metrics of internal consistency showed that repeated measures
of the SEI do not decrease its reliability and remain higher than
those of the tests (Figure 3). In terms of performance, the SCS1
results show that our context is comparable to previous research
(Table 3). However, we know little about self-evaluation ability of
these students. Thus, it is difficult to determine their accuracy and
compare them with other cohorts, and we can offer only limited
transferability claims.

While the SEI correlation with the exam was marginally strong,
so was the case with the SCS1 (Figure 5). Ross [38] suggests that
such comparisons must be taken with caution since course exams
can be biased. Teachers and students may have different expecta-
tions about the suitability of an exam to evaluate the learning of
course contents. In our case, we stress that while both the SCS1
and prototype SEI focus on code (or concept) comprehension skills,
the final course exam was a program writing test.

Due to poor internal correlations and student feedback (see Fig-
ure 4), the SCS1 results can be difficult to interpret, and many
questions with several interacting concepts make it difficult to mea-
sure student knowledge. Other approaches have provided higher
correlations with course exams (e.g. [1]), but they require costly and
extensive knowledge of student data. Some students also argued
that the SCS1 aligns poorly with course contents. Moreover, vali-
dated tests are less flexible and difficult to adapt to other contexts,
whereas the SEI instrument is designed to be flexible and allow
customization. We further discuss possibilities to further improve
the SEI in our conclusions.

While the SCS1 performance of our group matches with previous
research, the same could not be observed when analyzing question-
by-question responses. The IRT analysis showed that not only
the difficulties of the questions were ranked differently, but also
some questions showed very dissimilar difficulties and performance
(Table 3). For example, Q3 can be considered very easy for our group,
but moderately difficult to those of Xie et al. [58]. Conversely, we
observed the opposite phenomenon in Q6. Q18 was difficult for
our group but very difficult for students of Xie et al. (the same
applies to Q13 and Q15). While a performance and difficulty analysis
could elicit differences between groups, this analysis is incomplete
without discussing the test questions themselves. What makes Q6
so hard for one group and not for another? Is this a case of different
course structure and content, or perhaps a different phenomenon?
For this reason, we suggest that in future the CER community
should not only examine the test performance but also analyze the
test questions to understand this phenomenon.

7 CONCLUSION

When designing the SEI, our aim was to create a lightweight tool
that provides meaningful information to students and instructors,
while functioning as a self-evaluation tool for students to support
self-regulated learning. Our current findings support the notion that
the SEI could be a useful and efficient tool, even as a prototype. It
provides fair discrimination of concepts, captures students’ increas-
ing confidence in their code comprehension ability, is internally
reliable and coherent, allows repeated measures without losing its
validity, and can be publicly available. Our tentative framework
shows potential to develop other SEIs that can be easy to scale and
apply. Furthermore, it allows students from diverse backgrounds

to be assessed with relative accuracy and provides students an
opportunity to self-reflect without the burden of feeling tested.

However, the instrument and our results have some limitations.
The validation of the instrument shows that the prototype SEI
achieved some of these goals partially. Measures of divergent va-
lidity (e.g. comparing the SEI with self-efficacy instruments) could
provide further support of a distinguishable construct. There is
certainly an overlap between self-efficacy and self-evaluation. Our
results show that, like Danielsiek et al. [12], there is an increase
in students’ perception of programming related ability and dis-
tinguishable factors in the instrument. Whereas Danielsiek et al.
[12] evaluates skills such as algorithm design, runtime analysis,
and pseudocode writing and tracing, our instrument evaluates the
ability to comprehend programming concepts.

The SEI still requires stronger evidence of external validation.
While our results were comparable in this respect to those of the
SCS1, we believe that both the SEI and tests could be improved to
provide more reliable and accurate information. The final exam used
code writing questions while the SEI evaluates code comprehension
ability, which could explain the correlation levels observed in our
results. Future research should also aim to compare the SEI and
SCS1 with code comprehension course exams.

In addition to the SEI conceptualization and evaluation, we pro-
vided a comprehensive analysis of an SCS1 replication. This analysis
supports the findings of previous research, provides a detailed com-
parison between very distinct contexts used in previous works and
raises important questions regarding the current CER validated in-
struments and how the community interprets their results, offering
constructive feedback to instrument designers. We propose that fu-
ture replication studies using validated tools as benchmarks should
carefully examine question-level performances and dissimilarities in
performance as well as investigate the question contents to present
argumentation to such dissimilarities.

This study of the prototype SEI shows its potential to outline
a context independent framework that instructors can use to create
comparable SEIs tailored for specific needs. Following Ross [38] guide-
lines to improve self-evaluation and prior research results [30], we
recommend future work to improve reliability and validity of in-
struments aimed at a particular context (language and behavior).

Tailored instruments could include customizing the number of
levels (e.g. an A0 level could be meaningful to K-8 but not to CS1
instructors); the number of sub-levels based on the expected com-
plexity of code that students usually work with; and providing
contextualized examples. The number and types of concepts in the
SEI should also reflect course contents and contexts; for instance,
an SEI for a functional CS1 would focus on different concepts.

We only analyzed a single course in a MOOC context, which
reduces generalization claims. In future validations, we aim to im-
prove the clarity of descriptors by collecting student feedback, con-
duct qualitative investigations of student reasoning while answer-
ing the instrument, and replicate this work in other contexts.

8 ACKNOWLEDGEMENTS

We thank the SCS1 authors [35] for making it available for our use
and Benjamin Xie for the discussions regarding the methods used
in his IRT analysis and SCS1 results [58].

REFERENCES

[1] Alireza Ahadi, Raymond Lister, Heikki Haapala, and Arto Vihavainen. 2015.

Exploring Machine Learning Methods to Automatically Identify Students in
Need of Assistance. In Proceedings of the Eleventh Annual International Conference
on International Computing Education Research (ICER ’15). ACM, New York, NY,
USA, 121-130. https://doi.org/10.1145/2787622.2787717

Satu Alaoutinen and Kari Smolander. 2010. Student Self-assessment in a Program-
ming Course Using Bloom’s Revised Taxonomy. In Proceedings of the Fifteenth
Annual Conference on Innovation and Technology in Computer Science Education
(ITiCSE °10). ACM, New York, NY, USA, 155-159. https://doi.org/10.1145/1822090.
1822135

Lorin W Anderson, David R Krathwohl, Peter W. Airasian, Kathleen A. Cruik-
shank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock.
2001. A taxonomy for learning, teaching, and assessing: A revision of Bloom’s
taxonomy of educational objectives (abridged ed.). Addison Wesley Longman. 302
pages.

Albert Bandura. 1977. Self-efficacy: Toward a Unifying Theory of Behavioral
Change. Pyschological Review 84, 2 (1977), 191-215. https://doi.org/10.1016/
0146-6402(78)90002-4

[5] JensF.Beckmann. 2010. Taming a beast of burden - On some issues with the con-

ceptualisation and operationalisation of cognitive load. Learning and Instruction
20, 3 (2010), 250 — 264. https://doi.org/10.1016/j.learninstruc.2009.02.024

Ryan Bockmon, Stephen Cooper, Jonathan Gratch, and Mohsen Dorodchi. 2019.
(Re)Validating Cognitive Introductory Computing Instruments. In Proceedings of
the 50th ACM Technical Symposium on Computer Science Education (SIGCSE 19).
ACM, New York, NY, USA, 552-557. https://doi.org/10.1145/3287324.3287372
Janet Carter, Su White, Karen Fraser, Stanislav Kurkovsky, Colette McCreesh, and
Malcolm Wieck. 2010. ITiCSE 2010 Working Group Report Motivating Our Top
Students. In Proceedings of the 2010 ITiCSE Working Group Reports (ITiCSE-WGR
’10). ACM, New York, NY, USA, 29-47. https://doi.org/10.1145/1971681.1971685
Ouhao Chen, Juan C. Castro-Alonso, Fred Paas, and John Sweller. 2018. Extending
Cognitive Load Theory to Incorporate Working Memory Resource Depletion:
Evidence from the Spacing Effect. Educational Psychology Review 30, 2 (01 Jun
2018), 483-501. https://doi.org/10.1007/s10648-017-9426-2

Tony Clear, Anne Philpott, Phil Robbins, and Simon. 2009. Report on the Eighth
BRACEIlet Workshop: BRACElet Technical Report 01/08. Bulletin of Applied
Computing and Information Technology 7, 1 (2009).

[10] Jacob Cohen. 2013. Statistical power analysis for the behavioral sciences. Routledge.

Council of Europe. 2001. The Common European Framework of Reference for Lan-
guages: Learning, teaching, assessment. Strasbourg. https://rm.coe.int/1680459f97
Holger Danielsiek, Laura Toma, and Jan Vahrenhold. 2017. An Instrument to
Assess Self-Efficacy in Introductory Algorithms Courses. In Proceedings of the
2017 ACM Conference on International Computing Education Research (ICER ’17).
ACM, New York, NY, USA, 217-225. https://doi.org/10.1145/3105726.3106171
Rodrigo Duran, Jan-Mikael Rybicki, Arto Hellas, and Sanna Suoranta. 2019. To-
wards a Common Instrument for Measuring Prior Programming Knowledge.
In Proceedings of the 24th Annual ACM Conference on Innovation and Technol-
ogy in Computer Science Education (ITiCSE 2019). ACM, New York, NY, USA, 6.
https://doi.org/10.1145/3304221.3319755

Rodrigo Duran, Juha Sorva, and Sofia Leite. 2018. Towards an Analysis of Pro-
gram Complexity From a Cognitive Perspective. In Proceedings of the 2018 ACM
Conference on International Computing Education Research (ICER ’18). ACM, New
York, NY, USA, 21-30. https://doi.org/10.1145/3230977.3230986

[15] J. Feigenspan, C. Késtner, J. Liebig, S. Apel, and S. Hanenberg. 2012. Measuring

programming experience. In 2012 20th IEEE International Conference on Program
Comprehension (ICPC). 73-82. https://doi.org/10.1109/ICPC.2012.6240511

Ken Goldman, Paul Gross, Cinda Heeren, Geoffrey L. Herman, Lisa Kaczmarczyk,
Michael C. Loui, and Craig Zilles. 2010. Setting the Scope of Concept Inventories
for Introductory Computing Subjects. Trans. Comput. Educ. 10, 2, Article 5 (June
2010), 29 pages. https://doi.org/10.1145/1789934.1789935

Shuchi Grover, Stephen Cooper, and Roy Pea. 2014. Assessing Computational
Learning in K-12. In Proceedings of the 2014 Conference on Innovation &
Technology in Computer Science Education (ITiCSE '14). ACM, New York, NY, USA,
57-62. https://doi.org/10.1145/2591708.2591713

Dianne Hagan and Selby Markham. 2000. Does It Help to Have Some Program-
ming Experience Before Beginning a Computing Degree Program?. In Proceedings
of the 5th Annual SIGCSE/SIGCUE ITiCSE conference on Innovation and Technology
in Computer Science Education (ITiCSE "00). ACM, New York, NY, USA, 25-28.
https://doi.org/10.1145/343048.343063

Ray Hembree. 1988. Correlates, causes, effects, and treatment of test anxiety.
Review of educational research 58, 1 (1988), 47-77.

Li-tze Hu and Peter M Bentler. 1999. Cutoff criteria for fit indexes in covariance
structure analysis: Conventional criteria versus new alternatives. Structural
equation modeling: a multidisciplinary journal 6, 1 (1999), 1-55.

Maria Kallia and Sue Sentance. 2019. Learning to Use Functions: The Relation-
ship Between Misconceptions and Self-Efficacy. In Proceedings of the 50th ACM

Technical Symposium on Computer Science Education (SIGCSE ’19). ACM, New
York, NY, USA, 752-758. https://doi.org/10.1145/3287324.3287377

[22

[23

[24

[25

[26

[27

[28

™~
2,

[30

[31

[32

[33

[34

[35

[36

[37

(38]

(39]

Danny Kostons, Tamara van Gog, and Fred Paas. 2012. Training self-assessment
and task-selection skills: A cognitive approach to improving self-regulated learn-
ing. Learning and Instruction 22, 2 (2012), 121-132. https://doi.org/10.1016/j.
learninstruc.2011.08.004

Michael J. Lee and Andrew J. Ko. 2015. Comparing the Effectiveness of Online
Learning Approaches on CS1 Learning Outcomes. In Proceedings of the Eleventh
Annual International Conference on International Computing Education Research
(ICER ’15). ACM, New York, NY, USA, 237-246. https://doi.org/10.1145/2787622.
2787709

Elizabeth A. Linnenbrink and Paul R. Pintrich. 2003. The Role of Self-Efficacy
Beliefs in Student Engagement and Learning in the Classroom. Reading & Writ-
ing Quarterly 19, 2 (2003), 119-137. https://doi.org/10.1080/10573560308223
arXiv:https://doi.org/10.1080/10573560308223

Raymond Lister. 2016. Toward a Developmental Epistemology of Computer
Programming. In Proceedings of the 11th Workshop in Primary and Secondary
Computing Education (WiPSCE ’16). ACM, New York, NY, USA, 5-16. https:
//doi.org/10.1145/2978249.2978251

Mike Lopez, Jacqueline Whalley, Phil Robbins, and Raymond Lister. 2008. Re-
lationships Between Reading, Tracing and Writing Skills in Introductory Pro-
gramming. In Proceedings of the Fourth International Workshop on Computing
Education Research (ICER °08). ACM, New York, NY, USA, 101-112. https:
//doi.org/10.1145/1404520.1404531

Andrew Luxton-Reilly, Brett A. Becker, Yingjun Cao, Roger McDermott, Claudio
Mirolo, Andreas Miihling, Andrew Petersen, Kate Sanders, Simon, and Jacqueline
Whalley. 2017. Developing Assessments to Determine Mastery of Programming
Fundamentals. In Proceedings of the 2017 ITiCSE Conference on Working Group
Reports (ITICSE-WGR °17). ACM, New York, NY, USA, 47-69. https://doi.org/10.
1145/3174781.3174784

Lauren Margulieux, Tuba Ayer Ketenci, and Adrienne Decker. 2019.
Review of measurements used in computing education research and
suggestions for increasing standardization. Computer Science Educa-
tion 29, 1 (2019), 49-78. https://doi.org/10.1080/08993408.2018.1562145
arXiv:https://doi.org/10.1080/08993408.2018.1562145

Susana Masapanta-Carrion and J. Angel Velazquez-Iturbide. 2018. A Systematic
Review of the Use of Bloom’s Taxonomy in Computer Science Education. In
Proceedings of the 49th ACM Technical Symposium on Computer Science Educa-
tion (SIGCSE °18). ACM, New York, NY, USA, 441-446. https://doi.org/10.1145/
3159450.3159491

Peter J. Miller. 2003. The Effect of Scoring Criteria Specificity on
Peer and Self-assessment. Assessment & Evaluation in Higher Educa-
tion 28, 4 (2003), 383-394. https://doi.org/10.1080/0260293032000066218
arXiv:https://doi.org/10.1080/0260293032000066218

Laurie Murphy and Josh Tenenberg. 2005. Do Computer Science Students Know
What They Know?: A Calibration Study of Data Structure Knowledge. In Pro-
ceedings of the 10th Annual SIGCSE Conference on Innovation and Technology in
Computer Science Education (ITiCSE 05). ACM, New York, NY, USA, 148-152.
https://doi.org/10.1145/1067445.1067488

Greg L. Nelson, Benjamin Xie, and Andrew J. Ko. 2017. Comprehension First:
Evaluating a Novel Pedagogy and Tutoring System for Program Tracing in CS1.
In Proceedings of the 2017 ACM Conference on International Computing Education
Research (ICER ’17). ACM, New York, NY, USA, 2-11. https://doi.org/10.1145/
3105726.3106178

Grace Ngai, Winnie WY. Lau, Stephen C.F. Chan, and Hong-va Leong. 2010. On
the Implementation of Self-assessment in an Introductory Programming Course.
SIGCSE Bull. 41, 4 (Jan. 2010), 85-89. https://doi.org/10.1145/1709424.1709453
Council of Europe. 2018 (accessed April 1, 2019). Common Euro-
pean Framework of Reference for Languages: Learning, Teaching, Assess-
ment. Companion Volume with New Descriptors. https://rm.coe.int/
cefr-companion-volume-with-new-descriptors-2018/1680787989

Miranda C. Parker, Mark Guzdial, and Shelly Engleman. 2016. Replication, Val-
idation, and Use of a Language Independent CS1 Knowledge Assessment. In
Proceedings of the 2016 ACM Conference on International Computing Education
Research (ICER ’16). ACM, New York, NY, USA, 93-101. https://doi.org/10.1145/
2960310.2960316

Leo Porter, Cynthia Taylor, and Kevin C. Webb. 2014. Leveraging Open Source
Principles for Flexible Concept Inventory Development. In Proceedings of the 2014
Conference on Innovation & Technology in Computer Science Education (ITiCSE
’14). ACM, New York, NY, USA, 243-248. https://doi.org/10.1145/2591708.2591722
Marcos Roméan-Gonzalez, Juan-Carlos Pérez-Gonzélez, and Carmen Jiménez-
Fernandez. 2017. Which cognitive abilities underlie computational thinking?
Criterion validity of the Computational Thinking Test. Computers in Human
Behavior 72 (2017), 678 — 691. https://doi.org/10.1016/j.chb.2016.08.047

John A. Ross. 2006. The Reliability , Validity , and Utility of Self-Assessment.
Practical assessment, research and evaluation 10 (2006), 1-13. https://doi.org/10.
1016/j.aspen.2014.06.014

Sam Saarinen, Shriram Krishnamurthi, Kathi Fisler, and Preston Tunnell Wilson.
2019. Harnessing the Wisdom of the Classes: Classsourcing and Machine Learning
for Assessment Instrument Generation. In Proceedings of the 50th ACM Technical

https://doi.org/10.1145/2787622.2787717
https://doi.org/10.1145/1822090.1822135
https://doi.org/10.1145/1822090.1822135
https://doi.org/10.1016/0146-6402(78)90002-4
https://doi.org/10.1016/0146-6402(78)90002-4
https://doi.org/10.1016/j.learninstruc.2009.02.024
https://doi.org/10.1145/3287324.3287372
https://doi.org/10.1145/1971681.1971685
https://doi.org/10.1007/s10648-017-9426-2
https://rm.coe.int/1680459f97
https://doi.org/10.1145/3105726.3106171
https://doi.org/10.1145/3304221.3319755
https://doi.org/10.1145/3230977.3230986
https://doi.org/10.1109/ICPC.2012.6240511
https://doi.org/10.1145/1789934.1789935
https://doi.org/10.1145/2591708.2591713
https://doi.org/10.1145/343048.343063
https://doi.org/10.1145/3287324.3287377
https://doi.org/10.1016/j.learninstruc.2011.08.004
https://doi.org/10.1016/j.learninstruc.2011.08.004
https://doi.org/10.1145/2787622.2787709
https://doi.org/10.1145/2787622.2787709
https://doi.org/10.1080/10573560308223
http://arxiv.org/abs/https://doi.org/10.1080/10573560308223
https://doi.org/10.1145/2978249.2978251
https://doi.org/10.1145/2978249.2978251
https://doi.org/10.1145/1404520.1404531
https://doi.org/10.1145/1404520.1404531
https://doi.org/10.1145/3174781.3174784
https://doi.org/10.1145/3174781.3174784
https://doi.org/10.1080/08993408.2018.1562145
http://arxiv.org/abs/https://doi.org/10.1080/08993408.2018.1562145
https://doi.org/10.1145/3159450.3159491
https://doi.org/10.1145/3159450.3159491
https://doi.org/10.1080/0260293032000066218
http://arxiv.org/abs/https://doi.org/10.1080/0260293032000066218
https://doi.org/10.1145/1067445.1067488
https://doi.org/10.1145/3105726.3106178
https://doi.org/10.1145/3105726.3106178
https://doi.org/10.1145/1709424.1709453
https://rm.coe.int/cefr-companion-volume-with-new-descriptors-2018/1680787989
https://rm.coe.int/cefr-companion-volume-with-new-descriptors-2018/1680787989
https://doi.org/10.1145/2960310.2960316
https://doi.org/10.1145/2960310.2960316
https://doi.org/10.1145/2591708.2591722
https://doi.org/10.1016/j.chb.2016.08.047
https://doi.org/10.1016/j.aspen.2014.06.014
https://doi.org/10.1016/j.aspen.2014.06.014

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48

[49

[50]

Symposium on Computer Science Education (SIGCSE '19). ACM, New York, NY,
USA, 606-612. https://doi.org/10.1145/3287324.3287504

Dale H Schunk. 1981. Modeling and attributional effects on children’s achieve-
ment: A self-efficacy analysis. Journal of educational psychology 73, 1 (1981), 93.
https://doi.org/10.1037/0022-0663.73.1.93

Michael James Scott and Gheorghita Ghinea. 2014. Measuring Enrichment: The
Assembly and Validation of an Instrument to Assess Student Self-beliefs in CS1. In
Proceedings of the Tenth Annual Conference on International Computing Education
Research (ICER ’14). ACM, New York, NY, USA, 123-130. https://doi.org/10.1145/
2632320.2632350

Judy Sheard, Angela Carbone, Selby Markham, A J Hurst, Des Casey, and Chris
Avram. 2008. Performance and Progression of First Year ICT Students. In Proceed-
ings of the Tenth Conference on Australasian Computing Education - Volume 78
(ACE ’08). Australian Computer Society, Inc., Darlinghurst, Australia, Australia,
119-127. http://dl.acm.org/citation.cfm?id=1379249.1379261

E. Soloway. 1986. Learning to Program = Learning to Construct Mechanisms
and Explanations. Commun. ACM 29, 9 (Sept. 1986), 850-858. https://doi.org/10.
1145/6592.6594

John Sweller. 2010. Element Interactivity and Intrinsic, Extraneous, and Germane
Cognitive Load. Educational Psychology Review 22, 2 (01 Jun 2010), 123-138.
https://doi.org/10.1007/s10648-010-9128-5

C. Taylor, D. Zingaro, L. Porter, K.C. Webb, C.B. Lee, and M. Clancy. 2014.
Computer science concept inventories: past and future. Computer Science Ed-
ucation 24, 4 (2014), 253-276. https://doi.org/10.1080/08993408.2014.970779
arXiv:https://doi.org/10.1080/08993408.2014.970779

Harriet G. Taylor and Luegina C. Mounfield. 1994. Exploration of the
Relationship between Prior Computing Experience and Gender on Success
in College Computer Science. Journal of Educational Computing Research
11, 4 (1994), 291-306. https://doi.org/10.2190/4U0A-36XP-EU5K-H4KV
arXiv:https://doi.org/10.2190/4U0A-36XP-EU5SK-H4KV

Donna Teague. 2015. Neo-Piagetian theory and the novice programmer. Ph.D.
Dissertation. Queensland University of Technology.

Donna Teague, Malcolm Corney, Alireza Ahadi, and Raymond Lister. 2013. A
Qualitative Think Aloud Study of the Early Neo-piagetian Stages of Reasoning
in Novice Programmers. In Proceedings of the Fifteenth Australasian Computing
Education Conference - Volume 136 (ACE ’13). Australian Computer Society, Inc.,
Darlinghurst, Australia, Australia, 87-95. http://dl.acm.org/citation.cfm?id=
2667199.2667209

Allison Elliott Tew and Mark Guzdial. 2010. Developing a Validated Assessment of
Fundamental CS1 Concepts. In Proceedings of the 41st ACM Technical Symposium
on Computer Science Education (SIGCSE ’10). ACM, New York, NY, USA, 97-101.
https://doi.org/10.1145/1734263.1734297

D. Timmermann, C. Kautz, and V. Skwarek. 2016. Evidence-based re-design of
an introductory "course programming in C". In 2016 IEEE Frontiers in Education
Conference (FIE). 1-5. https://doi.org/10.1109/FIE.2016.7757492

[51]

[52

o
=

(54

[55]

‘o
o

[57

[58

[59

[60

Ian Utting, Allison Elliott Tew, Mike McCracken, Lynda Thomas, Dennis Bou-
vier, Roger Frye, James Paterson, Michael Caspersen, Yifat Ben-David Kolikant,
Juha Sorva, and Tadeusz Wilusz. 2013. A Fresh Look at Novice Programmers’
Performance and Their Teachers’ Expectations. In Proceedings of the ITiCSE Work-
ing Group Reports Conference on Innovation and Technology in Computer Science
Education-working Group Reports (ITiCSE -WGR ’13). ACM, New York, NY, USA,
15-32. https://doi.org/10.1145/2543882.2543884

Arto Vihavainen, Jonne Airaksinen, and Christopher Watson. 2014. A System-
atic Review of Approaches for Teaching Introductory Programming and Their
Influence on Success. In Proceedings of the Tenth Annual Conference on Interna-
tional Computing Education Research (ICER '14). ACM, New York, NY, USA, 19-26.
https://doi.org/10.1145/2632320.2632349

Quang H. Vuong. 1989. Likelihood Ratio Tests for Model Selection and Non-
Nested Hypotheses. Econometrica 57, 2 (1989), 307-333. https://doi.org/10.2307/
1912557

Christopher O. Walker, Barbara A. Greene, and Robert A. Mansell. 2006. Identifica-
tion with academics, intrinsic/extrinsic motivation, and self-efficacy as predictors
of cognitive engagement. Learning and Individual Differences 16, 1 (2006), 1 — 12.
https://doi.org/10.1016/j.lindif.2005.06.004

David Weintrop and Uri Wilensky. 2015. Using Commutative Assessments to
Compare Conceptual Understanding in Blocks-based and Text-based Programs.
In Proceedings of the Eleventh Annual International Conference on International
Computing Education Research (ICER ’15). ACM, New York, NY, USA, 101-110.
https://doi.org/10.1145/2787622.2787721

Susan Wiedenbeck, Deborah Labelle, and Vennila NR Kain. 2004. Factors affecting
course outcomes in introductory programming. In 16th Annual Workshop of the
Psychology of Programming Interest Group.

Brenda Cantwell Wilson and Sharon Shrock. 2001. Contributing to Success in an
Introductory Computer Science Course: A Study of Twelve Factors. In Proceedings
of the Thirty-second SIGCSE Technical Symposium on Computer Science Education
(SIGCSE '01). ACM, New York, NY, USA, 184-188. https://doi.org/10.1145/364447.
364581

Benjamin Xie, Matthew J. Davidson, Min Li, and Andrew J. Ko. 2019. An
Item Response Theory Evaluation of a Language-Independent CS1 Knowl-
edge Assessment. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education (SIGCSE ’19). ACM, New York, NY, USA, 699-705.
https://doi.org/10.1145/3287324.3287370

Benjamin Xie, Dastyni Loksa, Greg L. Nelson, Matthew J. Davidson, Dongsheng
Dong, Harrison Kwik, Alex Hui Tan, Leanne Hwa, Min Li, and Andrew J. Ko. 2019.
A theory of instruction for introductory programming skills. Computer Science
Education 29, 2-3 (2019), 205-253. https://doi.org/10.1080/08993408.2019.1565235
arXiv:https://doi.org/10.1080/08993408.2019.1565235

Barry J Zimmerman. 2002. Becoming a Self-Regulated Learner: An Overview.
Theory into practice 41, 2 (2002), 64-70. https://doi.org/10.1207/s15430421tip4102

https://doi.org/10.1145/3287324.3287504
https://doi.org/10.1037/0022-0663.73.1.93
https://doi.org/10.1145/2632320.2632350
https://doi.org/10.1145/2632320.2632350
http://dl.acm.org/citation.cfm?id=1379249.1379261
https://doi.org/10.1145/6592.6594
https://doi.org/10.1145/6592.6594
https://doi.org/10.1007/s10648-010-9128-5
https://doi.org/10.1080/08993408.2014.970779
http://arxiv.org/abs/https://doi.org/10.1080/08993408.2014.970779
https://doi.org/10.2190/4U0A-36XP-EU5K-H4KV
http://arxiv.org/abs/https://doi.org/10.2190/4U0A-36XP-EU5K-H4KV
http://dl.acm.org/citation.cfm?id=2667199.2667209
http://dl.acm.org/citation.cfm?id=2667199.2667209
https://doi.org/10.1145/1734263.1734297
https://doi.org/10.1109/FIE.2016.7757492
https://doi.org/10.1145/2543882.2543884
https://doi.org/10.1145/2632320.2632349
https://doi.org/10.2307/1912557
https://doi.org/10.2307/1912557
https://doi.org/10.1016/j.lindif.2005.06.004
https://doi.org/10.1145/2787622.2787721
https://doi.org/10.1145/364447.364581
https://doi.org/10.1145/364447.364581
https://doi.org/10.1145/3287324.3287370
https://doi.org/10.1080/08993408.2019.1565235
http://arxiv.org/abs/https://doi.org/10.1080/08993408.2019.1565235
https://doi.org/10.1207/s15430421tip4102

