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a b s t r a c t 

Many empirical studies suggest that the realized values of highest-ranked decision alternatives tend to be 

systematically lower than estimated, causing the decision-maker to experience post-decision disappoint- 

ment. This systematic overestimation of value has been explained by a systematic bias in the alternatives’ 

estimated values resulting from, e.g., a behavioural disposition towards overoptimism or even strategic 

misrepresentation. Nevertheless, even if these estimates are unbiased, the value of the selected alterna- 

tive is likely to be overestimated due to selection bias. In this paper, we build models for measuring the 

shares of systematic and selection biases in generating post-decision disappointment, and develop ap- 

proaches for estimating these models from data which contains the estimated values of all alternatives 

but the realized values of selected alternatives only. Results obtained from applying these models to real 

data on 5610 transportation infrastructure projects suggest that out of the total cost overrun of $2.77 

billion, only ca. 24% can be attributed to systematic bias. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Businesses and public organizations frequently need to decide 

between several decision alternatives; for instance, which R&D 

projects to launch ( Baker, Bosetti, & Salo, 2020 ), which supplier to 

work with ( Kellner, Lienland, & Utz, 2019 ), or which contractor to 

select for carrying out a public infrastructure project ( Gupta, Snir, 

& Chen, 2015 ). These types of decision processes typically involve 

three phases: (i) identifying the set of feasible decision alterna- 

tives, (ii) estimating the values (e.g., expected utilities or certainty 

equivalents) of these alternatives, and (iii) selecting the alternative 

that has the highest estimated value. 

Because of uncertainties, the value estimates are never perfectly 

accurate, whereby the ex post realized values of the alternatives 

rarely coincide with their ex ante estimated values. In particu- 

lar, many empirical studies suggest that the realized values of se- 

lected alternatives tend to be systematically lower than estimated, 

causing the decision-maker to experience post-decision disappoint- 

ment ( Bell, 1985; Harrison & March, 1984; Smith & Winkler, 2006 ). 

For instance, revenue forecasts of capital investment projects in 

companies have been shown to be overstated in roughly 80% of 

cases ( Brous, Hiedemann, & Schultz, 2009; Pruitt & Gitman, 1987 ). 
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On the other hand, cost overruns have been shown to occur in 

90% of large transportation infrastructure projects worldwide with 

an average overrun of 27.6% ( Flyvbjerg, 2009 ). Cost overruns are 

typical in many other decision contexts as well, including the se- 

lection of road construction projects ( Bajari, Houghton, & Tadelis, 

2011; Odeck, 2004 ) and software projects ( Jø rgensen, 2013 ), de- 

fense procurement ( Terasawa, Quirk, & Womer, 1989 ), and plant in- 

vestments in chemical process industries ( Merrow, Phillips, & My- 

ers, 1981 ). 

The systematic overestimation of value – or, analogously, the 

systematic underestimation of cost – has typically been attributed 

to a systematic bias in the alternatives’ estimated values or costs. A 

great deal of research has been devoted to examining the possible 

sources for such systematic bias, particularly in the fields of Be- 

havioural Economics ( Tversky & Kahneman, 1974 ), Behavioural Fi- 

nance ( Shleifer, 20 0 0; Subrahmanyam, 20 08 ), and Behavioural Op- 

erational Research ( Franco & Hämäläinen, 2016 ). First, there may 

be motivational reasons for producing overly optimistic estimates 

for the preferred alternative. In competitive bidding situations, for 

instance, project promoters gain a strategic advantage by underes- 

timating the costs of their project proposal ( Bajari et al., 2011; Fly- 

vbjerg, 2009; Montibeller & von Winterfeldt, 2015 ). On the other 

hand, even without outside motivation for deliberate misrepresen- 

tation, biased estimates are likely due to a behavioural disposition 

toward overoptimism or overconfidence ( Flyvbjerg, 2009; Kahne- 

man & Lovallo, 1993; Lovallo & Kahneman, 2003; Montibeller & 
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von Winterfeldt, 2015 ). For instance, overconfident CEOs have been 

found to overinvest in the firm’s projects due to a systematic over- 

estimation of the projects’ returns, even when such overinvestment 

exposes them to personal risk ( Malmendier & Tate, 2005 ). 

When the performance of decision alternatives is assessed on 

multiple criteria, systematic biases in the alternatives overall value 

estimates (computed as weighted sums of the criterion-specific as- 

sessments, for instance) may arise from scaling bias (assessments 

are affected by the choice of measurement scales), gain-loss bias 

(assessments are affected by whether they are framed as gains 

vs. losses), proxy bias (criteria for which proxy measurement scales 

are used are overweighted), or even by the vividness with which 

different criteria are presented ( Ferretti & Geneletti, 2020; Mon- 

tibeller & von Winterfeldt, 2015; Morton & Fasolo, 2009 ). More- 

over, biases associated with different stages of multicriteria deci- 

sion analytic methods can accumulate in ways that result in sig- 

nificant overall estimation errors ( Lahtinen & Hämäläinen, 2016; 

Lahtinen, Hämäläinen, & Jenytin, 2020 ). 

Nevertheless, even if there is no systematic bias in the alter- 

natives’ value estimates but only the alternative with the high- 

est value estimate is selected, the value of this selected alterna- 

tive is likely to be overestimated due to selection bias ( Begg & 

Bratvold, 2008; Kettunen & Salo, 2017; Quirk & Terasawa, 1986; 

Smith & Winkler, 2006; Vilkkumaa, Liesiö, & Salo, 2014 ). This is 

because although the estimation errors among all proposed alter- 

natives might cancel each other out, the value of the selected al- 

ternative – i.e., the one with the highest value estimate – is more 

likely to have been overestimated rather than underestimated. In 

other words, even in the absence of systematic estimation bias, 

post-decision disappointment is likely due to a selection process 

that favors alternatives with overestimated values. 

This leads to the main research question of this paper: what 

are the relative contributions of systematic and selection biases 

in generating post-decision disappointment? The need to distin- 

guish between these biases has been recognized in the litera- 

ture ( Jø rgensen, 2013; Quirk & Terasawa, 1986; Smith & Winkler, 

2006 ) but, to our knowledge, no results have been presented on 

their relative shares in real-life applications. The lack of such re- 

sults is probably explained by both methodological challenges as 

well as difficulties in obtaining suitable data. First, suitable data 

would need to include both the estimated and realized values 

of decision alternatives over multiple decision settings. Few firms 

keep careful records documenting the estimated values of their de- 

cision alternatives and, even if they did, such data is likely to be 

confidential. Second, if such data could be obtained, it would not 

(and could not) contain information about the true values of those 

alternatives that were never implemented. Such incomplete data 

would rule out the use of standard regression techniques for es- 

timating the relationship between the alternatives’ true and esti- 

mated values through which the distinction between the two bi- 

ases could be made. 

In this paper we develop models for estimating the relative 

shares of systematic and selection biases based on incomplete em- 

pirical data. In particular, we build models for the alternatives’ true 

and estimated values and develop Expectation Maximization algo- 

rithms ( Dempster, Laird, & Rubin, 1977 ) for estimating the param- 

eters of these models from data that does not contain the true val- 

ues of those alternatives that were not selected. We demonstrate 

the use of these algorithms through multiple simulation examples, 

and illustrate how the use of standard regression techniques on 

data consisting of the true and estimated values of selected alter- 

natives alone – as is often done in practice– is likely to lead to 

overestimating systematic bias and, consequently, underestimating 

selection bias. 

We apply the developed models to a real data set consisting 

of 5610 decisions on the selection of transportation infrastructure 

projects during 20 0 0–2014, each with 1–33 decision alternatives. 

To our knowledge, this is the first contribution to estimating the 

relative magnitudes of systematic bias and selection bias based on 

data from real-life decision settings. Our results suggest that out of 

the cumulative post-decision disappointment of $2.77 billion, only 

ca. 24% can be attributed to systematic bias. An important impli- 

cation of this finding is that measures taken to reduce system- 

atic bias through debiasing techniques ( Montibeller & von Win- 

terfeldt, 2015; Morton & Fasolo, 2009 ) or even financial or profes- 

sional penalties ( Flyvbjerg, Holm, & Buhl, 2002 ) may be relatively 

ineffective in mitigating overall post-decision disappointment. 

The rest of this paper is structured as follows. In Section 2 we 

present the model for post-decision surprise, define systematic and 

selection biases that contribute to expected post-decision disap- 

pointment, and review earlier results on eliminating such disap- 

pointment through Bayesian modeling of estimation uncertainties. 

In Section 3 , we present the EM algorithm and examples thereof. 

The application of the models to transportation infrastructure data 

is presented in Section 4 . In Section 5 we conclude by discussing 

the limitations of our models and the implications of our results. 

2. Modeling post-decision surprise 

2.1. Basic concepts and notation 

Suppose 1 that a decision-maker is considering n decision alter- 

natives indexed by j = 1 , . . . , n with true values μ = [ μ1 , . . . , μn ] 
T . 

These true values, which are assumed to be a realization of a 

vector-valued random variable M ∼ f ( μ) , represent the values that 

the alternatives would yield if implemented. If the decision-maker 

knew μ beforehand, she would select the alternative with the 

highest true value, the index of which is 

j( μ) = argmax 
j 

μ j . (1) 

Yet, the decision-maker does not know the true values, but 

needs to make the decision based on uncertain estimates v = 

[ v 1 , . . . , v n ] T thereof. These value estimates v are a realization of a 

vector-valued random variable ( V | M = μ) ∼ f ( v | μ) . The index of 

the alternative selected based on such estimates is 

j( v ) = argmax 
j 

v j . (2) 

The ex post observed true value of the selected alternative is 

μ j( v ) , which is a realization of M j( v ) . Fig. 1 summarizes the deci- 

sion setting and notation through an influence diagram. 

Because the value estimates are uncertain, the true value of 

the selected alternative μ j( v ) rarely coincides with its estimated 

value v j( v ) . The difference μ j( v ) − v j( v ) between the true and esti- 

mated value of the selected alternative is called post-decision sur- 

prise ( Harrison & March, 1984 ). Assume first that the value esti- 

mates are conditionally unbiased so that 

E [ V j | M = μ] = μ j for all j = 1 , . . . , n. (3) 

In this case, the expected post-decision surprise of any ran- 

domly selected alternative j is zero, i.e., E [ M j − V j ] = 0 . Yet, the 

expected post-decision surprise E [ M j( V ) − V j( V ) ] from selecting the 

alternative with the highest value estimate is non-positive, whereby 

the decision-maker is expected to experience post-decision disap- 

pointment ( Harrison & March, 1984; Vilkkumaa et al., 2014 ). Smith 

and Winkler (2006) have named this phenomenon the optimizer’s 

curse . 

The expected post-decision disappointment is illustrated in 

Fig. 2 , which shows the distribution of the maximum value esti- 

mate V j( V ) = max { V 1 , . . . , V n } among n decision alternatives when 

1 A list of notation is presented in Appendix A. 
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Fig. 1. Influence diagram describing the decision setting. 

each value estimate is conditionally unbiased and follows the stan- 

dard normal distribution (V j | M = μ) ∼ N(0 , 1 2 ) so that the true 

value of each alternative is μ j = E [ V j | M = μ] = 0 (solid lines). 

The table shows the expected post-decision disappointment (i.e., 

the expected value of the maximum value estimate minus the 

true value zero) for different values of n . In this setting, the 

expected post-decision disappointment increases with the num- 

ber of alternatives n . For instance, the expected disappointment 

E [ V j( V ) − M j( V ) ] is 56% of the standard deviation of the value es- 

timates when there are two alternatives, and 174% of the stan- 

dard deviation when the number of alternatives is 15. Here, post- 

decision disappointment does not result from a systematic bias 

in the alternatives’ value estimates, but from consistently se- 

lecting the alternative with the highest value estimate. Indeed, 

the expected disappointment is zero only if there is a single 

decision alternative so that no selection decision needs to be 

made. 

Consider now the general case in which there may be a sys- 

tematic bias in the value estimates. The dashed lines in Fig. 2 show 

the distributions of the maximum value estimate among n decision 

alternatives when the true value of each alternative is zero, but 

the distribution of each value estimate is (V j | M = 0 ) ∼ N(0 . 5 , 1 2 ) 

so that E [ V j | M = 0 ] = 0 . 5 � = 0 . Compared to the case with unbiased 

estimates (solid lines), the distributions of the maximum value es- 

timates are shifted toward the right by 0.5. Consequently, the ex- 

pected disappointment increases by 0.5 for each value of n . An Ex- 

cel file for generating the illustrations shown in Fig. 2 is provided 

as supplementary material for this paper. 

Systematic bias in the value estimates can be eliminated by ad- 

justing each estimate in a suitable way. Technically, such an adjust- 

ment corresponds to defining a transformation d(·) such that the 

transformed estimate d(V j ) is conditionally unbiased. For instance, 

the systematic bias in the value estimates of Fig. 2 could be elimi- 

nated through transformation d(V j ) = V j − 0 . 5 . 

Definition 1. Let μ j and (V j | M = μ) be the true and estimated 

values of alternative j. The debiasing transformation is a mapping 

d : R → R that satisfies 

E [ d(V j ) | M = μ] = μ j . 

The alternatives’ debiased value estimates form a vector-valued 

random variable denoted by ˜ V = [ ̃  V 1 , . . . , ̃  V n ] 
T , where ˜ V j = d(V j ) . 

The realization of this variable is denoted by ˜ v = [ ̃ v 1 , . . . , ̃  v n ] T . The 

index of the alternative selected based on debiased estimates is 

j( ̃ v ) = argmax 
j 

˜ v j . (4) 

In the example of Fig. 2 , for instance, the distributions of the max- 

imum debiased estimates ˜ V j( ̃ V ) = max { ̃  V 1 , . . . , ̃  V n } for different val- 

ues of n would correspond to those illustrated by the solid lines. 

When the alternatives’ true values and value estimates are ran- 

dom variables M and V , the indices of the alternatives with the 

highest true value, value estimate, and debiased estimate are also 

random variables. We denote these random variables by J ∗, J, and 

˜ J , respectively: 

J ∗ = j( M ) = argmax 
j 

M j , (5) 

J = j( V ) = argmax 
j 

V j , (6) 

˜ J = j( ̃  V ) = argmax 
j 

˜ V j . (7) 

2.2. Total, systematic, and selection biases 

We define total bias as the expected difference between the true 

and estimated value of the selected alternative, i.e., the expected 

post-decision surprise. This total bias consists of two parts: the 

part explained by the systematic bias in the value estimates ( sys- 

tematic bias ), and the part that remains after the estimates have 

been debiased and is, therefore, explained entirely by the selec- 

tion process ( selection bias ). In the example of Fig. 2 , the total bias 

corresponding to biased value estimates and n = 4 alternatives is 

−1 . 53 , of which systematic bias constitutes −0 . 5 and selection bias 

Fig. 2. The distribution of the maximum of n value estimates, and the expected disappointment resulting from selecting the alternative with the maximum value estimate 

when the estimates are (i) conditionally unbiased (V j | M = μ) ∼ N(0 , 1 2 ) (solid line) or (ii) conditionally biased (V j | M = μ) ∼ N(0 . 5 , 1 2 ) (dashed line). 
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the remaining −1 . 03 . These concepts are formalized in the follow- 

ing Definition. 

Definition 2. Total bias ( T B ), selection bias ( SeB ), and systematic 

bias ( SyB ) are defined as 

T B = E [ M J − V J ] , (8) 

SeB = E [ M ˜ J − ˜ V ˜ J ] , (9) 

SyB = T B − SeB = E [(M J − V J ) − (M ˜ J − ˜ V ˜ J )] , (10) 

where the indices of the alternatives with the highest value es- 

timate J and the highest debiased value estimate ˜ J are given by 

(6) and (7) , respectively. 

Even if the value estimates are unbiased, it can be shown that 

the value of the selected alternative is expected to be lower than 

or equal to its estimated value, which implies a non-positive se- 

lection bias. Moreover, if there is a chance of selecting the ‘wrong’ 

alternative, selection bias is strictly negative – as was the case in 

the example of Fig. 2 with normally distributed value estimates. 

These results, which hold for any distributions f ( μ) and f ( v | μ) 

of the alternatives’ true and estimated values, are formalized in 

Proposition 1 . 

Proposition 1. SeB ≤ 0 . Furthermore, if P (J ∗ � = 

˜ J ) > 0 , then SeB < 0 . 

All proofs are in Appendix B . Proposition 1 is a generalization 

of Proposition 1 by Smith and Winkler (2006) to cases in which 

the value estimates are not necessarily conditionally unbiased. 

In settings with a single decision alternative no selection de- 

cision needs to be made, whereby selection bias is zero. In this 

case total bias is entirely explained by a systematic bias in the es- 

timated values of the alternatives. This is illustrated in the example 

of Fig. 2 where, in the case of biased value estimates, the expected 

difference between the true and estimated value of the selected 

alternative given n = 1 is equal to the systematic bias in the value 

estimates, i.e., −0 . 5 . 

Proposition 2. If there is a single decision alternative, then SeB = 0 , 

whereby T B = SyB . 

Unlike selection bias, systematic bias can be either positive or 

negative. If, for instance, the values of all decision alternatives are 

systematically underestimated, then systematic bias is positive and 

can in fact cancel out the negative selection bias. Interestingly, sys- 

tematic bias can also be positive when the values of all decision al- 

ternatives are systematically overestimated, as long as the expected 

difference E [ M J − M ˜ J ] between the true values of the alternatives 

selected based on biased and debiased estimates is larger than the 

expected difference E [ V J − ˜ V ˜ J ] between their estimated values (cf. 

Eq. (10) ). This is the case, for instance, when there are 20 deci- 

sion alternatives representing two types: (i) the first ten alterna- 

tives have true values with relatively large variability M i ∼ N(0 , 4 2 ) 

and value estimates that are heavily biased but otherwise rela- 

tively accurate (V i | M i = μi ) ∼ N(μi + 2 , 1 2 ) ; and (ii) the other ten 

have true values with relatively low variability M i ∼ N(0 , 1 2 ) and 

value estimates that are only slightly biased but very inaccurate 

(V i | M i = μi ) ∼ N(μi + 0 . 1 , 10 2 ) . The distributions of the true val- 

ues as well as biased and debiased value estimates for both types 

are illustrated in Fig. 3 . Following from the distribution assump- 

tions, it is likely that the alternative that has the highest true value 

μi is of the first type (cf. Fig. 3 a). Nevertheless, an alternative of 

the second type is much more likely to have the highest value es- 

timate due to the large estimation error variance, and this like- 

lihood is further increased when the estimates are debiased (cf. 

Fig. 3 a). In other words, debiasing increases the probability of se- 

lecting an alternative of the ‘wrong’ type. Therefore, the expected 

difference E [ M J − M ˜ J ] between the true values of the alternatives 

selected based on biased and debiased estimates is positive (ca. 

0.40) and, in this case, larger than expected difference E [ V J − ˜ V ˜ J ] 

between their estimated values (ca. 0.27). 

Cases in which systematic bias is positive (at least to the ex- 

tent that it would cancel out the effect of negative selection bias) 

do not represent the empirically observed tendency of the value of 

the selected alternative to have been overestimated. Therefore, we 

focus here on situations in which systematic bias is non-positive. 

This can be shown to be the case if debiasing (i) does not change 

the selected alternative (i.e., P (J = 

˜ J ) = 1 ) and (ii) does not make 

the value estimate of the selected alternative larger (i.e., P ( ̃  V J > 

V J ) = 0 ). An example of a situation in which these conditions hold 

is shown in Fig. 2 , in which the biased estimates are debiased by 

subtracting a constant value of 0.5 so that debiasing (i) does not 

change the ranking of the alternatives and (ii) makes the value 

estimate of each alternative smaller. Moreover, systematic bias is 

zero if and only if the estimate of the selected alternative is con- 

ditionally unbiased so that P ( ̃  V J = V J ) = 1 . 

Proposition 3. If P (J = 

˜ J ) = 1 and P ( ̃  V J > V J ) = 0 , then SyB ≤ 0 . 

Moreover, SyB = 0 if and only if P ( ̃  V J = V J ) = 1 . 

Because total bias is the sum of systematic and selection biases, 

total bias is non-positive under the conditions of Proposition 3 . 

Moreover, if there is a chance of selecting the wrong alternative 

or if debiasing makes the value estimate of the selected alternative 

strictly smaller, then total bias is strictly negative. 

Corollary 1. If P (J = 

˜ J ) = 1 and P ( ̃  V J > V J ) = 0 , then T B ≤ 0 . More- 

over, if P (J ∗ � = J) > 0 or P ( ̃  V J ≥ V J ) = 0 , then T B < 0 . 

Fig. 4 shows the total, systematic, and selection biases for dif- 

ferent numbers of alternatives n with true values μ j = 0 and esti- 

mated values (V j | M = μ) ∼ N(μ j + 0 . 5 , 1 2 ) for all j = 1 , . . . , n . Sys- 

tematic bias is constant −0 . 5 , but selection bias (and, therefore, to- 

tal bias) becomes more pronounced when the number of decision 

alternatives increases. Consequently, the larger the number of al- 

ternatives, the higher the share of total bias that is explained by 

selection bias. For instance, when there is only one alternative, the 

share of selection bias out of total bias is zero, but when the num- 

ber of alternatives is 10, this share is 1 . 54 / 2 . 04 ≈ 75% . 

2.3. Computation of posterior means for the alternatives’ true values 

Biases in the estimated values of the selected alternatives can 

be overcome by modeling estimation uncertainties through stan- 

dard Bayesian methods (see, e.g., Harrison & March, 1984; Smith 

& Winkler, 2006 ). In particular, assuming that the prior distribu- 

tion f ( μ) and the likelihood distribution f ( v | μ) have been esti- 

mated using data from past decision settings, the posterior distri- 

bution f ( μ| v ) for the alternatives’ true values given the value esti- 

mates can be obtained through Bayes’ rule: f ( μ| v ) ∝ f ( v | μ) f ( μ) . 

Then, rather than taking the estimates v at face value, decisions 

are based on the alternatives’ posterior means E [ M j | V = v ] . 
Let us denote the posterior means by vector ˆ v = 

[ ̂ v 1 , . . . , ̂  v n ] T , ˆ v j = E [ M j | V = v ] , where ˆ v is a realization of a 

vector-valued random variable ˆ V = [ ̂  V 1 , . . . , ̂  V n ] 
T , ˆ V j = E [ M j | V ] . The 

index of the alternative selected based on 

ˆ v is 

j( ̂  v ) = argmax 
j 

ˆ v j . (11) 

Without making any specific assumptions about distributions 

f ( μ) and f ( v | μ) , it can be shown that the expected difference 

between the true value and the posterior mean of the selected al- 

ternative is zero. Thus, the use of posterior means ˆ v as a basis for 
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Fig. 3. The distributions of the true values M i , value estimates V i and debiased value estimates ˜ V i for two types of alternatives. Type 1 (solid line): M i ∼ N(0 , 4 2 ) , V i ∼
N(2 , 4 2 + 1 2 ) , ˜ V i = V i − 2 . Type 2 (dashed line): M i ∼ N(0 , 1 2 ) , V i ∼ N(0 . 1 , 1 2 + 10 2 ) , ˜ V i = V i − 0 . 1 . For type 2 alternatives, the distribution of ˜ V i is indistinguishable from that 

of V i . 

Fig. 4. Total, systematic, and selection biases for different numbers of alternatives 

n = 1 , . . . , 15 , when μ j = 0 and (V j | M = μ) ∼ N(μ j + 0 . 5 , 1 2 ) for all j = 1 , . . . , n . 

selection eliminates total bias (also in cases where systematic bias 

is positive). This well-known result is formalized in the following 

Proposition using our notation. Similar propositions have been pre- 

sented in the literature under slightly different assumptions (e.g., 

conditionally unbiased estimates; Smith & Winkler, 2006 ). 

Proposition 4. Let ˆ V = [ ̂  V 1 , . . . , ̂  V n ] , where ˆ V j = E [ M j | V ] , and let 

random variable ˆ J = j( ̂  V ) be the index of the alternative with the 

highest expected value, obtained through (11) with random 

ˆ V . Then, 

E [ M ˆ J 
− ˆ V ˆ J 

| V = v ] = 0 for all v , and hence E [ M ˆ J 
− ˆ V ˆ J 

] = 0 . 

For some distribution families it is possible to obtain a closed- 

form representation for the posterior distribution and its mean. As- 

sume, for instance, that the alternatives’ true values are indepen- 

dent and identically distributed random variables M j ∼ N( μ, σ 2 ) 

and their value estimates are (V j | M = μ) ∼ N(μ j + η, τ 2 ) for all 

j = 1 , . . . , n . Then, the posterior distribution for the true value of 

alternative j is also normal, and the posterior mean E [ M j | V = v ] is 
a convex combination of the prior mean μ and the debiased value 

estimate v j − η: 

(M j | V = v ) ∼ N 

⎛ ⎜ ⎜ ⎝ 

τ 2 

σ 2 + τ 2 
μ + 

σ 2 

σ 2 + τ 2 
(v j − η) ︸ ︷︷ ︸ 

= E [ M j | V = v ] 

, 
σ 2 τ 2 

σ 2 + τ 2 

⎞ ⎟ ⎟ ⎠ 

. 

(12) 

3. Estimating biases from incomplete data 

To estimate total, systematic, and selection biases, one must 

(i) identify the shape of the joint distribution f ( μ, v ; θ ) for the 

alternatives’ true and estimated values and (ii) estimate the pa- 

rameters θ of this distribution using the observed true and esti- 

mated values of decision alternatives over multiple decision set- 

tings. We consider m decision settings, each with n i decision al- 

ternatives, i = 1 , . . . , m . The alternatives’ true values in decision 

setting i are denoted by μi = [ μi 
1 
, . . . , μi 

n i 
] , and their estimated 

values by v i = [ v i 
1 
, . . . , v i n i ] . While the estimated values v i 

j 
can be 

observed for each alternative j = 1 , . . . , n i in all decision settings 

i = 1 , . . . , m, the true values μi 
j 

can only be observed for the se- 

lected alternatives j( v i ) , i = 1 , . . . , m . For this reason, standard re- 

gression techniques cannot be applied in estimating θ . 

A popular approach for dealing with missing data is the Ex- 

pectation Maximization (EM) algorithm ( Dempster et al. 1977 ). In 

EM algorithms, the parameter values θ are obtained iteratively. In 

particular, given current estimates for the model parameters and 

the observed data (here, the estimated values of all alternatives 

and true values of the selected alternatives over all decision set- 

tings), the expected value of the log-likelihood function is com- 

puted by taking expectations over the missing data (here, the un- 

observed true values of the alternatives that were not selected). 

Then, new estimates for the parameters θ are computed by maxi- 

mizing the expected value of the log-likelihood function computed 

in the previous step. These two steps are referred to as the Expecta- 

tion step (E-step) and Maximization step (M-step), and they are re- 

peated until some termination criterion is reached (e.g., the change 

in the estimated values of the parameters is below some tolerance 

value). A more formal description of the EM algorithm is given in 

Appendix C . 

The EM algorithm works well for large sample sizes. The im- 

plementation of the algorithm is particularly straightforward for 

problems in which the expected value of the log-likelihood func- 

tion in the E-step and the solution to the maximization problem 

in the M-step exist in closed form ( Little & Rubin, 2014 ). This is 

the case when, for instance, the joint distribution of the alterna- 

tives’ true and estimated values belongs to a regular exponential 

family, such as normal or log-normal distributions. Furthermore, 

within this family of distributions, the EM algorithm has a guar- 

anteed convergence ( Wu, 1983 ). Yet, if the share of missing obser- 

vations is large (i.e., if the number of alternatives across decision 

settings is large), then convergence may be very slow. Furthermore, 

if the distribution f ( μ, v ; θ ) is such that the solution to the maxi- 

mization problem in the M-step does not exist in closed form, then 
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Fig. 5. True distribution (solid line) and estimated joint distributions for the alter- 

natives’ true and estimated values based on complete data on the selected alterna- 

tives alone using standard regression techniques (dashed line) and incomplete data 

on all alternatives using the EM algorithm (dotted line). Crosses denote selected 

alternatives and dots unselected alternatives. 

the application of the algorithm becomes complicated. Extensions 

of the EM algorithm for tackling these two problems are discussed 

by Gelman et al. (2013) and Little and Rubin (2014) . If the sam- 

ple size is small, it is advisable to attach a prior distribution to 

the unknown parameters θ and, in the M-step, maximize the log- 

arithm of the posterior distribution of these parameters instead of 

the likelihood function. This Bayesian variant of the EM algorithm 

is discussed in more detail by Schafer (1997) . 

Below we present three examples illustrating model estimation 

by the EM algorithm when the alternatives’ true values and value 

estimates follow a bivariate normal distribution. In particular, we 

demonstrate the differences between the estimated parameter val- 

ues and share of systematic bias when estimation is based on ap- 

plying (i) the EM algorithm to incomplete data on all decision al- 

ternatives or (ii) standard regression techniques to complete data 

on selected alternatives alone. In each example and the applica- 

tion presented in Section 4 , the EM algorithm was implemented 

by using Matlab on a standard laptop (2.60 GHz, 8GB memory). A 

detailed description of the EM algorithm for each example is given 

in Appendix D . 

3.1. Example 1: identical decision settings 

In this example we consider m = 100 simulated decision set- 

tings in which the number of alternatives n i in a given setting 

i is uniformly distributed between 3 and 10. The alternatives’ 

true values M 

i 
j 
∼ N( μ, σ 2 ) are independent and identically dis- 

tributed random variables and the value estimates are (V i 
j 
| M 

i = 

μi ) ∼ N(μi 
j 
+ η, τ 2 ) for all j = 1 , . . . , n i , i = 1 , . . . , m with param- 

eter values θ = [ μ, η, σ 2 , τ 2 ] = [3 , 0 . 2 , 1 2 , 0 . 5 2 ] . The cumulative 

post-decision disappointment taken over all 100 decision settings 

is ca. 45 units. Based on the model parameters, (100 × η) / 45 = 

(100 × 0 . 2) / 45 ≈ 44% of this disappointment is due to systematic 

bias. 

Fig. 5 illustrates the simulated data as well as the true and es- 

timated joint distributions for the alternatives’ true and estimated 

values. In this figure, selected alternatives are marked with crosses 

and unselected alternatives with dots. The distributions estimated 

based on (i) complete data on selected alternatives using stan- 

dard regression techniques and (ii) incomplete data on all alter- 

natives using the EM algorithm are represented by dashed and 

dotted lines, respectively. The estimated parameter values corre- 

sponding to these distributions are θSR = [4 . 01 , 0 . 45 , 0 . 61 2 , 0 . 45 2 ] 

and θEM 

= [3 . 00 , 0 . 22 , 0 . 99 2 , 0 . 48 2 ] . The distribution corresponding 

to the true parameter values θ = [3 , 0 . 2 , 1 2 , 0 . 5 2 ] is represented by 

a solid line. 

The results exemplify that using data on selected alternatives 

only leads to overemphasizing systematic bias. In fact, by us- 

ing standard regression techniques on selected alternatives alone, 

100% of the cumulative post-decision disappointment of 45 units 

is attributed to systematic bias ( 100 × ηSR = 100 × 0 . 45 = 45 ), al- 

though the true share of systematic bias was only 44%. The use 

of the EM algorithm on incomplete data on all alternatives results 

only in a slight overestimation of the share of systematic bias: 

(100 × ηEM 

) / 45 = (100 × 0 . 22) / 45 ≈ 49% . 

3.2. Example 2: Alternative types differ in systematic error 

Next, consider a case in which the alternatives’ true values 

M 

i 
j 
∼ N( μ, σ 2 ) are independent and identically distributed random 

variables for all j = 1 , . . . , n i , i = 1 , . . . , m, but the distribution of 

the value estimates is different for different types of alternatives j: 

(V i 
j 
| M 

i = μi ) ∼ N(μi 
j 
+ η j , τ

2 
j 
) . These alternative types may corre- 

spond to, for instance, different business units within a company 

repeatedly competing against one another for resources. In this 

case η j and τ j would represent the systematic error and the stan- 

dard deviation of the random error in the value estimates provided 

by unit j. 

Fig. 6 shows the box plots of η j and τ j from 10 0 0 simulation 

rounds, when μ = 3 , σ = 1 , and data on each round is obtained 

from m = 500 simulated decision settings such that each setting i 

has n i = 6 alternatives, each of different type. The true values of η j 

and τ j are marked in Fig. 6 with black squares, and their average 

estimated values obtained by using data on selected alternatives 

alone are marked with asterisks. 

Based on Fig. 6 , the average estimated values of η j and τ j us- 

ing the EM algorithm (marked with horizontal lines) are very close 

to their true values (black squares). As illustrated by the gaps be- 

tween the asterisks and the black squares, using standard regres- 

sion techniques on selected alternatives only leads to overestimat- 

ing systematic bias η j for each alternative type. The larger the 

standard deviation τ j of the random estimation error, the more 

systematic bias would be overestimated. For instance, the system- 

atic bias in the value estimates of alternative type 1 would be con- 

sidered to be the third largest among the six types, although these 

estimates are in fact unbiased. On the other hand, estimation un- 

certainty τ j would be underestimated for all alternative types. A 

similar result is obtained for parameters μ and σ of the prior 

distribution: Using the EM algorithm, the average estimated val- 

ues of these parameters coincide with their true values (3.00 and 

1.00, respectively), whereas the use of data on selected alterna- 

tives alone would lead to overestimating the mean true value μ
(4.13) and underestimating the standard deviation of the true value 

σ (0.73). 

Fig. 7 shows the histogram of the estimated share of system- 

atic bias out of cumulative post-decision disappointment over 500 

decision settings, when parameters are estimated based on incom- 

plete data on all alternatives by using the EM algorithm. The av- 

erage estimated share 32 . 9% is close to the true share 31 . 8% with 

95% confidence interval [21 . 7% , 44 . 1%] . As in the previous exam- 

ple, 100% of cumulative post-decision disappointment would be 

attributed to systematic bias, if parameter estimation was based 

on the observed true and estimated values of selected alternatives 

alone. 
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Fig. 6. Box plots for estimated values of parameters (a) η j and (b) τ j for alternative types j = 1 , . . . , 6 using the EM algorithm. True parameter values marked with black 

squares, and average estimates using data on selected alternatives alone are marked with asterisks. 

Fig. 7. Histogram of the estimated share of systematic bias. Expected true share 

(31.8%) marked with dashed line. Mean estimated share marked with solid line, 95% 

confidence interval 32 . 9 ± 11 . 2% . 

3.3. Example 3: decision settings differ in average value and 

variability 

The last example considers a case in which both systematic bias 

η and estimation uncertainty τ can be assumed equal for all al- 

ternatives j across all decision settings i in that (V i 
j 
| M 

i 
j 
= μi 

j 
) ∼

N(μi 
j 
+ η, τ 2 ) . Yet, each decision setting is different in terms of av- 

erage value and variability among the alternatives, the true values 

of which follow distributions M 

i 
j 
∼ N( μi , σ

2 
i 
) . Such decision set- 

tings may correspond to, for instance, a government agency award- 

ing contracts for public works projects of different sizes and dif- 

ferent levels of uncertainty. In this case it is not possible to distin- 

guish between estimation error variance τ 2 and the variance in the 

alternatives’ true values σ 2 
i 
, unless there are some decision set- 

tings with only a single decision alternative. If sufficient data on 

single-alternative decision settings can be obtained, then η and τ
can be estimated from these data using standard Maximum Likeli- 

hood estimation techniques, after which the EM algorithm can be 

used to estimate μi and σi for i = 1 , . . . , m . 

To study the performance of the EM algorithm under the above 

distribution assumptions, we generated 10 0 0 simulated data sets 

with 10 0 0 decision settings each. In all decision settings, system- 

atic bias was η = 0 . 2 and estimation uncertainty τ = 0 . 5 , whereas 

the setting-specific mean values μi and standard deviations σi 

were generated from distributions N(3 , 0 . 1 2 ) and N(1 , 0 . 1 2 ) , re- 

Fig. 8. Histogram of estimated share of systematic bias out of total bias. True share 

55.4%; 95% confidence interval of estimated share 55 . 3 ± 17 . 8% . 

spectively. The number of alternatives n i in each decision setting 

was uniformly distributed between 1 and 5 so that the average 

number of settings with a single alternative was 200 on each sim- 

ulation round. 

Fig. 8 illustrates the histogram of the estimated share of sys- 

tematic bias out of the cumulative post-decision disappointment 

taken over all 10 0 0 decision settings, when this share is estimated 

based on those ∼ 200 decision settings on each simulation round 

with a single decision alternative. The average estimated share 

55.3% is very close to the true expected share 55.4% with a 95% 

confidence interval of [37 . 5% , 73 . 1%] . Again, if estimated based 

on the observed true and estimated values of selected alternatives 

alone, the share of systematic bias out of cumulative post-decision 

disappointment would be 100%. 

4. Application to the procurement of highway construction 

projects 

4.1. Problem description 

In this section we apply our model to real data on highway 

construction projects procured by California’s Department of Trans- 

portation (Caltrans). Contracts for such projects are summarized by 

a list of input items (e.g., asphalt or concrete), the required quanti- 

ties of which are estimated by Caltrans engineers. Caltrans selects 

contractors to carry out the projects by sealed-bid unit-price auc- 

tions. In such auctions, a contractor submits a list of itemized unit 
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Fig. 9. Histogram of the number of bids in 5610 projects. 

prices which, when multiplied by the items’ estimated quantities, 

constitute the contractor’s bid. From Caltrans’ perspective, this bid 

can be seen as the estimated cost at which the contractor can carry 

out the project. Caltrans then selects the contractor (i.e., decision 

alternative) with the lowest bid (i.e., estimated cost v i 
j 
), unless the 

contractor is not appropriately bonded or the bid is judged to be 

highly unbalanced. The true cost μi 
j 

of project i from Caltrans’ per- 

spective is revealed by the final payment by Caltrans to the se- 

lected contractor after the project has been completed. 

Data on such decision settings – including bids, awarded con- 

tracts, and final payment forms – can be found on Caltrans web- 

site 2 Our data set consists of 5610 decision settings between years 

20 0 0–2014. The total number of bids in these settings was 32,619. 

The histogram of the number of bids n i per project (i.e., decision 

setting) is shown in Fig. 9 . The number of bids ranges from 1 to 33 

with mean 5.8 and median 5. For 131 projects there was only one 

bid. 

The sum of the projects’ estimated costs (i.e., the winning bids) 

was $24.88 billion. However, the sum of the true project costs 

was $27.65 billion, implying a cumulative post-decision disappoint- 

ment of $2.77 billion. Thus, the total relative cost overrun was 

2 . 77 / 24 . 88 = 11 . 13% . The histogram of relative cost overruns across 

all projects is shown in Fig. 10 with mean 6.05% and median 4.13%. 

There are several reasons why the projects’ true costs μi 
j 

do 

not coincide with the estimated costs v i 
j 
. First, the ex ante esti- 

mated and ex post realized item quantities never perfectly agree. 

Also, during the project, the engineer and contractor may discover 

that some activities need to be added to the initial plan, resulting 

in a change order. Additional costs may also be incurred by the 

use of unanticipated materials. Finally, payment deductions can be 

made by Caltrans if work is not completed in time or fails to meet 

specifications ( Bajari et al., 2011 ). 

The above reasons can be a source of systematic bias that could 

explain the positive average and total cost overrun. For instance, 

there is evidence that contractors in unit-price auctions, anticipat- 

ing changes in item quantities, set higher (lower) unit prices for 

those items for which they expect quantity overruns (underruns). 

In this way, contractors can increase their expected profits without 

increasing their bid ( Gupta et al., 2015 ). Also, project scope may be 

systematically underestimated by Caltrans engineers, resulting in 

2 Our data set includes only those settings found at http://www.dot.ca.gov/ 

hq/esc/oe/contract _ awards _ services.html which include information on all bids, 

awarded contracts, and final payments. Furthermore, we have excluded bids marked 

as ‘irregular’ on the website. 

Fig. 10. Relative cost overruns (μi 
j 
− v i 

j 
) / v i 

j 
in 5607 Caltrans projects. Three values 

left out from the figure correspond to overruns 218%, 494%, and 658%. 

repeated change orders that increase costs. Nevertheless, at least a 

part of the cost overruns is likely to have resulted from selection 

bias, because in 86% of projects the contractor with the lowest bid 

was selected, and in 97% of projects the bid of the selected con- 

tractor was among the two lowest. 

4.2. Modeling the projects’ true and estimated costs 

Fig. 11 a shows the histogram of the standardized logarithms of 

the contractors’ bids across all 4981 projects with at least three 

bids. Together with the Kolmogorov-Smirnov test for standard nor- 

mal distribution ( p = 3 . 1 · 10 −20 ), this figure suggests that the bids 

v i for each project i can be modeled as realizations of independent 

and identically distributed log-normal random variables. Assuming 

that the distribution of the bids serves as a reasonable proxy for 

the distribution of the true costs μi , we model the true costs as 

realizations of random variables 

M 

i = [ M 

i 
1 , . . . , M 

i 
n i 

] , M 

i 
j ∼ LogN ( μi , σ

2 
i ) , j = 1 , . . . , n i , 

where parameters μi and σ 2 
i 

are to be estimated from data. 

Fig. 11 b shows the histogram of the differences between the 

logarithms of the alternatives’ estimated and true costs ( ln v i 
j 
−

ln μi 
j 
) across those 131 projects with a single bid. Based on this 

figure and the Anderson-Darling normality test ( p = 5 · 10 −4 ) we 

model these differences as realizations of independent and iden- 

tically distributed normal random variables. Assuming that this 

holds also in those projects i for which there were multiple bids, 

the bids v i 
j 

can be modelled as realizations of random variables 

(V 

i 
j | M 

i 
j = μi 

j ) ∼ LogN ( ln μi 
j + η, τ 2 ) , j = 1 , . . . , n i , (13) 

where parameters η and τ 2 are to be estimated from data. 

4.3. Model estimation 

The EM algorithm was used to estimate the unknown model 

parameters η, τ 2 , μi , and σ 2 
i 

across projects i = 1 , . . . , 5610 . A 

detailed description of this algorithm is given in Appendix E . The 

estimated values of η and τ are −0 . 0347 and 0.1264, respectively. 

The estimated values of μi and σi across all projects range within 

[11 . 0 , 20 . 9] and [0 , 3 . 26] , respectively. 
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Fig. 11. Histograms of (a) standardized logarithms ( ln v i 
j 
− Mean j [ ln v i j ]) / Std j [ ln v i j ] of the contractors’ bids across projects with at least three bids and (b) differences ln v i 1 −

ln μi 
1 across 131 projects with a single bid. 

Debiased costs estimates ˜ v i 
j 

(cf. Definition 1 ) are obtained from 

bids v i 
j 

through 

˜ v i j = d(v i j ) = exp 

(
−η − τ 2 

2 

)
︸ ︷︷ ︸ 

≈1 . 027 

v i j . (14) 

It is straightforward to verify that these estimates are condi- 

tionally unbiased (i.e., E [ d(V i 
j 
) | M 

i 
j 
= μi 

j 
] = μi 

j 
), because each ran- 

dom variable (V i 
j 
| M 

i 
j 
= μi 

j 
) follows the log-normal distribution 

(13) the mean of which is exp (η + 

τ2 

2 ) μ
i 
j 
. In practice, result 

(14) suggests that to remove systematic bias from the bids, each 

of them should be increased by 2.7%. 

The posterior means ˆ v i 
j 

of the true costs can be computed from 

bids v i 
j 

through 

ˆ v i j = E [ M 

i 
j | V 

i 
j = v i j ] = 

[
v i j · exp (−η) 

]
αi ·

[ 
exp 

(
μi + 

1 

2 

σ 2 
i 

)] 
1 −αi , 

(15) 

where αi = σ 2 
i 
/ (σ 2 

i 
+ τ 2 ) . Result (15) follows directly from the 

properties of the log-normal distribution of (M 

i 
j 
| V i 

j 
= v i 

j 
) (see 

Lemma 1 in Appendix B ). To have an interpretation for (15) , 

note from (13) that the logarithm of the bid is normally dis- 

tributed ( ln V i 
j 
| M 

i 
j 
= μi 

j 
) ∼ N( ln μi 

j 
+ η, τ 2 ) , whereby ln v i 

j 
− η is 

a conditionally unbiased estimate for ln μi 
j 
. Thus, the posterior 

mean (15) is a weighted geometric mean of the estimated value 

of μi 
j 
= exp ( ln μi 

j 
) – that is, exp ( ln v i 

j 
− η) = v i 

j 
· exp (−η) – and its 

prior expected value E [ M 

i 
j 
] = exp ( μi + σ 2 

i 
/ 2) . The more uncertain 

the cost estimates (reflected by a large value of τ compared to σi ), 

the larger the weight 1 − αi = τ 2 / (σ 2 
i 

+ τ 2 ) given to prior infor- 

mation. 

4.4. Systematic and selection biases 

The total true cost of all 5610 projects was $27.65 billion, ex- 

ceeding the estimated total cost (i.e., the sum of winning bids) of 

$24.88 billion by $2.77 billion. Table 1 shows how the cumulative 

post-decision disappointment of $2.77 billion is divided into shares 

explained by systematic and selection biases. 

If selection had been based on debiased cost estimates ˜ v i 
j 
, then 

the cumulative disappointment would have reduced to $2.10 bil- 

lion, whereby our model suggests that (2 . 77 − 2 . 10) / 2 . 77 ≈ 24% 

of the cumulative disappointment is due to systematic bias. Us- 

ing posterior means ˆ v i 
j 
, the cumulative disappointment would 

have reduced further down to $250 million, implying that (2 . 10 −

Table 1 

Shares of systematic and selection biases in generating post-decision disappoint- 

ment. 

Source of disappointment $B % 95% CI 

Systematic bias 0.67 24 [0,45] 

Selection bias 1.85 67 [49,82] 

Unexplained 0.25 9 [3,20] 

Total 2.77 100 

0 . 25) / 2 . 77 ≈ 67% of this disappointment is due to selection bias. 

The remaining 0 . 25 / 2 . 77 ≈ 9% is unexplained by our model, 

whereby the share of explained variation is 91%. 

To obtain confidence intervals for the shares of systematic and 

selection biases, we applied basic bootstrapping with 10 0 0 sam- 

ples ( Davison & Hinkley, 1997 ). In particular, we first (i) gener- 

ated a bootstrapping sample from the set of 131 projects with a 

single bid to estimate the values of η and τ and then, by using 

these parameter values, (ii) estimated the values of μi and σi for 

each project i = 1 , . . . , 5610 . The resulting 95% confidence inter- 

vals for the shares of systematic and selection biases are shown 

in the right-most column of Table 1 . These intervals are rela- 

tively wide, but nevertheless demonstrate that a significant share 

of post-decision disappointment can be assumed to have been gen- 

erated by selection bias. 

4.5. Implications for decision support 

The use of posterior means ˆ v i 
j 

instead of estimated costs v i 
j 

as a 

basis for contractor selection would have decreased the relative cu- 

mulative disappointment from 2 . 77 / 24 . 88 ≈ 11 . 1% to 0 . 25 / 27 . 39 ≈
0 . 9% , and the mean setting-specific disappointment from $2 . 77 ·
10 9 / 5610 ≈ $494 , 0 0 0 to $0 . 25 · 10 9 / 5610 ≈ $45 , 0 0 0 . Yet, the pa- 

rameters required to compute the posterior means ˆ v i 
j 

through 

Eq. (15) can only be estimated after the true project costs have 

been observed, whereby they cannot be utilized for decision sup- 

port at the time of selecting the contractor. In particular, even if 

parameters η and τ related to systematic bias would have been 

estimated based on past projects, it is impossible to obtain es- 

timates for the project-specific parameters μi and σ 2 
i 

ex ante . 

These parameters are required to compute the prior mean E [ M 

i 
j 
] = 

exp ( μi + σ 2 
i 
/ 2) for the true cost of carrying out project i, as well 

as the weighting coefficient αi = σ 2 
i 
/ (σ 2 

i 
+ τ 2 ) for the weighted 

geometric mean in Eq. (15) . 

One way to circumvent this issue is to use Caltrans’ engineers’ 

estimates for the total cost of each project as proxies for the prior 

means E [ M 

i 
j 
] . These estimates are obtained by multiplying the en- 
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Fig. 12. Scatter plot of the logarithms of the projects’ prior mean costs E [ M 

i 
j 
] and 

the engineers’ estimates μi 
e of these costs. Regression line without intercept: μi 

e = 

1 . 0 0 0 0 · E [ M 

i 
j 
] , R 2 = 0 . 963 . 

gineer’s estimates on item quantities required to carry out a given 

project by the item-specific prices that are published in the Con- 

tract Cost Data Book 3 prepared annually by Caltrans. Fig. 12 shows 

the scatter plot between the logarithms of the project-specific 

prior mean costs E [ M 

i 
j 
] and the logarithms of the engineers’ esti- 

mates for these costs, denoted by μi 
e . The regression line between 

these two variables without intercept is ln μi 
e = 1 . 0 0 0 0 · ln E [ M 

i 
j 
] 

with R 2 = 0 . 963 . Based on the regression model and Fig. 12 , the 

engineer’s estimate μi 
e gives quite accurate information about the 

average true cost with which the contractors would be able to 

carry out project i . 

To estimate the weighting coefficient αi in Eq. (15) , we 

note that the logarithm of the bid is normally distributed: 

ln V i 
j 
∼ N( μi + η, τ 2 + σ 2 

i 
) , j = 1 , . . . , n i . Thus, we can estimate 

the project-specific cost variability as ˆ σi 
2 = Var [ ln v i 

j 
] − τ 2 , where 

Var [ ln v i 
j 
] is the sample variance of the logarithms of the bids for 

project i . Hence, the weight αi can be estimated by ˆ αi = ˆ σ 2 
i 
/ ( ̂  σ 2 

i 
+ 

τ 2 ) = 1 − τ 2 / Var [ ln v i 
j 
] . If the sample variance Var [ ln v i 

j 
] of the log- 

arithms of the bids for project i is smaller than τ 2 , then the true 

cost of carrying out this project is assumed to be the same across 

bidders and to coincide with the engineer’s estimate μi 
e so that 

ˆ αi = 0 . Finally, if there is a single bid for project i so that sample 

variance Var [ ln v i 
j 
] cannot be computed, then the true cost of con- 

tractor j to carry out this project is assumed to be the estimated 

value v i 
j 
· exp (−η) of true cost μi 

j 
based on bid v i 

j 
, whereby ˆ αi = 1 . 

Modifying Eq. (15) accordingly, we define the engineer’s mean e i 
j 

for the true cost of contractor j to carry out project i as 

e i j = 

[ 
v i j · exp (−η) 

] 
ˆ αi ·

[ 
μi 

e 

] 
1 − ˆ αi , (16) 

where ˆ αi = min { 0 , 1 − τ 2 / Var [ ln v i 
j 
] } for projects with multiple 

bids and ˆ αi = 1 for projects with a single bid. 

In the Caltrans case, the engineers’ means work relatively well 

in mitigating post-decision disappointment. This is illustrated by 

Table 2 , which shows the absolute cumulative, relative cumulative, 

and mean setting-specific disappointment based on bids v i 
j 
, engi- 

3 http://www.dot.ca.gov/hq/esc/oe/awards/ 

Table 2 

Post-decision disappointment based on bids v i 
j 
, engineers’ means e i 

j 
, and posterior 

means ˆ v i 
j 

across projects i ∈ { 1 , . . . , 5610 } . 
Measure of 

disappointment 

Bids v i 
j 

Engineers’ 

means e i 
j 

Posterior 

means ˆ v i 
j 

Cumulative ($B) 2.77 0.63 0.25 

Relative cumulative (%) 11.1 2.3 0.9 

Mean ($k) 494 113 45 

neers’ means e i 
j 
, and posterior means ˆ v i 

j 
. While the use of pos- 

terior means instead of bids to estimate the projects’ true costs 

would have reduced each measure of disappointment by roughly 

90%, even the use of engineers’ means would have managed to 

eliminated close to 80% of the disappointment. 

5. Discussion and conclusions 

To date, two kinds of explanations have been proposed for the 

empirically observed disappointment in the ex post realized val- 

ues of selected decision alternatives: (i) a systematic bias in the 

alternatives’ value estimates resulting from unjustified optimism 

or even deliberate misrepresentation ( Bajari et al., 2011; Flyvbjerg, 

2009 ), and (ii) selection bias resulting from the higher probabil- 

ity of the values of those alternatives with the highest value esti- 

mates to have been overestimated ( Quirk & Terasawa, 1986; Smith 

& Winkler, 2006; Vilkkumaa et al., 2014 ). This paper presents the 

first contribution to understanding how both systematic and selec- 

tion biases generate post-decision disappointment in real-life ap- 

plications. In particular, the paper presents models through which 

the relative magnitudes of systematic and selection biases can be 

estimated using data that contains the estimated values of all al- 

ternatives, but the realized values of only those alternatives that 

were selected. 

The focus of this paper has been on studying the average con- 

tributions of systematic and selection biases in generating post- 

decision disappointment from the decision-maker’s point of view 

in recurring decision settings that are at least to some extent com- 

parable. For this reason, our models for capturing the relationship 

between the decision alternatives’ true and estimated values do 

not distinguish between different sources of systematic bias, al- 

though several such sources admittedly exist; including the eval- 

uator’s personal disposition towards overoptimism ( Lovallo & Kah- 

neman, 2003; Montibeller & von Winterfeldt, 2015 ), organization- 

specific incentives and consequences for strategic misrepresenta- 

tion ( Oliva & Watson, 2009 ), or game-theoretic considerations re- 

lated to auction-based decision settings ( Gupta et al., 2015 ). Nor 

do we consider the effects of selection bias from the point of view 

of the proposers of the decision alternatives, such as the so-called 

winner’s curse suffered by the winning bidder in auction-based se- 

lection processes ( Capen, Clapp, & Campbell, 1971; Thaler, 1992 ), or 

behavioural explanations for non-optimal bidding behavior in first- 

price sealed-bid auctions ( Wang & Guo, 2017 ). 

Another limitation of the models used in our simulation exam- 

ples as well as the Caltrans case is the assumption that both the 

alternatives’ true and estimated values are independent. Yet, Smith 

and Winkler (2006) show that the covariance structures between 

the true and estimated values significantly affect the magnitude of 

selection bias. In particular, selection bias increases in the corre- 

lation between the alternatives’ true values and decreases in the 

correlation between the value estimates. The estimation of covari- 

ance structures is, however, impossible in cases where a single al- 

ternative is selected in each decision setting. Data from situations 

in which a portfolio of several alternatives was selected could be 

used to estimate covariance between the alternatives’ true and es- 

timated values ( Kettunen & Salo, 2017 ). Moreover, estimates for the 
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shares of systematic and selection biases obtained from such data 

would be more accurate, because the share of missing observations 

would be lower compared to cases in which a single alternative 

was selected. The acquisition of data from portfolio selection pro- 

cesses and the development of methods to use these data for es- 

timating the covariance structures between the alternatives’ true 

and estimated values provide interesting research topics for the fu- 

ture. Decisions on investments to financial assets such as stocks 

would offer a particularly suitable context for testing these kinds 

of methods, because (i) the true and estimated values of the assets 

are likely to be correlated and (ii) the true values of those assets 

to which investments were not made can be observed ex post . 

The implications of this paper for managers and decision- 

makers are threefold. First, it is important to raise awareness of the 

role of selection bias in generating post-decision disappointment. 

Otherwise, the average negative gap between the realized and esti- 

mated values of selected alternatives may be entirely attributed to 

systematic bias in the value estimates. To mitigate systematic bias, 

measures such as financial, professional, or even criminal penal- 

ties have been suggested on forecasters who consistently provide 

biased estimates ( Flyvbjerg et al., 2002 ). If, however, only a small 

share of post-decision disappointment is caused by systematic bias 

(e.g., 24% in the case of highway construction projects procured by 

Caltrans), such measures are likely to be ineffective at best and de- 

moralizing at worst. The use of penalties can be particularly trou- 

blesome in the context of multicriteria decision problems: post- 

decision disappointment is probably most likely with respect to 

those criteria on which performance assessments are the least ac- 

curate, leaving those responsible for producing such assessments in 

a disadvantaged position. A thorough examination of the mecha- 

nisms of post-decision disappointment in the multicriteria context 

– including the potential of multicriteria performance measures to 

alleviate overall disappointment – provides a fruitful avenue for fu- 

ture research. 

Second, careful records of past decision settings should be kept 

and utilized in decision-making to obtain more realistic expecta- 

tions about the decision alternatives. To be able to distinguish be- 

tween systematic and selection biases, data should be collected 

not only on the estimated and realized values of selected alterna- 

tives, but also on the estimated values of those alternatives that 

were not implemented. With the help of models developed here, 

such data can be used to determine (i) how much the mitiga- 

tion of systematic bias through, e.g., sanctions or optimal contract- 

ing arrangements can be expected to reduce post-decision disap- 

pointment and, even if systematic bias could be completely elimi- 

nated, (ii) how much the estimated value of the selected alterna- 

tive should be adjusted to avoid such disappointment. A related 

call for the use of so-called behavioural databases for debiasing ef- 

forts has recently been made by Durbach and Montibeller (2019) . 

Finally, to enable the mitigation of post-decision disappoint- 

ment ex ante in cases where little or no data exists about the 

performance of similar alternatives in the past, it is advisable to 

search for alternative means such as expert evaluations to reliably 

estimate the average future performance of the decision alterna- 

tives ( Jørgensen, 20 07; Oliva & Watson, 20 09 ). Expert judgment is 

commonly used to adjust statistical forecasts in contexts such as 

inventory control, production planning, purchasing, supply chain 

management, and cash flow planning ( De Baets & Harvey, 2020; 

Petropoulos, Fildes, & Goodwin, 2016 ). When done right, these 

adjustments may outperform the forecasting accuracy of statisti- 

cal methods alone ( Davydenko & Fildes, 2013; Petropoulos et al., 

2016 ). Encouraging evidence on the possibilities of using expert 

judgement to adjust other kinds of value estimates besides sta- 

tistical forecasts is given by our case study on the procurement 

of highway construction projects: the engineer’s estimate for the 

cost of a project was shown to be highly accurate in estimating 

the average true cost at which a contractor would be able to carry 

out the project. Whether similar approaches work in other types 

of decision contexts as well remains an interesting topic for future 

work. 
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Appendix A. Notation 

Symbol Description 

i ∈ { 1 , . . . , m } Index of decision setting 

j ∈ { 1 , . . . , n (i ) } Index of a decision alternative (in setting i ) 

M 

(i ) = [ M 

(i ) 
1 

, . . . , M 

(i ) 
n ] T Random true values/costs of the decision 

alternatives (in setting i ) 

μ(i ) = [ μ(i ) 
1 

, . . . , μ(i ) 
n ] T Realized true values/costs of the decision 

alternatives (in setting i ) 

V (i ) = [ V (i ) 
1 

, . . . , V (i ) 
n ] T Random value/cost estimates of the decision 

alternative (in setting i ) 

v (i ) = [ v (i ) 
1 

, . . . , v (i ) 
n ] T Realized value/cost estimates of the 

decision alternatives (in setting i ) 

˜ V 
(i ) = [ ̃ V (i ) 

1 
, . . . , ̃  V (i ) 

n ] T Random debiased value/cost estimates of 

the decision alternatives (in setting i ) 

˜ v (i ) = [ ̃ v (i ) 
1 

, . . . , ̃ v (i ) 
n ] T Realized debiased value/cost estimates of 

the decision alternatives (in setting i ) 

ˆ V 
(i ) = [ ̂ V (i ) 

1 
, . . . , ̂  V (i ) 

n ] T Random posterior means of the decision 

alternatives (in setting i ) 

ˆ v (i ) = [ ̂ v (i ) 
1 

, . . . , ̂ v (i ) 
n ] T Realized posterior means of the decision 

alternatives (in setting i ) 

f ( μ) Distribution of the true values 

f ( v | μ) Distribution of the value estimates given 

the true values 

f ( μ, v ; θ) Joint distribution of true and estimated 

values given parameters θ
d(·) Debiasing transformation 

J ∗ = j( M ) Random index of the decision alternative 

with the highest true value 

j( μ) Realized index of the decision alternative 

with the highest true value 

J = j( V ) Random index of the decision alternative 

with the highest value estimate 

j( v ) Realized index of the decision alternative 

with the highest value estimate 
˜ J = j( ̃ V ) Random index of the decision alternative 

with the highest debiased value estimate 

j( ̃ v ) Realized index of the decision alternative 

with the highest debiased value estimate 
ˆ J = j( ̂ V ) Random index of the decision alternative 

with the highest posterior mean 

j( ̂ v ) Realized index of the decision alternative 

with the highest posterior mean 

T B Total bias 

SeB Selection bias 

SyB Systematic bias 

Application-specific notation 

LogN ( μi , σ
2 
i 
) Distribution for the contractors’ true costs 

of carrying out project i 

LogN ( ln μi 
j 
+ η, τ 2 ) Distribution for the bid of contractor j in 

project i 

μi 
e Engineer’s estimate for the total cost of 

project i 

ˆ σ 2 
i 

Estimated cost variability for project i 

e i 
j 

Engineer’s mean for the true cost of 

contractor j to carry out the project 
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Appendix B. Proofs 

Proof of Proposition 1. Let us fix μ. Then, j ∗ = j( μ) (the alterna- 

tive with the highest true value) is fixed and 

˜ J (the alternative with 

the highest debiased value estimate) is a random variable. For any 
˜ V , we have 

μ ˜ J − ˜ V ˜ J ≤ μ j ∗ − ˜ V ˜ J ≤ μ j ∗ − ˜ V j ∗ , (B.1) 

where the first inequality follows from the definition of j ∗, and the 

second from the definition of ˜ J . Taking expectations of (B.1) condi- 

tioned on M = μ and integrating over the uncertainty regarding 

the value estimates, we have 

E [ μ ˜ J − ˜ V ˜ J | M = μ] ≤ [ μ j ∗ − ˜ V ˜ J | M = μ] ≤ E [ μ j ∗ − ˜ V j ∗ | M = μ] = 0 , 

(B.2) 

where the last equality follows from the conditional unbiasedness 

of the debiased estimates ˜ V . Because (B.1) holds for all μ, integrat- 

ing over uncertain M yields SeB = E [ M ˜ J − ˜ V ˜ J ] ≤ 0 . If there is no pos- 

sibility of selecting a non-optimal alternative (i.e., P (J ∗ = 

˜ J ) = 1) , 

then the inequalities in (B.1) and (B.2) become equalities. If a non- 

optimal alternative is selected, then the first inequality in (B.1) will 

be strict. Thus, if there is some chance that this happens (i.e., 

P (J ∗ � = 

˜ J ) > 0) , then the first inequality in (B.2) will also be strict 

so that SeB = E [ M ˜ J − ˜ V ˜ J ] < 0 . �

Proof of Proposition 2. Assume that there is a single decision al- 

ternative with value estimate (V | M = μ) . The debiased estimate ˜ V 

of this alternative is such that E [ ̃  V | M = μ] = μ. Thus, E [ M − ˜ V | M = 

μ] = μ − E [ ̃  V | M = μ] = 0 for all μ. Integrating over uncertain μ
and taking expectations, it follows that SeB = E [ M − ˜ V ] = 0 . Be- 

cause SyB = T B − SeB, it follows that T B = SyB . �

Proof of Proposition 3. Because P (J = 

˜ J ) = 1 , SyB = E [(M J − V J ) −
(M J − ˜ V J )] = E [ ̃  V J − V J ] ≤ 0 , where the inequality follows from the 

assumption that P ( ̃  V J > V J ) = 0 . If P ( ̃  V J = V J ) = 1 , then SyB = E [ ̃  V J −
V J ] = 0 . �

Proof of Corollary 1. The result follows directly from 

Propositions 1 and 3 . �

Proof of Proposition 4. This Proposition can be established by us- 

ing the proof that Smith and Winkler (2006) provide for their sec- 

ond proposition. Although they generally assume that the alterna- 

tives’ value estimates are conditionally unbiased, their proof does 

not make use of this assumption. �

Lemma 1. Let M 

i 
j 
∼ LogN ( μi , σ

2 
i 
) and (V i 

j 
| M 

i 
j 
= μi 

j 
) ∼ LogN 

( ln μi 
j 
+ η, τ 2 ) . Then, 

(M j | V j = v j ) 

∼ LogN 

(
τ 2 

j 

σ 2 
i 

+ τ 2 
j 

μ j + 

σ 2 
j 

σ 2 
j 

+ τ 2 
j 

( ln v j − η j ) , 
σ 2 

j 
τ 2 

j 

σ 2 
j 

+ τ 2 
j 

)
. 

Proof of Lemma 1. Because ln M j ∼ N( μ j , σ
2 
j 
) and ( ln V j | ln M j = 

ln μ j ) ∼ N( ln μ j + η j , τ
2 
j 
) , it follows from the properties of bivari- 

ate normal distribution that 

( ln M j | ln V j = ln v j ) 

∼ N 

(
τ 2 

j 

σ 2 
i 

+ τ 2 
j 

μ j + 

σ 2 
j 

σ 2 
j 

+ τ 2 
j 

( ln v j − η j ) , 
σ 2 

j 
τ 2 

j 

σ 2 
j 

+ τ 2 
j 

)
⇔ (M j | V j = v j ) 

∼ LogN 

(
τ 2 

j 

σ 2 
i 

+ τ 2 
j 

μ j + 

σ 2 
j 

σ 2 
j 

+ τ 2 
j 

( ln v j − η j ) , 
σ 2 

j 
τ 2 

j 

σ 2 
j 

+ τ 2 
j 

)
. (B.3) 

Appendix C. Formal description of the EM algorithm 

Let use denote by j i = j( v i ) the index of the selected alterna- 

tive in decision setting i = 1 , . . . , m . Moreover, let us denote by 

v = { v i } m 

i =1 
the estimated values of all alternatives, by μ = { μi 

j i 
} m 

i =1 

the true values of the selected alternatives, and by M = { M 

i 
j 
} m 

i =1 , j � = j i 
the unobserved true values of the alternatives that were not se- 

lected across all decision settings i = 1 , . . . , m . The EM algorithm 

proceeds as follows. 

1. Let the initial values for parameters be θ = 

ˆ θ1 . Set k = 1 and 

select a tolerance value δ. 

2. Expectation step : Assuming that θ = 

ˆ θk , compute the expected 

value g(θ ) := E [ log L (θ | μ, M, v )] of the log-likelihood function, 

where expectation is taken over the missing true values M. 

3. Maximization step : Using the expected value g(θ ) of the log- 

likelihood function computed in Step 2, obtain the maximum 

likelihood estimate ˆ θk +1 : 

ˆ θk +1 = argmax 
θ

g(θ ) . 

Set k ← k + 1 and go back to Step 2. 

4. Repeat the expectation and maximization steps 2 and 3 until 

‖ ̂  θk +1 − ˆ θk ‖ < δ. 

Appendix D. Estimation of model parameters in Examples 1–3 

Let N = 

∑ m 

i =1 n i , and let j i be the index of the selected alterna- 

tive in decision setting i . 

Example 1: The log-likelihood function for θ = [ μ, η, σ 2 , τ 2 ] 

is 

L (θ | μ, M, v ) = −N ln (2 πστ ) −

−1 

2 

m ∑ 

i =1 

[ ( 

v i 
j i 

− μi 
j i 

− η

τ

) 

2 + 

( 

μi 
j i 

− μ

σ

) 

2 

+ 

∑ 

j � = j i 

[(
v i 

j 
− M 

i 
j 
− η

τ

)
2 + 

(
M 

i 
j 
− μ

σ

)
2 

]] 

. 

Expectation step: Because M 

i 
j 
∼ N( μ, σ 2 ) and (V i 

j 
| M 

i = μi ) ∼
N(μi 

j 
+ η, τ 2 ) , it follows from the properties of bivariate normal 

distribution that ̂ μi 
j 
= E [ M 

i 
j | v i j ; θ ] = 

τ 2 

σ 2 + τ 2 
μ + 

σ 2 

σ 2 + τ 2 
(v i j − η) ∀ j � = j i , 

̂ (μi 
j 
) 2 = E [(M 

i 
j ) 

2 | v i j ; θ ] = 

σ 2 τ 2 

σ 2 + τ 2 

+ 

[
τ 2 

σ 2 + τ 2 
μ + 

σ 2 

σ 2 + τ 2 
(v i j − η) 

]
2 ∀ j � = j i . 

Maximization step: Because M 

i 
j 
∼ N( μ, σ 2 ) and (V i 

j 
| M 

i = μi ) ∼
N(μi 

j 
+ η, τ 2 ) , the Maximum Likelihood estimates for the model 

parameters θ = [ μ, η, σ 2 , τ 2 ] are 

ˆ μk +1 = 

1 

N 

m ∑ 

i =1 

n i ∑ 

j=1 

μi 
j , 

ˆ σ 2 
k +1 = 

1 

N 

m ∑ 

i =1 

n i ∑ 

j=1 

(
(μi 

j ) 
2 − ˆ μ

2 

k +1 

)
, (D.1) 

ˆ ηk +1 = 

1 

N 

m ∑ 

i =1 

n i ∑ 

j=1 

v i j − ˆ μk +1 , 

ˆ τ 2 
k +1 = 

1 

N 

m ∑ 

i =1 

n i ∑ 

j=1 

(
(v i j ) 

2 − 2 v i j μ
i 
j + (μi 

j ) 
2 − ˆ η2 

k +1 

)
. (D.2) 
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Initial values: Suitable initial values for σ 2 , η, and τ 2 are obtained 

by applying (D.1) and (D.2) for the selected alternatives alone, and 

for μ by noting that ˆ μk +1 = 

1 
N 

∑ m 

i =1 

∑ n i 
j=1 

v i 
j 
− ˆ ηk +1 in (D.2) : 

ˆ μ1 = 

1 

N 

m ∑ 

i =1 

n i ∑ 

j=1 

v i j − ˆ η1 , ˆ σ 2 
1 = 

1 

m 

m ∑ 

i =1 

( 

(μi 
j i 
) 2 −

( 

1 

m 

m ∑ 

i =1 

μi 
j i 

) 

2 

) 

, 

ˆ η1 = 

1 

m 

m ∑ 

i =1 

(
v i 

j i 
− μi 

j i 

)
, ˆ τ 2 

1 = 

1 

m 

m ∑ 

i =1 

((v i 
j i 

− μi 
j i 
) 2 − ˆ η2 

1 ) . 

Example 2: The log-likelihood function for θ = { μ, σ 2 } ∪ 

{ η j , τ
2 
j 
} n i 

j=1 
is 

L (θ | μ, M, v ) = −N ln (2 πσ ) − m 

n i ∑ 

j=1 

ln τ j 

− 1 

2 

m ∑ 

i =1 

[ ( 

v i 
j i 

− μi 
j i 

− η j i 

τ j i 

) 

2 + 

( 

μi 
j i 

− μ

σ

) 

2 

+ 

∑ 

j � = j i 

[(
v i 

j 
− M 

i 
j 
− η j 

τ j 

)
2 + 

(
M 

i 
j 
− μ

σ

)
2 

]] 

. 

Expectation step: Because M 

i 
j 
∼ N( μ, σ 2 ) and (V i 

j 
| M 

i = μi ) ∼
N(μi 

j 
+ η j , τ

2 
j 
) , it follows from the properties of bivariate normal 

distribution that: 

̂ μi 
j 

:= E [ M 

i 
j | v i j ; θ ] = 

τ 2 
j 

σ 2 + τ 2 
j 

μ + 

σ 2 

σ 2 + τ 2 
j 

(v i j − η j ) ∀ j � = j i , 

̂ (μi 
j 
) 2 := E [(M 

i 
j ) 

2 | v i j ; θ ] = 

σ 2 τ 2 
j 

σ 2 + τ 2 
j 

+ 

[
τ 2 

j 

σ 2 + τ 2 
j 

μ + 

σ 2 

σ 2 + τ 2 
j 

(v i j − η j ) 

]
2 ∀ j � = j i . 

Maximization step: Because M 

i 
j 
∼ N( μ, σ 2 ) and (V i 

j 
| M 

i = μi ) ∼
N(μi 

j 
+ η j , τ

2 
j 
) , the maximum likelihood estimates for the model 

parameters θ = { μ, σ 2 } ∪ { η j , τ
2 
j 
} n i 

j=1 
are: 

ˆ μk +1 = 

1 

N 

m ∑ 

i =1 

n i ∑ 

j=1 

μi 
j , 

ˆ σ 2 
k +1 = 

1 

N 

m ∑ 

i =1 

n i ∑ 

j=1 

(
(μi 

j ) 
2 − ˆ μ

2 

k +1 

)
, (D.3) 

ˆ η j,k +1 = 

1 

m 

m ∑ 

i =1 

v i j − ˆ μk +1 , 

ˆ τ 2 
j,k +1 = 

1 

m 

m ∑ 

i =1 

(
(v i j ) 

2 − 2 v i j μ
i 
j + (μi 

j ) 
2 − ˆ η2 

j,k +1 

)
. (D.4) 

Initial values: Let us denote by I j = { i ∈ { 1 , . . . .m }| j( v i ) = j} the in- 

dices of those decision settings in which alternative type j was se- 

lected. Suitable initial values for σ 2 , η j and τ 2 
j 

are obtained by 

applying (D.3) and (D.4) for the selected alternatives alone, and for 

μ by noting that ˆ μk +1 = 

1 
m 

∑ m 

i =1 v i j − ˆ η j,k +1 in (D.4) : 

ˆ μ1 = 

1 

N 

m ∑ 

i =1 

( 

n i ∑ 

j=1 

v i j − ˆ η j, 1 

) 

, 

ˆ σ 2 
1 = 

1 

m 

m ∑ 

i =1 

( 

(μi 
j i 
) 2 −

( 

1 

m 

m ∑ 

i =1 

μi 
j i 

) 

2 

) 

, 

ˆ η j, 1 = 

1 

| I j | 
∑ 

i ∈ I j 

(
v i 

j i 
− μi 

j i 

)
, 

ˆ τ 2 
j, 1 = 

1 

| I j | 
∑ 

i ∈ I j 

(
v i 

j i 
− μi 

j i 

)
2 − ˆ η2 

j, 1 . 

Example 3: Let us denote by I = { i ∈ { 1 , . . . , m }| n i = 1 } the set of 

decision settings with a single decision alternative. Then, the max- 

imum likelihood estimates for η and τ 2 are 

ˆ η = 

1 

| I| 
∑ 

i ∈ I 

(
v i 1 − μi 

1 

)
, ˆ τ 2 = 

1 

| I| 
∑ 

i ∈ I 

(
v i 1 − μi 

1 − ˆ η
)

2 . 

With fixed η = ˆ η and τ 2 = ˆ τ 2 , the log-likelihood function of pa- 

rameters θ = { μi } m 

i =1 
∪ { σ 2 

i 
} m 

i =1 
is 

L (θ | μ, M, v ) = −N ln (2 πτ ) −
m ∑ 

i =1 

n i ln σi 

− 1 

2 

m ∑ 

i =1 

[ ( 

v i 
j i 

− μi 
j i 

− η

τ

) 

2 + 

( 

μi 
j i 

− μi 

σi 

) 

2 

+ 

∑ 

j � = j i 

[(
v i 

j 
− M 

i 
j 
− η

τ

)
2 + 

(
M 

i 
j 
− μi 

σi 

)
2 

]] 

. 

Expectation step: Because M 

i 
j 
∼ N( μi , σ

2 
i 
) and (V i 

j 
| M 

i 
j 
= μi 

j 
) ∼

N(μi 
j 
+ η, τ 2 ) , it follows from the properties of bivariate normal 

distribution that: ̂ μi 
j 

:= E [ M 

i 
j | v i j ; θ ] = 

τ 2 

σ 2 
i 

+ τ 2 
μi + 

σ 2 
i 

σ 2 + τ 2 
(v i j − η) ∀ j � = j i , 

̂ (μi 
j 
) 2 := E [(M 

i 
j ) 

2 | v i j ; θ ] = 

σ 2 
i 
τ 2 

σ 2 
i 

+ τ 2 

+ 

[
τ 2 

σ 2 
i 

+ τ 2 
μi + 

σ 2 
i 

σ 2 
i 

+ τ 2 
(v i j − η) 

]
2 ∀ j � = j i . (D.5) 

Maximization step: Because M 

i 
j 
∼ N( μi , σ

2 
i 
) and (V i 

j 
| M 

i 
j 
= μi 

j 
) ∼

N(μi 
j 
+ η, τ 2 ) , the Maximum Likelihood estimates for parameters 

θ = { μi } m 

i =1 
∪ { σ 2 

i 
} m 

i =1 
are 

ˆ μi,k +1 = 

1 

n i 

n i ∑ 

j=1 

μi 
j , ˆ σ 2 

i,k +1 = 

1 

n i 

n i ∑ 

j=1 

(
(μi 

j ) 
2 − 2 μi 

j 
ˆ μi,k +1 + 

ˆ μ
2 

i,k +1 

)
. 

(D.6) 

Initial values: Suitable initial values for μi are obtained by combin- 

ing (D.5) and (D.6) , and for σ 2 
i 

by applying (D.6) for the selected 

alternatives alone: 

ˆ μi, 1 = 

1 

n i 

n i ∑ 

j=1 

v i j − ˆ η, ˆ σ 2 
i, 1 = (μi 

j i 
) 2 −

( 

1 

m 

m ∑ 

i =1 

μi 
j i 

) 

2 . 

Appendix E. Estimation of model parameters in the Caltrans 

case 

The values of parameters η and τ 2 are estimated from those 

131 decision settings in which there was a single alternative. De- 

noting the indices of such settings by I = { i ∈ { 1 , . . . , 5610 }| n i = 1 } , 
the Maximum Likelihood estimates for η and τ 2 are 

ˆ η = 

1 

| I| 
∑ 

i ∈ I 
( ln v i 1 − ln μi 

1 ) , ˆ τ 2 = 

1 

| I| 
∑ 

i ∈ I 
( ln v i 1 − ln μi 

1 − ˆ η) 2 . 

(E.1) 

Fixing η = ˆ η and τ 2 = ˆ τ 2 , parameters μi and σ 2 
i 

are estimated 

using the EM-algorithm. The log-likelihood function for θ = 

{ μi , σ
2 
i 
} m 

i =1 
is 

L (θ | μ, M, v ) = −N ln (2 πτ ) −
m ∑ 

i =1 

n i ln σi −
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− 1 

2 

m ∑ 

i =1 

[( 

ln v i 
j i 

− ln μi 
j i 

− η

τ

) 

2 + 

( 

ln μi 
j i 

− μi 

σi 

) 

2 

+ 

∑ 

j � = j i 

[(
ln v i 

j 
− ln M 

i 
j 
− η

τ

)
2 + 

(
ln M 

i 
j 
− μi 

σi 

)
2 

]]
, 

where N = 

∑ m 

i =1 n i . 

Expectation step: Because ln M 

i 
j 
∼ N( μi , σ

2 ) and ( ln V i 
j 
| ln M 

i 
j 
= 

ln μi 
j 
) ∼ N( ln μi 

j 
+ η, τ 2 ) , it follows from the properties of bivari- 

ate normal distribution that 

̂ ln μi 
j 
= E [ ln M 

i 
j | ln V 

i 
j = ln v i j ; θ ] = 

τ 2 

σ 2 
i 

+ τ 2 
μi 

+ 

σ 2 
i 

σ 2 
i 

+ τ 2 
( ln v i j − η) , 

̂ 

ln 

2 μi 
j 
= E [ ln 

2 
M 

i 
j | ln V 

i 
j = ln v i j ; θ ] = 

σ 2 
i 
τ 2 

σ 2 
i 

+ τ 2 
+ 

(
̂ ln μi 

j 

)
2 . 

Maximization step: Because ln M 

i 
j 
∼ N( μi , σ

2 
i 
) , the Maximum Like- 

lihood estimates for μi and σ 2 
i 

are 

ˆ μi,k +1 = 

1 

n i 

n i ∑ 

j=1 

ln μi 
j , 

ˆ σ 2 
i,k +1 = 

1 

n i 

n i ∑ 

j=1 

(
ln 

2 μi 
j − 2 ln μi 

j 
ˆ μi,k +1 + 

ˆ μ
2 

i,k +1 

)
. (E.2) 

Initial values: Suitable initial values for μi are obtained by com- 

bining (E.1) and (E.2) , and for σ 2 
i 

by applying (E.2) for the selected 

alternatives alone: 

ˆ μi, 1 = 

1 

n i 

n i ∑ 

j=1 

ln v i j − ˆ η, ˆ σ 2 
i, 1 = 

(
ln μi 

j i 
− ˆ μi, 1 

)
2 . 

Supplementary material 

Supplementary material associated with this article can be 

found, in the online version, at 10.1016/j.ejor.2021.04.018 
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