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a b s t r a c t

Increasing reliance on uninterrupted electricity supply against emerging threats such as climate change
and cyberattacks calls for higher resilience of societies against power disruptions. A better understanding
of social and economic impacts during these disruptions would be important for planning of resilience
improvements. However, traditional energy system models rarely include these aspects. This paper
presents an integrated framework containing a geospatial power system operation model, capable of
emulating system component failures and restoration according to environmental conditions, with a link
to spatial social and economic values such as population, economic activity, critical services and facilities.
The framework was applied for analyzing the effects of uncontrolled and controlled power outages for
two windy winter weeks in Finland. This case illustrated how controlled optimization could reduce the
societal costs of such outage by shifting power shortage to regions where such costs are lower and in part
by shifting the costs to other factors.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Modern societies rely on a continuous supply of energy and
electricity in particular. Disruptions in electricity supply pose a risk
of stopping important activities in the society, which could disable
many critical services ranging from heating to healthcare or access
to drinking water. Exposure to such risks continues to increase due
to ongoing electrification and digitalization [1] that are driven in
part by the clean energy transition [2]. There are also new types of
threats emerging, e.g. climate change and cyberattacks. With the
number of weather-related threats being historically among the
dominant causes of power outages [3], the energy sector is among
the most vulnerable sectors to climate change [4]. Changes in both
extreme and typical weather patterns expose long-lived and
capital-intensive infrastructures throughout the supply chain [5] to
conditions that they were not necessarily designed for. This is
especially relevant for systems dominated by weather dependent
renewables as the interannual variation of their output is often
larger than that of consumption [6]. At the same time increasing
digitalization increases the attack surface [1] for cyberattacks from
increasingly sophisticated malicious software [7] and increasingly
well-funded adversaries [8]. Potential impacts of such attacks range
from local data loss to widespread blackouts and physical damage
as).

r Ltd. This is an open access articl
[9]. Both increasing importance of power systems and threats to it
call for higher power system resilience, i.e. increasing ability to
prevent, minimize negative impacts of, recover and learn from
power system disruption events [10].

Addressing the multitude of potential threats to power systems
[11] requires complex considerations when making infrastructure
investment decisions, developing rules for system operation, and
preparing contingency strategies for extreme situations when
quick decisions and actions are needed. To aid these considerations,
insights about system behavior under disruptions obtained from
energy system models could be of high importance. Numerous
energy system models exist that deal with techno-economic opti-
mization of capacity installation and its dispatch under different
limitations and boundary conditions [12]. While the majority of
them primarily focus on operation under normal conditions, some
models do account for disruptions providing associated loss of load
among output parameters [12]. Some technically detailed power
system models can represent system component failures and
restoration linked to environmental conditions [13]. However,
these models rarely include links to social and economic systems
[14] that could be important for decision making, especially when
power systems face extreme disruptions. For example, in case of
insufficient power supply, a decisionmay be needed onwhich parts
of the grid would be left without power. While such decisions
involve major societal and economic consequences, conflicting
values may not lead to straightforward optimization, but to open
policy questions [15].
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Nomenclature

VoLL Value of Lost Load
TG Transmission Grid
DG Distribution Grid
LG Local Grid
CHP Combined Heat and Power
DH District Heating
GVA Gross Value Added
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The impact of power system interruptions is mostly studied
using technical and economic indicators. Technical indicators focus
on duration, frequency, number of customers affected, and total
unserved energy of disruptions. Commonly used technical in-
dicators are defined in the IEEE standard 1366e2012 [16]. Objective
and relatively easy-to-obtain technical indicators do not fully cap-
ture demand side aspects that greatly affect the economic costs of
disruption, which are often referred to as the value of lost load
(abbr. VoLL). VoLL represents a large variety of costs for the same
unit of unserved energy depending on the consumer type, timing
and duration of the disruption, existence of prior warning and
mitigation measures, and other aspects [17]. In addition to a set of
aspects considered, the VoLL can differ based on the evaluation
method used that include willingness to pay and willingness to
accept surveys, detailed analysis of historical disruption cases or
indirect analysis using already widely available public data (e.g.
gross domestic product) [18]. VoLL is considered to be an indicator
of the optimal level of investment in supply security measures [19].
It is also used as one of the cost components in various optimization
studies for investment in transmission [20] and generation [21]
capacity as well as generation capacity commitment and dispatch
[22]. However, the literature that would use VoLL to address social
dilemmas or the links of technical energy system models to social
values is limited.

Two previous studies present a good example on how VoLL
could be used to inform decisions concerning power systems under
disruptions while highlighting social dilemmas of different strate-
gies. De Nooij et al. investigated ways to reduce social costs of a 4-h
long 1 GW power shortage in the Netherlands by cutting off the
power supply of the municipalities with the lowest VoLL in com-
parison to random rationing [23]. Wolf et al. investigated a 1-h long
10 GW shortage in German districts by rationing supply randomly,
minimizing the total cost, minimizing the cost of most affected
regions, and minimizing the number of people affected [24].
Neither of the two studies mentions grid constraints of distributing
supply or grid damage that would accompany many disruptions
causing a shortage on the supply side. Also, not all social values can
be represented well in monetary terms [25] (e.g. hospitalized
people are not working and thus likely to have a low VoLL [26]).
Mentioned aspects show that many important aspects concerning
the link between electric power and social or socio-economic sys-
tems remain open.

This paper presents a modeling framework that links the tech-
nical power system operation model with economic and social
values that requires a power supply and can be represented
spatially. The objective is an integrated tool for researching: (1)
social and economic costs of extreme disruptions to power systems,
(2) regional and different value tradeoffs for these costs, (3) effec-
tiveness of proactive and reactive power system resilience
improvement measures in reducing these costs. Section 2 describes
the framework, Section 3 describes the power system model, Sec-
tion 4 describes an illustrative case that applies the framework for
2

the Finnish power system, Section 5 concludes the work.

2. Linking framework

Several models link power system operation to various energy
security aspects [27,28], but attempts to link power disruptions to
socio-economic systems are rare. To enhance the capability to
analyze complex and multi-disciplinary socio-economic phenom-
ena that arise in power system disruptions, a framework shown in
Fig. 1 is proposed.

The energy security environment layer includes a multitude of
threats that differ significantly in the way they affect the power
system [11]. Thus, the types of threats considered shape the aspects
needed in a representative model. Among all threat types, the
majority of disruptions recorded originate from extreme weather
events [3]. The link between the weather and the power system on
operational time scales requires only performance functions
dependent on the weather parameters for each system component.
The same link on a longer time scale presents additional complexity
related to infrastructure capacity buildup and retirement as well as
potential changes in the climate. Traditional energy security typi-
cally concerned with fuel embargo requires a model that describes
the fuel stocks. Effects from cyberattacks on digital sub-systems
depend on the details of adversaries [1], malware and antimal-
ware software [7], logical domains and communication networks
within the power system [29]. In the case of cyberattacks the
consideration of only the physical part of the system may not be
adequate as cyberattacks could e.g. block or inject false data into
the digital part of the power system interfering with central control
or manipulating the behavior of independent producers and
“smart” consumers [30]. However, implications of disabled power
system components or changed consumption levels due to such
disruptions can be modeled without detailed knowledge about the
origin of these incidents. Considering the relevance and modeling
complexity of different threats, here the focus of this work is on
extreme weather events and disruptions that can be emulated by
user imposed power system component failures.

The core layer of the framework is a spatial power systemmodel
for a defined geographical area covering production, consumption,
and connecting power grid components. Power system compo-
nents are subject to disturbances altering both the momentary
supply capabilities and demand patterns until the system is
restored. The damaged systemwould continue to operate based on
predefined rules, which represent different strategies for operating
disrupted systems. These strategies may include value judgments,
especially when the operational system capabilities cannot cover
the whole demand. For example, power supply in one region could
be restored by compromising other less important regions. Further
details of the power system model are presented in Section 3.

The socio-economic system layer consists of a set of layers with
spatial social and economic values that are linked to a power supply
system. Examples of such values include population and its struc-
ture (e.g. share of particularly vulnerable population due to age,
medical or financial situation [31]), industrial and other economic
activities, critical services (e.g. communication, water and food
supply [32]) and facilities (e.g. hospitals), community capacity to
support recovery process [33] (e.g. information availability to
mobilize and organize volunteers). The inability of a damaged po-
wer system tomeet the local power demand incurs socio-economic
costs, which can be assessed for each area covered by the grid.
Socio-economic costs are considered separately for different values
of interest rather than converting all of them intomonetary units as
it is done in VoLL estimates. The purpose of such an approach is to
investigate tradeoffs between different values that could be, at least
in part, hidden when all relevant values are expressed in monetary



Fig. 1. Framework for linking disruptions to power systems with socio-economic aspects.

Fig. 2. Illustration of the power grid structure in the model.
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units. For example, consideration for power rationing between
businesses and residents in VoLL terms would depend on the value
set for economic activity and residents’ activities outside of work.
While it is easier to cut off the power supply for awhole region than
for a specific group of consumers in the region [23], VoLLs and their
time dependencies between sectors can vary even more than they
vary between regions [34]. Even if outage cannot be constrained to
specific sector the choice of the region for supply priority may
involve similar dilemmas due to the dominant consumer type dif-
ferences. Keeping relevant socio-economic values separate also can
be useful for studying more extreme (in scale and duration) dis-
ruptions, where monetary cost is no longer the most relevant in-
dicator. In very long and widespread power outages, where critical
services like food supply could become an issue, economic con-
siderations of everyday business are likely to be of lesser impor-
tance for operational decisions. However, such long disruptions are
outside the scope of the current model mainly due to missing
representation of back-up or emergency power generation and fuel
stocks in the model. Most critical services have back-up generators
with a few days of fuel supply, which could be further resupplied
[35]. Disruptions from the socio-economic systems to the power
systems (e.g. severe epidemic preventing personnel from operating
the power system [3]) are considered as a part of the energy se-
curity environment. Potential feedback loops between the socio-
economic layers are not considered in the model.

The decision-making system in Fig. 1 represents policy mea-
sures that have a major impact on the resilience of the energy
system. Proactive policy measures for resilience improvements
could include a long-term buildup of infrastructure and operational
strategies aiming to prevent disruptions. Strategies prepared in
advance, even when they have to be modified in actual situations,
can noticeably improve the operational decisions under time
pressure during the disruption [36]. Reactive resilience improve-
ment measures primarily comprise operational decisions and
infrastructure recovery aiming at mitigation of disruption effects
and quick system recovery. Resilience improvement measures
acting on the socio-economic system and energy system threats in
its environment are outside the scope of the model. In this paper,
the model is used with predefined rules, which do not clearly
distinguish between decisions made in advance and during the
disruption. However, most of the proactive measures are likely to
3

focus on the physical infrastructure, whereas the reactive measures
are likely to focus on the operational rules and decisions as changes
in long-lived infrastructures outlast the time needed to change the
rules. One possible model extension to increase the distinction
between proactive and reactive measures would be to interrupt the
model run at the point of component failure for further user input.

3. Power system model

The power system model used here is based on maintaining
demand-supply balance by dispatching power plants and serving
consumers based on respective priority orders defined prior to the
model run. The model runs at time scales that can capture the
performance dynamics of the system in case of disruptions. It is
coded with MATLAB©.

3.1. Power system structure

The power system is modeled as a two-level network shown in
Fig. 2. The first level network covers the whole studied region
divided into areas with a single node in each. These nodes repre-
sent substations in the transmission grid (TG). The second level
network consists of local grids (LGs) within each area. Each LG in-
cludes plant and consumer nodes connected by LG lines to TG (i.e.
area) node. Plant nodes refer to sites of power plants. Consumer
nodes represent aggregated distribution grids (DGs) as well as
major industrial consumers in the area. For simplicity, both DG and
TG lines that fall entirely within a single area are referred to as LG



Fig. 3. Example of a fragility function (failure probability as a function of wind speed).
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lines in the rest of the text. Cross-border connections are repre-
sented with dummy area nodes containing a dummy plant for
imports and a dummy consumer for exports. TG can include several
loops, but LG is assumed to be non-looped (DGs typically have a
tree-like topology [37,38]) to limit the complexity and computa-
tional requirements of the model.

Each plant and consumer node include specific information on
their characteristics about their location, sub-type, power charac-
teristics, and distribution impacts as listed in Table 1. The location of
the node within the grid is specified by the corresponding area
(transmission) node and upstream and downstream lines of the
corresponding LG. Plant nodes are categorized according to the
energy source or fuel used, while the consumer sub-types repre-
sent different sectors such as households, services, and industries.
Each consumer node contains consumers from one type of sector
only, i.e. DG serving multiple types of consumers is aggregated into
separate consumer nodes with each node representing a sector
within given DG. Power characteristics distinguish between nom-
inal and actual values after balancing the power system. Power
production is also subject to minimum and maximum operational
plant output and availability. Availability refers here to maximum
production capacity at different plant damage levels and grid
constraints. Disruption impacts on the power plants are described
through fragility functions and fixing times [39]. A component and
threat specific fragility function links failure probability to the in-
tensity of the disruption describing parameter. For example,
extreme weather disruption could be described by weather pa-
rameters such as temperature, amount of rainfall, or wind speed in
the area, where the power system component is located (see Fig. 3).
Fixing time defines the time lag until the plant returns to operation
after a breakdown or black-out. Disruption impacts on consumers
are represented indirectly through social and socio-economic pa-
rameters sensitive to power disruptions.

Table 2 lists model variables for the rest of the system compo-
nents e LG and TG lines, and TG node. Both LG and TG lines are
described by their locationwith nodes at their ends, power carrying
capacity, and actual power flow. The model also includes repre-
sentation of LG line failure in the same way as for power plant
failures, i.e. using a fragility function, fixing time, and reduced
availability of power carrying capacity. The current model setup,
however, does not include endogenous representation of the TG
line failures due to the need to reconfigure looped TG for the
calculation algorithm used. To simulate TG line failures, the user
has to manually modify the system components before the model
run. Another unique feature about TG lines is the distinction made
for computational reasons between straight or loop-forming lines
(details in the next subsection). Each TG node is specified by its
location as well as the total electricity production and consumption
connected to that node.
Table 1
Model variables for power production and consumption nodes.

Plant node

Location Area node
Upstream line
Downstream line

Sub-type Power plant type
Power characteristics Maximum production capacity

Minimum output
Availability
Actual production

Disruption impacts Fragility function
Fixing time

4

3.2. Calculation principles

Themodel computes the state of the power system for each time
step (typically 1 h) using an algorithm with four main parts as
shown in the central part of Fig. 4 based on [40e42].

First, the model calculates the availability of each plant and line
in the LG. The availability of these components is equal to their
capacity in a normal state and zero in a failed state. Failure is
determined by comparing the failure probability with a randomly
generated number from a uniform distribution. The failure proba-
bility of component is defined by its fragility function and envi-
ronmental conditions. Once the component fails, it is assigned a
timer with a predefined value that decreases every subsequent
time step. After the timer reaches zero, the component is fixed and
its capacity is restored.

The second part of the model sets the production, consumption,
and power flow levels without considering the grid constraints. The
power plants are dispatched and consumers supplied based on
their respective priority orders until the supply-demand balance is
reached. The power plant priority represents the rules of a free
power market, based on the marginal costs of power production
and additional rules such as the preference for low emission
sources. The consumer priority order is based on socio-economic
values defined by the user. Assuming that the LG is not looped,
i.e. it has a radial or tree-like topology [43], flow in LG lines is
defined by cumulative downstream production and consumption
[42] as follows:

Fl ¼
X

n2dsðlÞ
ðQn � PnÞ (1)

where Fl is the power flow in LG line l, Qn and Pn are the power
consumption and production in node n. The notation dsðlÞ means
the nodes that are downstream (i.e. further from the transformer
station) of line l. Positive numbers mean downstream flow, nega-
tive ones e upstream.
Consumer node

Area node
Upstream line
Downstream line

[energy source] Consumer type [sector]
[MW] Demand [MW]
[MW]
[MW]
[MW] Actual consumption [MW]

Population [people]
[h] Gross value added [V]

Jobs [people]
etc.



Table 2
Model variables for the remaining power grid components.

Local grid line Transmission grid line Transmission grid node

Area node Area node
End nodes End nodes Upstream line
Capacity [MW] Capacity [MW] Downstream line
Actual flow [MW] Actual flow [MW] Geographical location
Fragility function Line type Production in the local grid [MW]
Fixing time [h] Consumption in the local grid [MW]
Availability [MW]

Fig. 4. Principle scheme of the power system model algorithm. Notations used: DS e downstream, US e upstream.
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The third part of the model adjusts production, consumption
levels taking into account the LG constraints. The principal scheme
of this step is further detailed on the left side of Fig. 4. The LG lines
with flows larger than their availability (power carrying capacity
that can be reduced in case of failure) represent bottlenecks. Each
bottleneck is removed individually by adjusting production and
consumption levels downstream and upstream of the line based on
excess flow direction. First production and consumption levels are
adjusted downstream, and then, to retain a supply-demand balance
of the system, upstream. Each removal of the bottleneck can create
new bottlenecks. Therefore, after removing the initial set of bot-
tlenecks the third part of the model is repeated until no more
bottlenecks are found. To avoid infinite loops, the model does not
allow increasing values of power plant production that were
already reduced during that time step.

The fourth part of themodel computes the flows in TG that differ
from the LG by the presence of loops. The principal scheme of this
step is detailed on the right side of Fig. 4. Initially, the model omits
certain lines in TG eliminating loops that allow computing flows in
each line by summing downstream production and consumption
using Eq. (1). After that, the flow in omitted loop-forming lines is
computed based on the voltage differences between the neigh-
boring nodes [40,42]:

Flf ¼ �
PL

l¼1FlRl �
PL0

l0¼1F
0
l0R

0
l0PL

l¼1Rl þ
PL0

l0¼1R
0
l0 þ Rlf

(2)

where R is the resistance, F the power flow, subscript l refers to the
lines in the first branch from the substation (L in total), and l0 and L0

refer respectively to the second branch, lf ¼ loop forming line. For a
5

detailed derivation of the equation see Supplementary Information.
Addition of flow Flf to the rest of the lines in the loop gives a
complete description of the flows in the loop. However, when
several loops are present in the system, loops can affect each other
requiring an iterative calculation. In such a case, the model calcu-
lates the flows in the loops one by one and after one round of
calculation checks the flow changes. If the maximum change of the
flow in relative terms is higher than the predefined precision value,
the fourth part of the model is repeated taking new flow values for
the loop non-forming lines. Otherwise, the model calculations for
the current time step are completed.

At the end of each time step, the history of time dependent
variables is saved for further analysis and for socio-economic cost
evaluation which is preformed after the power system model run
for the whole studied period.
3.3. Model limitations

The central limitation of the model is that it leaves the link
between the security environment and the social system layers
largely exogenous capturing these relations only through rather
simple functions. For the purposes of studying different power
systems configurations and operational strategies to reduce socio-
economic costs of disruptions, only the internal dynamics of the
power system have to be modeled endogenously. However, for an
accurate representation of the socio-economic impacts from a
disruption to the power system, links between the layers are as
important as the internal representation of the power system.
Linking functions do allow to capture the major relationships but
determining these functions accurately can be very challenging in a
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macro level model. A notable simplification is the aggregation of
regional DGs or their segments into single point consumer con-
nected via LG line to TG.

Other notable limitations of the model concern three aspects:
time scale, grid topology, and intermediate states of the system
components. First, the focus of the hourly time scale used here does
not allow the model to capture near-real-time (Dt ≪ 1 h) power
dynamics as well as very long-term (Dt [ 1 year) structural
changes in the electricity system and its environment. Second, the
grid topology limitations concern the representation of discon-
nected parts and the number of loops in the grid as well as detail in
the LGs. Multiple disconnected parts of the system, i.e. power
system “islands”, that could form due to themain power line failure
[44], are outside the model capability. The model also limits the
number of loops in the grid due to quickly increasing computa-
tional requirements and the need for more sophisticated mathe-
matical approaches to mediate such an increase [45]. The loop
constraint applies to both the TG and LG, but at this stage, the LGs
are represented without any loops. A very detailed description of
the LG could lead to overwhelming complexity and inflate the main
idea of the present model. Third, the intermediate state limitations
refer to the exclusion of transient conditions and partial failures.
The absence of transient conditionsmakes the systemmore flexible
than it would be in reality. Partial failures could be relevant in cases
where the power plant consists of several independent units and
the grid line consists of several parallel lines while the disruption
impacts only a single unit or line. The possibility of partial failures
could also provide more accurate representation of aggregated
components. For example, partial failure of a LG line that serves
“aggregated DG consumer” could represent a minor line failure in
the DG even if no line in that grid have a partial failure state.
However, modeling transient conditions and partial failures re-
quires very detailed information on the infrastructure, which is
outside the scope of the present study. The overall impact of
mentioned model limitations is difficult to assess. Nonetheless, this
impact to accuracy is expected to be sufficiently small to allow a
representative study at a macro scale, provided that functions
describing links are reasonably representative as well.

4. Illustrative case study of the Finnish power system subject
to a disruption

This chapter describes the application of the model for a case
study of the Finnish power system during a ‘stressed’ situation of
two windy winter weeks with no possibility of imports and
reduced availability of present nuclear power capacity. The aim is to
illustrate the application of the framework and model capabilities.

4.1. Description of the disruption

The disruption in this scenario is represented by a storm hitting
an already stressed power system. Wind is the biggest cause for
most power system disruptions in Finland (e.g. 28% disruptions in
2017 [46]) as in many other countries [3]). The extreme wind pri-
marily damages low and medium voltage power lines that are
unlikely to lead to a nation-wide supply shortage in the Finnish
power system. However, if the storm hits a stressed power system
lacking major supply sources, namely power imports from neigh-
boring countries and present nuclear power capacity in Finland, the
resulting damages could be significantly larger.

The hazard of a storm is represented by the wind gust speed for
each modeled area equal to the measured gust speed in one
randomly selected metrological station among the stations in the
corresponding area. Such extrapolation neglects local variations.
However, a more accurate representation would need to account
6

for the sub-area distribution of both the wind and power system
components, which is outside the scope of the model and present
study. The wind gust profiles used for 2-week study period are
shown in Fig. 5. The profiles contain several peaks with the longest
and the highest peak occurring in the middle of the second week.
As it could be expected, the wind speeds are the strongest in the
coastal regions. However, the northern part of Finland (Lapland)
and, to a lesser extent, the corridor from south to northeast of the
country also experience strong winds during the same period.

While strong winds are unlikely to damage cross-border TG
lines, extreme weather conditions that cause significant damage in
Finland can affect neighboring countries limiting their excess ca-
pacity for exports to Finland. Regardless of the cause, the loss of
imports would significantly reduce the extra supply capacity
available for the system. If this would coincide with two out of four
existing Finnish nuclear power plants being offline, the remaining
power supply capacity would come close to, and at some periods,
below the demand. The nuclear power plants operate with a high
capacity factor with most scheduled maintenance taking place
during low consumption in the summer. The unavailability of two
nuclear plants in January assumed for this scenario would be un-
likely without some external cause.

The power system operator can control the location of outage in
case of a system-wide supply shortage by directing power flows
under grid constraints. These grid constraints can include damaged
lines, most notably on the consumer side, i.e. LG lines between TG
and consumer. Thus, from the power flow control perspective,
disruptions that damage consumer side lines can be seen as un-
controlled disruptions and disruptions that do not e as controlled
disruptions. In the studied case the cause for uncontrolled disrup-
tions is line failures on the consumer side due to the storm, the
cause for controlled disruptions is a system-wide supply shortage
due to limitations on nuclear and import capacity as well as power
line failures on the supply side (LG lines connecting power plants to
TG). There is part of the lost load that could be attributed to both
types of disruptions as LG failures on the demand side reduce
available demand and in turn reducing the effective system-wide
shortage. This overlapping share of the lost load is considered for
further analysis to be caused by line failures as it cannot be real-
located by the power system operators to different consumers.

4.2. Finnish electricity system

The Finnish electricity system contains 17.5 GW of power pro-
duction capacity [48], 22 500 km of high-voltage, 140 000 km of
medium-voltage, and 240 000 km of low-voltage lines [49]. Fig. 6
shows the power supply composition. The total power supply
production is distributed around the country: 25% comes from
nuclear at Loviisa and Olkiluoto sites (east and south coasts
respectively); 15% comes from hydropower, mostly in the northern
part of the country; 25% comes from combined heat and power
(CHP) plants for district heating (DH) that are concentrated in
larger cities (predominantly in western and southern parts of
Finland) and industry that is concentrated in large industrial sites
(predominantly in central and eastern parts of Finland) [50]. Fig. 7
shows the TG structure and its representation in the model. Finnish
TG contains 116 substations [51] while its model representation
contains 29 area nodes and 5 transnational trading nodes (con-
necting Finland with Sweden, Estonia, and Russia). 8 of the nodes
(colored in light blue) have consumption only while the rest
(colored in dark blue) have both consumption and production. 10
areas correspond to official regions in Finland and 19 areas repre-
sent parts of the other 8 official regions. 8 regions are divided in a
way that improves the representation of the TG structure and
distinguishes largest producers (namely Olkiluoto and Loviisa



Fig. 5. Wind gust speeds for the first two weeks of 2017: hourly profiles (left side) and regional distribution of their averages (right side). Data source: Finnish Meteorological
Institute [47].

Fig. 6. Installed capacity and an annual supply of electricity in the Finnish power system in 2017 [53]. Condensing plants include peak gas turbines, engine power plants, and
condensing shares of combined production. Imports for installed capacity denote the interconnection capacity with neighboring countries. Imports of annual supply are equal to net
imports.
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nuclear sites) and consumers (most notably Helsinki, capital city) in
the system. Åland Islands (west of mainland) were left out from the
model because their power system is more strongly linked to
Sweden than mainland Finland. The LG follows a radial structure
shown in Fig. 8. Fig. 8 also shows the priority order of power plants
and consumers used in themodel. The power plant priority order is
based on the existing merit order on the electricity market. The
consumer priority is assumed to be higher for areas with a higher
population and within area follow the order shown in Fig. 8. Such
order is based on the fact that cutting off the power supply for
selected regions in full is technically easier and faster than denying
supply for certain consumer sectors over the whole country [23].

The power system data is collected from the following sources:
power production and grid data from the national transmission
system operator Fingrid Ltd. [48], the geographical distribution of
production units from the official power plant register of the En-
ergy Authority of Finland [50], municipal and sectoral composition
of consumption from the Finnish Energy [52].
4.3. Inter-layer links

The link between the power system and its natural environment
containing the wind hazard is described by the fragility functions
and the fixing times of LG lines (failure of TG lines and power plants
is not considered in this case). The literature on wind fragility of
power systems containing fragility functions for power line towers
7

and line segments connecting were found in Refs. [13,37,39,55,56].
As these functions can be site specific and depend on many
component level characteristics (such as line strength, line length,
tower age, material of the tower, presence of neighboring compo-
nents, power loading at the time of the study, presence and nature
of other hazards) aggregating all components for a national power
system study is challenging. For this illustrative study, the line
strength was considered as the main parameter for line fragility.
The fragility of higher voltage lines is assumed to have the same
failure probability distribution profile as lower voltage lines, just
shifted to higher wind speed range. The LG line voltage levels were
determined using connected power production capacity or peak
demand as a proxy. The fragility functions for this study are
assumed to have a normal cumulative distribution with a variation
of 5 m/s (see Fig. 9). Distributions were selected considering the
rarity of: (1) line failures with wind speeds are < 20 m/s [55], (2)
high voltage line failures due to wind in general [13], wind in
Finland reaching speeds > 30 m/s. Differences in the line damage
and surrounding environment that could affect restoration works
are accounted for by fixing the time variation [57,58]. No fixing is
allowed during the stormwhenwind gust speeds are >20m/s. Also,
if the failure occurs during the storm, the base fixing time is
multiplied by a random number from a uniform distribution with
ranges between 2 and 4. Base fixing times are assumed to be 5/10/
20 h for low/medium/large voltage power lines.

The link between the power system and the socio-economic



Fig. 7. Finnish power transmission network (left side, the figure is taken with permission from Fingrid Ltd © [54]) and its simplified representation in the model (right side).

Fig. 8. Simplified local grid structure within an area including all node types and
subtypes with their priority orders (indicated with arrows) used in the case study.

Fig. 9. Fragility functions used for low, medium, and high voltage lines versus wind
gust speed.
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layers assumes only direct impacts and a uniform distribution of
socio-economic values of interest within the areas. In principle, any
value with available geospatial data and known dependency on
power supply can be studied within the proposed framework. For
the purposes of evaluating the cost of major power disruptions, the
most relevant values would be related to critical functions and in-
frastructures for the economy and broader society. There is no
broad consensus on what constitute critical infrastructures or
functions, though typically such lists are longer for more developed
countries [59]. In Finland, the Security Committee identifies the
8

following basic functions of society: water distribution, food sup-
ply, financial payments, transportation, telecommunication, heat-
ing, and certain public facilities (namely hospitals, emergency
response centers, police departments, fire stations, schools and
daycare centers) [32]. This illustrative study uses examples of
values easily applicable within the proposed framework, namely
four socio-economic factors: gross value added (GVA), population,
elderly (age over 65 years old and therefore potentially more
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vulnerable) population, health and social work jobs as a proxy of
healthcare services. The geographical distributions of these values
in Finland are shown in Fig. 10.

The share of each disrupted socio-economic value is assumed to
be directly proportional to the share of the disrupted power supply
for each time step and end-use consumer studied. For the GVA, or
other socio-economic values that are accumulated throughout the
year, the simplest time period for which that ratio would be
computed is a whole year:

GVAdisrupted;c;t ¼ GVAc;a$
Eshortage;c;t
Edemand;c;a

(3)

where c ¼ consumer index, t ¼ time step, a ¼ index identifying
annual value, E ¼ energy. Summing up Eq. (3) for all C consumers
and all timesteps during the study period T gives:

GVAdisrupted¼
XC
c

 
GVAc;a $

PT
t Eshortage;c;t
Edemand;c;a

!
(4)

Disrupted GVA illustrates the disrupted economic activity in
monetary terms, e.g. Euros. However, analysis of multiple values
with different units is easier in relative terms, i.e. using the ratio of
the disrupted value to the maximum value that could be disrupted
during the studied period (i.e. during complete blackout):

GVA%disrupted ¼

PC
c

 
GVAc;a$

PT

t
Eshortage;c;t

Edemand;c;a

!

PC
c

 
GVAc;a$

PT

t
Edemand;c;t

Edemand;c;a

! (5)

The rest of the studied socio-economic values are constant
throughout the year for which a more intuitive time basis would be
the studied time period (the disruption duration could be even a
better basis in case of a single clearly defined disruption). For
example, similarly defined population Pop indicator would show
the average number of people without supply over the studied
Fig. 10. Geographical distribution of socio-economic values studie
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period:

Popdisrupted;c;t ¼ Popc$
Eshortage;c;t
Edemand;c;T

¼ Popc$
Eshortage;c;tXT

t
Edemand;c;t

(6)

Eq. (6) sums up to Eq. (7) for each consumer and time step:

Popdisrupted ¼
XC
c

 
Popc$

XT

t
Eshortage;c;tXT

t
Edemand;c;t

!
(7)

In case of a complete outage, the maximum disruption affects
the whole population (i.e. the energy sums are the same) giving the
share of population disrupted as:

Pop%disrupted ¼

PC
c

 
Popc$

PT

t
Eshortage;c;tPT

t
Edemand;c;t

!
PC

c Popc
(8)

Analogously, disrupted elderly population ElderPop refers to the
average number of people at least 65 years old without power
supply during the study period and in relative terms their disrupted
share is equal to:

ElderPop%disrupted ¼

PC
c

 
ElderPopc$

PT

t
Eshortage;c;tPT

t
Edemand;c;t

!
PC

c ElderPopc
(9)

Likewise, disrupted healthcare and social work employees
HealthJobs refers to the healthcare and social work services dis-
rupted bymeasuring a proxy of time averaged (over studied period)
number of people employed in this sector without power. Ac-
counting for backup power generation in the most critical areas of
healthcare sector was beyond the scope of this study. Thus, the
disrupted healthcare share is equal to:
d in Finland for 2017. Data source: Statistics Finland [60e62].
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HealthJobs%disrupted¼

PC
c

 
HealthJobsc$

PT

t
Eshortage;c;tPT

t
Edemand;c;t

!
PC

c HealthJobsc
: (10)

The energy shortage is the difference between the demand and
modeled consumption of energy, while all regional socio-economic
data was taken from Statistics Finland [60e62]. The GVA of
household consumers is zero and the power loss in this sector does
not contribute to the economic impact (no economic value is
assigned to the convenience or leisure of residents in the area). As
the population of commercial and industrial consumers is zero, the
power loss in these sectors does not disrupt population that also
includes elderly population (indirect impacts are excluded). Simi-
larly, disruption of healthcare jobs is considered to be caused only
by shortages among the service sector consumers.
4.4. Case study period selection

The case study period was selected from years with hourly data
available by searching for the largest energy outage that could best
illustrate the intended use of themodel. Hourly data for gust speeds
is provided by the Finnish Meteorological Institute since 2010 [47].
Search for the largest outage that the model could produce
included analysis of 10-year wind gust speed data and one-year-
long model run. An analysis of the 2010e2019 datasets included
simple plotting of national average and a national maximum of
wind gust speeds, number of areas and days at which the gust
speed is higher than a threshold value. These plots did not reveal
obvious peaks in the wind hazard intensity. The model run for year
2017 including the wind hazard but excluding the constraints on
nuclear and import capacity resulted in the largest relative energy
shortage in the second week of the year. Using this as a basis, the
first two weeks were chosen for further analysis with constraints
on nuclear and import capacities. Further analysis, shown in the
results subsection, replicate the same sequence of power line fail-
ures by starting with the same seed for randomnumber generation.
The selection of all hourly profiles for a defined period allows to use
historical wind power production values without the need to
model endogenously connection between wind power production
and wind speed.

It is worth noting, that a one-year-long model run without nu-
clear and import constraints resulted in 0.39% of the annual de-
mand unserved, which is an order of magnitude larger than the
actual disruptions in Finland in 2017 [46]. This means that the
fragility functions used may be too sensitive for recreating histor-
ical wind hazards. However, the decision was made to use over-
sensitive fragility functions. Thus, the following results present a
case that could happen (there are prior storms with a comparable
level of disruption in Finnish power system history, e.g. Ref. [63]),
but not a historically accurate recreation of events at the start of
2017 in the Finnish power grid.
4.5. Results

Fig. 11 - Fig. 13 shows the evolution of the power system
disruption as a function of time. Fig. 11 shows the availability of the
power lines with most failures occurring in the second week. The
failure rate is significantly higher during the second week despite
peak wind gust speeds being only slightly higher that week. This
indicates a high system sensitivity to wind speeds once they are
sufficiently high to cause component failures as could be expected
by wind power being proportional to the cube of wind speed.
Failures that do occur in the first week mostly affect the lower
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capacity lines, primarily on the demand side. Subsequently, almost
all of the loss of power production occurs during the second week
as shown in Fig. 12 (note that the production capacity loss in the
model occurs due to failures in the LG lines connecting plants with
the TG rather than failures in the power plants themselves). The
power demand during the first week is noticeably larger than
during the second one. In the absence of the imports and half of the
nuclear capacity available, a higher demand also creates a supply
shortage. Fig. 13 shows the impact for the two weeks to be equal in
magnitude (share of lost load equal to 2.7% for both weeks,
1.1þ1.6¼ 2.4þ 0.3¼ 2.7), but different in nature (the second week
is dominated by line failures while the first week contains line
failures and system-wide shortages at comparable level).

Fig. 14 shows the geographical distribution of the modeled
disruption impacts. Failures of lower voltage lines resulted in a
widespread, but a relatively small amount of lost load. In absolute
terms, the lost load is concentrated in a few areas, where the major
power line failures occur. In relative terms, however, the lost load is
highly concentrated in a few small areas with the lowest priority
consumers. While certain areas would be more exposed to line
failures due to climate conditions (e.g. windier coastal areas), the
spatial distribution of each storm and its impacts is likely to differ.
The same may not be the case for the national shortage induced
outages if the same prioritization criteria are always used. In
addition to this, the time dependency of the damage not considered
here could increase the cost over time leading to a rotation of
outages between the different regions as a more preferable
strategy.

Fig. 14 also shows the nation-wide shares of disrupted socio-
economic values which are presented in numerical form in
Table 3. Themost noticeable aspect of the results is the difference of
disrupted values in controlled and uncontrolled disruptions. In
controlled disruptions (caused by the national power shortage) all
disrupted value shares are lower than the disrupted load share. In
uncontrolled disruptions (caused by the power line failures on
demand side) the disrupted shares of GVA and healthcare jobs are
either close or significantly higher than the share of lost load. This
difference is due to the partial shift of the impact to household
consumers and regional variation in size of the population, GVA,
and energy consumption.

The shift of the lost load to the household consumers is coun-
terintuitive as the system-wide shortage is distributed with
household consumers having the highest priority within each area
and line failures do not differentiate consumer segments. However,
the controlled shortage is distributed first by priority of the area
and only then by the consumer types in it. Thus, all but the highest
priority areas among the affected ones at any given time are
completely cut off. At the same time, most of the shortage caused by
the consumer side line failures occurs due to a few large line fail-
ures that in this case happen to affect disproportionally industrial
and service sector consumers. Among the most affected areas in
absolute terms are the Lappeenranta and Inkoo areas (located in
the east and south parts of the country) which have high household
consumption that in the model is aggregated to large consumer
nodes supplied with HV lines that do not fail while the Pori area (on
the west coast) is dominated by industrial consumption. This sug-
gests that a longer study period with multiple extremewind events
would likely result in shortage to be more evenly distributed
among all sectors in both types of disruptions.

Regional variation in economic output per capita is not large, but
economic output per energy unit is. The annual GVA per capita in
the studied areas range from 25 138 V/person to 57 723 V/person.
The annual GVA per energy unit in the studied areas range from 445
V/MWh to 7643V/MWh (17-times difference). Most of the GVA per
energy unit variation between the areas comes from the industry



Fig. 11. Availability of local lines (ordered by area).

Fig. 12. Availability of the power supply capacity. For clarity purposes, unavailable nuclear power and import capacity (1.3 GW and 5.2 GW respectively) are excluded from the
graph.

Fig. 13. Shares of the served and unserved load.
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(maximum is 83 times the minimum) while the service sector
consumption economic value is relatively uniform throughout the
country (maximum is 3 times the minimum). Similarly, healthcare
jobs per service sector energy consumption differ among regions by
a factor of 3. However, the regional variation of total and elderly
population per residential sector consumption differs by a factor of
14 and 7, respectively. Mentioned examples show that economic as
well as social impact can be reduced multiple times by shifting the
outage location without necessarily shifting the shortage to the
11
other sectors and thus creating different types of costs. This is
consistent with the findings that the shortage directed to lower
priority areas could significantly reduce the costs compared to a
random selection of such areas [23,24].

Two other differences among the results are noticeable. First,
the ratios (of disrupted values due to line failures versus disrupted
values due to system wide shortages) are higher for all values
during the second week as the smaller shortage can be moved to
the least valued consumers. Second, the disrupted elderly



Fig. 14. Geographical and sectoral distribution of lost load and subsequently disrupted nation-wide shares of socio-economic values. Results are disaggregated by week and
disruption type.
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Table 3
Disrupted nation-wide shares of socio-economic values for different power
disruption types and their ratio normalized by the disrupted power load.

Socio-economic value Week 1 Week 2

Failures Load 1.10% 2.43%
GVA 1.49% 4.72%
Population 0.23% 1.06%
Elderly population 0.28% 1.29%
Healthcare jobs 1.09% 4.18%

Shortage Load 1.61% 0.29%
GVA 0.72% 0.12%
Population 0.80% 0.12%
Elderly population 1.08% 0.17%
Healthcare jobs 0.71% 0.12%�

Value
Load

�
failures�

Value
Load

�
shortage

GVA 3.04 4.67
Population 0.42 1.05
Elderly population 0.38 0.91
Healthcare jobs 2.24 4.01
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population share in all cases is larger than the disrupted share of
the whole population. The reason for this is the significantly older
population structure in rural areas.

5. Conclusions

Here an integrated spatial modeling framework for linking
disruptions in a power system with subsequent socio-economic
impacts have been developed. The model was applied to an illus-
trative case in Finland.

The developed modeling framework provides new capabilities
to study socio-economic costs of power disruptions using simple
inter-layer links. The integrated link from the power system to the
socio-economic parameters is a novel aspect of the framework as
the power system models typically tend to focus only on techno-
economic analyses. Both inter-layer links (from the natural envi-
ronment describing threats to the energy system and from the
energy system to the socio-economic values) are described through
simple functions for each system component and consumer type
that capture the most relevant relationships. Major challenges to
accurately describe these link functions include (1) spatial aggre-
gation of natural environment parameters with high local vari-
ability, (2) spatial aggregation of local grid fragility features, and (3)
time dependency of socio-economic costs. A more rigorous deri-
vation of the component fragilities and the social cost functions
with uncertainties would improve the confidence in the repre-
sentativeness of the model results.

The case study for Finland demonstrates the capabilities of the
modeling framework for analyzing regional and sectorial distribu-
tions of power outages as well as their implications to people and
businesses. The case concerns a two-week disturbance in the
electricity system due to wind storm and limits on nuclear power
and import capacities. The following observations and conclusions
from the case study can be made:

� The cost of the power outage can be significantly reduced by
controlling its location. Outagewith controlled location resulted
in 3e5 times lower economic loss than an uncontrolled outage.
This is consistent with previous findings [23,24] and motivates
prioritization of outage location when it is technically possible.

� Outage cost reduction potential is larger in control of consumer
segments than in control of regions of the country even though
the former may be more difficult to implement.

� Relative outage cost reduction potential decreases with an
increasing level of disruption.

� The prioritization of one socio-economic value may increase the
costs to another.
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The economic loss to the businesses and social cost of disrupted
healthcare services in the case study was partially reduced by
increased social costs to households.

� The shift of outage between regions, while reducing the nation-
wide costs, can systemically disadvantage certain regions during
a system-wide shortage, potentially with higher share of
vulnerable population.

� The choice of socio-economic value as a prioritization criterion
is a critical decision, but its implications can be counterintuitive.

Consumer prioritization by population size of an area in the case
study was affecting more people than a natural uncontrolled
disruption did by disproportionally disconnecting commercial and
industrial consumers.

The large variation in power outage costs, visible through higher
granularity and dimensionality analysis, presents a potential to
significantly reduce the costs of the outage by shifting the location
of the outage and thus should be considered in addition to mea-
sures for minimizing the outagemagnitude and duration. Measures
to reduce the cost of the outage that do occur without reducing the
outage itself are especially relevant for extreme and unexpected
disruptions for which complete system protection is either not
physically feasible or not economically justifiable. However, to gain
an outage location optimization for the toolkit of outage cost
mitigation measures would require certain aspects in the physical,
organizational, and regulatory infrastructures. The most obvious
prerequisite is a dense meshed grid topology with multiple lines
reaching each consumer (or set of consumers). In Finland, most DGs
have radial topology and thus the outage location optimization is
possible only on a larger scale or for a few densely populated areas
with meshed local grids. Adding connections within branches of
local grids are expensive and are hard to justify even though this
increases the reliability simply by providing another route from the
main grid. However, there may be an economic case in some lo-
cations for meshed microgrids that have some local power pro-
duction capacity to supply demand for at least critical functions in
case they are disconnected from the main grid and are forced to
operate in islandmode. Enabling location optimization in either the
national grid or local microgrids forced to operate with insufficient
supply capacity requires a proper regulatory framework that allows
and specifies rules for doing so. Also, system operators must be
prepared for using such measures as they would have to be applied
under time constraints of an emergency.

Further work will refine the modeling framework with
improved representation of the natural environment, linking
functions, and a more comprehensive list of socio-economic pa-
rameters. Also, more detailed resilience case studies are planned.
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