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a b s t r a c t 

Neurophysiological and psychological models posit that emotions depend on connections across wide-spread cor- 

ticolimbic circuits. While previous studies using pattern recognition on neuroimaging data have shown differences 

between various discrete emotions in brain activity patterns, less is known about the differences in functional 

connectivity. Thus, we employed multivariate pattern analysis on functional magnetic resonance imaging data 

(i) to develop a pipeline for applying pattern recognition in functional connectivity data, and (ii) to test whether 

connectivity patterns differ across emotion categories. Six emotions (anger, fear, disgust, happiness, sadness, 

and surprise) and a neutral state were induced in 16 participants using one-minute-long emotional narratives 

with natural prosody while brain activity was measured with functional magnetic resonance imaging (fMRI). We 

computed emotion-wise connectivity matrices both for whole-brain connections and for 10 previously defined 

functionally connected brain subnetworks and trained an across-participant classifier to categorize the emotional 

states based on whole-brain data and for each subnetwork separately. The whole-brain classifier performed above 

chance level with all emotions except sadness, suggesting that different emotions are characterized by differences 

in large-scale connectivity patterns. When focusing on the connectivity within the 10 subnetworks, classification 

was successful within the default mode system and for all emotions. We thus show preliminary evidence for 

consistently different sustained functional connectivity patterns for instances of emotion categories particularly 

within the default mode system. 

1. Introduction 

Our emotional experiences cluster around emotion categories. Emo- 

tional experiences, or feelings, refer to the subjectively felt part of in- 

dividual’s emotional state ( Adolphs, 2017 ). Each emotion category de- 

scribes some unified, shared features of the current emotional state and 

experience, even though the boundaries between the exemplars within a 

category (and also between categories) are fuzzy (e.g., Cowen and Kelt- 

ner, 2017 ; Horikawa et al., 2020 ). Emotion concepts such as fear, joy , or 

pride are often used to label the categories as a summary of the shared 

features within a category. However, the exact features that define cat- 

egory boundaries at behavioral, physiological, and neural level remain 

elusive. 
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Current neurophysiological and psychological models of emotions 

largely agree that emotions are characterized by large-scale changes in 

brain activity spanning both cortical and subcortical areas (see, e.g., 

Hamann, 2012 ; Lindquist et al., 2012 ; Pessoa, 2012 ; Scarantino, 2012 ; 

Adolphs, 2017 ; Barrett, 2017 ). Accumulating evidence from both pa- 

tient and neuroimaging studies in humans shows that different brain 

regions support different aspects of emotional processing, correspond- 

ing to functionally distinct components rather than to specific emotions 

per se (for reviews, see, e.g., Hamann, 2012 ; Feinstein, 2013 ; Kragel and 

LaBar, 2016 ; Sander et al., 2018 ; Nummenmaa and Saarimäki, 2019 ; 

Saarimäki, 2021 ). Accordingly, theoretical frameworks also emphasize 

the importance of networks of cortical and subcortical regions underly- 

ing the representation of emotion categories in the brain ( Pessoa, 2017 ; 

Barrett and Satpute, 2013 ; Barrett, 2017 ). 
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Multiple lines of evidence suggest that different emotion categories 

involve distributed patterns of behavior, physiology, and neural activa- 

tion. Instances of different emotion categories have been successfully 

classified from functional components including peripheral physiolog- 

ical responses and bodily activation patterns ( Kragel and Labar, 2015 ; 

Kreibig et al., 2007 ; Nummenmaa et al., 2014a ; Hietanen et al., 2016 ), 

and subjective feelings ( Saarimäki et al., 2016 , 2018 ), suggesting that 

different emotion categories have distinguishable characteristics in be- 

havior, bodily sensations, and subjective experience (see also review 

in Nummenmaa and Saarimäki, 2019 ). At the neural level, multivari- 

ate pattern classification studies have revealed that discrete, distributed 

activity patterns in the cortical midline and somatomotor regions, and 

subcortical regions such as amygdala and thalamus, underlie differ- 

ent emotion categories ( Chikazoe et al., 2014 ; Wager et al., 2015 ; 

Kragel and LaBar, 2015 ; Peelen et al., 2010 ; Saarimäki et al., 2016 ; 

2018 ; Horikawa et al., 2020 ). Thus, it seems that different instances of 

the same emotion category share at least some underlying characteris- 

tics of neural activity that distinguish the emotions in one category from 

those in the other. Importantly, previous studies show that classification 

accuracy is consistently higher for the whole-brain activity patterns than 

for any single region of interest alone (e.g. Saarimäki et al., 2016 ; 2018 ). 

This suggests that while emotions cannot always be distinguished from 

each other based on changes in a single functional component, such as 

changes in a single autonomic nervous system ( Siegel et al., 2018 ), inte- 

gration of information from multiple component processes might under- 

lie the experienced differences between emotion categories ( Satpute and 

Lindqust, 2019 ). 

Yet, as the brain functions as a hierarchy of networks ( Bullmore and 

Sporns, 2009 , 2012 ; Bassett and Sporns, 2017 ), it is possible that also 

the functional connectivity between different regions, rather than local 

activity patterns alone, vary between different emotions ( Pessoa, 2017 ; 

Barrett and Satpute, 2013 ). In BOLD-fMRI studies, functional connec- 

tivity is defined as stimulus-dependent co-activation of different brain 

regions, usually measured as the correlation of the BOLD time series be- 

tween two regions. Thus, functional connectivity does not necessarily 

reflect a true physical connection between two brain regions – two re- 

gions might not be structurally connected but still share the same tem- 

poral dynamics. For instance, for an emotion category such as anger , 

functional connectivity between two regions might reflect either true 

interaction between them or that the two regions follow the stimulation 

independently but with similar temporal dynamics. Given the promising 

results obtained with multivariate pattern analysis of brain activity pat- 

terns underlying different emotions, it has been suggested that the study 

of the brain basis of emotion would benefit from studying the func- 

tional relationship between brain regions by employing, for instance, 

machine learning on functional connectivity patterns ( Pessoa, 2018 ). 

However, the applications of multivariate pattern analysis in functional 

networks are sparse. The few studies reporting classification of connec- 

tivity measured with fMRI have focused on mental or cognitive states 

( Richiardi et al., 2011 ; Shirer et al., 2012 ; Gonzalez-Castillo et al., 2015 ) 

or inter-individual differences in functional connectivity during rest and 

various tasks ( Finn et al., 2015 ; Shen et al., 2017 ), demonstrating the 

plausibility of this approach. 

Preliminary evidence highlighting the emotion-related changes in 

functional connectivity has shown decreased connectivity in specific 

brain networks after emotional stimulation containing negative af- 

fect ( Bochardt et al., 2015 ). Also, dynamic valence- and arousal- 

related variation in the stimulus modulates functional connectivity 

( Nummenmaa et al., 2014 a; Young et al., 2017 ). So far, only a hand- 

ful of studies have compared how specific emotions modulate func- 

tional brain connectivity, and most of these studies have focused on 

a limited set of a-priori-defined regions-of-interest, including salience 

and amygdala networks ( Eryilmaz et al., 2011 ; Tettamanti et al., 2012 ; 

Raz et al., 2016 ; Huang et al., 2018 ; Sachs et al., 2020 ) or investigated 

emotion-specific intrinsic connectivity ( Touroutoglou et al., 2015 ). Sus- 

tained affective states such as sad mood and anxiety have been found 

to modulate functional connectivity between the core emotion-related 

areas such as midline regions including anterior and posterior cingu- 

late cortices, orbitofrontal cortex, insula, and subcortical regions includ- 

ing thalamus and amygdala ( Harrison et al., 2008 ; Seeley et al., 2007 ; 

Hermans et al., 2011 , 2014 ; McMenamin et al., 2014 ). Connectivity es- 

pecially in salience, frontoparietal control, attention and subcortical net- 

works is altered in depression both during generation and regulation 

of negative emotions as well as during positive emotions ( Siegle et al., 

2007 ; Kaiser et al., 2015 ; Hasler and Northoff, 2011 ; Price et al., 2017 ). 

However, the differences in connectivity between emotion categories 

have not been directly compared before using large-scale brain net- 

works. To our knowledge, only one study has investigated whole-brain- 

level connectivity changes during emotional stimuli, but instead of com- 

paring different emotion categories, this study modeled valence- and 

arousal-dependent connectivity changes ( Nummenmaa et al., 2014b ). 

Accordingly, it remains unresolved whether emotion-specific connectiv- 

ity patterns distinguish between emotions, and which networks might 

code for sustained changes in the overall emotional content of the stim- 

ulus. 

The goals of the current study were two-fold. First, we aimed to 

demonstrate a pattern classification pipeline as a proof-of-concept for 

studying the whole-brain, fMRI-derived functional connectivity patterns 

underlying different subjective mental states. Second, given the previ- 

ous studies that have successfully applied machine learning to brain 

activity patterns underlying instances of different emotions, we tested 

whether also the functional connectivity patterns during different emo- 

tional states could be separated from each other. To reach these goals, 

we induced emotions targeting six emotion categories (anger, fear, dis- 

gust, happiness, sadness, surprise) and a neutral state using auditory 

narratives during fMRI scanning. We focused on the sustained connec- 

tivity changes across each 1-minute-long narrative which reflects the 

overall emotional content of the narrative rather than the rapid, dy- 

namic changes during the story. Brain activity related to each emotion 

was modeled as a functional network. We hypothesized that if instances 

of same emotion category share similar connectivity patterns, the clas- 

sifier separates between the emotion categories reliably. The classifica- 

tion was performed with 264 nodes derived from a functional parcella- 

tion ( Power et al., 2011 ) and for either whole-brain connectivity (i.e., 

all nodes together) or for within and between subnetwork connectivity 

(i.e., for links within and between each subnetwork separately). 

2. Materials and methods 

2.1. Participants 

Sixteen female volunteers (ages 20–30, mean age 24.3 years) par- 

ticipated in the fMRI experiment. All participants were right-handed, 

healthy with normal or corrected-to-normal vision and gave written in- 

formed consent. The studies were run in accordance with the guidelines 

of the Declaration of Helsinki, and Research Ethics Committee of Aalto 

University approved the study protocol. 

2.2. Stimuli 

The stimuli were 35 one-minute-long narratives representing six 

emotional states (anger, fear, disgust, happiness, sadness, surprise) and a 

neutral state (five narratives per category in Finnish, transcribed English 

translations of the stimuli are available in Supplementary Table S4). The 

narratives described personal life events spoken by a female speaker 

with natural emotional prosody and included emotional expressions, 

such as weeping and laughing, and have been shown to elicit strong 

affect in listeners ( Smirnov et al., 2019 ). Prior to the audio recording of 

the spoken narratives, the speakers were given the target emotion cate- 

gories as well as five narrative topics per category and were instructed 

to develop and rehearse 1-minute-long narratives that described a cor- 

responding autobiographical experience that elicited an instance of the 
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Fig. 1. ( a) Trial structure. The highlighted 

time period (HRF-corrected) was used for cal- 

culating the connectivity matrices. ( b) Func- 

tional brain systems analyzed in the present 

study, based on Power et al. (2011) . Dots de- 

note network nodes and colors denote subnet- 

works. ( c) Connectivity matrices were calcu- 

lated using Pearson correlation between each 

pair of 264 node time series for each subject 

and for each 60-s narrative. ( d) The connec- 

tivity matrices were fed as input for a linear 

support vector classifier. ( e) The classifier per- 

formance was evaluated by calculating the ac- 

curacy (percentage of correct classifier guesses 

per target category) and the confusion matrix 

(classifier guesses per category). 

target emotion category. In a pilot study, a separate sample of twenty- 

four females (ages 20–37, mean age = 24.4 years) rated the stories for 

the experienced, categorical emotional content (Supplementary Fig. S1; 

Supplementary Table S1). Behavioral ratings confirmed that the sto- 

ries successfully elicited the a priori defined target emotion; however, 

to strengthen the effect in the fMRI experiment, the participants also 

saw a word corresponding the target emotion prior to each story and 

a short description of the narrative gist ( Fig. 1 a). To ensure that the 

stimuli successfully elicited emotions during the scanning, the fMRI par- 

ticipants also rated the valence and arousal elicited by the stories (see 

below). However, as they were presented with the target emotion cate- 

gory during the fMRI scanning, we did not collect ratings for the emotion 

categories. 

2.3. Experimental design 

During fMRI, the stimuli were presented in five runs, with one nar- 

rative from each emotion category per run. Each run lasted for approxi- 

mately 10 min (365 volumes) and consisted of seven trials ( Fig. 1 a). The 

order of trials within a run was the same for all participants and the or- 

der of runs was counterbalanced across participants (see Supplementary 

Fig. S2). Each narrative was thus presented only once during the exper- 

iment. A trial started with a fixation cross presented for 5 s, followed 

by a 5-s presentation of the target emotion (e.g. ’happiness’) and a short 

description of the narrative gist (e.g. ’lovers under a tree’). Next, a fixa- 

tion cross appeared on the screen and the narrative was played through 

earphones. The trial ended with a 15-s wash-out period allowing emo- 

tional state to recover to baseline level following each trial. Subjects 

were instructed to listen to the narratives similarly as if they would lis- 

ten to their friend describing a personal life event. The auditory stimuli 

were delivered through Sensimetrics S14 insert earphones (Sensimet- 

rics Corporation, Malden, Massachusetts, USA). Sound was adjusted for 

each subject to be loud enough to be heard over the scanner noise. The 

visual stimuli were back-projected on a semitransparent screen using a 

3-micromirror data projector (Christie X3, Christie Digital Systems Ltd., 

Mönchengladbach, Germany) and from there via a mirror to the partic- 

ipant. Stimulus presentation was controlled with Presentation software 

(Neurobehavioral Systems Inc., Albany, CA, USA). After the scanning, 

participants listened to the narratives twice again using an on-line rating 

tool to continuously rate their subjectively experienced valence (ranging 

from unpleasant to pleasant) and arousal (ranging from calm to excited) 

during the narrative. Ratings were acquired post-experiment rather than 

during fMRI, as a reporting task is known to influence neural response to 

emotional stimulation ( Hutcherson et al., 2005 ; Lieberman et al., 2007 ) 

and as repeating a specific emotional stimulus has only a negligible ef- 

fect on self-reported emotional feelings ( Hutcherson et al., 2005 ). 

2.4. Psychophysiological recordings 

To remove effects of heart rate and respiration from the BOLD sig- 

nal during preprocessing, we successfully recorded heart rate and res- 

piration data from 14 subjects with BIOPAC MP150 Data Acquisition 

System (BIOPAC System, Inc.). Heart rate was measured using BIOPAC 

TSD200 pulse plethysmogram transducer, which records the blood vol- 

ume pulse waveform optically. The pulse transducer was placed on the 

palmar surface of the participant’s left index finger. Respiratory move- 

ments were measured using BIOPAC TSD201 respiratory-effort trans- 

ducer attached to an elastic respiratory belt, which was placed around 
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each participant’s chest to measure changes in thoracic expansion and 

contraction during breathing. Both signals were sampled simultaneously 

at 1 kHz using RSP100C and PPG100C amplifiers for respiration and 

heart rate, respectively, and BIOPAC AcqKnowledge software (version 

4.1.1). Respiration and heart rate signals were then used to extract and 

clean the time-varying heart and respiration rates out of the data with 

the DRIFTER toolbox ( Särkkä et al., 2012 ). 

2.5. MRI data acquisition and preprocessing 

MRI data were collected on a 3T Siemens Magnetom Skyra scan- 

ner at the Advanced Magnetic Imaging centre, Aalto NeuroImaging, 

Aalto University, using a 20-channel Siemens volume coil. Whole-brain 

functional scans were collected using a whole brain T2 ∗ -weighted EPI 

sequence with the following parameters: 33 axial slices, interleaved 

order (odd slices first), TR = 1.7 s, TE = 24 ms, flip angle = 70°, 

voxel size = 3.1 × 3.1 × 4.0 mm 

3 , matrix size = 64 × 64 × 33, 

FOV 198.4 × 198.4 mm 

2 . A custom-modified bipolar water excita- 

tion radio frequency (RF) pulse was used to avoid signal from fat. 

High-resolution anatomical images with isotropic 1 × 1 × 1 mm 

3 

voxel size were collected using a T1-weighted MP-RAGE sequence. 

fMRI data were preprocessed using FSL (FMRIB’s Software Library, 

www.fmrib.ox.ac.uk/fsl ) and inhouse MATLAB (The MathWorks, Inc., 

Natick, Massachusetts, USA, http://www.mathworks.com ) tools (code 

available at: https://version.aalto.fi/gitlab/BML/bramila ). Non-brain 

matter was removed from functional and anatomical images with FSL 

BET. After slice timing correction, the functional images were realigned 

to the middle scan by rigid-body transformations with MCFLIRT to cor- 

rect subject’s head motion. Next, DRIFTER was used to clean respiratory 

and heart rate signal from the data ( Särkkä et al., 2012 ). Functional 

images were registered to the MNI152 standard space template with 2- 

mm resolution using FSL FLIRT two-step co-registration method with 

9 degrees of freedom registration from subject’s space EPI to subject’s 

space anatomical volume, and 12 degrees of freedom from anatomical 

to MNI152 standard space. Removal of scanner trend was performed 

with a 240-seconds long cubic Savitzky-Golay filter (Çukur et al., 2013). 

To control for head motion artefacts, we followed the procedure as de- 

scribed in JD Power et al. (2014) . The 6 motion parameters were ex- 

panded into 24 confound regressors and regressed out. Furthermore, 

signal at deep white matter, ventricles and cerebrospinal fluid were also 

regressed out. Finally, temporal bandpass filtering (0.01–0.08 Hz) was 

applied with the second-order butterworth filter. Spatial smoothing was 

done with a Gaussian kernel of FWHM 6 mm. All subsequent analyzes 

were performed with these preprocessed data. 

2.6. Extracting the networks 

Because working at voxel-by voxel time series would yield a very 

high dimensionality and thus be computationally prohibitive, the 

emotion-specific functional networks were estimated for 264 nodes 

based on the functional parcellation by Power et al. (2011) . We ex- 

tracted the BOLD time course for each node by averaging the activity 

of voxels within a 1-cm diameter sphere centered at each node’s 

coordinates (list of coordinates and module assignments available at 

https://web.archive.org/web/20160127134525/http://www.nil.wustl. 

edu/labs/petersen/Resources_files/Consensus264.xls ). For each of the 

35 narratives, we calculated the Pearson correlation coefficient between 

the BOLD time course of each of the nodes during the 60-s-long story, 

which resulted in a connectivity matrix of 264 × 264 nodes for each 

narrative ( Fig. 1 b). Next, we removed the baseline connectivity pattern 

from emotion-wise connectivity matrices by taking the average of 

the five connectivity matrices for neutral narratives, and regressing it 

from each of the remaining 30 emotion-specific connectivity matrices 

separately. 

Finally, in addition to the full network of 264 × 264 nodes, we 

extracted also subnetworks based on the 10 functional systems of in- 

terest as proposed by Power et al. (2011 , 2014 ). The subnetworks in- 

cluded were motor and somatosensory (35 nodes), cingulo-opercular 

(14 nodes), auditory (13 nodes), default mode (58 nodes), visual (31 

nodes), fronto-parietal (25 nodes), salience (18 nodes), subcortical (13 

nodes), ventral attention (9 nodes), and dorsal attention (11 nodes) net- 

works. 

2.7. Correlation between connectivity matrices 

To test the similarity between connectivity matrices of dif- 

ferent emotions, we quantified the correlation between averaged 

emotion-wise connectivity matrices with Mantel test employing Spear- 

man correlation as implemented by Glerean et al. (2016) (function 

bramila_mantel in https://github.com/eglerean/hfASDmodules/blob/ 

master/ABIDE/bramila _ mantel.m ). P values were obtained with 5000 

permutations (FDR corrected at p < 0.05 for multiple comparisons). 

2.8. Classification of connectivity matrices 

The classification of emotion categories was performed in Python 

2.7.11 (Python Software Foundation, http://www.python.org ) using the 

Scikit learn package ( Pedregosa et al., 2011 ). A between-subjects sup- 

port vector machine classification algorithm with linear kernel was 

trained to recognize the correct emotion category out of 6 possible ones 

(anger, disgust, fear, happiness, sadness, surprise; Fig. 1 c). Naïve chance 

level, derived as a ratio of 1 over the number of categories, was 16.6%. 

The samples for the classifier consisted of the 30 connectivity matri- 

ces (5 matrices for each emotion category) from each subject, resulting 

in altogether 480 samples (80 per category). A leave-one-subject-out 

cross-validation was performed and the classification accuracy was cal- 

culated as an average percentage of correct guesses across all the cross- 

validation runs ( Fig. 1 d). 

For full network classification, the classifier was trained and tested 

with the full connectivity matrix of each trial. For subnetwork classifica- 

tion, the classifier was trained and tested with the connectivity matrix of 

each sample either within one subnetwork (e.g. connectivity of the nodes 

within default node network) or between two subnetworks (e.g. connec- 

tivity between the nodes of default mode network and visual networks, 

omitting connections of nodes within each network). A separate clas- 

sifier was trained for each within/between subnetwork division. Based 

on the subnetwork classifier results (see below), we also investigated the 

default mode system’s subnetworks in more detail. Therefore, we further 

split the default mode system into four subnetworks (right temporal, left 

temporal, midline frontal, and midline posterior) based on clustering of 

the spatial distances between pairs of nodes within the default mode 

system and trained a separate classifier for each within/between default 

subnetworks. 

For all classification approaches, we used a permutation test to assess 

the significance of the results (see, e.g., ( Combrisson and Jerbi, 2015 )). 

To obtain a null distribution, we generated 5000 surrogate accuracy val- 

ues for the full network and for each subnetwork separately by shuffling 

the rows of the upper triangle of the connectivity matrix. The null cumu- 

lative distribution function was obtained using kernel smoothing, and 

the average classification accuracies were compared to the permuted 

null distribution to obtain their p values. Multiple comparisons were 

corrected for by using the Benjamini-Hochberg FDR correction. 

To visualize the differences between connectivity patterns of differ- 

ent emotions, we ran permutation-based t-tests ( Glerean et al., 2016 ) to 

compare the connectivity matrix of each emotion to that of the rest of 

the emotions (FDR-corrected for multiple comparisons at p < 0.05). This 

resulted in a contrast connectivity matrix showing the connections that 

were unique to each emotion. 
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Fig. 2. ( a) Emotion-wise classification accuracies for the full-network classification. Dashed line represents naïve chance level (16.6%). Asterisks denote significance 

relative to chance level ( ∗ p < 0.01, ∗ ∗ ∗ p < 0.0001). Thick black line represents median of classification accuracies. Boxes show the 25th to 75th percentiles of 

classification accuracies and values outside this range are plotted as circles. Whiskers extend from box to the largest value no further than 1.5 ∗ inter-quartile range 

from the edge of the box. ( b) Classifier confusions from full network classification. Color code denotes average classifier accuracy over the cross-validation runs, cells 

shown in white have guesses below naïve chance level. 

3. Results 

3.1. Classifying emotions from full-brain connectivity patterns 

To test whether different emotions are characterized by distinct con- 

nectivity patterns, we trained a between-subject classifier with the full 

network data to recognize the corresponding emotion category out of 

the six possible ones. Mean classification accuracy was 26% (naïve 

chance level of 16.6%; permuted p < 0.00001). The mean classifica- 

tion performance was above the permutation-based significance level 

for all emotions except sadness ( Fig. 2 A; see Fig. 2 B for a confusion ma- 

trix): anger 23% (FDR corrected p = 0.003), disgust 23% ( p = 0.003), 

fear 35% ( p < 0.00001), happiness 28% ( p < 0.00001), sadness 18% 

( p = 0.291), and surprise 31% ( p < 0.00001). Finally, we compared the 

connectivity-based classification to voxel-based classification (see Sup- 

plementary Methods and Results). The connectivity-based classification 

accuracies were comparable to the voxel-based classification accuracies 

(26% and 25%, respectively; see Supplementary Fig. S3). 

3.2. Classifying emotions from within and between subnetwork connectivity 

patterns 

Our previous studies employing MVPA on brain activity pat- 

terns investigated both whole-brain and different regions-of-interest 

( Saarimäki et al., 2016 ; 2018 ). Here we followed a comparable pipeline 

by implementing the region-of-interest analysis as a subnetwork-of- 

interest analysis. To this end, we separated the connectivity matrices 

for each functional subnetwork ( Power et al., 2014 ), and trained and 

tested the across-subject classifiers separately for the connections within 

each subnetwork as well as between all possible pairs of subnetworks. 

Mean classification accuracies and confusion matrices for each within 

and between subnetwork classifier are shown in Fig. 3 . Classification 

accuracy was highest for connections within the default mode system 

(30%) which after correcting for multiple comparisons remained the 

only subnetwork showing significant classification accuracy ( p < 0.0001; 

see Supplementary Table S3 for all subnetwork accuracies and p values). 

To visualize the emotion-specific functional connectivity, we plotted 

the connectivity matrices (Supplementary Fig. S5; see Supplementary 

Fig. S4 for connectivity matrix of the neutral state). Correlations be- 

tween each pair of connectivity matrices for all emotions and the neutral 

state were significant (Supplementary Fig. S5; correlations ranging from 

rho = 0.79–0.84, all Bonferroni-corrected Ps < 0.01; see Supplementary 

Table S2). The average connectivity patterns for each emotion with neu- 

tral baseline removed are shown in Supplementary Fig. S6 and pairwise 

t-tests between the connectivity matrices in Supplementary Fig. S8. 

3.3. Classifying emotions from default mode network connectivity 

Because default mode system was the only subnetwork where 

connectivity-based classification accuracies were above chance-level af- 

ter post-hoc correction, we next investigated its connectivity patterns 

in more detail. Within the default mode system, all emotions could be 

classified with above-chance-level accuracy (see Fig. 4 a): anger 24% 

( p = 0.001), disgust 33% ( p < 0.00001), fear 30% ( p < 0.00001), hap- 

piness 31% ( p < 0.00001), sadness 26% ( p = 0.0002), and surprise 35% 

( p < 0.00001). See Supplementary Fig. S7 for emotion-specific connec- 

tivity patterns for default mode network. 

We next investigated whether there are node-wise differences in clas- 

sification accuracy within the default mode network by sub-grouping 

the DMN nodes from Power et al. (2011) to four subnetworks based on 

their spatial proximity in the brain. The spatial clustering of DMN re- 

sulted in four DMN subnetworks: left temporal, right temporal, frontal, 

and posterior midline. We trained classifiers to recognize emotions from 

the connections within and between these DMN subnetworks separately. 

Classification was successful for connections within midline posterior 

subnetwork (22.5%, permuted and FDR-corrected p = 0.008), between 

left temporal and midline frontal subnetworks (23.5%, p < 0.001), and 

between right temporal and midline posterior subnetworks (21.5%, 

p = 0.032). The classification accuracies and confusion matrices are 

shown in Fig. 4 . 

4. Discussion 

The goals of the current study were to (i) provide a proof-of-concept 

for the application of machine learning to functional connectivity pat- 

terns, and to (ii) test whether instances of different emotional states can 

be classified from functional connectivity. We show differences in sus- 

tained whole-brain functional connectivity patterns during emotional 

narratives (targeting anger, fear, disgust, happiness, and surprise), as 

evidenced by significantly above chance-level classification accuracy. 

The classifier was trained across participants, demonstrating that the 

connectivity patterns were consistent across subjects. Especially, default 
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Fig. 3. ( a) Classification accuracies for connectivity within and between each ROI. Color code denotes classifier accuracy; cells shown in white have guesses below 

naïve chance level (16.6%). After correcting for multiple comparisons, only the accuracy for within default mode network connections remained significant. ( b) 

Classifier confusions for subnetwork classification. 

Fig. 4. ( a) Emotion-wise classification accuracies for connections within the default mode system. Dashed line represents naïve chance level (16.6%). Asterisks 

denote significance relative to chance level ( ∗ ∗ p < 0.001, ∗ ∗ ∗ p < 0.0001). Thick line represents median of classification accuracies. Boxes show the 25th to 75th 

percentiles of classification accuracies and values outside this range are plotted as dots. Whiskers extend from box to the largest value no further than 1.5 ∗ inter- 

quartile range from the edge of the box. b) Classification accuracies and c) subnetwork confusion matrices for DMN subnetwork classification. Color code denotes 

classifier accuracy; cells shown in white have guesses below naïve chance level. 

mode system contained emotion-specific connectivity patterns sustained 

during the whole one-minute-long narrative. Thus, our results show pre- 

liminary evidence for distinct connectivity patterns underlying instances 

of emotion categories and suggest that the methodological approach is 

plausible for future studies with larger samples. 

4.1. Emotion-specific changes in default mode network connectivity 

Connectivity-based classification accuracy was highest when we con- 

sidered only the connections within the default mode system. The 

role of DMN regions in integrating information about one’s inter- 

nal state and accessing representations for self-relevant mentaliza- 

tion is well-known ( Klasen et al., 2011 ; Mar 2011 ; Kleckner et al., 

2017 ; Summerfield et al., 2009 ; D’Argembeau et al. 2010 ; Andrews- 

Hanna et al. 2014 ; Barrett, 2012 ). Furthermore, DMN areas have 

been linked to manipulating abstract representations and conscious 

thought, and emotional experiences are one type of consciousness 

with specific somatomotor and interoceptive inputs that distinguishes 

them from other conscious experiences ( LeDoux and Brown, 2017 ; 

Nummenmaa et al., 2018 ). It has been suggested that DMN is anatom- 

ically well-positioned to process transmodal information that is unre- 

lated to immediate sensory and motor processing ( Marguelis et al., 

2016 ). In line with this, our results show that sustained connectivity 

patterns within the DMN differ across instances of emotion categories. 

In the present study, the functional connectivity patterns were calcu- 

lated over a period of one minute; thus, rapid changes in stimulus or 

connectivity were not picked up by the analysis. Previous studies have 

also shown that emotions lead to sustained changes in DMN connec- 

tivity that persist even minutes after the emotion-evoking episode ends 

( Eryilmaz et al., 2011 ). Sad mood and depression also modulate DMN 

connectivity ( Harrison et al., 2008 ; Whitfield-Gabrieli and Ford, 2012 ), 

further supporting the role of DMN holding sustained emotion-evoked 

representations. 

Default mode system regions are also important in distinguishing 

between experiences of discrete emotions. These areas contain the most 

robust distinct voxel activity patterns that allow machine learning based 

classification of different emotions ( Saarimäki et al., 2016 ; Wager et al., 

2015 ; Kragel and LaBar 2015 ; Horikawa et al., 2020 ). While these 

studies show robust regional differences between emotion categories 

in DMN, its exact role in emotional processing remains unclear. It has 

been suggested that instances of emotion categories arise from the dy- 

namic interaction of wide-scale brain networks (see, e.g., Barrett and 

Satpute, 2013 ; Kleckner et al., 2017 ) and, indeed, the aforementioned 

role of DMN in sustained transmodal associations makes it a good can- 

didate for supporting this interaction ( Barrett, 2012 ). Accordingly, it 

has recently been suggested that DMN plays a constitutive role in hold- 

ing representational content to create a discrete experience of emotion 

( Satpute and Lindquist, 2019 ). The DMN activity patterns resulting from 

the integration of different representations, such as those of salience, po- 

tential motor actions, bodily sensations, or sensory features, may con- 

stitute a core feature of the emotional experience, demonstrated also as 

discrete neural patterns for discrete emotions ( Saarimäki et al., 2016 ). 

6 



H. Saarimäki, E. Glerean, D. Smirnov et al. NeuroImage 247 (2022) 118800 

Default mode network can be divided into subsystems that serve dif- 

ferent cognitive functions ( Buckner et al., 2008 ; Andrews-Hanna et al., 

2010 , 2014 ), and the subregions of DMN vary in their involvement in the 

representation of different emotion categories ( Horikawa et al., 2020 ). 

Therefore, we examined whether emotions can be classified from con- 

nectivity patterns within and between different DMN subsystems. In 

our spatial parcellation, the default mode subnetworks comprised me- 

dial PFC, posterior midline regions, and left and right lateral tempo- 

ral areas ( Power et al., 2011 ). Emotions could be classified most ac- 

curately from connectivity patterns within the posterior midline DMN 

connections including posterior cingulate cortex and precuneus. These 

regions have been linked to integration of information from other DMN 

subsystems and other brain regions ( Buckner et al., 2008 ; Andrews- 

Hanna et al. 2014 ). Successful classification of emotions from the con- 

nectivity patterns in this region suggest that emotions might vary in how 

and which information is integrated during the emotional state. For in- 

stance, interpretation of emotions with a strong action component (e.g., 

fear) might rely more on motor inputs, while the role of such inputs 

is smaller with emotional states that do not require immediate motor 

actions (e.g., sadness). This accords with the view that emotions arise 

from integrated activity across multiple physiological, behavioral and 

neural systems ( Sander et al., 2018 ; Nummenmaa and Saarimäki, 2019 ; 

Satpute and Lindquist, 2019 ). 

4.2. Functional connectivity is modulated differently by different emotions 

We showed that different whole-brain connectivity patterns under- 

lie instances of specific emotional categories similarly as has previously 

been found for regional activity patterns (for reviews, see Kragel and 

LaBar 2016 ; Nummenmaa and Saarimäki, 2019 ). We have previously 

shown that instances of anger, fear, disgust, happiness, sadness, and 

surprise can be classified from brain activity in the cortical midline re- 

gions, subcortical regions, somatomotor regions, but also regions related 

to cognitive functions such as memory and language ( Saarimäki et al., 

2016 ), thus suggesting that different emotions modulate each of these 

regions differently. These areas are also consistently activated in stud- 

ies using univariate analysis of emotional brain responses ( Kober et al., 

2008 ). Together, the results from the voxel-based and connectivity- 

based pattern classification of emotions support a model where emo- 

tions are brought about by distributed net activation of different regions 

together with their connectivity patterns. 

We found no significant classification performance for the connec- 

tivity within or between areas other than default mode network despite 

the evidence showing that activation patterns within a large number of 

other areas, including subcortical, somatomotor, and frontal areas, dif- 

fer between emotions ( Saarimäki et al., 2016 ). This is probably partly 

due to how connectivity was calculated in the current study: connec- 

tivity was calculated over a time period of one minute, which is less 

sensitive to rapid temporal changes in connectivity that potentially un- 

derlie different emotional states (see, e.g., Pessoa, 2018 ). For instance, 

Nummenmaa et al. (2014b) have shown that such dynamic changes re- 

veal large connectivity differences in positive versus negative valence 

and high versus low arousal. Furthermore, it is unlikely that emotional 

state remains the same over the 1-minute-long stimulation, probably 

restricting the stability of connectivity patterns and affecting their dis- 

tinctness. However, connectivity measures with shorter time windows 

usually contain more noise. Thus, classification of connectivity patterns 

in general is a more difficult task than that of activation patterns; yet, 

the current proof-of-concept work shows that it is possible. Finally, in 

future it would be interesting to compare the stability of regional activ- 

ity and network connectivity, and their role in decoding emotion states 

from the brain. However, this would necessitate a dedicated study de- 

signed for this purpose. 

Labeling the emotion category is a descriptive summary of the cur- 

rent emotional which consists of several different aspects (see, e.g., 

Sander et al., 2018 ). When classifying instances of emotion categories, 

we might thus miss other important, emotion-related distinctions be- 

tween the stimuli, such as appraisal or semantic properties. Indeed, 

the differences between categories probably stem from differences in 

these kinds of functional components ( Sander et al., 2018 ; Satpute and 

Lindquist, 2019 ). For instance, Horikawa et al. (2020) showed that DMN 

encoded emotion above and beyond appraisal and semantic categories, 

suggesting that these components alone are not enough to explain varia- 

tion in DMN activity between emotion categories. However, it is possible 

that appraisal and semantic features do not grasp the whole variation in 

emotion categories. For instance, emotion-related bodily changes are ig- 

nored in these models. As we have suggested earlier ( Nummenmaa and 

Saarimäki, 2019 ), brain activity patterns underlying different emotion 

categories probably reflect activity in different components and the net 

activity across all these components is integrated and labeled as a spe- 

cific emotion category. This is further supported by our current finding 

that DMN connectivity – probably highlighting differences in integra- 

tion between emotions – varies between emotions. 

All emotions except for sadness could be classified significantly 

above chance level from each other. Confusion matrix shows that sad- 

ness was most often confused with disgust and happiness in whole- 

network classification and with surprise in within DMN classification, 

suggesting no consistent confusions with any specific emotion category. 

Furthermore, sadness was still successfully classified for some partici- 

pants while the classification average was at chance. The reasons for 

this can only be speculated. When looking at the content of the narrative 

stimuli, sadness stories describe death and separation from loved ones, 

sharing the social closeness aspect with most happiness stories. When 

comparing sadness and disgust stories, relative to other categories, these 

stories describe visual details of the appearance of other persons in more 

detail than other stories. While similarities regarding the content might 

contribute to the experience of emotions and lead to similarities in sus- 

tained connectivity patterns due to the similarities in underlying input 

systems, a more detailed analysis regarding the input differences be- 

tween emotion categories is an interesting empirical question for future 

experiments. 

4.3. Across-participant classification and individual differences 

The overall, whole-brain accuracy (26% against chance level of 

16.6%) in the current study corresponds to the 23–34% (against chance 

levels of 16.7% and 20%, correspondingly) across-participant classifi- 

cation accuracies reached by regions classifiers trained to classify an 

equal number of emotional states ( Saarimäki et al., 2016 ). The within- 

participant classification accuracies of 50–60% by regional classifiers 

are consistently higher than the across-participant classification. 

As highlighted by the Figs. 2 a and 4 b, classification accuracy varied 

across cross-validation runs. With our leave-one-participant-out classi- 

fier, this means that there is variation in how well the connectivity pat- 

terns of different individuals can be classified. Given the number of par- 

ticipants ( N = 16), the across-participant classification is affected by 

individual variation and, thus, individual variation in emotional expe- 

riences has a potentially larger effect on the results than when using a 

larger sample size. Therefore, the results are tentative and exploratory 

and should be investigated further in larger samples. 

Potential sources for individual variation include the idiosyncratic 

emotional experiences evoked by the stories. We focused on six emo- 

tion categories that were defined a priori by the researchers and the sto- 

ryteller that provided the narratives. Thus, the ground truth categories 

reflect the emotion concepts used by the storyteller that she deliberately 

tried to convey. This model naturally assumes that consistent emotions 

are also evoked in listeners, and earlier analysis of the same data has 

shown that the emotional experiences and brain activations match well 

across the speakers and listeners ( Smirnov et al., 2019 ). To confirm this 

alignment between speaker’s and listener’s emotions, we collected rat- 

ings of experienced emotion categories from an independent sample of 

individuals drawn from the same population. These ratings show that, 
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on average, instances of emotion categories in the speaker elicit expe- 

riences of the same emotion categories in listeners (Supplementary Fig. 

S1). Also, between-subject variability in emotion category ratings was 

low, demonstrating that individuals from the same population experi- 

enced similar emotions (Supplementary Table S1). Yet, while we further 

guided the interpretation of the story by presenting the target emotion 

category for the listeners before each story, different individuals might 

interpret the emotional content of the story differently, leading to dif- 

ferences in emotion-related brain activity (see Putkinen et al., 2021 , for 

similar arguments on classification of musical emotions). This obviously 

explains why the classification accuracy in across-participant classifica- 

tion is in general lower than in within-participant classification (see also 

Saarimäki et al., 2016 ). However, these six emotion categories – anger, 

fear, disgust, happiness, sadness, and surprise – capture only ∼30% of 

the systematic variance in reported emotional experience ( Cowen et al., 

2019 ). Also, Horikawa et al. (2020) found that emotion-related varia- 

tions in DMN activity go beyond these six emotion categories. Therefore, 

the stories we used to elicit each emotion probably did not evoke similar 

emotional experiences across all participants, decreasing the classifica- 

tion accuracy. 

Taken together, the across-participant classification results in this 

and previous studies show the importance of investigating individual 

differences in emotional processing. Addressing the individual differ- 

ences in this classification performance is out of the scope of the current 

paper but constitutes an important topic for future research. 

4.4. Limitations 

Our study uses a naturalistic paradigm to elicit emotions. Naturalistic 

stimuli such as stories and movies have been shown to elicit strong emo- 

tions (e.g., Westermann et al., 1996 ); however, compared to controlled, 

static stimuli, the continuous nature of naturalistic stimuli also makes 

controlling the other stimulus features more difficult (e.g., ( Huk et al., 

2018 ); Saarimäki, 2021 ). While our stimuli vary also in speech, prosody, 

and content, the careful piloting of the stimuli ensured that the com- 

mon nominator between instances of the same category is emotion and 

not some other feature (see also Supplementary Table S4 for content 

of the stories). Furthermore, naturalistic stimuli require simultaneous 

processing of speaker’s emotions as well as one’s own emotions; thus, 

they evoke both perceived and experienced emotions. Thus, we cannot 

rule out that the emotion classification in the current study would not 

also contain some elements of perceived emotions. Separating between 

the perceived and experienced emotions is not s straight-forward task, 

as perception of emotions likely elicits similar emotional experiences in 

the listener (e.g.., Nummenmaa et al., 2014). Future studies should parse 

the neural basis of perceived and experienced emotions more carefully, 

for instance, by creating separate model timeseries for perceived and 

experienced emotions. 

The current experiment had a 25-second wash-out period between 

emotional stimuli. It is likely that emotional effects from the previ- 

ous trial are still present in the following trial, as it has been shown 

that emotional induction lasts for minutes after the stimulation ends 

( Eryilmaz et al., 2011 )). However, the experimental stimulation of the 

next trial begins immediately after the wash-out period, allowing new 

emotional stimulus to modulate the emotion systems and likely overrid- 

ing the previous input. Moreover, the problem was alleviated by varying 

the order of emotions between trials. 

In our analysis of the haemodynamic data, we removed heart rate 

and respiration rate variation as noise, as removing heart rate and respi- 

ration variation improves strength of connectivity estimates but does not 

influence the network structure ( Yoshikawa et al., 2020 ). Also, our pre- 

vious research has shown only modest correlations between experienced 

emotion ratings and heart rate and respiration rate ( Nummenmaa et al., 

2014b ), and a recent meta-analysis has shown that autonomic nervous 

system variation alone does not distinguish between emotion categories 

( Siegel et al., 2018 ). However, we cannot rule out the possibility that 

by removing heart rate and respiration rate variation we remove some 

physiological variation between emotion categories, and potentially also 

variation regarding their neural basis in brain regions processing inte- 

roceptive information ( Nguyen et al., 2016 ). This might remove part of 

the somatic differences between emotion categories. However, it seems 

that ANS patterns alone do not reflect the full scope of bodily changes 

related to emotions ( Nummenmaa et al., 2014a ). Thus, even though we 

remove ANS variation, other somatic differences should still be present 

(see also Eisenbarth et al., 2016 ). 

There are also other factors might affect the classifier performance 

especially when applying a classification paradigm to functional con- 

nectivity. First, classifier accuracy might be limited by the low general 

power on fMRI connectivity analysis due to slow-frequency signal of in- 

terest. Future studies should address this issue using, for example, MEG 

experiments yielding better temporal resolution for dynamic connectiv- 

ity measures. Second, the classification accuracy might depend on the 

number of data points available for the classification. To raise the num- 

ber of data points, we trained the classifier between subjects. However, 

this probably leads to variation between the instances of emotions due to 

individual differences in emotion processing and brain anatomy. A more 

individualized analysis scheme using, for instance, inter-subject repre- 

sentational similarity analyzes in a larger sample might allow modeling 

individual differences (see, e.g., Finn et al., 2020 ). Third, while multi- 

variate pattern analysis results are not straightforward to interpret in 

a neurophysiological sense, they still suggest that instances of the same 

emotion category share similar enough properties to allow for successful 

classification. 

5. Conclusion 

We conclude that instances of emotion categories including anger, 

fear, disgust, happiness, sadness, and surprise differ in the connectivity 

patterns across the brain in a manner that is consistent across individ- 

uals. Connectivity-based classification of emotions was most accurate 

within the default mode system, suggesting that connectivity across this 

region contains the most accurate, sustained representation of the indi- 

vidual’s current emotional state. Together with previous regional voxel- 

based pattern classification results, the present findings support the view 

that emotions are represented in a distributed fashion across the brain 

and speak for the importance of DMN in sustaining the emotional state. 
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