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Eight Simple Guidelines
for Improved Understanding
of Transformations
and Nonlinear Effects

Mikko Rönkkö1 , Eero Aalto2, Henni Tenhunen2 ,
and Miguel I. Aguirre-Urreta3

Abstract
Transforming variables before analysis or applying a transformation as a part of a generalized linear
model are common practices in organizational research. Several methodological articles addressing
the topic, either directly or indirectly, have been published in the recent past. In this article, we point
out a few misconceptions about transformations and propose a set of eight simple guidelines for
addressing them. Our main argument is that transformations should not be chosen based on the
nature or distribution of the individual variables but based on the functional form of the relationship
between two or more variables that is expected from theory or discovered empirically. Building on a
systematic review of six leading management journals, we point to several ways the specification and
interpretation of nonlinear models can be improved.

Keywords
transformations, generalized linear model, interaction, visualization, Poisson regression, logistic
regression

Nonlinear models are common in organizational research. These have been used, for example, for

modeling diminishing returns (e.g., Cennamo, 2018), U-shape effects (e.g., Huang et al., 2018),

S-shape effects (e.g., Brands & Fernandez-Mateo, 2017), or relative effects (York et al., 2018). A

nonlinear model can be constructed by either (a) applying nonlinear transformations to variables

before analysis or (b) including nonlinear transformations in the estimated model. The first approach

is typically justified by stating that a statistical technique, typically ordinary least squares (OLS)
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regression, requires normally distributed data and that a transformation makes the distribution closer

to normal (e.g., by reducing skewness). The second approach is typically justified by stating that a

discrete (e.g., binary, count) dependent variable requires special modeling techniques, such as

generalized linear models (GLMs). Logistic regression, probit regression, Poisson regression, and

negative binomial regression are special cases of this approach.

In this article, we explain why any justification that relies on the distribution of a variable

is incorrect. Our article makes two key contributions. First, we show why transformation

decisions, whether done as part of a model or applied manually before estimation, must consider

the relationship between two variables instead of being based on the distribution of a single

variable. Second, we discuss the interpretation of nonlinear models, an issue that is either

overlooked or even explained incorrectly in recent guidelines (Becker et al., 2019; Blevins

et al., 2015).

The article is structured as a set of guidelines derived from a review of books and articles on

econometrics (e.g., Angrist & Pischke, 2009; Greene, 2003; Wooldridge, 2002, 2013), sociology

(e.g., Breen et al., 2018; Long & Mustillo, 2019; Mize, 2019), and data visualization (e.g.,

Breheny & Burchett, 2017; Cattaneo et al., 2019; Mitchell, 2012a) as well as from a review of

recent articles from six leading management journals. The guidelines are summarized in Table 1.

Each guideline is demonstrated using a publicly available data set, which allows easy replication

and can also be used in teaching. The Supplemental Material available in the online version of the

journal includes R and Stata code implementing the techniques we discuss, a web application for

constructing the plots demonstrated in the article (https://mronkko.shinyapps.io/PredictionPlots/),

and a set of short video lectures explaining the key concepts of the article (https://tinyurl.com/

nonlinearmodels).

The Use of Transformations in Organizational Research

To ground our article in current research practice, we reviewed the 2017 and 2018 volumes of

Academy of Management Journal, Administrative Science Quarterly, Journal of Applied Psy-

chology, Journal of Management, Strategic Management Journal, and Personnel Psychology.

The second and third authors read each volume in random order until 10 articles applying

transformations were found or until all articles in the volume were read. The result is the list

of 104 articles shown in Table 2. These articles were then coded in detail by the second and third

authors, each of whom coded half of the articles, with the help of the first author. To assess

reliability, 20 articles were cross-coded, producing an overall interrater reliability (Kraemer,

1980) of .75. The codes were further updated as the writing of the article progressed, further

enhancing reliability.

Of the studies that tested hypotheses using regression-type models, 66% applied at least

one transformation.1 Log transformation, used either manually or as a link function in a GLM

model (e.g., Poisson and negative binomial models), was the most common approach. It was

followed by logit and probit transformations used in logistic and probit regressions as well as in

some ordered and categorical variable models. Power transformations, particularly the second

power, were used for modeling U-shape effects. Table 3 shows the commonly used

transformations.

GLMs were the most common way to apply transformations, and therefore it is important to

understand what GLMs do.2 To this end, we take linear regression, shown in the first plot of Figure 1,

as a starting point. In linear regression, the mean (or more precisely, the expected value) of the

dependent variable depends linearly on the independent variables, and the data are assumed to be

normally distributed around the population regression line. A GLM extends linear regression by
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Table 1. Summary of the Guidelines for Transformations and Nonlinear Effects.

Guideline Explanation

Guideline 1: Motivate transformations based on
functional form, not distribution of the
variables.

� Transformations alter the functional form between
variables, changing what kind of effect is estimated.

� Nonnormality of variables is not a problem that needs
to be addressed but a nonnormal dependent variable
may indicate a nonlinear process that needs to be
considered.

Guidelines for building models with transformations

Guideline 2: Hypotheses should state the form
of the association when possible.

� A statistical model requires that a functional form is
specified. This should ideally be done based on
theory.

� Functional forms can be hypothesized with thought
experiments or discovered empirically through
diagnostics.

Guideline 3: Never transform the dependent
variable; use a GLM instead.

� A GLM model and a linear model with a transformed
dependent variable are interpreted the same way.

� GLM is both methodologically and practically
superior to transforming dependent variables.

Guideline 4: Choose the GLM link function first,
if used, and individual variable transformations
later.

� A GLM link function determines not only how a single
variable affects the dependent variable but how the
variables work together.

� In linear models, independent variables combine
additively, and in exponential models, they combine
multiplicatively.

Guideline 5: Choose the GLM distribution based
on consistency, not model fit.

� GLM link function should be chosen based on the
consistency of the curve, not the fit of the
distribution.

� Use OLS for linear, Poisson QML for exponential, and
logit QML for binary and fractional response models.

Guideline 6: Do not default to power
transformation when modeling U-shape and
other curvilinear effects; consider different
alternatives instead.

� Power transformations (e.g., x2) assume a specific
kind of U-shape effect that may not be correct for the
data.

� Consider exponential models and regression splines
as alternatives for estimating nonlinear models.

Guidelines for interpreting models with transformations

Guideline 7: Interpret nonlinear effects by
plotting, including confidence intervals and the
data in the plot.

� Interpret nonlinear models by plotting adjusted
predictions and clearly show the nature of
nonlinearity in the plot.

� Include confidence bands to show the uncertainty of
the estimates and either plot the data or use a
contour plot to show that the chosen functional form
fits well.

Guideline 8: Do not infer moderation from an
interaction effect but from a plot.

� Moderation hypotheses are ambiguous unless the
form of the effect (e.g., relative, absolute) is stated in
the hypothesis.

� Interpret moderation hypotheses of nonlinear
models using plots even if the interaction term is
nonsignificant.

Note: GLM ¼ generalized linear model; OLS ¼ ordinary least squares; QML ¼ quasi-maximum likelihood.
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Table 3. Potential Functional Forms in Organizational Research.

Transformation
y ¼ f b0 þ b1xð Þ

Inverse
Transformation
y ¼ g b0 þ b1xð Þ Definitions

Models, Interpretation, and
Recommended Distribution for Consistency

f xð Þ ¼ x
g xð Þ ¼ x

Linear regression
Increasing x by 1 is associated with b1

increase in y.
Normal distribution

f xð Þ ¼ log xð Þ
g xð Þ ¼ ex

Poisson and negative binomial regressions,
survival models

Increasing x by 1 is associated with y
increasing by eb1 times (incidence rate
ratio).

Poisson distribution

f xð Þ ¼
ffiffiffi
x
p

g xð Þ ¼ x2
Second power commonly used for modeling

U-shape effects
No easy interpretation
No recommended distribution

f xð Þ ¼ 1
x

g xð Þ ¼ 1
x

No easy interpretation
No recommended distribution

f xð Þ ¼ log x
1�x

� �

g xð Þ ¼ ex

exþ1

� � Logistic, multinomial, ordered logistic, and
beta regression

Increasing x by 1 is associated with the odds
of y increasing by eb1 times (odds ratio).

Bernoulli distribution

f xð Þ ¼ F�1 xð Þ
g xð Þ ¼ Fðx)

Probit regression; F is the standard normal
cumulative distribution.

No easy interpretation
No recommended distribution

Note: Inverse transformation reverses the original transformation so that x ¼ g(f(x)) and x ¼ f(g(x)). For example,
if log(x) ¼ y, then ey ¼ x.
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introducing (a) a link function that determines a curve that characterizes the mean of the dependent

variable as a function of the independent variables and (b) a distribution that specifies how the values

of the dependent variable are dispersed around the mean given by the curve. Importantly, the distri-

bution is a conditional distribution specified for a specific combination of independent variables, not

an unconditional distribution of the dependent variable overall. In the linear regression model shown

in the first plot of Figure 1, the observations are always normally distributed around the regression line.

That is, if we only look at observations that have the same x value (e.g., x ¼ 1), that subset will be

normally distributed (conditional distribution). However, the overall unconditional distribution of y is

not and does not need to be normal. In the Poisson model shown in the second plot, y is always

distributed as Poisson for any specific value of x (conditional distribution), but the overall uncondi-

tional distribution of y is not and does not need to be Poisson. As this example shows, the choice of

GLM distribution cannot be justified by looking at the unconditional distributions.

Linear regression and Poisson regression are both special cases of GLM, where the links are

linear and logarithmic and distributions are normal and Poisson, respectively. Following the con-

vention of using f for the link function and g for its inverse function, the linear model, a model with

manual log transformation, and a GLM with a log link can be written as follows:

Linear : y ¼ b0 þ b1xþ u ð1Þ

Manual transformation : f yð Þ ¼ b0 þ b1xþ u ð2Þ

GLM; presentation1 : y ¼ g b0 þ b1xð Þ þ u ð3Þ

GLM; presentation2 : f E y½ �ð Þ ¼ b0 þ b1x ð4Þ

where u is the error term representing variation around the line or curve. The linear function is a

special case of GLM where the link function is the identity function f xð Þ ¼ x in which case

Equations 1 through 4 are equivalent, and in practice, OLS would always be applied. Therefore,

from now on, we will focus on discussing GLMs with nonlinear links.

Figure 1. Comparison of linear model and Poisson model.
Note: The red line shows how expected y depends on x and how observations are distributed at x ¼ 1, 2, 3, 4,
and 5 (conditional distribution). Axes show kernel density plots of x and y (unconditional distribution).
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Equation 2 and Equation 4 are two different ways of applying the same transformation, which can

also be understood by rewriting Equation 2 as y ¼ g b0 þ b1xþ uð Þ and comparing this against

Equation 3. The difference between the two equations is that manual transformation is applied to

the observed scores, but in GLM, the transformation is applied to the predicted values that approx-

imate the observed scores. This has consequences on how well the model explains the data (see

Guideline 3). But the choice between the techniques does not depend on any underlying theory and

does not affect how the results should be interpreted, even though the techniques are not the same.

We will now explain when transformations should be applied, how models with transformations

should be specified, and how the results of these models should be interpreted.

Guideline 1: Motivate Transformations Based on Functional Form, Not Distribution of the
Variables

Nonnormal dependent variables are a common justification for using transformations. Consider,

for example, the following claim by Blevins et al. (2015): “The application of a linear regression

model (LRM) is inappropriate for data with a count-based dependent variable (Cameron &

Trivedi, 1998) and can result in inefficient, inconsistent, and biased regression models (Long,

1997)” (pp. 47–48). Similar statements were common in the reviewed articles; 55%3 of the

articles that applied manual transformations justified this decision based on the characteristics

of variables, such as skewness. In 23% of the articles, no justification was given. The same

pattern holds for articles that applied GLM models: 58% of these articles justified a GLM based

on the characteristics of the dependent variable, followed by 42% that did not provide a

justification.4

Claims that a nonnormal dependent variable would be problematic for OLS regression

are incorrect and thus not valid reasons to apply transformations. In fact, the proofs that

regression is unbiased (Wooldridge, 2013, Theorem 3.1) and consistent (Wooldridge, 2013,

Theorem 5.1) do not need any assumptions about the distribution of the independent or depen-

dent variables or about that of the error term. What is required is the following: (a) random

sampling, (b) the relationships between the independent and dependent variables are linear in the

population, (c) each independent variable adds unique variance to the model, and (d) there is no

endogeneity (see also Angrist & Pischke, 2009, pp. 70–73). A nonnormal error term or even a

discrete dependent variable, such as a count, is unproblematic for regression if these four

assumptions hold (see also Villadsen & Wulff, 2020).

Distributional assumptions are required in proofs of some OLS regression properties, but these

assumptions are made only about the error term (conditional distribution) and not about the

independent or dependent variables (unconditional distributions). The first assumption is that the

variance of the error term is constant (homoskedasticity), which means that the observations are

always equally spread out around the regression line. Homoskedasticity is required for the con-

sistency of standard errors and efficiency of the OLS estimator.5 The failure of this assumption is

referred to as heteroskedasticity, and transformations have been proposed as a way to address this

problem (Cohen et al., 2003, Section 6.4.1; Rosopa et al., 2013). However, this is ineffective6 and

has the side effect of converting the originally linear model into a nonlinear one, which may not be

the ideal representation of the phenomenon. Heteroskedasticity-consistent (robust) standard errors

(Angrist & Pischke, 2009, Chapter 8; Wooldridge, 2002, Sections 4.2.3, 19.2.3, 2013, Section 8.2)

are a superior solution because they are effective even when the form of heteroskedasticity is

unknown, retain the original model, and are available in commonly used statistical software

(StataCorp, 2017b, Section 20.22; Zeileis, 2006). Indeed, 46% of the reviewed articles using

transformations applied robust standard errors, and not a single article used a transformation to

deal with heteroskedasticity.
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The second assumption, normality of the error term, is only required for the proof that the t

statistics used for calculating the p values of the regression coefficients and the F statistic that is used

for the overall model test follow their reference distributions in small samples (Wooldridge, 2013,

Theorem 4.2). But this assumption is mostly irrelevant for applied research because the large sample

behavior of OLS regression, which does not depend on the normality of the error term, starts to kick

in at sample sizes well under 100 (Wooldridge, 2013, Section 5.2).

Example 1: Coin Throws. We now demonstrate that a nonnormal dependent variable is not problematic

for linear regression. The data set shown in Table 4 contains two variables about a fair coin: Throws

indicates how many times the coin was tossed and tails how many tails were counted. Table 5 shows

the results of using these data in (a) linear regression and (b) Poisson regression, which is often used

with count variables in organizational research (Blevins et al., 2015), to study how the expected

number of tails depends on the number of throws.

The linear regression model gives the correct answer: The expected number of tails is half the

number of throws. In other words, following the standard interpretation of linear regression, for

each additional unit of throws, we should expect an increase of half a unit of tails. How should

the substantially smaller coefficient of 0.022 from the Poisson model be interpreted? Organiza-

tional researchers struggle with this question, and many articles simply check the p value and

state the presence of a relationship, leaving the coefficients themselves uninterpreted. The

problem is not limited to organizational research given that the same concern was expressed

in the classic book by Long (1997): “Unfortunately, all too often when these models are used, the

substantive meaning of the parameter is incompletely explained, incorrectly explained, or sim-

ply ignored. Sometimes only the statistical significance or possibly the sign is mentioned” (p.

xxiii). The recently published guidelines serve as examples: Blevins et al. (2015) omitted the

interpretation of the coefficients altogether, whereas Becker et al. (2019, p. 853) give the correct

interpretation but incorrectly claim that the interpretation of a GLM would be different from

estimating a comparable model using a transformed dependent variable.

Table 4. Coin Throw Data Used in an Example.

Throws 7 25 8 33 37 51 14 15 79 24 74 16 82 95 95 72 75 20 48 97
Tails 4 11 3 20 20 24 7 8 43 12 39 9 46 57 51 35 41 12 22 44

Table 5. Linear Regression and Poisson Regression Models Predicting the Number of Tails Using the Coin
Throw Data.

1 2
Linear

Regression
Poisson

Regression

(Intercept) 0.058 1.965***
(0.620) (0.134)

Throws 0.504*** 0.022***
(0.015) (0.002)

R2 .968
Log likelihood –62.497

Note: N ¼ 20. Standard errors in parentheses. Model 1 uses heteroskedasticity-consistent (robust) standard errors.
***p < .001.
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If nonnormality is not a problem for OLS regression analysis, what do transformations do then?

Transformations model nonlinear effects, and this is the reason for the difference between the linear

and Poisson regression model results. Instead of fitting a straight line, Poisson regression fits an

exponential curve, as shown in Figure 2. The correct interpretation of the coefficient of 0.022 would

then be that each additional coin throw increases the expected number of tails by 2.2% (i.e., multiply

by 1.022; Long, 1997, Section 2.4; Wooldridge, 2013, pp. 41–44, 191–194). Considering this

interpretation helps to realize why the Poisson model is inappropriate for these data: The number

of tails increases linearly, not exponentially, with each new throw.

Example 2: Occupation Income. The second example is the Prestige data set from Fox (1997), contain-

ing data of 102 occupations from the Census of Canada in 1971. For simplicity, we focus on just

three variables: Income is the average annual income of each occupation in Canadian dollars,

education is the average number of years of education of those in the occupations, and women is

the share of women in the occupation as a percentage. Later in the article, we also use prestige,

which quantifies the prestigiousness of an occupation. We chose this data set because these data are

publicly available, easy to understand, and commonly used when teaching regression analysis.

Table 6 shows descriptive statistics and correlations for the data.

We use regression to understand how education influences income, controlling for the share

of women in an occupation. Model 1 in Table 7 shows that each additional year of education

leads to an increase of about $950 in annual salary, whereas Model 2 with the log transformed

dependent variable indicates that an additional year of education increases annual salary by

about 13% compared to the current level. As shown in Figure 3, the exponential growth is not

very steep and is hence somewhat well approximated by a line, raising the question of why not

just use the simpler linear form. Indeed, it is well known that linear models are often good

enough approximations for predictive purposes, but understanding potential curvilinearity is

critical for research because nonlinear models have different implications for theory testing and

practical recommendations (Pierce & Aguinis, 2013, p. 317). On the research side, linear and

Figure 2. Scatterplot of the coin throw data overlaid with adjusted prediction plots of linear regression and
Poisson regression models.
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exponential growth require different kinds of causal processes. With income, the increases

should be expected to be proportional to current income levels due to diminishing marginal

utility of money. If the effects of education on income were not proportional to the current

income level, people would not seek more education because the marginal effect of additional

years of school on their welfare would be diminishing. On the practical recommendations side,

assuming that each year of education has an equal impact on income (i.e., a linear effect) would

mean that a 3-year bachelor’s degree might not be worth the time and money: The 12 years of

compulsory education would already produce 80% of the expected effect produced by the 15

years of education one would have after the bachelor’s degree.

Table 7. Linear and Poisson QML Regressions of Income Using the Prestige Data Set.

1 2 3 4 5 6
Linear

Regression
Linear Regression,

log(income)
Poisson
QML

Poisson
QML

Linear
Regression

Poisson
QML

Coefficients
(Intercept) –1,491.998 7.606*** 7.650*** 7.847*** –3,843.435* 7.642***

(1,091.184) (.124) (.125) (.105) (1,690.336) (.169)
Education 944.881*** .126*** .128*** .008 1168.069*** .129***

(127.952) (.011) (.012) (.026) (186.762) (.016)
Women –64.056*** –.010*** –.011*** –.009*** 36.650 –.010*

(7.481) (.001) (.001) (.001) (29.345) (.004)
Prestige .022***

(.005)
Education � –9.364** –.000

Women (3.101) (.000)
APE/AME

Education 873.046*** 54.079 896.709*** 871.858***
(103.224) (179.432) (107.356) (97.383)

Women –74.152*** –58.911*** –63.901*** –74.233***
(9.206) (6.711) (6.977) (9.457)

Prestige 147.829***
(36.478)

R2 .562 .611 .587
Log likelihood –36,735 –26,637 –36,732

Note: N ¼ 102. Heteroskedasticity-consistent (robust) standard errors in parentheses. APE/AME ¼ average partial/marginal
effects; QML ¼ quasi-maximum likelihood.
*p < .05. **p < .01. ***p < .001.

Table 6. Descriptive Statistics and Correlations of the Prestige Data Set.

Correlations

M SD Minimum Maximum Income Education Women

Income 6,797.902 4,245.922 611 25,879
Education 10.738 2.728 6.38 15.97 .578
Women 28.979 31.725 0 97.51 –.441 .062
Prestige 46.833 17.204 14.80 87.20 .715 .850 –.118

Note: N ¼ 102.
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In the case of income, the exponential curve providing relative effects is both theoretically and

empirically more appealing and produces more realistic practical recommendations. However,

neither the linear nor the exponential model, with the log dependent variable, fit the data too well,

underpredicting the highest incomes. In the guidelines that follow, we present suggestions for how to

address such a situation, but the point here is that log transformation of the dependent variable

changes the interpretation of the relationship from linear to exponential.

To summarize, (a) OLS regression assumes that all relationships between the variables are linear

in the population. Transformations are useful because they allow modeling nonlinear relationships

within the linear model framework. (b) OLS regression does not assume that any of the observed

variables are normally distributed; rather, the normality assumption pertains to the error term, and even

then, this assumption is not important. (c) Heteroskedasticity can be an issue when estimating standard

errors, but applying transformations to address the problem is ineffective and produces a nonlinear

model other than the one originally intended; using robust standard errors is a superior alternative.

Thus, transforming a variable cannot be motivated by stating that doing so reduces the consequences of

violating the distributional assumptions of regression. Indeed, it is a common and perfectly acceptable

practice to use linear regression in cases where the error term cannot be normal and homoskedastic,

such as with a binary dependent variable (e.g., Ranganathan, 2018; Yenkey, 2018). However, non-

normality of the data, particularly skewness, can indicate a nonlinear effect and therefore should not

be ignored (Rönkkö & Aguirre-Urreta, 2020), but its source should be investigated.

Guidelines for Building Models With Transformations

We will now focus on guidelines for research practice, starting by how to specify models with

transformations. Our central argument is that a transformation, whether done manually or within a

GLM, should be based on the expected functional form between variables, whether on theoretical or

empirical grounds, and not on the distribution of the variables themselves.

Figure 3. Visualizations of linear and exponential models with log transformed dependent variable using the
Prestige data.
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Guideline 2: Hypotheses Should State the Form of the Association When Possible

Estimated relationships between variables can be characterized by their form, strength, and statis-

tical significance (Singleton & Straits, 2018, Chapter 4). However, organizational theories nearly

universally ignore the form or strength of a relationship, focusing just on its existence and direction

(Edwards & Berry, 2010), and this imprecision extends to the hypotheses that are used as tests of

those theories. Indeed, not a single hypothesis in the reviewed studies stated the expected strength,

and most of the articles did not specify any functional forms either. Of articles using a nonlinear

model, 12% specified a U-shape form, and 9% specified a functional form without U-shape.7 Not

surprisingly, the same applies to linear models. Only two articles (2% of the total) mentioned a linear

form in the hypothesis (Li et al., 2018; Seong & Godart, 2018).

Not specifying a functional form in the hypothesis is problematic because one is required when

the hypothesis is tested. Consider the following hypothesis in the context of the Prestige data set:

Hypothesis 1: An increase in education is associated with an increase in income.

To test this statement, it must be formalized as an equation. Here the imprecision of the hypothesis

becomes evident: It simply means that an increase of education will always produce a positive

change in the expected income, but neither the form (linear, exponential, etc.) nor the strength (how

large of an effect education has on income) of the relationship is specified. In other words, this

means that “the proposed relationship is simply some monotonic function” (Edwards & Berry, 2010,

p. 675). Yet specifying a functional form is required to construct a statistical model for testing the

hypothesis. The current practice for solving this problem is to make an implicit assumption that a

straight line is the most appropriate functional form (see also Jaccard & Jacoby, 2020, pp. 126–127).

Such assumptions should be made explicit. A functional form should be based either on theory and

specified in the hypothesis or derived from the data.

Strategies for Determining Functional Form Based on Theory. The ideal strategy for making the assumed

functional form explicit is to state it as part of the hypothesis. If an (approximately) linear effect is

expected, the hypothesis could be stated as

Hypothesis 1a: Expected income increases linearly with education.

However, as explained earlier when we introduced the example, in this case, an exponential func-

tional form would make more sense because of the decreasing marginal utility of money. Thus,

Hypothesis 1 could be refined and presented in one of three alternative forms:

Hypothesis 1b: An increase in education is associated with an increase in income; this effect is

relative to the current income level (i.e., the increase is a percentage of the current value).

The same hypothesis can be stated also in a more condensed form:

Hypothesis 1c: Education increases income relatively to current income.

Or we could explicitly mention the exponential growth that relative effect produces:

Hypothesis 1d: Income increases exponentially with education.

Although the choice of a functional form was straightforward in the example, this is not always

so. In some cases, the nature of the dependent variable might suggest a particular form; Beyond

income and salaries, there are several other commonly used variables that are almost always thought
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of in terms of percentage change, such as firm growth, revenues, or investments. When the depen-

dent variable is bound at an interval (e.g., yes/no, percentage), it might be safe to assume that a

relationship in the hypothesis follows an S-shape curve (e.g., logit) so that as the hypothesized

predictor increases, the dependent variable gets closer and closer to an endpoint of the interval, but

once close, the speed at which the endpoint is approached diminishes. For example, if we consider

the acquisition probability of a startup to be at 30% to start with, getting a new important patent

might increase that to 40%. However, if the initial probability was already 90%, then any changes

that the company implemented could only have incremental effects, and nothing that the company

did would make acquisition certain (i.e., 100%).

In other cases, the choice of functional form can be less clear. Following Jaccard and Jacoby

(2020, Chapter 6), we suggest using thought experiments. In the first strategy suggested by Jaccard

and Jacoby, a researcher would start by drawing the x and y axes on a blank piece of paper and draw a

starting point somewhere on the plot area. After this, the next point would be drawn by increasing x

by one unit and considering how much a typical change in y would look. Then, the next point would

be drawn similarly considering what an effect of an additional unit would have. Would the rate of

increase be constant (linear), accelerating, or diminishing? Would the effect always be in the same

direction? Perhaps there is a threshold after which the effect changes? Considering prior research

can be helpful. For example, diminishing returns and escalating costs are arguments to propose

logarithmic and exponential forms (Haans et al., 2016). Covering a broader range of management

disciplines, Pierce and Aguinis (2013) discussed how the “too-much-of-a-good-thing” effect can be

used to support theorizing of inverted U-shape effects across a variety of theories and domains. We

emphasize that this is a conceptual exercise where a researcher is free to think of and propose

functional forms without any constraints on how such forms could be expressed as a specific

function.

A second strategy suggested by Jaccard and Jacoby (2020, Chapter 6) would be to draw two or

more alternative forms that the phenomenon could follow and then consider what it would take for

the phenomenon to follow each form. When the dependent variable is a fairly objective quantity,

such as income, growth rate, or profitability, it should be fairly straightforward to choose between,

for example, the linear and exponential models using this strategy. One would simply ask the

question of whether an effect in absolute units (e.g., euros, dollars, number of patents) or a relative

increase as percentages of the current value makes more sense.

Considering the dependent variable in an alternative way can sometimes be helpful. For example,

if the dependent variable is the total number of citations that an article receives as a function of years

since publication (Antonakis, Bastardoz, et al., 2014) or some other accumulative function, it might

be useful to theorize about the rate of accumulation (i.e., how many citations an article gets each

year) instead of the total number and then derive the functional form by considering how the rate

develops as a function of the independent variable. The same applies to all dependent variables that

are aggregates of some smaller components.

After a form has been specified on the conceptual level, it needs to be formalized as a function,

considering also that combinations of functions may be possible (Jaccard & Jacoby, 2020, Chapter 8;

e.g., exp[–x2] gives a normal distribution curve). In our own teaching and research, we have found it

useful to draw the assumed effect on a whiteboard and then consider how it could be constructed

from the function shown in Table 3. Different combinations of functions can be experimented with

by visualizing them using statistical software or even Excel to see how well they would map against

the conceptually derived form.

Strategies for Determining Functional Form Empirically. What kind of association should be tested if one

is not suggested by theory? In this case, the functional form should be chosen empirically based on

the data (Jaccard & Jacoby, 2020, p. 222; Nikolaeva et al., 2015). We propose three strategies for
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doing so. The first strategy is to graphically inspect the relationship between the variables. One way

to do so is to use a binned scatterplot, where the data are first divided into equally sized groups along

the x variable and the group means of the x and y are then used in a scatterplot. The tool is easy to

understand and effective in revealing the functional form even from a large number of observations

(Cattaneo et al., 2019). This technique was applied in one of the reviewed articles (Hornstein &

Zhao, 2018).

The second strategy is to start with a linear regression model and run diagnostics for nonlinearity.

The residual versus fitted plot can be used to assess the overall need for a nonlinear model, and the

partial regression or added-variable plots can be used to assess the functional forms of individual

variables. These plots are thoroughly explained in textbooks and user manuals (e.g., Field, 2009,

Chapter 7; Kabacoff, 2011, Section 8.3.2; Mitchell, 2012a, Section 2.4; StataCorp, 2017a, pp. 2296–

2303) as well as in the supplementary video materials at https://tinyurl.com/nonlinearmodels, and

therefore we will not go through them in detail but will simply focus on how they apply to our

empirical example.

The first row of plots in Figure 4 shows the residual versus fitted plot and two added-variable

plots for the linear model (Model 1 in Table 7). The residual versus fitted plots show that both small

and large predicted values have larger than average residuals, suggesting that a nonlinear model

would be preferable to a linear one. The added-variable plots indicate some bivariate nonlinearity.

Particularly for both small and large values of education, the observations tend to be above the

regression line. The second row of plots corresponds to the model with a log-transformed dependent

variable (Model 2 in Table 7). The residual versus fitted plot now shows a linear relationship, and the

added-variable plots do not indicate any major nonlinearities, indicating that the transformation

effectively addressed the nonlinearity issues.

Even if the original linear model is used instead of a nonlinear one, these diagnostics should be

done and reported to provide evidence that the chosen linear functional form is correct. Detailed

reporting is not required, but a researcher could simply state, at a minimum, the following: “All

models were diagnosed for heteroskedasticity, nonlinearity, and outliers using plots. No problems

were found.” Unfortunately, doing so is not common (Kline, 2019, pp. 65–66; Simonsohn, 2018). In

the reviewed articles, 96% did not report any model diagnostics.

The third strategy is to fit models with different functional forms and compare how well they

explain the data. This strategy was applied, for example, by DeOrtentiis et al. (2018), who used a

power term to test for the nonlinear effects of time and compared the results to those obtained from a

linear model. With our example data, the linear and nonlinear specifications used in Model 1 and

Model 2 in Table 7 could be compared using the R2 statistic. The higher R2 of the nonlinear model

indicates that it has a better fit to the data. Another approach would be to use the RESET test, where

powers of independent variables are added to the model to detect any omitted nonlinearities

(Villadsen & Wulff, 2020; Wooldridge, 2013, pp. 306–307). However, this strategy has the

disadvantage that a researcher must specify the functional forms to be compared, and thus a fully

explorative analysis is not possible.

Although the empirical strategies for discovering the functional form seem attractive, they come

with the risk of capitalizing on chance. In small samples, a few outliers could easily lead researchers

to conclude that a relationship that is linear in the population would be a nonlinear one. Conversely,

nonlinear population relationships could be easily dismissed as outliers. Although we are not aware

of any published work addressing how well researchers can identify a functional form from a plot,

we came across a small pilot study (J. Antonakis, personal communication, June 26, 2020). In the

study, modeled after his published work (Antonakis et al., 2017; Antonakis, Simonton, et al., 2019),

Antonakis simulated 171 observations from a population where the relationship between two vari-

ables followed an inverted U-shape effect (y ¼ x� 2x2 þ 10u; x and u being standard normal

variables) and x was observed at a fairly typical 80% reliability. This was repeated 20 times, and
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the resulting scatterplots were sent to 15 researchers asking them to identify the functional form. Out

of the 300 evaluations, 139 (46%) incorrectly thought that the functional form was linear; just 54

(18%) identified the U-shape correctly, in 64 cases (21%) the researchers simply could not make a

call, and in the remaining 43 cases (14%), the researchers inferred an incorrect nonlinear functional

form.

To summarize, the fact that organizational researchers do not explicitly state the functional form

of the relationship as part of the hypotheses but nevertheless apply nonlinear models for their testing

cannot be seen as a methodological problem (Becker et al., 2019) but is rather a consequence of the

imprecision of management theory or of the way it is tested (Cortina, 2016; Edwards & Berry, 2010).

Ideally, researchers should state the expected functional form in the hypotheses based on what kind

of effect makes theoretical sense. Table 3 shows commonly used functional forms and can be used as

a reference. If such precision is not afforded by theory, the functional form should be chosen based

on how well the model appears to fit the data in a visual inspection or by comparing models using fit

statistics when appropriate. This is a holistic evaluation that unfortunately cannot be condensed into

a simple rule. If functional form is determined empirically, it is important to report this as an

exploratory analysis (Hollenbeck & Wright, 2017). Indeed, introducing a functional form and its

explanation to a theory can be considered an important theoretical contribution (Jaccard & Jacoby,

2020, p. 41). Even if a researcher cannot explain why the identified functional form exists, such

observation can inspire future work designed to understand why a given functional form was

observed.

Guideline 3: Never Transform the Dependent Variable; Use a GLM Instead

Transforming a dependent variable is common in the reviewed empirical articles. As shown in

Table 2, 17 articles applied a transformation to a dependent variable. Of these, 16 (15%) used log

transformation, and one article applied winsorization (Souder & Bromiley, 2017). Yet analyzing a

transformed dependent variable is not an ideal approach for two reasons.

First, to interpret the results, predictions from the model need to be converted back to the original

metric. In the case of the log transformation, this happens by using the exponential function (e.g.,

Eggers & Kaul, 2018). However, the mean of the logarithm does not equal the logarithm of the

mean, and this applies to all nonlinear transformations. This is demonstrated in Figure 5 showing the

distributions of incomes for women- and men-dominated occupations. Comparing the original

means against the means of logged incomes that are back-transformed to the original metric shows

that the transformed variables underestimate the means. The effect is stronger for men-dominated

occupations, which leads to underestimating the difference between the two groups.

Second, transforming the dependent variable requires awkward workarounds. Perhaps the most

common way is to add þ1 before taking logs (e.g., Clement et al., 2018; Gomulya et al., 2017;

Vasudeva et al., 2018). The justification for the procedure is that the logarithm is not defined for zero

and works differently for numbers more or less than one, and if all values were initially nonnegative,

the transformation makes all values one or greater (Kline, 2011, pp. 63–64; Wooldridge, 2013, p.

193). Another, albeit less common, workaround addresses the bias caused by the back-

transformation by using a correction (e.g., Balen et al., 2019; Duan, 1983; Wooldridge, 2013, pp.

212–215). These workarounds are required because a linear model of a transformed dependent

variable, although common, is simply not the ideal way to model the dependent variable as a

nonlinear function of the independent variables (Villadsen & Wulff, 2020).

A GLM with a log link avoids the problems caused by log transforming the dependent variable.

Instead of manually transforming the dependent variable and estimating log yð Þ ¼ b0 þ b1xþ u

(Equation 2), the same transformation can be applied in a GLM and estimating

log E y½ �ð Þ ¼ b0 þ b1x (Equation 4). In particular, Poisson regression produces consistent estimates
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for the exponential model regardless of the distribution of the error term and can even be used for

noncount data (Cameron & Trivedi, 1998, Chapter 3; Gourieroux et al., 1984; Silva & Tenreyro,

2006; Wooldridge, 2010, Chapters 18.2–18.3, 2013, Chapter 17.3). This point was made eloquently

by Stata’s founder William Gould (2011) in a nontechnical blog post. When Poisson regression is

applied to a noncount variable, the likelihood statistics will be incorrect. For this reason, this

approach is referred to as a quasi-maximum likelihood (QML) estimation. Because the QML like-

lihood values are not proper likelihoods, they cannot be used for model testing, but robust standard

errors can be employed for correct inference.

To demonstrate that Poisson QML works better than manually transforming the dependent

variable, we applied both techniques to the Prestige data set, as shown in Models 2 and 3 in Table 7

and graphically in Figure 6. The plot shows two curves, one based on predictions from the GLM

model and another using the transformed dependent variable, back-transformed to the original scale,

following current recommendations (e.g., Dawson, 2014). The GLM curve goes through the middle

of the data and is thus a better fit than the curve using transformed dependent variable, which tends

to underestimate the mean of the data, particularly for larger values. As an additional advantage,

commonly used statistical software will automatically plot a GLM model correctly without the need

to specify a back-transformation manually.

In the reviewed articles, none of the articles that applied a log transformation to the dependent

variable considered a GLM model with a log link as a substitute.8 Similarly, the articles that used a

GLM model with a log link (Poisson or negative binomial regressions in the review) did not use the

nonlinearity of the link as a justification and hence did not consider the log transformation as an

alternative. Thus, the interchangeability of a GLM and a manual transformation does not appear

to be common knowledge among organizational researchers, although there are some examples

outside the reviewed articles that note the general applicability of GLM models (Dahlander et al.,

2016, p. 289).

Figure 5. Distribution of income for men- and women-dominated occupations and the effect of transformation
on estimates of mean.
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To summarize, GLM is both statistically and practically the superior alternative to transforming

the dependent variable. The predicted curves go closer to the middle of the data, modern statistical

software automatically constructs the adjusted prediction plots correctly, and the need for awkward

workarounds (e.g., when a dependent variable can take the value of zero) is eliminated. Yet using

OLS regression with transformed dependent variables can be useful for diagnostic purposes, as

demonstrated in the previous guideline. The differences between these two techniques are summar-

ized in Table 8. Although it has been known for some time in the technical statistical literature that

Poisson regression can be used for this purpose, its uptake in research practice has been slow. A

possible reason for this is the institutionalized idea that these models should be used (only) for

counts (Blevins et al., 2015). As noted by Nichols (2010): “If you decide on a log link, you may want

to call your model ‘GLM with a log link,’ rather than a ‘Poisson’ QMLE—some older reviewers

believe Poisson regression is only for counts” (p. 20).

Guideline 4: Choose the GLM Link Function First, if Used, and Individual Variable
Transformations Later

Because GLMs are preferable to transforming dependent variables, specifying nonlinear models

reduces to two decisions: whether to use a GLM and whether to transform any of the independent

variables. The first decision is more consequential because it determines how the independent

variables together influence the dependent variable. We will now turn to this, which requires

understanding the difference between additive (linear) and multiplicative (exponential) models.

For simplicity, we focus on the case of two independent variables, x1 and x2, and only for the

linear and exponential cases:

Linear: y ¼ b0 þ b1x1 þ b2x2 þ u ð5Þ

Figure 6. Effects of education on income estimated with regression of transformed dependent variable and
Poisson quasi-maximum likelihood (QML) regression.
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ExponentialðGLMÞ: y ¼ eb0þb1x1þb2x2 þ u

¼ eb0 eb1x1 eb2x2 þ u
ð6Þ

An important difference between the two models is that in the linear model, the effects of x1 and x2

are added together, whereas in the exponential model (e.g., Poisson regression), they are multiplied

together. That is, in the linear model, the effect of changing x1 is always the same regardless of the

current values of x1 and x2. However, in the exponential model, the effect of x1 is proportional to the

predicted y, thus depending on both x1 and x2.

The difference between the additive linear and multiplicative exponential models was largely ignored

in the reviewed articles. For example, Botelho and Abraham (2017) used four dependent variables:

number of views, number of comments, and two ratings of online recommendations. All four variables

were used to test the same hypotheses; an additive model was used for the two ratings variables, but when

explaining the number of views and number of comments, the model was multiplicative. The use of a

multiplicative model for one set of variables and an additive model for the other set of variables was

neither noted nor explained in the article. More generally, out of the 40 reviewed articles that applied a

GLM model with a log link or used a log-transformed dependent variable, just one (York et al., 2018)

explicitly noted that the effects should be interpreted as multiplicative instead of additive, and one other

(Dutta, 2017) noted that the effects in such models are relative to the current level.

The choice between additive and multiplicative models should be driven by theory. For example,

if a study investigated the effects of a nationwide policy (x1) on the number of new companies

founded (y), the effect should not be the same for all countries but be relative to the size of the

population (x2), suggesting a multiplicative model. In other words, implementing the policy in a

larger country should produce more new companies than implementing the policy in a smaller

country. In contrast, an additive model would be appropriate, for example, if one modeled the

effects of R&D grants (x1) on the number of patents a firm receives (y). If two firms of different

size (x2) receive a similarly sized grant and there are no large economies of scale in R&D, both firms

should get an equal amount of R&D work done using the grant and thus receive roughly comparable

Table 8. Comparison of Linear Regression Model With Transformed Dependent Variable and Generalized
Linear Model.

Linear Regression With Transformed
Dependent Variable Generalized Linear Model

Mathematical presentation f yð Þ ¼ b0 þ b1x þ u y ¼ g b0 þ b1xð Þ þ u
or
f E y½ �ð Þ ¼ b0 þ b1x

Interpretation of coefficients Nonlinear interpretation depending on the
transformation (see Table 2)

Nonlinear interpretation
depending on the
transformation (see Table 2)

Bias of predictions Predictions are biased because the mean of
a transformation is not a transformation
of the mean.

Predictions are unbiased.

Support for values on the
boundary (e.g., zero in log
transformation)

Awkward workarounds required Supported

Software support for plotting Back-transformation needs to be specified
manually to the plotting command.

Correct functional form plotted
automatically

Software support for
diagnostics

Very broad, ordinary least squares
regression diagnostics

More limited, typically specific
link-distribution
combinations supported
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number of patents from the work. Therefore, the effect should be additive with other variables that

determine how many patents a company receives.

In some scenarios, it may be desirable to combine linear and exponential effects. For example, if

one models the total number of publications of a researcher as a function of time (x2), an individual’s

overall productivity can be exponential as a function of skills (x1), but the number of publications (y)

increases linearly, and not exponentially, over time. Here, the effects of skills and time are clearly

multiplicative, but the effect of time itself is linear and not exponential. The GLM framework

provides two alternative ways of modeling this combination of effects:

Linear with interaction: y ¼ b0 þ b1ex1 þ b2x2 þ b3x2ex1 þ u ð7Þ

Exponential: y ¼ eb0þb1x1þb2log x2ð Þ þ u

¼ eb0 eb1x1 x2
b2 þ u

ð8Þ

We demonstrate these specifications in Figure 7, where we estimate a linear effect of women (x2)

and exponential effect of education (x1) on income using the Prestige data set. The first specification

is problematic because the shape of the exponential effect ex1 is not estimated from the data. That is,

b1ex1 þ b3x2ex1 is always about 22,000 times larger9 when estimated at 6 years of education (min-

imum) compared to 16 years of education (maximum). Moreover, the steepness of the effect of

education is the same for all levels of women, and women mostly affect the base level from which

the exponential growth starts, as shown in the first plot of Figure 7. Indeed, none of the reviewed

articles used an exponential transformation on the independent variables.

The second specification is more attractive, but adding log(x2) is not enough to model a linear

effect10; we must further constrain the coefficient b2 to 1, producing:

Exponential with exposure: y ¼ eb0þb1x1þlog x2ð Þ þ u

¼ eb0 eb1x1 x2 þ u
ð9Þ

A logged variable constrained this way is referred to as an exposure variable, and it enters the

regression equation as a multiplier, thus modeling an effect that is directly proportional to the

Figure 7. Comparison of two approaches for combining linear and exponential effects.
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exposure variable (Cameron & Trivedi, 2009, p. 559). The use of exposure variables is not common

in organizational research, but they are common in, for example, epidemiology, where researchers

might be interested in which factors affect the number of cases of a disease in a country. Because

countries vary in their population numbers, each country has a different number of people that could

be potentially exposed to a disease and become a case. In this case, we would use the number of

people in a country as an exposure variable, and the total expected number of cases would be

individual risk (eb0 eb1x1 in Equation 9) multiplied by the size of the population used as an exposure

variable (x2 in Equation 9). In an organizational context, these models present a compelling alter-

native to control for scale effects that are commonly controlled for by using a ratio of the focal

variable and the scale variable (e.g., return on assets ¼ net income / total assets) as a dependent

variable (Certo et al., 2020). The exposure model is visualized in the second plot of Figure 7. In this

model, the magnitude of the exponential increase (shape of the curve) is estimated from the data,

producing a more gradual estimate where both the base level and the magnitude of increase due to

education vary as a function of the share of women.

To summarize, the first decision when specifying a model is to determine whether the variables in

the model are combined additively or multiplicatively. In the linear, additive effects model, the

effect of each independent variable is in absolute terms not dependent on any other variables in the

model. In the exponential, multiplicative effect model (e.g., Poisson regression), the effects are

always relative to the current values of all independent variables, typically expressed as percentages.

In practice, the choice is whether to use a GLM and which link function to use, decisions that have

been traditionally made based on the distribution of the dependent variable. Instead, we argue that

theory should play a much more important role in this decision. The thought experiment strategies

explained earlier can be useful here as well.

Guideline 5: Choose the GLM Distribution Based on Consistency, Not Model Fit

The specification of a GLM involves two key decisions: choosing the link function for the relation-

ship between the independent variable and the expected value of the dependent variable and the

(conditional) distribution for the dependent variable. Importantly, the distribution concerns the

conditional distribution for a specific set of predictor variables, not the unconditional distribution

that one would analyze in the data preparation and screening stage of research (see Figure 1). Of

these, the first decision is much more important because it determines which functional form is

estimated; the second decision only influences whether the chosen form is estimated correctly.

Unfortunately, the exact opposite decision process has been entrenched in the discipline given that

current guidelines take the (unconditional) distribution as a starting point and largely omit discussing

the transformation (e.g., Blevins et al., 2015). The same is true in empirical applications of GLMs;

58% of the reviewed articles that applied a GLM justified the model choice based on the distribution

of the dependent variable, 42% did not justify the model choice, and just one article (Mata & Alves,

2018) focused on the link function when choosing a model. As discussed earlier and demonstrated

with the coin throw example, this practice can lead to choosing a functional form that has a poor fit

with the studied phenomenon.

How should the (conditional) distribution be chosen? Because distributions represent variation of

the dependent variable due to variables other than the ones in the model, the choice of a distribution

can be difficult to motivate based on theory. Hence, the question becomes which distribution should

be applied if the chosen distribution may, in fact, be incorrect? GLM models are estimated with

maximum likelihood estimation, which has been proven to be consistent and asymptotically efficient

if the model is specified correctly (Lehmann & Casella, 1998, pp. 443–450; Wooldridge, 2002,

Chapter 13), including the correct (conditional) distribution for the dependent variable. Unfortu-

nately, maximum likelihood estimation is generally not robust to misspecification of the distribution
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and becomes inconsistent (Wooldridge, 2002, Chapter 13). But fortunately, there are exceptions to

this rule. A case in point is linear regression, which assumes a normal distribution of the error term

but works well with any distribution if the model is otherwise specified correctly, as previously

discussed. With exponential models, the Poisson distribution has been proven to produce consistent

estimates regardless of the actual distribution and can be even used for noncount data (Cameron &

Trivedi, 1998, Chapter 3; Gourieroux et al., 1984; Silva & Tenreyro, 2006; Wooldridge, 2010,

Chapters 18.2–18.3, 2013, Chapter 17.3). If the model uses the logit curve, we can use the Bernoulli

distribution for the same effect (Wooldridge, 2002, Section 19.4.2), and the data do not need to be

binary but can also be fractions (i.e., in the [0, 1] range). In these cases, the estimates are QML, and

heteroskedasticity-consistent (robust) standard errors must be used.

The current practice of choosing between Poisson regression and negative binomial regression is

to estimate both models and choose the best fitting one with a likelihood ratio test (e.g., Blevins

et al., 2015). To understand why this rule is potentially problematic, we need to consider the four

different scenarios in Table 9. Negative binomial regression is a safe choice and may also be more

efficient when the distribution of the dependent variable (conditionally on the independent vari-

ables) is Poisson or Poisson with overdispersion. In other cases, negative binomial regression can be

inconsistent and should not be used. The problem with using the likelihood ratio test to determine

which distribution to use is that the test does not provide evidence that the negative binomial

distribution is correct but only that the data are more likely to come from a negative binomial

distribution than from a Poisson distribution. Thus, the use of negative binomial distribution should

be limited to scenarios where there is a strong theoretical reason to believe that that distribution is

indeed correct, and the Poisson distribution should be used instead as a default alternative due to its

more general consistency. Although none of the articles in our review justified the distribution based

on proven consistency, other articles have done so (e.g., Carnahan & Somaya, 2013, p. 1587; Wu,

2011, p. 936).

To summarize, when using a GLM, a researcher needs to choose a link function that describes

how the independent variables are related to the expected value of the dependent variable and a

(conditional) distribution for the dependent variable around the expected value. The first deci-

sion should be based on theory or, if theory does not provide enough guidance, on an empirically

identified relationship. The choice of which distribution to use in the model affects the robust-

ness and efficiency of the analysis. In models that use a log link, Poisson distribution has been

proven to produce consistent estimates, and the same has been proven for the Bernoulli distri-

bution in the case of a logit link. Given that consistency is the most important feature of

Table 9. Consistency and Efficiency of Poisson Regression and Negative Binomial Regression in Four Different
Scenarios of Conditional Distribution.

Conditional distribution of the dependent
variable Poisson regression

Negative binomial
regression

Conditional distribution is exactly Poisson. Consistent, efficient Consistent, inefficient

Conditional distribution is Poisson-like with
overdispersion.

Consistent, inefficient, SEs may be
inconsistent

Consistent, efficient

Conditional distribution is Poisson-like with
underdispersion.

Consistent, inefficient, SEs may be
inconsistent

Inconsistent

Conditional distribution is not Poisson-like Consistent, SEs inconsistent Inconsistent

Note: For proofs, see Wooldridge (2002, Sections 19.2.2, 19.3.1). Conditional distribution refers to the conditional distri-
bution of the dependent variable for a specific set of independent variables, not the unconditional distribution.

69Rönkkö et al.



estimation results, these two distributions should be preferred over negative binomial (log link)

or gamma (logit) distributions unless there are strong theoretical reasons to believe that the

chosen distribution holds for the data. A likelihood ratio test between two models does not

provide this information. See Villadsen and Wulff (2020) for an excellent discussion on the

distribution choice.

Guideline 6: Do Not Default to Power Transformation When Modeling U-Shape and Other
Curvilinear Effects; Consider Different Alternatives Instead

Adding squared independent variables to a model is currently the dominant practice for modeling

nonlinear relationships in organizational research; out of the 18 (17%) articles that stated some kind

of nonlinear hypothesis, just one did not use a squared independent variable (Bamberger et al.,

2018). Out of the 19 (18%) studies that did use a power transformation, just two did not state a

nonlinear hypothesis (DeOrtentiis et al., 2018; Hou et al., 2017), but even these articles used power

terms to model nonlinearity.11 Thus, there is a strong convention that nonlinear effects should be

tested by adding power terms to the model and that power terms should be used only for that

purpose.

The almost exclusive use of power terms is problematic because it can lead to incorrect inference

of a U-shape effect. Power terms assume a specific form of nonlinearity (parabola opening up or

down) and can lead to incorrect inference of a U-shape effect if this form does not fit the data well.

For example, fitting a parabola to a data set where y ¼ log(x) would erroneously indicate the

presence of a U-shape (first up, then down, or the other way) effect. An opposite incorrect conclu-

sion of an increasing trend could be made if y first increases gradually but then decreases steeply

(Simonsohn, 2018, Figures 2, 3). We show this effect in the first panel of Figure 8, which shows a

binned scatterplot and second-order polynomial curve produced by the binsreg command and an

exponential curve fitted with Poisson QML regression for reference. Because the inflection point of

the U-shape curve falls within the range of the data (Haans et al., 2016), we would conclude that

education has a negative effect on income for about the first 8 years of schooling, which does not

sound realistic.

Figure 8. Binned scatterplot matrix, spline regression, and fractional polynomial regression for discovering
functional form between income and education.
Note: The hollow circles indicate the data, and the solid red circles are the binned scatterplot.
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Although the exponential model is clearly a better alternative for modeling the nonlinear effect of

education on income, it is not a universal solution; the exponential form is a specific form, which

may not fit all data well and cannot be used to test U-shape effects the same way that power terms

can be used. Regression splines provide an alternative approach for modeling nonlinear effects.

Here, the idea is to fit a linear model that has one or more knots, where the direction of the regression

line changes. An in-depth explanation of spline regression is beyond the scope of this article, but we

refer the reader to Edwards and Parry (2018) for details. Of the reviewed articles, Kim and Rhee

(2017) and Rawley et al. (2018) used splines with fixed knots to capture nonlinearities in the data.

Simonsohn (2018) proposed a variant of this technique and an accompanying test. This technique

was used by Shin and Grant (2019) in a recent publication. Another alternative is the use of

fractional polynomials (Nikolaeva et al., 2015; Royston & Sauerbrei, 2008; Sauerbrei et al.,

2006), but this strategy was not applied in any of the reviewed articles.

The second plot of Figure 8 shows a spline regression with two knots estimated from the data. We

chose to use two knots because we assumed that the effects of education probably increase after

primary education and further increase at the university level. However, this assumption was not

supported empirically because there is just one clear change in direction in the plot. This suggests

that the effect of education is steady for primary and secondary education, after which the effect

increases steeply. The spline model also fits the higher education occupations much better than

either the exponential or polynomial curve.

To summarize, the currently dominant practice of estimating nonlinear effects in organizational

research is to add a second power of the independent variable to the model. Although this approach

is useful in detecting whether nonlinearity exists, it may not be ideal for detecting what kind of

nonlinearity is present in the data and can lead to incorrect interpretations. Instead of the routine

application of power terms, we suggest that researchers also consider other transformations, such as

the log transformation of the dependent variable or a GLM or by using regression splines, which

provide a flexible alternative for modeling nonlinear effects.

Guidelines for Interpreting Models With Transformations

Our review indicated that nonlinear models were commonly interpreted incompletely or even

incorrectly. This is a major problem because the form and strength of the relationship between the

focal variables should be of prime theoretical interest (Edwards & Berry, 2010). Therefore, we will

now present two guidelines for improving the interpretation and reporting practices.

Guideline 7: Interpret Nonlinear Effects by Plotting, Including Confidence Intervals and the
Data in the Plot

The interpretation of a linear model is straightforward: The regression coefficient gives the expected

increase in the dependent variable as an independent variable increases by one unit, and this effect is

constant through the range of the independent variable. The case of nonlinear models is more

complicated because changing an independent variable by one unit produces a different absolute

change in the dependent variable depending on the current value of the dependent variable, the

independent variable, or both. Consequently, several different interpretation techniques were

applied in the reviewed articles, as summarized in Table 10. The most common strategy was to

simply look at the p values and the sign of the coefficient to infer the direction of the effect, ignoring

both the strength and form of the relationship. The second most common approach was to use

prediction plots, but this is mostly explained by the convention of doing so with models containing

interactions or powers as independent variables. Only one article that did not use powers or inter-

actions plotted the effects (Eggers & Kaul, 2018). The remaining articles used direct interpretations,
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Table 10. Summary of Different Interpretations of Nonlinear Effects in the Reviewed Articles.

Modeling Technique N

Interpretation

p Values
Only

Coefficients

AME/APE

Predictions

Other
StatisticsOriginal Transformed Plot

No
plot

Transformed
DV

Log transformation 16 5 1 2 1 7 0 0

GLM Logistic
regression

32 14 0 11 3 5 1 1

Probit regression 18 6 0 0 4 6 1 1
Poisson and NB

regressions
24 10 2 5 3 3 0 1

Ordinal and
nominal models

5 1 0 0 2 2 0 0

Transformed
IV

Log transformation 21 9 1 2 2 6 1 1
Power

transformation
19 5 2 1 0 12 0 2

Total 107 41 5 18 13 27 2 4

Note: The frequencies do not sum to the total count because each article can belong to multiple categories but is included in
the total just once. AME ¼ average marginal effect; APE ¼ average partial effect; DV¼ dependent variable; IV ¼ independent
variable; NB ¼ negative binomial.

Table 11. Interpretation of Log-Transformed Variables as Elasticities and Semielasticities.

Model
Dependent

Variable
Independent

Variable

Interpretation of b1

Exact Approximate One-Unit Change

Level-level,
linear

y x Dy ¼ b1Dx Dy ¼ b1Dx One-unit
increase
in x
increases
y by b1
units.

Level-log,
semielasticity

y log xð Þ Dy ¼ b1logð1þ %Dx) Dy � b1=100ð Þ%Dx 1% increase
in x
increases
y by
b1=100
units.

Log-level,
semielasticity

log yð Þ x %Dy ¼ exp b1ð ÞDx � 1 %Dy � 100b1Dx One-unit
increase
in x
increases
y by
100b1%.

Log-log,
elasticity

log yð Þ log xð Þ %Dy ¼ exp b1ð Þlog 1þDx%ð Þ� 1 %Dy � b1%Dx 1% increase
in x
increases
y by b1%.

Note. Interpretation of regression model f yð Þ ¼ b0 þ b1f xð Þ þ u or equivalent GLM y ¼ g b0 þ b1f xð Þð Þ þ u: Based on
Wooldridge (2013, Table 2.3). Da refers to absolute change in variable a, and %Da refers to relative change in variable a
expressed as percentage.
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average marginal or partial effects (AME or APE), or other statistics that were not reported in detail.

We will next discuss different interpretation techniques in some detail.

Interpretation Based on Numbers. Exponential models can be conveniently interpreted as giving

approximately the percentage change in the dependent variable relative to its current value when

an independent variable increases by one unit, as shown in Table 11. This works well when the

percentage change is small, but already at the regression coefficient of 0.3, the difference between

the approximation (30%) and the results from the exponential model (1.35) is 5 percentage points

(Wooldridge, 2013, pp. 192–192).

Another alternative is to exponentiate the coefficients (i.e., interpret exp[b] instead of b), which

can be interpreted either as percentage changes or as ratios. If interpreted as percentage change, an

exponentiated coefficient gives a more accurate estimate of a positive one-unit change at the

expense of the accuracy of a comparable negative change.12 Thus, if a percentage change inter-

pretation is needed, the approximate interpretation should be preferred unless there are good reasons

to focus only on the positive changes of the independent variable. When interpreted as ratios (e.g.,

incidence rate ratio, odds ratio), an exponentiated coefficient indicates that the current value of the

dependent variable is multiplied (positive effect) or divided (negative effect) as the independent

variable changes. For example, the ratio of 2 indicates a þ100% increase for a positive effect or a –

50% decrease for a negative effect (for an exemplar use, see e.g., Turner & Rindova, 2018, p. 1265).

The most common ratio-based interpretation was the use of odd ratios with logistic regression.

Unfortunately, their interpretation is not easy, and indeed about 27% of the articles applying odds

ratios interpreted them incorrectly. The most common error was interpreting the odds ratios as changes

in probabilities, which cannot generally be done because the probability depends on the base odds.

Moreover, the parameter estimates of logistic models, and consequently the odds ratios, are negatively

biased unless all relevant independent variables are included in the model (Breen et al., 2018).13

Reporting the APE or AME (Wooldridge, 2013, p. 592) is an interpretation strategy that can be

applied to all nonlinear models. In this approach, we estimate the predicted marginal effect—

expected change in the dependent variable when an independent variable changes by a very small

amount—for each observation and report the average. This strategy essentially expresses a nonlinear

effect as a single linear effect and tends to produce very similar results to just applying a linear

model (Angrist & Pischke, 2009, pp. 59, 76–78; Breen et al., 2018; Simonsohn, 2018), as demon-

strated in Table 7.14 However, although it simplifies the interpretation, it also makes this approach

difficult to justify. If linear interpretation is desired, using a linear model in the first place would be a

simpler solution.

Interpretation Based on Plotting Predictions. Calculating and plotting predictions is a general strategy

that can be used with all nonlinear models. Predictions can be calculated in two different ways that

are not sufficiently clearly distinguished in the literature: adjusted predictions (sometimes referred to

as predictive margins or recycled predictions) and predictions at means. Calculating adjusted pre-

dictions involves using the estimated model to calculate predicted values of the dependent variables

for every observation by altering one or more of the independent variables and holding other

independent variables at their observed values. Prediction at means involves first calculating a mean

for each variable in the model and then calculating predictions for a hypothetical observation that

would have all of the variables at their mean values. The difference between the two prediction

approaches can be understood with an example. Table 12 shows data on education from a sample

consisting of five men and five women. We want to calculate predictions for six different levels of

education between the ages of 6 and 16 years. With adjusted predictions, we would first adjust all

observations by replacing the original values of education with 6, then calculate a prediction for each

of the five women and five men, and then take a mean over all observations. This would be repeated
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for all education values to get the six average adjusted predictions. When predicting at means, we

would calculate just one prediction for each education value for a hypothetical person that is half

man and half woman. Although these two predictions are the same in linear models, in nonlinear

models, they are not, and the conclusions can be different (Long & Mustillo, 2019; Wooldridge,

2013, pp. 591–592).

Calculating the effects at mean values also hides the fact that a nonlinear effect can look quite

different at different values of the independent variables. Consider the following models:

Linear: y ¼ aþ b1xþ u ð10Þ

Exponential: y ¼ eaþb1x þ u

¼ eaeb1x þ u
ð11Þ

Logit: y ¼ logistic aþ b1xð Þ þ u ð12Þ

where x is the variable of interest and a is the effects of all other variables and the intercept. In a

linear model, a simply indicates the intercept of a set of parallel lines showing the constant effect of

x. In contrast, in an exponential model, the effects of a are not additive but multiplicative. In the logit

model, a indicates how far along the logistic curve (inverse logit) the observation starts. If an

observation is in the relatively flat part of the curve, x has a small marginal effect, but things are

different in the steep middle part of the curve. Figure 9 shows the effect of x for different values of a.

For this reason, it is important to plot the marginal predictions at different values of the variables

other than the one of interest. However, except for articles estimating interaction models, not a single

study plotted multiple curves.

As explained previously, plotting the prediction curves allows the interpretation of the form of the

relationship in a way not possible with numerical summaries. However, nearly a third of the articles

that used prediction plots for interpretation did so incorrectly (30%). The most common error was to

visualize a nonlinear relationship as a straight line.15 The reviewed articles also rarely reported

which of the two prediction approaches they were using, leaving the impression that researchers may

not be aware of the difference between these two methods and the fact that adjusted predictions are

Table 12. Adjusted Prediction and Predictions at Means Using Example Data.

Observed Predictors Predictions at Different Education Values

Woman Prestige Education 6 8 10 12 14 16

0 43 8 6,912 7,023 7,137 7,252 7,369 7,488
0 52 11 8,425 8,561 8,699 8,840 8,982 9,127
0 69 13 12,247 12,444 12,645 12,849 13,056 13,267
0 23 10 4,452 4,523 4,596 4,670 4,746 4,822
0 20 8 4,167 4,234 4,303 4,372 4,443 4,514
1 33 12 5,497 5,586 5,676 5,768 5,861 5,955
1 51 11 8,168 8,300 8,434 8,570 8,708 8,848
1 36 11 5,872 5,967 6,063 6,161 6,260 6,361
1 62 14 10,405 10,572 10,743 10,916 11,092 11,271
1 30 8 5,146 5,229 5,313 5,399 5,486 5,575

Average adjusted
prediction

7,129 7,244 7,361 7,480 7,600 7,723

Prediction at means 0.5 41.9 10.6 6,716 6,825 6,935 7,047 7,160 7,276

Note: Predictions with exp :847þ :008� Educationþ :022� Prestige� :009�Womanð Þ.
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generally superior to predicting at means when nonlinear models are used. Of the articles that

calculated predictions, about half (51%) did predictions at means, and a third (35%) used adjusted

predictions. For the remaining 14% of the articles, we could not determine which of the two

approaches was used.16

Figure 9. Effects of other variables on the relationship between x and y in linear, exponential, and logistic
models.
Note: Lines are drawn by changing the values of other variables. In the linear model, changing the other
variables causes a vertical shift (addition). In the exponential model, other variables act as a multiplier. In the
logistic model, other variables determine how far along the logistic curve the observation is. The first logistic
plot shows a scenario where the observations are all in the steep part of the logistic curve, and the second
logistic plot shows a scenario where some observations are in the relatively flat part and some in the steep part
of the logistic curve.

Adjusted predictions

curve and confidence

band quantifying the 

precision of the curve.
Contour plot shows where 

the observations are. The 

innermost 

area with most observations.

curve shows the 

Rug plots on the axes. 

Each line indicates an 

observation.

Figure 10. Adjusted predictions plots of the effect of education on income with confidence bands and
visualization of location of the observations for the full Prestige data and for subsamples.
Note: The contour plots show the two-dimensional density of the observations, and rug plots show the
location of individual observations on both variables. Annotations in the first plot explain the interpretation of
the graphics elements.
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Improvements to Plotting Practices. In addition to showing the functional form, it is important to show

the precision of the estimate and to provide evidence that the chosen form fits the data. Confidence

bands can be included to accomplish the first task (Mize, 2019). To support the chosen functional

form, we recommend that researchers not only visualize the predicted curves but also indicate where

their data are in the same plot (Fife, 2020), either by plotting the cases (as done in, e.g., Figure 3) or,

if not possible due to their large number, by using rug and contour plots, as shown in the first plot of

Figure 10. A contour plot shows which parts of the plot the observations are located in (have higher

density) using a set of nested simple closed curves. The innermost curve shows the part of the plot

area with the most observations, which get sparser as one moves toward the outer curves. A rug plot

indicates how the observations are distributed along each variable by using small ticks on the axis.

This can be useful because it indicates the range and distribution of each variable without providing

any information on specific variable combinations that may be confidential. Unfortunately, showing

the data in an adjusted prediction plot is not common. Only two of the reviewed articles presented

any information where the data were the located in the plot.17

Overlaying an adjusted prediction curve on the data works well when a single variable explains

the pattern between two variables well but may not be as effective in other scenarios. To demon-

strate, we add prestige as a control variable in Model 4 in Table 7, causing the effect of education to

disappear.18 The second plot of Figure 10 shows that the adjusted prediction curve does not explain

the pattern in the data well. To better visualize this kind of effect, we can divide the data set into five

quantiles by prestige and plot the prediction curves separately for each subsample. The resulting five

curves show that the model indeed explains the data well, although the effect of education is not

what one would expect.

To summarize, we recommend that adjusted predictions (not predictions at means) should be

used for interpreting nonlinear models. As a graphical interpretation technique, this approach pro-

duces results that are easier to interpret (compared to, e.g., exponentiated coefficients) and clearly

present the nature of the nonlinear effect (compared to, e.g., APE/AME). Although previous

research has called for graphical interpretations of specific classes of nonlinear models (Hoetker,

2007; Wulff, 2015), we extend this recommendation to generally all nonlinear models. These plots

should show confidence bands (Mize, 2019) and also indicate the positions of the observations. This

will provide evidence of both the appropriateness of the nonlinear functional form as well as the

magnitude of the effects.

Although plots can be conveniently produced with spreadsheets designed for plotting interaction

models, some of which even support nonlinear models (e.g., Dawson, 2014), the ones we are aware

of do not support confidence bands, are limited to predictions at means, and provide little support for

visualization of the observations. Because of this, we do not recommend their use. We recommend

instead that statistical software be used. Adjusted prediction plots have been available in leading

statistical software for years (Breheny & Burchett, 2017; Fox, 2003; Williams, 2012), and adding a

scatterplot of the data is not difficult to do (e.g., Mitchell, 2012b, p. 448). To facilitate the adoption

of these techniques, the Supplemental Material available in the online version of the journal provide

examples in R and Stata and an online calculator for users of other statistical software.

Guideline 8: Do Not Infer Moderation From an Interaction Effect but From a Plot

Testing moderation hypotheses with nonlinear models requires special care because using interac-

tions in these models can produce confusing results (Mize, 2019). Murphy and Russell (2017)

claimed “inappropriate use of transformations” (p. 552) to be one cause of small moderation effects

in management research, but the problem is not inappropriate use of transformations. It is, instead,

inappropriate interpretation of the modeling results. Typically, the statistical significance of the

interaction term would be checked. If not significant, one would conclude that there is no support for
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the moderation effect, and the results would not be interpreted any further. Indeed, out of the 77

articles that tested a moderation hypothesis with a model containing interactions, 14 (18%) inter-

preted the interaction coefficient or its significance when testing a moderation effect. However, only

checking the interaction provides a misleading picture of moderation (Greene, 2010; Mize, 2019;

Mustillo et al., 2018).

To discuss moderation testing, we need to first define what moderation is. Unfortunately, the

concept itself is often defined imprecisely. For example, Dawson (2014) stated the following: “In

general terms, a moderator is any variable that affects the association [emphasis added] between two

or more other variables; moderation is the effect the moderator has on this association” (p. 1). This

definition is problematic because the main hypothesis defining the association typically leaves its

form (e.g., linear, exponential) undefined, resulting in considerable ambiguity about what exactly a

moderation effect means. Consider, for example, the following hypothesis:

Hypothesis 2: The positive effect of education on income is moderated by percentage

of women; the effect is stronger for occupations with less women.

Assume that a typical man and woman earn $6,000 and $4,000, respectively. If a typical man goes to

school for one additional year, he should expect a $600 or 10% increase in salary. Now, consider the

same effect for a typical woman under three scenarios, a $400, $500, and $600 effect corresponding

to 10%, 12.5%, and 15% increases in salary. The effect of education is positive for both genders in

all three scenarios, but is the effect moderated by gender, and if so, in which direction? This question

is ill-defined unless one is willing to assume a specific functional form. The answer depends on

whether one is interested in percentage increase (exponential curve) or absolute increase (linear

model). Particularly, in the second scenario ($500 or 12.5% for women), the moderating effect of

gender would even have a different sign ($100 less vs. þ2.5 percentage points more for women)

depending on the chosen functional form (i.e., absolute vs. relative effects).

The effect of functional form is shown in the last two regressions in Table 7. The linear Model 5

has a significant interaction term, whereas in the nonlinear Model 6, the interaction term is non-

significant. Nevertheless, Figure 11 shows a clear moderation effect if absolute income is consid-

ered: The effect of education is much stronger for men-dominated occupations in both plots. It also

Figure 11. Comparison of linear and nonlinear models where education and share of women interact.
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shows why plotting the data is helpful in choosing a model: The linear model clearly extrapolates the

data and underpredicts the incomes of higher education occupations, particularly those with more

women, and hence does not fit as well as the nonlinear model.

Why is an interaction effect not required to infer moderation? The reason is that in the expo-

nential model, the effects are multiplicative instead of additive, as noted before. The lack of a

significant interaction term thus does not mean a moderation effect would not exist in absolute

terms (Russell & Dean, 2000); it is simply presented in an alternative form, as Figure 11 shows.

Similarly, if the appropriate model for the data is an exponential model, then fitting a linear model

can produce significant interactions that did not exist in the exponential model. This is a form of

confounding interactions with nonlinearity (see also Cortina, 1993). The same logic also applies to

logistic models, where a moderation effect can exist even if there is no interaction in the model, as

shown in McCann and Folta (2011, Figure 2). In some instances, the logit and linear models can even

produce interaction coefficients of different signs (Ganzach et al., 2000). Plotting the effects can also

resolve such apparent contradictions. Indeed, 51 (66%) of the reviewed articles that tested modera-

tion hypotheses did so by plotting, although in eight cases, this was done incorrectly by visualizing a

nonlinear model as a set of straight lines instead of using the curves that the model implied.

Should we interpret Figure 11 as supporting a moderation effect? Ideally, moderation hypotheses

should be stated in a way that leaves no room for ambiguity (see also Gardner et al., 2017). If we

assume that the effect of education on income is relative to the current income level, we could state

an alternative, more precise moderation hypothesis:

Hypothesis 2a: The positive relative effect of education on income is moderated by percentage

of women; the effect is stronger for occupations with fewer women.

The results shown in Table 7 and Figure 11 would not support Hypothesis 2a. Even though the

absolute increase of income is greater for men-dominated occupations, the results do not demon-

strate that education would increase income differently between men and women. Both experience

the same relative effect, and the differences in the absolute effect are simply due to men earning

more regardless of the education level.

To summarize, nonlinear models neither hide nor produce spurious moderation results, although

an incorrect interpretation can do so. Testing a moderation hypothesis requires a comprehensive

interpretation, preferably through plotting, instead of just checking the significance of the interaction

term in the model. A key problem in testing moderation is that the main hypothesis and the

moderation hypothesis are typically imprecise, lacking the expected functional form. This creates

ambiguity because it is possible that moderation exists when considering absolute effects but not

when considering relative effects, as our example shows. It is also possible that the effects are both

moderated but in different directions. To resolve these issues, researchers should assess their models

more comprehensively and interpret results by looking at the shape of the curves in a plot and

comparing how well they match the data.

Conclusions

Our review of the methodological literature and empirical practice clearly indicate that organiza-

tional researchers should rethink their use of transformations. Decisions to use nonlinear models

(Blevins et al., 2015) or transformations (Aguinis et al., 2019; Becker et al., 2019) should not be

based on the distributions of individual variables but should be based on the expected functional

form of the relationship between independent and dependent variables, which should in turn be

based on theory. As such, transformations are not something that should be relegated to the data

preparation stage (Aguinis et al., 2019; Becker et al., 2019) but should be considered as an integral
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part of the research design, on par with the choice of independent variables in the models. Against

this background, the recent claims that the use of transformed variables for testing hypotheses would

be problematic are simply incorrect (Aguinis et al., 2019; Becker et al., 2019; Maula & Stam, 2020).

If the hypothesis does not specify a functional form, then any monotonic form should do (Edwards &

Berry, 2010). Unfortunately, despite recent calls for more precise theorizing, the current theories still

provide limited support for determining the functional form (Cortina, 2016; Edwards & Berry, 2010;

Ferris et al., 2012).

Our article highlights three key concerns. First, transformations are often applied either unne-

cessarily or at least with incorrect justification, such as relating to nonnormality of variables or

because the dependent variable is a count. Second, transformations are not always applied where

they should be. This is evident in the insufficient consideration the functional form is given when

framing hypotheses and in how omitting regression diagnostics that would provide evidence of a

given functional form appears to be the rule rather than the exception. Third, the nonlinear models

that transformations create are often interpreted incorrectly. We hope that these guidelines and

empirical examples will improve future research practice. The Supplemental Material available in

the online version of the journal provides example Stata and R code and a web-based tool for users of

other statistical software that should be helpful for researchers interested in adopting these

techniques.

Finally, we wish to point out two problems discovered during our review that are not directly

related to transformations and nonlinear models but are nonetheless worth discussing. First, many

articles document their analytical steps incompletely, leaving readers guessing how a statistic was

calculated based on the modeling results. To reduce such ambiguity, researchers should fully

disclose their analytical procedures, including publishing analysis files as supplements to the arti-

cles. Fortunately, the field seems to be moving in this direction as prominent journals are making

efforts to increase transparency in the empirical research process (Aguinis et al., 2018; Antonakis,

Banks, et al., 2019; Banks et al., 2019; Bergh & Oswald, 2020; Chen, 2018; Grand et al., 2018).

Second, there are several misunderstandings relating to the role of transformations in statistical

analysis in the organizational sciences. These myths may have been caused by the use of transfor-

mations without providing supporting citations (Becker et al., 2019). However, the loose citation

practice also extends to methodological guidelines that often cite books such as Cameron and

Trivedi (1998), Long (1997), Cohen et al. (2003), or Greene (2003) without providing a page,

chapter, or section number. The loose citation practice is problematic because it makes it difficult

for readers to verify whether the citation supports the presented practice given that some of these

books are difficult to navigate unless one is an expert in quantitative methods. Loose citation

practice also easily translates into loose argumentation. For example, the claim that regression

analysis requires normally distributed data or that the error term must be normally distributed are

strictly incorrect and misleading, respectively. The normality assumption pertains to the error term

and is only relevant in very small samples. We believe that more rigorous citation and use of

econometrics books focusing on what these books prove or demonstrate would contribute signifi-

cantly to avoiding these misconceptions.
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Notes

1. The percentage is calculated by first calculating the frequencies for each journal volume and then taking a

mean of these frequencies to adjust for differences in the number of articles in the journals. This number is

substantially larger than the 38% found by Becker et al. (2019) because they only reviewed manual

transformations and not generalized linear models (GLMs). In our sample, a manual transformation was

applied in 31% of cases. The difference between these two figures is probably attributable to differences in

how the numbers were calculated. When screening the articles, we excluded all latent variable models,

survival models, and articles without hypotheses from the total count.

2. Readers that are entirely new to GLMs or need a refresher can also watch the set of video lectures that we

provide as a supplement for the article at https://tinyurl.com/nonlinearmodels.

3. The percentages do not always add up to 100% because one article could present several justifications.

4. Justifying transformations based on a nonlinear relationship between the variables was less common except

for studies that applied power transformation to test a U-shape effect. Of the 42% of the articles applying a

manual transformation because of expected nonlinear form, just one article provided a theoretical justifi-

cation for a transformation other than power transformation (Cennamo, 2018, p. 3048); in this case, the log

transformation was justified due to decreasing marginal value of game titles on a video game platform.

Additionally, Zhang et al. (2017) reported that they “used the log transformation of [popularity] to adjust

for skewness and to capture the nonlinear impact of increasing industry popularity” (p. 1373). Although

Zhang et al. noted that they modeled a nonlinear relationship, we did not code this as a theoretical

justification because neither the form of nonlinearity nor why such form was expected was reported in

the article. In the articles that applied GLMs, just 9% did so based on nonlinear functional form expected

based on theory and 4% based on empirically identified nonlinearity.

5. The efficiency of an ordinary least squares (OLS) estimator is sometimes captured in the acronym BLUE:

Best Linear Unbiased Estimator (Wooldridge, 2013, Section 3.5). This means that among all possible

unbiased linear estimators, OLS has the smallest variance. In practice, this means that OLS produces the

most precise estimates. If the form of the heteroskedasticity is known, one can obtain more precise results

by using weighted least squares (WLS). However, this is rarely the case in applied research, and using a

heteroskedastic form estimated from the same data set leads to biased regression estimates (Wooldridge,

2013, Section 8.4). Perhaps for this reason and the fact that the efficiency difference between WLS and

OLS is sometimes small, WLS estimation has seldom been applied in organizational research.

6. For example, the log transformation would reduce the problems caused by the “megaphone opening right”

(Cohen et al., 2003, Figure 4.4.5B) form of heteroskedasticity but would not do much for the “barrel shape”

(Cohen et al., 2003, Figure 4.4.5C) or other forms of heteroskedasticity.

7. For example, Ouyang et al. (2018) hypothesized the following: “There is a curvilinear relationship between

matched favor giving and favor givers’ social status, such that the overall positive relationship is attenuated

at higher levels of matched favor giving” (p. 617).

8. Eggers and Kaul (2018) reported in a footnote that a negative binomial model, which uses log link,

produced similar results to their main analysis with a log-transformed dependent variable—as the
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technique should. However, they did not explain why log transformation instead of a GLM with a log link

was used in the study. Leahey et al. (2017) applied log transformation and linear model to two of their

dependent variables and a GLM with log link to a third but did not report whether these were considered as

alternatives or why the two different modeling approaches were used.

9. This follows from the calculation rules of exponentials b1 þ b3x2ð Þe16= b1 þ b3x2ð Þb1e6 ¼ e16=e6 ¼
e16�6 ¼ e10 ¼ 22; 026:47.

10. Villadsen and Wulff (2020) provide an illustration how the shape of the effect changes with different values

of b2 in their Figure 2, Panel B.

11. DeOrtentiis et al. (2018) used a power term to test for nonlinear effects of time and compared that to a linear

model. Hou et al. (2017) investigated the moderating effect of CEO tenure on the effect of pay on

performance on firm performance and added a square of CEO tenure to the model because previous

research has suggested a curvilinear relationship.

12. For example, if the coefficient is 0.3, the effect of a þ1 unit change is exp(.3)1 ¼ 1.35 or þ35%, and the

effect of –1 unit change is exp(.3)�1 ¼ 0.74 or –26%.

13. This bias is different from the omitted variable bias in linear models, which only occurs if the omitted

variables are correlated with the included independent variables, leading to endogeneity (Antonakis,

Bendahan, et al., 2014; Wooldridge, 2013, pp. 88–92). However, it also occurs when the omitted variables

are uncorrelated with the included ones (Breen et al., 2018).

14. For logit and probit models, this approach eliminates the bias due to omitted variables (Cramer, 2007;

Wooldridge, 2002, Section 15.7.1).

15. We note that using a line may be appropriate in specific circumstances. For example, if the main inde-

pendent variable is binary (e.g., an experimental manipulation), the estimated predictions are two discrete

values, there is no functional form involved, and linking the points with a line is the simplest possible

approach (e.g., Tu et al., 2018, Note 3). Busenbark et al. (2017, p. 2502) explicitly noted that the actual

model-based predictions would be more useful for interpretation than their figure showing linear

predictions.

16. Although most articles did not report which predictions were calculated, we inferred which approach was

used by checking the software defaults. For example, Stata’s margins command calculates adjusted pre-

dictions by default.

17. Soda et al. (2018) presented a scatterplot of the data in one of their plots, and Hornstein and Zhao (2018)

applied a binned scatterplot. Although a binned scatterplot is useful for verifying that the functional form of

the model is correct, it has the disadvantage that it hides the variation of the data, thus making it more

difficult to assess the magnitude of the effects.

18. Although this effect may seem surprising, it has a reasonable explanation: Education itself does not

increase income, but it enables access to more prestigious occupations that do so.
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