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a b s t r a c t

Speakers exhibit dialectal traits in speech at sub-segmental, segmental, and supra-segmental levels. Any
feature representation for dialect classification should appropriately represent these dialectal traits.
Traditional segmental features such as mel-frequency cepstral coefficients (MFCCs) fail to represent
sub-segmental and supra-segmental dialectal traits. This study proposes to use frequency domain linear
prediction cepstral coefficients (FDLPCCs) for dialect classification inspired by its long temporal summa-
rization during pole estimation. The i-vectors and x-vectors derived from both baseline (MFCCs, linear
prediction cepstral coefficients (LPCCs), perceptual LPCCs (PLPCCs), RASTA filtered PLPCCs (PLPCC-R)
and proposed (FDLPCC) features are used for identifying the dialects with support vector machine
(SVM) and feed-forward neural network (FFNN) as classifiers. Proposed FDLPCC features have shown
to perform better than baseline features such as MFCCs and PLPCC-Rs (best among LPCCs variants) by
an absolute improvement of 3.4% and 3.9% (in unweighted average recall (UAR)), with i-vector + SVM sys-
tem and 1.6% and 4.6% (in UAR), i-vector + FFNN system respectively. It is also found that there exists a
complementary information between the proposed and baseline features. Furthermore current studies
are compared with previous studies and it is found that performances of current studies are better than
previous studies.

� 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Dialect identification/classification refers to a process of auto-
matically identifying the dialect of a speaker, which indirectly pro-
vides the regional origin of the speaker. In this study, the dialect
classification task is carried out from the acoustic speech signal.

Dialectal variations can be observed at the phonemic level, syl-
labic level, or sentence level. Phonemic level variations include the
variations in the distribution of sounds and variations in articula-
tory trajectories within the same sound across dialects [1]. Syllabic
level variations across dialects occur due to variations in stress pat-
terns, intonation contour, duration, and articulatory trajectories
based on the rules defined for respective dialect [1,2]. Sentence
level variations across dialects occur due to variations in
sentence-level intonation and higher-level linguistic factors such
as usage of words, i.e., vocabulary [3]. From the above discussion,
it is evident that the dialect discriminant information can be found

not only by observing a single sound unit (phonemic/syllabic), but
also temporal dynamics across the sound units.

Conventional short-term spectral features such as mel fre-
quency cepstral coefficients (MFCCs) are derived by windowing
the signal with a window of length 10–30 ms and incorporate
weak temporal context using delta coefficients (D, and DD), and
shifted delta coefficients (SDCs) [4,5]. These windowed representa-
tions may fail to represent the instantaneous burst representations
of stops and fricatives and also may fail to represent temporal
dynamics across windows [6,7,8].

Representation for temporal dynamics of the speech signal can
be obtained at the acoustic level or at the phonetic level. Acoustic-
level temporal dynamics can be represented by segmenting the
speech signal into syllables either manually or automatically. In
[9], the speech signal is segmented into pseudo-syllables, and the
acoustic variations such as pitch, rhythm, and duration are investi-
gated for dialect classification. In [10], supra-segmental prosodic
variations obtained from pseudo-syllables are modeled using n-
gram language model. To take the advantage of temporal context,
two models (stochastic trajectory model (STM) and parametric
trajectory model (PTM)) are investigated on segmental cepstral
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coefficients in [11]. Temporal dynamics can also be modelled using
higher linguistic features such as phones [11–18]. The methods in
this approach involves a phone recognizer and modelling tech-
niques such as phone recognition followed by language model
(PRLM) and parallel-PRLM (PPRLM) [11–15]. These approaches
require an external phone recognizer and often the dialect identi-
fication accuracy depends on the performance of phone recognizer.
To overcome this, we investigate the effectiveness of acoustic fea-
tures that captures the longer temporal context.

In the present study, the effectiveness of frequency domain lin-
ear prediction cepstral coefficients (FDLPCCs) which has the ability
to capture the longer temporal context are investigated for dialect
classification. Traditional linear prediction, i.e., time-domain linear
prediction (TDLP) analysis estimates the spectral peaks by comput-
ing auto-correlation of a signal. By duality principle, frequency
domain linear prediction (FDLP) estimates temporal peaks by com-
puting auto-correlation of discrete cosine transform (DCT)
sequence [6,19–22]. Unlike conventional short-term spectral fea-
ture extraction methods, the sub-band FDLP envelope captures
extended temporal context as the estimated temporal peaks are
the resultant of long-timescale summarization [6]. We hypothesize
that the long temporal nature of FDLP spectrum may be advanta-
geous in discriminating dialects.

Fig. 1 illustrates the temporal variations in terms of amplitude
envelopes across six sub-bands (i.e., Fig. 1 (b)-(f)) for the word
’adult’ spoken by an American speaker (shown in Fig. 1 (i)) and
by a British speaker (shown in Fig. 1 (ii)). The speech signals
are shown in subplots (a) in Fig. 1. From the figure, it can be
clearly observed that the temporal variations in stress patterns
between American and British speakers are different. American
speaker stressed on the second syllable (see Fig. 1 (i) in time
interval of 250 to 500 ms) while the British speaker stressed on
the first syllable (see Fig. 1 (ii) in time interval of 100 to
200 ms) of a bi-syllabic word. Inspired by this observation, FDLP
based cepstral coefficients are investigated for dialect classifica-
tion in this study.

The deep neural network (DNN) architectures with convolu-
tion neural network (CNN) and time delay neural network
(TDNN) models were investigated in the previous studies [22–
31] which could capture long temporal context. Therefore, the
proposed (FDLPCC) and baseline features are investigated with
deep embeddings (x-vectors) derived from TDNN model along
with traditional factor analysis based i-vectors. They are also
compared to previous studies worked with UT-Podcast using
DNN architectures [23].

The contributions of this study are as follows:

� Application of FDLPCCs for dialect classification based on the
hypothesis that FDLP captures the longer temporal dynamics.

� Analysis of different temporal context representations such as
delta & double delta ðDþ DDÞ, and shifted delta cepstra (SDC)
coefficients for baseline and proposed features.

� Investigating the effect of different number of static cepstral
coefficients for dialect classification.

� Investigating the effect of different pole orders during the
extraction of sub-band FDLP envelopes for dialect classification.

� Investigation of i-vectors and x-vectors derived from baseline
and proposed features with support vector machine (SVM)
and feed-forward neural network (FFNN) classifiers.

� Comparison of proposed study results with the previous studies
that uses UT-Podcast corpus.

The remainder of the paper is organized as follows: Sec-
tion 2 gives the description of FDLP method to extract the
FDLPCCs. Details of the proposed dialect classification system
are given in Section 3. Section 4 gives the experimental setup,

which includes the corpus used, baseline features used for
comparison and evaluation metrics considered. Results of the
proposed dialect classification system and baseline systems
are discussed in Section 5 along with the comparison to previ-
ous studies that uses UT-Podcast corpus. Finally, Section 6 con-
cludes the study.

2. FDLPCCs feature extraction

Frequency domain linear prediction (FDLP) is an efficient
method for auto regressive (AR) modelling of temporal envelopes
of speech signal [6,19–22]. The AR model approximates the power
spectrum of the speech signal in time domain linear prediction
(TDLP), whereas in FDLP, an all pole model is fitted to the Hilbert
envelope (squared magnitude of the analytic signal). As the esti-
mated temporal peaks are the resultant of longer time signal, they
capture finer details of the linguistic units. We hypothesize that
the long temporal nature of FDLP spectrum may be advantageous
in discriminating dialects. The extraction of frequency domain lin-
ear prediction cepstral coefficients (FDLPCCs) from speech signal
involves two stages as shown in Fig. 2. The first stage (first seven
blocks in the figure) involves the estimation of sub-band temporal
envelopes and the second stage (next three blocks in the figure)
involves the extraction of cepstral coefficients from sub-band FDLP
envelopes. The steps involved in estimation of sub-band FDLP
envelopes are described in Section 2.1, and the extraction of cep-
stral coefficients (i.e., FDLPCCs) from FDLP envelopes are described
in Section 2.2.

2.1. FDLP method

This section describes the steps involved in the estimation of
sub-band FDLP envelopes from speech signal [20]. They are:

� Speech signal s½n� is pre-emphasized to remove the low fre-
quency variations caused due to recordings, and to emphasize
high frequency components.

x½n� ¼ s½n� � as½n� 1� ð1Þ
� DCT full-band sequence is computed by applying DCT over the
pre-emphasized signal (x½n�) for every second. Unlike short-
time segmental feature extraction methods, spectral transfor-
mation is done over a long temporal signal.

y½k� ¼ a½k�
XN�1

n¼0

x½n�cos ð2nþ 1Þpk
2N

� �
; ð2Þ

where k = 0;1;2 . . .N � 1 and

a½k� ¼
1ffiffiffi
N

p k ¼ 0ffiffiffi
2
N

q
k ¼ 1;2; . . . ;N � 1

8<
:

� Sub-band DCT components are derived by windowing the full-
band DCT sequence. The sub-band DCT sequence for a band f
(critical band windowing) is represented by ŷ½f �.

� Analogous to TDLP, applying DFT over the squared magnitude of
analytic signal gives auto-correlation of spectral coefficients.
The inverse DFT (IDFT) of zero-padded DCT sequence is called
even symmetric discrete time analytic signal. The analytic sig-
nal derived from each sub-band DCT component is given by:

qa½n� ¼ IDFTðŷ½f �Þ ð3Þ
Autocorrelation coefficients for each sub-band spectrum ŷ½f � is
derived by applying DFT over each sub-band analytic signal, as
given by:
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ry½s� ¼ DFTðjqa½n�j2Þ ð4Þ

� Similar to TDLP, these autocorrelations are used to obtain
linear prediction coefficients that are smoothed approxima-
tion of sub-band Hilbert envelopes. The LP order (or pole
order) to estimate LPCs modulate the efficient representa-
tion of sounds. The approximation of sub-band Hilbert
envelopes estimated using LPCs is referred as sub-band
FDLP envelope in this study. The sub-band FDLP envelope
captures extended temporal context as the estimated tem-
poral peaks are the resultant of long-timescale
summarization.

2.2. Extraction of FDLPCCs

� Energies in set of sub-band FDLP envelopes are integrated in a
long-term analysis window to obtain FDLP short-term frames.
To be analogous to short-time segmental feature extraction
methods, the window length and window shift are similar to
conventional methods.

� DCT is applied over logarithm of integrated FDLP energies
across sub-bands within a frame to obtain FDLPCCs for each
frame.

3. Dialect classification system

This section describes the stages involved in the proposed dia-
lect classification system. The proposed system consists of three
main parts as given in Fig. 3: front-end feature extraction, back-
end pre-processing, and classification. The feature extraction part
includes the extraction of FDLPCCs (static), and then the computa-
tion of temporal context by delta & double delta ðDþ DDÞ and
shifted delta cepstral (SDC) coefficients. Back-end pre-processing
involves the extraction of fixed length i-vectors/x-vectors from
the variable-length features. The last part classifies the fixed length
i-vectors/x-vectors into one of the dialect classes by using support
vector machine (SVM) and feed-forward neural network (FFNN)
classifiers.

3.1. Parameters used for FDLPCCs extraction:

In this study, the entire signal is considered to obtain the full-
band DCT sequence, and then the DCT sequence is multiplied with
mel-band Gaussian windows. Typically, the number of mel-band
Gaussian windows are given by:

nmel�bands ¼ dFhz2melðfs2Þe; ð5Þ

Fig. 1. Illustration of sub-band temporal envelopes estimated using FDLP for the word ’adult’ spoken (i) by an American speaker and (ii) by a British speaker.

Fig. 2. Block diagram describing the steps involved in extraction of FDLPCCs.
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where fs is the sampling frequency in Hertz (Hz) and Fhz2mel is a
function that converts Hz to mel using Slaney’s auditory tool box
[32] which will result in 37. However, different number of mel-
bands such as 13, 37, 80, 128 and 160 were investigated and it
was observed that number of mel-bands such as 37 and 80 gave
better performance compared to others. In all the experiments of
the study, 37 mel-bands are used.

Autocorrelation formulation of linear prediction is used to esti-
mate temporal poles for each sub-band FDLP envelope. The num-
ber of temporal poles is set to 160, similar to previous studies
[21]. However, the effect of number of temporal poles is investi-
gated in Section 5.4 for dialect classification. The gain normalized
sub-band FDLP temporal envelopes are integrated along time axis
within a window of 25 ms and half of it is used as window shift.
Static FDLPCCs are obtained by applying DCT over logarithm of
integrated FDLP energies across sub-bands within a frame. We
investigated the effect of number of static cepstral coefficients
(by varying from 13 to 60) on performance of dialect classification.
From static coefficients, D + DD and SDC coefficients [5] are also
derived, which are also investigated to see their effectiveness on
dialect classification 1.

3.2. Back-end pre-processing

Back-end pre-processing involves the extraction of fixed length
i-vectors/x-vectors from the variable-length FDLPCCs (based on the
number of frames in an utterance).

3.2.1. i-vector extraction
Extraction of i-vectors is motivated by the factor analysis

modelling, where features are represented in terms of uncorre-
lated components [33]. In this, GMM-UBM (trained on all utter-
ances) model is adapted to represent a variable-length utterance
in terms of fixed representation called super-vectors. Later by
the factor analysis, super-vectors are further compressed to
retain only an uncorrelated low-dimensional components of
super-vectors, which are called i-vectors. Adapted super-vector
m can be represented as m ¼ Mþ Tv; where M represent mean
super-vector obtained by training GMM-UBM with features from
all dialects, T represents total-variability matrix and v repre-
sents i-vectors. The means and variances of GMM-UBM are ini-
tialized using k-means clustering. Initial experiments were
conducted by varying number of Gaussian components (256,
512, 640, and 1024) with i-vector system trained with MFCC
features. From the experiments, it was observed that 640 Gaus-
sian components performed better than all others and hence the
number of Gaussian components is set to 640 across all the
experiments. GMM is trained with all the dialects to obtain
means of GMM-UBM model (represented by M) from the pre-
initialized means and variances using k-means clustering. Then
the means of GMM-UBM are adapted to each dialect class (rep-

resented by m). Factor analysis model is trained for 5 epochs to
learn the total variability matrix (represented by T) using Baum
welch statistics. From means (m and M) and learnt total vari-
ability matrix (T), 100-dimensional i-vectors are computed for
each utterance. More details about i-vector extraction can be
found in [33,35]. Matlab toolbox 2 is used for implementing i-
vector framework [36].

3.2.2. x-vector extraction
X-vectors were first introduced for extraction of speaker

embeddings [37], later extended to other speech applications
such as speech and language recognition [24,26,38]. The deep
embeddings extracted from the deep neural network (DNN)
trained to classify dialects are supposed to contain dialect dis-
criminant information. These embeddings are termed as
x-vectors. Traditionally, time-delay neural networks (TDNNs)
that are trained with long temporal context are used as DNN
architectures to extract x-vectors. The DNN architecture to
extract x-vectors contains TDNN layers (TD-layer), fully con-
nected layers (FC-layer), and pooling layer. TD-layer is defined
by input dimension, output dimension, and context, and FC-
layer is defined by input and output dimensions. Fig. 4 shows
the block diagram of TDNN architecture to extract x-vectors.
TDNN is trained by the baseline and proposed features (static
cepstral coefficients) to classify dialect, and x-vectors (or deep
dialect embeddings) are extracted from FC-7 layer. TDNN is
trained for 50 epochs with optimizer as adamW (adam with
weight decay). The dimension of x-vectors is 512 and ReLU
activation is applied across all the layers. Overall temporal con-
text captured by the TDNN in Fig. 4 to extract x-vectors is 23
frames. The configurations and architecture of TDNN are similar
to [38,40]. X-vector framework is developed using kaldi3 with
PyTorch libraries [38,40].

3.3. Classification

Finally, classifier predicts the dialect class using support vector
machine (SVM)/feed-forward neural network (FFNN) classifiers. In
the experiments, about 65% of the data is used for training and 35%
of data is used for testing as in [41]. A random split 25% of train
data is used as validation data. SVM classifier 4 of this study is con-
figured with a linear kernel. The regularization parameter C of SVM
[42] is set to value between 0:1 to 1:0 during validation.

FFNN classifier 5 of this study is a four layered neural network
with 2 hidden layers with dimension of 64. ReLu is used as activation
function at each layer. Training is configured by a learning rate of
0.01 with stochastic gradient descent (SGD) as optimizer and the

Fig. 3. Block diagram showing the dialect classification system with proposed features (FDLPCC) and back-end pre-processing approaches (i-vector and x-vector modelling).

1 https://github.com/iiscleap/FeatureExtractionUsingFDLP.

2 https://github.com/wangwei2009/MSR-Identity-Toolkit-v1.0
3 https://github.com/Snowdar/asv-subtools
4 https://scikit-learn.org/stable/modules/svm.html
5 https://github.com/yunjey/pytorch-tutorial/tree/master/tutorials/01-basics/feed

forward_neural_network
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batch size is set to 16. Maximum number of epochs is set to 2000
and the model with higher UAR on validation data is considered
for testing. For stable initialization of weights of neural network,
manual seed is set to 1024.

4. Experimental setup

This section gives the details of the corpus, evaluation metrics
considered, and baseline features used for comparison along with
the configurations used in extraction of features.

4.1. Corpus

The study uses the spontaneous speech corpus which was col-
lected by crawling web-based podcasts, which mainly contain
interviews and it is named as UT-Podcast [41]. The corpus consists
of three broad dialects of English: AU (Australian), UK (Britain), and
US (American). Since the data is spontaneous, it has many dialectal
variations. The total duration of speech used in train set is 5:2 hrs
with 2:1 hrs of AU, 1:2 hrs of UK, and 1:9 hrs of US. The total dura-
tion of speech used in the test set is 3:2 hrs with 1:6 hrs of AU, 0:4
hrs of UK, and 1:2 hrs of US. All the speech utterances are pre-
processed to remove non-speech segments and the resultant utter-
ance average length is of about 17 sec. The sampling frequency of
the data is 8 kHz.

4.2. Baseline features for comparison

The most popular and conventional Mel-frequency cepstral
coefficients (MFCCs) [43] and three variants of linear prediction
based features (linear prediction cepstral coefficients (LPCCs)
[44], Perceptual LPCCs (PLPCCs) [45], RASTA filtered perceptual
LPCCs (PLPCC-R) [46]) are considered as baseline features for dia-
lect classification. The baseline system architecture and configu-
ration are similar to that of the proposed system. For all the
features extraction, a window size of 25 ms and half of the win-
dow length are considered as window shift. Autocorrelation for-
mulation is used in all three variants of linear prediction based
features. Both the baseline and proposed feature representations
are investigated by varying number of static cepstral coefficients
(by varying from 13 to 60). From static coefficients, D;DD, and
SDC coefficients [5] are also derived, which are also investigated
to see their effectiveness on dialect classification. For D and DD
computation, a context of three is considered, and for SDCs a
standard configuration of N-d-p-K (N-1-3-7) is considered, where
N denotes the dimension of the static cepstral coefficients, d
denotes the delay/advance from the present frame; p is the shift
between consecutive delta computations; and K such delta com-
putations are concatenated to form N�K-dimensional SDC
coefficients.

4.3. Evaluation metric

Unweighted average recall (UAR) is considered as the evalua-
tion metric to assess the baseline and proposed dialect classifica-
tion systems. Further, we also report class-wise accuracies for
the best-configured baseline and proposed systems.

5. Results and discussion

In this section, both i-vector and x-vector representations
derived from baseline (MFCC, LPCC, PLPCC, and PLPCC-R) and pro-
posed (FDLPCC) frame-level features are investigated (in Sec-
tion 5.1) for dialect classification. To find the best configurations,
i-vector representations derived from baseline and proposed fea-
tures are investigated with two temporal contexts (i.e., static+D
+DD and static + SDCs) and by varying static cepstral orders from
13 to 60 (13, 20, 30, 40, 50, and 60). The higher number static coef-
ficients are included to determine whether higher order coeffi-
cients contain any additional information useful for the
classification of dialects. X-vector representations derived from
40-dimensional static cepstral coefficients (for baseline and pro-
posed) are investigated for dialect classification, which are shown
to perform better with i-vector representations.

The existence of complementary information is investigated in
Section 5.2 by fusing at frame- level (F-level) and utterance-level
(U-level) of baseline and proposed features for both i-vector and
x-vector approaches. The results of the present studies with SVM
trained with i-vectors/x-ve- ctors and FFNN trained with i-
vectors/x-vectors (derived from baseline and proposed features)
are compared with the previous studies (in Section 5.3) with both
conventional and modern deep neural network (DNN) classifiers.
Further, the effect of the number of temporal poles in the FDLPCC
feature extraction is investigated for dialect classification in
Section 5.4.

5.1. Effect of cepstral order and temporal context

Table 1 shows the performances for the baseline and proposed
features with static cepstral coefficients, by varying number of sta-
tic cepstral coefficients from 13 to 60 (13, 20, 30, 40, 50, and 60).
From the table, it can be observed that among the baseline fea-
tures, MFCC features performed better using 40-dimensional static
cepstral coefficients. LPCCs and PLPCCs performed better using 60-
dimensional static cepstral coefficients. PLPCC-R found to be better
with 30-dimensional static cepstral coefficients, while FDLPCCs are
better at 20-dimensional. Among all the features, proposed
FDLPCCs gave best performance (77.3%) and the performance of
FDLPCCs is consistently better at lower dimensional static coeffi-
cients (10, 20 and 30) compared to all the baseline features. Also,
it can be observed that the number of static cepstral coefficients

Fig. 4. Block diagram showing the architecture of time-delay neural network (TDNN) that is used to extract x-vectors (deep dialect embeddings).
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to be considered are not unique for various feature
representations.

Table 2 shows the performances for the baseline and the pro-
posed features with static+D+DD (e.g., results in 39-dimension
for 13-dimension static coefficients), by varying number of static
cepstral coefficients from 13 to 60. From the table, it can be
observed that among the baseline features, MFCC features per-
formed better with 20-dimension (i.e., 60-dimension for static+D
+DD). LPCCs performed better at 50-dimension (i.e., 150-
dimension for static+D+DD), and PLPCCs performed better with
60-dimension (i.e., 180-dimension for static+D+DD). PLPCC-R fea-
tures found to be better with 20-dimension (i.e., 60-dimension
for static+D+DD) while FDLPCCs is better at 13-dimension (i.e.,
39-dimension for static+D+DD). Among all the features, proposed
FDLPCCs gave best performance (81.3%) and the performance of
FDLPCCs is consistently better at lower dimensional static coeffi-
cients (10, 20, 30 and 40) compared to all the baseline features.

Table 3 shows the performances for the baseline and the
proposed features with static + SDCs (e.g., results in 13+(7�13)=
104-dimension for 13-dimension static coefficients), by varying
number of static cepstral coefficients from 13 to 60. From the table,
it can be observed that among the baseline features, MFCC features
performed better with 20-dimension (i.e., 20+(7�20)=160- dimen-
sion for static + SDCs). LPCC features performed better with 40 (i.e.,
40+(7�40)=320- dimension for static + SDCs). On the other-hand,
PLPCC and PLPCC-R features performed better with 30 (i.e., 30
+(7�30)=240-dimension for static + SDCs). Among all the features,
proposed FDLPCCs gave best performance (79%) at 30 (i.e., 30
+(7�30)=240-dimension for static + SDCs) and the performance
of FDLPCCs is consistently better at lower dimensional static coef-
ficients(10, 20 and 30) compared to the baseline features.

From the Tables 1–3, it can be observed that proposed FDLPCCs
shown better performance in comparison to the baseline features.
Also, it can be observed that most of the features performed better
for static+D+DD. UAR and class-wise accuracies are given in Table 4
for the best configurations (Tables 1–3) of baseline and proposed
features. From the results, it can be observed that all the features
are more accurate in detecting AU and US dialects. On the other-
hand, the proposed FDLPCCs shown significantly better discrimina-
tion of all the classes including the UK dialect even though the class
strength is low.

From Table 1, it can be observed that all the features performed
reasonably well with 40- dimensional static cepstral coefficients.
Hence 40-dimensional cepstral coefficients are used to train TDNN
for extracting x-vectors. Table 5 shows the performances (in UAR
and class-wise accuracies) of x-vector approach for both baseline
and proposed features. All the features of x-vector approach
performed better when compared to static cepstral coefficients of
i-vector approach (See Table 1). In comparison to best configured
i-vector approach (as in Table 4), performance of x-vector approach
for all features is inferior to i-vector approach (except for MFCC).
This inferior performance of x-vector approach may be due to
imbalanced classes and sparsity of UT-corpus.

5.2. Existence of complementary information

To know the existence of complementary information between
baseline and proposed features, experiments are carried out by fus-
ing at frame level (F-level) and utterance level (U-level) for both
the modelling approaches (i-vectors and x-vectors). In F-level
fusion of i-vector approach, 100-dimensional i-vectors are
extracted from fused baseline and proposed features (static+D
+DD). In U-level fusion of i-vector approach, 100-dimensional
i-vectors are extracted from each of baseline and proposed fea-
tures, resulted in 200-dimensional i-vectors. In F-level fusion of
x-vector approach, 512-dimensional x-vectors are extracted from
fused baseline and proposed features (static). In U-level fusion of
x-vector approach, 512-dimensional x-vectors are extracted from
each of baseline and proposed features, resulted in 1024-
dimensional x-vectors. Table 6 shows the performances (in UAR
%) of fusion experiments (column 5 and 6) along with individual
feature performances (column 3 and 4) for dialect classification.
From Table 6 with i-vector approach, it can be observed that U-
level fusion showed higher complementary information compared
to F-level fusion (except for fusion of MFCC and FDLPCC). With x-
vectors approach, it can be observed that both F-level and U-
level fusion shown higher complementary information in all the
cases in comparison to individual features. Between i-vector
approach and x-vector approach, i-vector approach seems to be
better for all the fusion sets in both F-level and U-level. This is
due to the inferior performance obtained with x-vectors of individ-
ual features, as discussed in Section 5.1. Overall, these results indi-
cates the existence of complementary information between the
baseline short-term features and proposed long-term FDLP
features.

5.3. Comparison of current studies with previous studies

This section compares the results obtained in the current study
(i-vectors/x-vectors derived baseline and proposed features with
SVM and FFNN classifiers) with the previous studies [40,23]. In
[41], both text based and audio based approaches were investi-
gated. In text based approach, term-frequency and inverse docu-
ment frequency (TF-IDF) was exploited. TF-IDF measures the
originality of word in a document. In audio based approach,
GMM super-vectors and i-vectors were used with SVM classifier.
A fusion of both text and audio approach is also investigated. In
[23], DNN classifiers such as feed-forward neural network (FFNN),
five-layer convolution neural network (CNN), AlexNet, VGG-11,
and ResNet-18 trained with STFT-spectrogram are investigated.
In this study, corpus is modified by segmenting the utterances of
UK dialect to handle imbalanced classes. FFNN is a DNN classifier
with three fully connected layers and five-layer CNN is a DNN clas-
sifier with five convolution layers for segmental-level processing
and fully connected layers for utterance-level processing. The other
DNN classifiers, AlexNet [47], VGG-11 [48], and ResNet-18 [49] are

Table 1
Performances (in UAR %) for the baseline and proposed features with static cepstral coefficients, by varying cepstral coefficients dimension from 13 to 60 (13, 20, 30, 40, 50, and
60) (i-vector approach).

Features/ #static coeff. static cepstral coefficients
13 20 30 40 50 60

MFCC 69.6 73.1 72.6 75.6 73.9 71.1
LPCC 69.6 67.3 67.5 66.9 69.4 69.8
PLPCC 67.4 69.2 71.4 70.1 68.9 72.1

PLPCC-R 66.7 69.4 72.2 72.0 70.9 70.0
FDLPCC 71.8 77.3 76.2 68.1 67.8 66.2
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typical deep architectures with varied number of convolution
layers.

Table 7 shows the performance of dialect classification (in UAR
% and class-wise accuracies) for previous studies and current stud-
ies. From the first set of previous studies (rows 3–6) shown in
Table 7, it can be observed that audio based approaches performed

better than text based approach. Within the audio based
approaches, i-vector approach performed better than GMM
approach. The fusion of both audio (i-vectors) and text based sys-
tems have shown an improvement in performance by 2.4% relative
UAR than i-vector system alone. It can be observed that the current
study with MFCC, PLPCC-R, and FDLPCC of i-vector + SVM approach

Table 2
Performances (in UAR %) for the baseline and proposed features with static+D+DD, by varying static cepstral coefficients dimension from 13 to 60 (i-vector approach).

Feature/ #static coeff. static +D+DD

13 20 30 40 50 60

MFCC 74.5 77.2 75.0 73.0 73.4 74.2
LPCC 67.3 69.3 68.6 71.5 74.4 73.4
PLPCC 68.7 70.5 75.4 72.1 71.6 71.6

PLPCC-R 75.3 76.6 74.9 73.1 73.5 71.2
FDLPCC 81.3 79.3 78.5 75.9 67.6 67.6

Table 3
Performances (in UAR %) for the baseline and proposed features with static + shifted delta cepstra (SDC), by varying static cepstral coefficients dimension from 13 to 60 (i-vector
approach).

Features/ #static coeff. static + SDCs

13 20 30 40 50 60

MFCC 76.8 77.9 77.1 76.1 73.9 68.8
LPCC 68.0 69.4 67.2 71.2 70.6 66.9
PLPCC 70.0 73.3 74.1 73.5 71.8 74.1

PLPCC-R 75.5 75.6 77.4 75.0 75.9 75.0
FDLPCC 78.2 78.4 79.0 72.1 69.0 64.7

Table 4
Performances (in UAR% and class-wise accuracies) for the baseline and proposed (FDLPCCS) features with the best configurations (from Tables 1–3) (i-vector approach).

Features/Class UAR AU UK US

MFCC (static + SDC) 77.9 87.3 56.1 90.4
LPCC (static +D+DD) 74.4 88.8 46.0 88.3
PLPCC (static +D+DD) 75.4 86.7 59.5 80
PLPCC-R (static + SDC) 77.4 84.0 62.9 85.4
FDLPCC (static +D+DD) 81.3 86.1 66.3 91.6

Table 5
Performances (in UAR% and class-wise accuracies) for the baseline and proposed (FDLPCCS) features with x-vector approach.

Features/Class UAR AU UK US

MFCC 76.7 88.9 56.2 85.0
LPCC 73.4 85.8 52.8 81.7
PLPCC 73.1 81.3 53.9 84.2

PLPCC-R 74.4 78.0 65.2 80.0
FDLPCC 75.4 67.4 67.4 81.3

Table 6
Performances (in UAR %) obtained for fusion of baseline and proposed features both with i-vector and x-vector approaches at frame (F-level) and utterance levels (U-level).

Approach Fusion of feats Feat1 Feat2 Fusion

(Feat1 + Feat2) UAR UAR F-level U-level
i-vectors MFCC + FDLPCC 74.5 81.3 84.0 83.2

LPCC + FDLPCC 67.3 78.0 81.4
PLPCC + FDLPCC 68.7 79.2 83.3

PLPCC-R + FDLPCC 75.3 78.5 83.1
x-vectors MFCC + FDLPCC 76.7 75.5 80.9 76.6

LPCC + FDLPCC 73.4 81.8 80.3
PLPCC + FDLPCC 73.1 76.4 80.0

PLPCC-R + FDLPCC 75.4 76.4 76.7
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outperformed the fusion system of previous study by 2.1%, 1.4%,
and 6.6% (relative UAR) respectively. Among the second set of pre-
vious studies (rows 8–12) shown in Table 7 with DNN classifiers
[23], it can be observed that AlexNet classified dialects better than
other DNN classifiers. Further, it can also be observed that all the
current studies (both i-vectors and x-vectors) with conventional
SVM and FFNN classifiers trained with baseline and proposed fea-
tures performed better than the DNN approaches. The inferior per-
formance of DNN can be attributed to data sparsity of UT-Podcast
dialect corpora.

The conventional SVM classifier with i-vectors modelled from
MFCC, LPCC, PLPCC, PLPC- C-R, and FDLPCC outperformed the best
DNN classifier (AlexNet) from previous studies by 20.0%, 14.6%,
16.2%, 19.3%, 25.3% (relative UAR) respectively. FFNN classifier
with i-vectors modelled from MFCC, LPCC, PLPCC, PLPCC-R, and
FDLPCC outperformed the best DNN classifier (AlexNet) from pre-
vious studies by 26.2%, 14.0%, 14.5%, 21.6%, and 28.7% (relative
UAR) respectively. The conventional SVM classifier with x-vectors
modelled from MFCC, LPCC, PLPCC, PLPCC-R, and FDLPCC outper-
formed the best DNN classifier (AlexNet) from previous studies
by 18.2%, 13.1%, 12.6%, 14.6%, and 16.2% (relative UAR) respec-
tively. FFNN classifier with x-vectors modelled from MFCC, LPCC,
PLPCC, PLPCC-R, and FDLPCC outperformed the best DNN classifier
(AlexNet) from previous studies by 14.0%, 5.9%, 10.5%, 10.0%, 8.3%
(relative UAR) respectively.

From the comparison between SVM and FFNN trained with i-
vectors, it can be observed that performance of FFNN classifier is

significantly better for MFCC, PLPCC-R and FDLPCC features, and
equally well performance for others. Unlike to above observation,
SVM trained with x-vectors performed better than FFNN with x-
vectors for all of the features. From the comparisons between i-
vectors and x-vectors derived from baseline and proposed features,
it can be observed that i-vectors performed better in all the cases
(except for MFCC). The best performance is achieved using i-
vectors + SVM and i-vectors + FFNN derived FDLPCCs with 81.3%
and 83.5% UAR respectively). From these results, it can be con-
cluded that the long temporal dependencies captured in FDLPCCs
are more advantageous for dialect classification, especially for
small corpora like UT-Podcast.

5.4. Effect of pole order used in FDLP for dialect classification

Number of poles (pole order) used for FDLPCC extraction, mod-
ulate the effective representation of transient sounds (with higher
pole order) versus slowly varying sounds (with lower pole order)
[6]. This section investigated the effect of pole order (from 13 to
300) used in extraction of sub-band FDLP envelope for dialect clas-
sification. Fig. 5 shows the performance (in UAR %) of proposed dia-
lect classification system (along y-axis) for different pole orders
(along x- axis) used in extraction of FDLPCCs. From the UAR plot,
it can be observed that performance is stable for poles above 50
and the best dialect discrimination can be achieved by using 200
poles. From this, it can be concluded that the high transient sounds

Table 7
Comparison of current studies with previous dialect classification models over UT-Podcast corpus (in UAR% and class-wise accuracies).

Arch. type UAR AU UK US

Text and audio based approaches from previous studies [40]

Audio System (GMM) 60.3 85.5 32.6 62.9
Audio System (i-vector) 74.5 78.0 61.8 83.8

Text System (TF-IDF logistic regression) 58.7 83.1 32.6 60.4
Audio-Text system (Fusion) 76.3 86.1 60.7 82.1

DNN classifier from previous studies [22]

FFNN 61.4 70.8 50.6 62.9
Five-layer CNN 62.8 64.8 41.6 82.0

AlexNet 64.9 58.4 64.0 74.2
VGG-11 54.4 55.7 48.3 59.2

ResNet-18 61.7 69.3 38.2 77.5

SVM trained with i-vectors (current study)

MFCC (baseline) 77.9 87.3 56.1 90.4
LPCC (baseline) 74.4 88.8 46.0 88.3
PLPCC (baseline) 75.4 86.7 59.5 80

PLPCC-R (baseline) 77.4 84.0 62.9 85.4
FDLPCC (proposed) 81.3 86.1 66.3 91.6

FFNN trained with i-vectors (current study)

MFCC (baseline) 81.9 84.6 73.0 87.9
LPCC (baseline) 74.0 77.4 62.9 81.7
PLPCC (baseline) 74.3 68.1 73.0 81.7

PLPCC-R (baseline) 78.9 78.6 68.5 89.6
FDLPCC (proposed) 83.5 88.6 78.7 83.8

SVM trained with x-vectors (current study)

MFCC (baseline) 76.7 88.9 56.2 85.0
LPCC (baseline) 73.4 85.8 52.8 81.7
PLPCC (baseline) 73.1 81.3 53.9 84.2

PLPCC-R (baseline) 74.4 78.0 65.2 80.0
FDLPCC (proposed) 75.4 67.4 67.4 81.3

FFNN trained with x-vectors (current study)

MFCC (baseline) 74.0 79.5 56.2 86.3
LPCC (baseline) 68.7 81.9 48.3 75.8
PLPCC (baseline) 71.7 76.2 61.8 76.3

PLPCC-R (baseline) 71.4 76.2 61.8 76.3
FDLPCC (proposed) 70.3 75.9 59.6 75.4
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majorly contributed in discrimination of major dialects of English
(AU, UK, and US).

6. Conclusion

In this study, we proposed to use FDLPCCs for dialect classifica-
tion which has the potential to capture longer temporal context.
From the experiments, SVM trained with i-vectors derived from
FDLPCC features were found to perform better than baseline fea-
tures, such as MFCCs, PLPCCs, RASTA filtered PLPCCs (PLPCC-R),
and LPCCs by an absolute improvement of 3.4%, 3.9%, 5.9%, and
6.9% (in UAR), respectively. FFNN trained with i-vectors derived
from FDLPCC features were found to perform better than baseline
features, such as MFCCs, RASTA filtered PLPCCs (PLPCC-R), PLPCCs,
and LPCCs by an absolute improvement of 1.6%, 4.6%, 9.2%, and
9.5% (in UAR), respectively. It was also found that there exists a
complementary information between the proposed FDLPCCs and
baseline features such as MFCCs, PLPCCs and PLPCC-R (except for
LPCCs features). The number of poles modulate the representation
of fast varying vs slow varying sounds. Investigating different pole
orders, it is found that the sub-band FDLP envelope estimated with
200 poles can represent dialect discriminant sounds better. Further
from comparison of different modelling approaches, i.e., SVM and
FFNN trained with i-vectors and x-vectors (which were derived
from baseline and proposed features), it was found that the FFNN
trained with i-vectors derived from FDLPCCs performed better than
others. SVM trained with i-vectors derived from MFCC, LPCC,
PLPCC, PLPCC-R, and FDLPCC, outperformed the best DNN based
approach (AlexNet) from previous studies by 19.0%, 14.6%, 16.2%,
18.0%, and 25.3% (in relative UAR) respectively. FFNN trained with
i-vectors derived from MFCC, LPCC, PLPCC, PLPCC-R, and FDLPCC
outperformed the best DNN based approach (AlexNet) from previ-
ous studies by 26.2%, 14.0%, 14.5%, 21.6%, and 28.7% (in relative
UAR) respectively. From the experiments in this study, we con-
clude that long temporal representations (FDLPCCs) help in better
dialect discrimination.
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