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h i g h l i g h t s

� The in-plane mechanical properties of
7 semi-regular lattices were derived
analytically.

� We found a stretching-dominated
topology with an elastic buckling
strength 43% higher than a regular
triangular lattice.

� One bending-dominated semi-regular
tessellation is 85% stiffer and 11%
stronger than a regular hexagonal
lattice.
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a b s t r a c t

The mechanical properties of seven semi-regular lattices were derived analytically for in-plane uniaxial
compression and shear. These analytical expressions were then validated using Finite Element simula-
tions. Our analysis showed that one topology is stretching-dominated; two are stretching-dominated
in compression but bending-dominated in shear; and four are bending-dominated. To assess their poten-
tial, the properties of these seven semi-regular topologies were compared to regular lattices. We found
the elastic buckling strength of the stretching-dominated semi-regular tessellation to be 43% higher than
a regular triangular lattice. In addition, three of the four bending-dominated semi-regular topologies had
a higher elastic modulus than a regular hexagonal lattice. In fact, one of these bending-dominated topolo-
gies was 85% stiffer and 11% stronger than a hexagonal lattice. This topology would be ideal for applica-
tions requiring a high stiffness and high energy absorption.

� 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Micro-architectured and lattice materials have a huge advan-
tage over conventional fully-dense solids: their topology can be
designed to achieve specific, and often unique, properties [1,2].
For example, architectures have been created to reach the theoret-
ical limit on stiffness [3–5], achieve a high fracture toughness [6–
8], increase energy absorption capacities [9,10], have a negative
Poisson’s ratio [11,12], avoid localised deformation [13,14], or have
unusual elastic properties such as a ratio of bulk to shear modulus

as high as 103 [15,16]. These lattice materials can be categorised as
either spatial (3D) or planar (2D) topologies [17]. Even though spa-
tial lattices are potentially more efficient, planar topologies have
remained attractive as they are easier to manufacture on a large
scale.

Planar lattices can be classified into three categories: regular,
semi-regular, and other tessellations [17]. Regular lattices are
made by tessellating a single regular polygon. There are only three
regular tessellations [18]: hexagonal, square and triangular lat-
tices, see Fig. 1. In contrast, semi-regular lattices are assembled
by tessellating two or more regular polygons, with the same
arrangement at each vertex. This arrangement generates eight
semi-regular lattices [18], and these are shown in Fig. 2. Lastly,
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other lattices can be created using one or more polygons (regular
or irregular) and/or by changing the nodal connectivity (defined
as the number of bars meeting at each joint).

The mechanical behaviour of any lattice can be categorised in
two groups: bending- or stretching-dominated [19]. Stretching-
dominated lattices are significantly stiffer and stronger than
bending-dominated topologies; however, the latter offer superior
energy absorption capacities. A key parameter to determine if a lat-
tice is bending- or stretching-dominated is the nodal connectivity
[20]. Planar lattices with a nodal connectivity Z 6 3, such as the
hexagonal lattice (Fig. 1a), are bending-dominated. Otherwise,
topologies with Z P 6, like the triangular lattice (Fig. 1c), are
stretching-dominated. Finally, lattices with Z ¼ 4 or 5 can be either
bending- or stretching-dominated. For example, a square lattice
(Fig. 1b) has a nodal connectivity Z ¼ 4 and it is stretching-
dominated when loading is aligned with the struts, but bending-
dominated otherwise.

The mechanical properties of all three regular lattices have been
studied extensively [21–27]. Analytical expressions for the modu-
lus and strength of regular lattices were first derived by [21–23],
followed by in-depth analyses of their elastic buckling strength
[25] and tensile elastoplastic response [26]. These analytical stud-
ies were then corroborated by experiments performed on hexago-
nal [21], square [24], and triangular lattices [27].

Semi-regular tessellations, however, have received considerably
less attention; the trihexagonal lattice (also referred to as kagome,
see Fig. 2a) is the only topology to have been studied extensively.
This architecture has impressive properties: it is stretching-
dominated and as stiff and strong as the triangular lattice despite
having a lower nodal connectivity [28,17]. In addition, the tri-

hexagonal lattice has a remarkably high fracture toughness [29]
and a great potential for actuation [30,31]. Reports on other
semi-regular topologies are scarce: the stiffness and strength of
the snub-square lattice were reported by Their and St-Pierre
[32]; whereas the elastic and shear moduli of the snub-
trihexagonal and rhombi-trihexagonal were obtained numerically
by Elsayed and Pasini [33] and Pronk et al. [34], respectively. At
the moment, it is impossible to evaluate the potential of most
semi-regular tessellations since many of their mechanical proper-
ties remain unknown. Therefore, the aim of this study is to provide
all missing properties for semi-regular lattices and compare their
performances to those of regular topologies.

This article is structured as follows. Analytical equations for the
elastic modulus, compressive strength, as well as shear modulus
and strength, are derived in Section 2. These analytical expressions
are validated using Finite Element (FE) simulations, and a descrip-
tion of the modelling approach is given in Section 3. A comparison
between analytical and numerical results is presented in Section 4
along with a discussion on the potential of semi-regular lattices.

2. Analytical modelling

In this section, the modulus and strength of all semi-regular lat-
tices are derived analytically for in-plane uniaxial compression and
shear. Only the trihexagonal lattice (Fig. 2a) is excluded from this
analysis since its properties are already available in the literature
[28,23,17]. Here, we assume that all lattices are made from an iso-
tropic linear elastic, perfectly plastic solid, characterized by a
Young’s modulus Es and a yield strength rys. All cell walls are con-
sidered to have a thickness t, a length ‘, and an out-of-plane depth
b. The cell walls are considered to behave (i) as pin-jointed trusses
in the case of stretching-dominated lattices or (ii) as Euler-
Bernoulli beams for bending-dominated topologies. Two failure
modes are considered when predicting the strength of a lattice:
plastic collapse/yielding and elastic buckling. Bending-dominated
topologies fail by plastic collapse when the maximum bending
moment in a cell wall reaches the fully plastic moment:

Mp ¼ bt2rys

4
: ð1Þ

Fig. 1. The three regular tessellations: (a) hexagonal, (b) square, and (c) triangular
lattices.

Fig. 2. The eight semi-regular tessellations: (a) trihexagonal (or kagome), (b) truncated-hexagonal, (c) rhombi-trihexagonal, (d) truncated-square, (e) truncated-trihexagonal,
(f) snub-square, (g) elongated-triangular, and (h) snub-trihexagonal lattices. The nomenclature is based on Williams [18].
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Otherwise, stretching-dominated lattices fail by yielding when the
axial stress in a cell wall (in tension or compression) reaches the
yield strength rys of the parent material. In contrast, elastic buck-
ling occurs when the axial compressive force in a cell wall reaches
the Euler buckling load [35]:

Tcr ¼ n2p2EsI
‘2

; ð2Þ

where I ¼ bt3=12 is the secondmoment of area and n is the end con-
straint factor. The operative failure mode is the one associated with
the lowest load. Note that these assumptions are identical to those
used in previous studies [21,28,23,17], which will enable a fair com-
parison between our results and the properties of regular lattices.

Our analysis of bending-dominated lattices will rely heavily on
the stiffness matrix of a single beam. Consider a beam of length ‘

subjected to a transverse displacement D, and rotations hi and hj
at ends i and j, respectively, see Fig. 3. These rotations and displace-
ment will give rise to a transverse force Vij, and bending moments
Mij andMji at ends i and j, respectively. These quantities are related
by [36]:

Mij

Mji

V ij

8><
>:

9>=
>; ¼ EsI

‘

4 2 6=‘
2 4 6=‘
6=‘ 6=‘ 12=‘2

2
64

3
75

hi
hj
Dij

8><
>:

9>=
>;: ð3Þ

This equation can be used to model the deformation of lattices as
follows. First, the bending moments and transverse force for each
bar can be expressed using Eq. (3). Second, equilibrium conditions
at each vertex, and the boundary conditions, are used to form a sys-
tem of equations from which the deflections and rotations can be
solved. This procedure is demonstrated next.

2.1. Truncated-hexagonal lattice

The truncated-hexagonal tessellation has two dodecagons and a
triangle meeting at each vertex, see Fig. 4. It has a nodal connectiv-
ity Z ¼ 3 and therefore, its behaviour is bending-dominated [20].
This topology has 6-fold rotational symmetry and consequently,
its in-plane elastic properties are isotropic [37]. The relative den-
sity of the truncated-hexagonal lattice is given by:

�q ¼ 6
ffiffiffi
3

p

ð2þ
ffiffiffi
3

p
Þ2

t
‘

� �
¼ 0:746

t
‘

� �
: ð4Þ

2.1.1. Compression
Consider the truncated-hexagonal lattice subjected to a uniaxial

compressive stress r in x2, see Fig. 4a. A representative unit cell is
shown in Fig. 4a, where the nominal stress r is replaced by an
equivalent force:

F ¼ ð2þ
ffiffiffi
3

p
Þrb‘: ð5Þ

In compression, the truncated-hexagonal lattice deforms primarily
by bending bar bb. This strut will have a transverse deflection D
and a rotation h at both ends, see Fig. 4a. The component of F per-
pendicular to bar bb corresponds to the transverse force Vbb, which
can also be expressed as a function of D and h using the stiffness
matrix introduced in Eq. (3). This gives:

Vbb ¼ 12EsI
‘2

D
‘
� h

� �
¼

ffiffiffi
3

p

4
F: ð6Þ

In addition, equilibrium of moments at b requires that:

Mba þMbb0 þMbb ¼ 6EsI
‘

D
‘
� 2h

� �
¼ 0: ð7Þ

Again, these moments were obtained using the stiffness matrix
given in Eq. (3). Eqs. (6) and (7) can be used to solve for D and h,
which gives:

D ¼
ffiffiffi
3

p

24
F‘3

EsI
; ð8Þ

h ¼
ffiffiffi
3

p

48
F‘2

EsI
: ð9Þ

The component of D along x2 is used to compute the compressive
strain:

e2 ¼
ffiffiffi
3

p
=2 � D

ð3=2þ
ffiffiffi
3

p
Þ‘ ¼

ffiffiffi
3

p

2
r
Es

‘

t

� �3

: ð10Þ

The elastic modulus of the lattice is E ¼ r=e2, which returns:

E
Es

¼ 2ffiffiffi
3

p t
‘

� �3

¼ 2:780�q3: ð11Þ

Otherwise, the component of D in x1 gives a deformation:

e1 ¼ � D

ð2þ
ffiffiffi
3

p
Þ‘ ¼ �

ffiffiffi
3

p

2
r
Es

‘

t

� �3

; ð12Þ

and therefore the Poisson’s ratio is:

m ¼ � e1
e2

¼ 1: ð13Þ

Next, we turn our attention to the compressive strength of the
truncated-hexagonal lattice. This topology is bending-dominated
and the maximum bending moment in a cell wall is:

Mbb ¼
ffiffiffi
3

p

8
F‘ ¼ ð3þ 2

ffiffiffi
3

p
Þ

8
rb‘2: ð14Þ

Equating this to the fully plastic moment (Eq. (1)) gives the plastic
collapse strength of the lattice:

ðrplÞ2
rys

¼ 2
ð3þ 2

ffiffiffi
3

p
Þ

t
‘

� �2

¼ 0:556�q2: ð15Þ

Otherwise, bar aa is loaded in compression and may buckle elasti-
cally. The axial force in this bar is Naa ¼ F, and equating this to
the Euler buckling load (Eq. (2)) returns the elastic buckling
strength of a truncated-hexagonal lattice:

ðrelÞ2
Es

¼ n2p2

12ð2þ
ffiffiffi
3

p
Þ

t
‘

� �3

¼ 0:082�q3; ð16Þ

where the end constraint factor n ¼ 0:394 is derived analytically in
Appendix A.1. The same procedure can be followed to derive the
compressive strength in x1. This analysis is not detailed here for
the sake of brevity, but it leads to ðrplÞ1 ¼ ðrplÞ2. Note that elastic
buckling does not occur for uniaxial compression in x1.

2.1.2. Shear
Consider the truncated-hexagonal lattice loaded in pure in-

plane shear as shown in Fig. 4b. A representative unit cell in

Fig. 3. Deformation and reaction loads for a beam in bending. The end rotations hi
and hj and the deflection D create the bending moments Mij and Mji , and a
transverse force Vij ¼ Vji .
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included in Fig. 4b, where the nominal shear stress s is replaced by
an equivalent force:

F ¼ ð2þ
ffiffiffi
3

p
Þsb‘: ð17Þ

In shear, the truncated-hexagonal lattice deforms by bending bars
aa and bb. Their deformation is characterised by four parameters:
the transverse deflections D1 and D2, and rotations h1 and h2, see
Fig. 4b. Using the stiffness matrix in Eq. (3), the transverse force
in bar aa can be expressed as:

Vaa ¼ 12EsI
‘2

D1

‘
� h1

� �
¼ F; ð18Þ

and, similarly, the transverse force in bar bb is given by:

Vbb ¼ 12EsI

‘2
h2 � D2

‘

� �
¼ � F

2
: ð19Þ

Moreover, equilibrium of moments at vertex a gives:

Maa þMab þMab0 ¼ 2EsI
‘

3D1

‘
� 7h1 þ 2h2

� �
¼ 0; ð20Þ

and for vertex b:

Mba þMbb0 þMbb ¼ 2EsI
‘

8h2 � 3D2

‘
� h1

� �
¼ 0: ð21Þ

The four unknown displacements can be solved using Eqs. (18)–
(21), which gives:

h1 ¼ F‘2

12EsI
; ð22Þ

D1 ¼ F‘3

6EsI
; ð23Þ

h2 ¼ F‘2

24EsI
; ð24Þ

D2 ¼ F‘3

12EsI
: ð25Þ

Next, the nominal shear strain can be expressed as:

c ¼ 2ðD1 þ D2Þ
ð3þ 2

ffiffiffi
3

p
Þ‘ ¼

6ffiffiffi
3

p s
Es

‘

t

� �3

; ð26Þ

and the shear modulus G ¼ s=c is:

G
Es

¼
ffiffiffi
3

p

6
t
‘

� �3

¼ 0:695 �q3: ð27Þ

This result respects the relationship G ¼ E=ð2ð1þ mÞÞ characteristic
of isotropic materials (see Eq. (11) and (13) for E and m,
respectively).

The truncated-hexagonal lattice fails by plastic collapse in
shear. The maximum bending moment is located at the ends of
bar aa and is:

Maa ¼ F‘
2

¼ ð2þ
ffiffiffi
3

p
Þ

2
sb‘2: ð28Þ

Setting Maa equal to the fully plastic moment (Eq. (1)) returns the
shear strength:

spl
rys

¼ 1
2ð2þ

ffiffiffi
3

p
Þ

t
‘

� �2

¼ 0:241 �q2: ð29Þ

2.2. Rhombi-trihexagonal lattice

The rhombi-trihexagonal lattice has a triangle, two squares, and
a hexagon meeting at each vertex, see Fig. 5. The bars forming the
squares are anticipated to bend when subjected to compression or
shear and therefore, the lattice is expected to be bending-
dominated despite its nodal connectivity Z ¼ 4. This pattern has
a 6-fold rotational symmetry and consequently, it is in-plane elas-
tically isotropic [37]. Its relative density is given by:

�q ¼ 4ð2
ffiffiffi
3

p
� 3Þ t

l

� �
¼ 1:856

t
l

� �
: ð30Þ

2.2.1. Compression
Consider the rhombi-trihexagonal lattice subjected to an in-

plane compressive stress r in the x2 direction, see Fig. 5a. The unit
cell, given in Fig. 5a, includes an equivalent force F, which is related
to the compressive stress r by:

F ¼ ð1þ
ffiffiffi
3

p
Þ

2
rb‘: ð31Þ

In compression, the lattice is expected to deform by bending bars ac
and bd. Rotations at vertices b and b0 are equal (but in opposite
directions) due to symmetry, and there are no rotations at a, see
Fig. 5a. Using Eq. (3), the transverse force in bars ac and bd can be
written as a function of the displacement field, which gives:

Vac ¼ Vbd ¼ 6EsI

‘2
2D
‘

� h

� �
¼

ffiffiffi
3

p

4
F: ð32Þ

Otherwise, the sum of moments at vertex b should be zero, and this
gives:

Mba þMbb0 þMbd þMbe ¼ 6EsI
‘

D
‘
� 2h

� �
¼ 0: ð33Þ

Using Eq. (32) and (33) to solve for D and h returns:

Fig. 4. Deformation of a truncated-hexagonal lattice under (a) compression and (b) shear.
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h ¼
ffiffiffi
3

p

72
F‘2

EsI
; ð34Þ

D ¼
ffiffiffi
3

p

36
F‘3

EsI
: ð35Þ

The compressive strain is calculated with the component of D in the
x2 direction, which gives:

e2 ¼
ffiffiffi
3

p
=2 � D

ð3þ
ffiffiffi
3

p
Þ‘=2 ¼

ffiffiffi
3

p

6
r
Es

‘

t

� �3

; ð36Þ

and the elastic modulus E ¼ r=e2 becomes:

E
Es

¼ 2
ffiffiffi
3

p t
‘

� �3

¼ 0:542�q3: ð37Þ

In addition, the strain in x1 direction is:

e1 ¼ �D
ð1þ

ffiffiffi
3

p
Þ‘ ¼ �

ffiffiffi
3

p

6
r
Es

‘

t

� �3

; ð38Þ

and therefore, the Poisson’s ratio is:

m ¼ � e1
e2

¼ 1: ð39Þ

The rhombi-trihexagonal lattice is bending-dominated and the
maximum bending moment is:

Mac ¼ Mdb ¼ 5
ffiffiffi
3

p

36
F‘ ¼ 5ð3þ

ffiffiffi
3

p
Þ

72
rb‘2: ð40Þ

Equating this to the fully plastic moment (Eq. (1)) returns the plas-
tic collapse strength of the lattice:

ðrplÞ2
rys

¼ 18
5ð3þ

ffiffiffi
3

p
Þ

t
‘

� �2

¼ 0:221�q2: ð41Þ

This topology may also fail by elastic buckling of bar be. The axial
compressive force in this bar is Nbe ¼ F, and equating this to the
Euler buckling load (Eq. (2)) gives us the elastic buckling strength:

ðrelÞ2
Es

¼ n2p2

6ð1þ
ffiffiffi
3

p
Þ

t
‘

� �3

¼ 0:071�q3; ð42Þ

where the end constraint factor n ¼ 0:871 is obtained in Appendix
A.2. Finally, note that when the rhombi-trihexagonal lattice is com-
pressed in the x1 direction, plastic collapse is the only failure mode
and we find ðrplÞ1 ¼ ðrplÞ2.

2.2.2. Shear
The rhombi-trihexagonal lattice subjected to pure shear is

shown in Fig. 5b along with its unit cell, where the nominal shear
stress s has been replaced by an equivalent shear force F given by:

F ¼ ð1þ
ffiffiffi
3

p
Þ

2
sb‘: ð43Þ

The deformation of the lattice in shear is characterised by four vari-
ables: two deflections, D1 and D2, and two rotations, h1 and h2, see
Fig. 5b. Using Eq. (3), the transverse force in bar be can be expressed
as:

Vbe ¼ 12EsI
‘2

D2

‘
� h2

� �
¼ F; ð44Þ

whereas that in bar ac (or bd) is:

Vac ¼ Vbd ¼ 6EsI

‘2
h1 � h2 � 2D1

‘

� �
¼ � F

2
: ð45Þ

Also, equilibrium of moments at vertex a returns:

2ðMac þMabÞ ¼ 4EsI
‘

4h1 � 3D1

‘
� 2h2

� �
¼ 0; ð46Þ

and at vertex b gives:

Mba þMbb0 þMbd þMbe ¼ 2EsI
‘

2h1 � 3D1

‘
� 10h2 þ 3D2

‘

� �
¼ 0:

ð47Þ
The displacement field can be solved with Eqs. (44)–(47), and this
yields:

h1 ¼ F‘2

18EsI
; ð48Þ

D1 ¼ F‘3

18EsI
; ð49Þ

h2 ¼ F‘2

36EsI
; ð50Þ

D2 ¼ F‘3

9EsI
: ð51Þ

Next, we can write the shear strain:

c ¼ 4D1 þ D2

ð3þ
ffiffiffi
3

p
Þ‘ ¼

2
ffiffiffi
3

p

3
s
Es

‘

t

� �3

; ð52Þ

and the shear modulus G ¼ s=c becomes:

G
Es

¼
ffiffiffi
3

p

2
t
‘

� �3

¼ 0:135�q3: ð53Þ

The rhombi-trihexagonal lattice is in-plane isotropic and conse-
quently, G ¼ E=ð2ð1þ mÞÞ.

This lattice is bending-dominated in shear and the maximum
bending moment in a cell wall is:

Fig. 5. Deformation of a rhombi-trihexagonal lattice under (a) compression and (b) shear.
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Mbe ¼ F‘
2

¼ ð1þ
ffiffiffi
3

p
Þ

4
sb‘2: ð54Þ

Setting this equal to the fully plastic moment (Eq. (1)), returns the
plastic collapse strength:

spl
rys

¼ 1
ð1þ

ffiffiffi
3

p
Þ

t
‘

� �2

¼ 0:106�q2: ð55Þ

2.3. Truncated-square lattice

The truncated-square lattice, shown in Fig. 6, has a square and
two octagons meeting at each vertex. It has a nodal connectivity
Z ¼ 3 and consequently, its behaviour is bending-dominated [20].
This tessellation has a 4-fold rotational symmetry, and therefore,
its elastic properties are not isotropic [37]. Its relative density is
given by:

�q ¼ 6

ð1þ
ffiffiffi
2

p
Þ2

t
‘

� �
¼ 1:029

t
‘

� �
: ð56Þ

2.3.1. Compression
The deformation of a truncated-square lattice in compression

can be analysed with the unit cell shown in Fig. 6a, where the nom-
inal compressive stress r is replaced by an equivalent force:

F ¼ ð1þ
ffiffiffi
2

p
Þrb‘: ð57Þ

This tessellation deforms by bending bar ab. This strut has a trans-
verse deflection D, but rotations are prevented at both extremities
due to symmetry. Therefore, the transverse force in beam ab is:

Vab ¼ 12EsI

‘3
D ¼

ffiffiffi
2

p
F

4
; ð58Þ

from which it is straightforward to find the deflection:

D ¼
ffiffiffi
2

p

48
F‘3

EsI
: ð59Þ

Next, the compressive strain is:

e2 ¼
ffiffiffi
2

p
D

ð1þ
ffiffiffi
2

p
Þ‘ ¼

1
2
r
Es

‘

t

� �3

; ð60Þ

and the elastic modulus becomes:

E2

Es
¼ 2

t
‘

� �3

¼ 1:833�q3; ð61Þ

where the subscript 2 is used to emphasise that elastic properties
are not isotropic for this topology. Otherwise, the strain in x1 is:

e1 ¼ �
ffiffiffi
2

p
D

ð1þ
ffiffiffi
2

p
Þ‘ ¼ �1

2
r
Es

‘

t

� �3

; ð62Þ

and the Poisson’s ratio is:

m12 ¼ � e1
e2

¼ 1: ð63Þ

The maximum bending moment in a truncated-square lattice is:

Mab ¼
ffiffiffi
2

p

8
F‘ ¼ ð2þ

ffiffiffi
2

p
Þ

8
rb‘2; ð64Þ

and equating this to the fully plastic moment (Eq. (1)) returns the
plastic collapse strength:

ðrplÞ2
rys

¼ ð2�
ffiffiffi
2

p
Þ t

‘

� �2

¼ 0:553�q2: ð65Þ

A truncated-square lattice can also fail by elastic buckling of bar aa.
The axial compressive force in this strut is Naa ¼ F, and setting this
equal to the Euler buckling load (Eq. (2)) yields the elastic buckling
strength:

ðrelÞ2
Es

¼ n2p2

12ð1þ
ffiffiffi
2

p
Þ

t
‘

� �3

¼ 0:168�q3; ð66Þ

where the end constraint factor n ¼ 0:734 is derived in Appendix
A.3. Finally, note that all properties are the same for compression
in x1 because of the 4-fold rotational symmetry of the truncated-
square lattice.

2.3.2. Shear
Consider the truncated-square lattice subjected to pure shear.

The deformation of its unit cell is given in Fig. 6b, where the nom-
inal shear stress s has been replaced by an equivalent force:

F ¼ ð1þ
ffiffiffi
2

p
Þsb‘: ð67Þ

In shear, the truncated-square lattice deforms by bending the verti-
cal and horizontal bars, and the displacement field is characterised
by their transverse deflection D and rotation h. The transverse force
in bar aa is:

Vaa ¼ 12EsI
‘2

D
‘
� h

� �
¼ F; ð68Þ

and equilibrium of moments at vertex a gives:

Maa þ 2Mab ¼ 2EsI
‘

3D
‘

� 5h
� �

¼ 0: ð69Þ

Using the last two equations to find D and h returns:

h ¼ F‘2

8EsI
; ð70Þ

D ¼ 5
24

F‘3

EsI
: ð71Þ

Next, the shear strain can be expressed as:

c ¼ 2D
ð1þ

ffiffiffi
2

p
Þ‘ ¼ 5

s
Es

‘

t

� �3

; ð72Þ

and the shear modulus G12 ¼ s=c becomes:

G12

Es
¼ 1

5
t
‘

� �3

¼ 0:183�q3: ð73Þ

Otherwise, the maximum bending moment in a truncated-square
lattice is at vertex b and is given by:

Mbb ¼ F‘
2

¼ ð1þ
ffiffiffi
2

p
Þsb‘2

2
: ð74Þ

Equating this to the fully plastic moment (Eq. (1)) gives us the plas-
tic collapse strength in shear:

spl
rys

¼ ð
ffiffiffi
2

p
� 1Þ
2

t
‘

� �2

¼ 0:195�q2: ð75Þ

2.4. Truncated-trihexagonal lattice

The truncated-trihexagonal lattice has a square, a hexagon and
a dodecagon meeting at each vertex, see Fig. 7. Its behaviour is
bending-dominated, since it has a nodal connectivity Z ¼ 3 [20].
This topology has a 6-fold rotational symmetry; therefore, its in-
plane elastic properties are isotropic. Its relative density is given
by:
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�q ¼ 4
ffiffiffi
3

p

ð1þ
ffiffiffi
3

p
Þ2

t
‘

� �
¼ 0:928

t
‘

� �
: ð76Þ

2.4.1. Compression
When a truncated-trihexagonal lattice is loaded in compression,

the deformation of its unit cell is characterised by two displace-
ments (D1;D2) and three rotations (h1; h2; h3), see Fig. 7a. Here,
the compressive stress r is replaced by an equivalent force:

F ¼ ð3þ
ffiffiffi
3

p
Þ

2
rb‘: ð77Þ

Bars ac and bd experience the same transverse force, which is given
by:

Vac ¼ Vbd ¼ 6EsI
‘2

h3 � h2 þ 2D2

‘

� �
¼

ffiffiffi
3

p

4
F: ð78Þ

Next, equilibrium of forces, in the x2 direction, at vertex b gives:

Vbe � Vab ¼
ffiffiffi
3

p
Vbd ) 6EsI

‘2
4D1

‘
� h1 � h3

� �
¼ 3

4
F: ð79Þ

Finally, equilibrium of moments at vertices a; b and e yields:

Maa0 þMac þMab ¼ 2EsI
‘

5h3 � 2h2 þ 3ðD2�D1Þ
‘

� �
¼ 0; ð80Þ

Mba þMbd þMbe ¼ 2EsI
‘

2h3 � 6h2 � h1 þ 3D2
‘

� � ¼ 0; ð81Þ
Mef þMee0 þMeb ¼ 2EsI

‘
3D1
‘
� 4h1 � h2

� � ¼ 0; ð82Þ
respectively. Solving the displacement field using Eqs. (78)–(82)
returns:

h1 ¼ ð30� 7
ffiffiffi
3

p
Þ

744
F‘2

EsI
; ð83Þ

h2 ¼ ð10
ffiffiffi
3

p
� 3Þ

744
F‘2

EsI
; ð84Þ

h3 ¼ ð33� 17
ffiffiffi
3

p
Þ

744
F‘2

EsI
; ð85Þ

D1 ¼ ð13� 2
ffiffiffi
3

p
Þ

248
F‘3

EsI
; ð86Þ

D2 ¼ ð29
ffiffiffi
3

p
� 18Þ

744
F‘3

EsI
: ð87Þ

The vertical components of D1 and D2 are used to compute the com-
pressive strain:

e2 ¼ 3D1 þ
ffiffiffi
3

p
D2

ð3þ 3
ffiffiffi
3

p
Þ‘ ¼ 2ð21þ 4

ffiffiffi
3

p
Þ

31ð1þ
ffiffiffi
3

p
Þ
r
Es

‘

t

� �3

; ð88Þ

and the elastic modulus becomes:

E
Es

¼ 31ð1þ
ffiffiffi
3

p
Þ

2ð21þ 4
ffiffiffi
3

p
Þ

t
‘

� �3

¼ 1:896�q3: ð89Þ

Moreover, the strain in the x1 direction is:

e1 ¼ �
ffiffiffi
3

p
D1 þ D2

ð3þ
ffiffiffi
3

p
Þ‘ ¼ �2ð21þ 4

ffiffiffi
3

p
Þ

31ð1þ
ffiffiffi
3

p
Þ
r
Es

‘

t

� �3

; ð90Þ

and therefore the Poisson’s ratio is:

m ¼ � e1
e2

¼ 1: ð91Þ

Fig. 6. Deformation of a truncated-square lattice under (a) compression and (b) shear.

Fig. 7. Deformation of a truncated-trihexagonal lattice under (a) compression and (b) shear.

M. Omidi and L. St-Pierre Materials & Design 213 (2022) 110324

7



Next, we turn our attention to the compressive strength of the lat-
tice. The maximum bending moment is:

Mba ¼ ð19
ffiffiffi
3

p
þ 78Þ

372
F‘; ð92Þ

and equating this to the fully plastic moment (Eq. (1)) gives us the
plastic collapse strength:

ðrplÞ2
rys

¼ 62
ð97þ 45

ffiffiffi
3

p
Þ

t
‘

� �2

¼ 0:411 �q2: ð93Þ

A truncated-trihexagonal lattice can also fail by elastic buckling of
bar ef. The axial compressive force in this bar is Nef ¼ F and setting
equal to the Euler buckling load (Eq. (2)) returns the elastic buckling
strength:

ðrelÞ2
Es

¼ n2p2

6ð3þ
ffiffiffi
3

p
Þ

t
‘

� �3

¼ 0:202 �q3; ð94Þ

where the end constraint factor n ¼ 0:682 is detailed in Appendix
A.4. Following the same procedure, it is possible to show that
ðrplÞ1 ¼ ðrplÞ2; however, the elastic buckling strength is different
and given by:

ðrelÞ1
Es

¼ n2p2

9ð3þ
ffiffiffi
3

p
Þ

t
‘

� �3

¼ 0:182 �q3; ð95Þ

where the end constraint factor is n ¼ 0:793 for compression along
x1, please refer to Appendix A.4 for more details.

2.4.2. Shear
The deformation of the truncated-trihexagonal lattice in shear

is characterised by three rotations and four displacements, see
the unit cell in Fig. 7b. Here, the shear stress s is replaced by an
equivalent force:

F ¼ ð3þ
ffiffiffi
3

p
Þ

2
sb‘: ð96Þ

The transverse force in bar ef is simply:

Vef ¼ 12EsI
‘2

D1

‘
� h1

� �
¼ F; ð97Þ

and that in bar ac and bd is given by:

Vac ¼ Vbd ¼ 6EsI
‘2

h3 � h2 � 2D4

‘

� �
¼ � F

2
: ð98Þ

Also, the transverse forces in bars aa and ee have to respect:

Vaa þ Vee ¼ 12EsI

‘2
h3 � h1 � 2D2

‘

� �
¼ �

ffiffiffi
3

p
F: ð99Þ

Moreover, equilibrium of moments at vertices a; b, and e return:

Maa þMab þMac ¼ 2EsI
‘

7h3 � 2h2ð þ 3
‘
D3 � D2 � D4ð Þ� ¼ 0; ð100Þ

Mba þMbd þMbe ¼ 2EsI
‘

2h3 � 6h2ð �h1 þ 3
‘
2D3 � D4ð Þ� ¼ 0; ð101Þ

Mef þMee þMeb ¼ 2EsI
‘

�8h1 � h2ð þ 3
‘
D1 þ D3 � D2ð Þ� ¼ 0; ð102Þ

respectively. Finally, compatibility of displacements in x2 requires
that:

D3

2
�

ffiffiffi
3

p

2
D4 � D2 ¼ 0: ð103Þ

The displacement field is solved using the previous seven equations
and this yields:

h1 ¼ 9þ 59
ffiffiffi
3

p

372ð3þ
ffiffiffi
3

p
Þ
F‘2

EsI
; ð104Þ

h2 ¼ 107
ffiffiffi
3

p
� 45

372ð3þ
ffiffiffi
3

p
Þ
F‘2

EsI
; ð105Þ

h3 ¼ 36� 19
ffiffiffi
3

p

186ð3þ
ffiffiffi
3

p
Þ
F‘2

EsI
; ð106Þ

D1 ¼ 17þ 15
ffiffiffi
3

p

62ð3þ
ffiffiffi
3

p
Þ
F‘3

EsI
; ð107Þ

D2 ¼ 39�
ffiffiffi
3

p

186ð3þ
ffiffiffi
3

p
Þ
F‘3

EsI
; ð108Þ

D3 ¼ 101
ffiffiffi
3

p
� 15

372ð3þ
ffiffiffi
3

p
Þ
F‘3

EsI
; ð109Þ

D4 ¼ 35� 19
ffiffiffi
3

p

124ð3þ
ffiffiffi
3

p
Þ
F‘3

EsI
: ð110Þ

With the above displacement field, we can compute the shear
strain:

c ¼ 2D1 � D4 þ 3
ffiffiffi
3

p
D3

ð3þ 3
ffiffiffi
3

p
Þ‘ ¼ 8ð21þ 4

ffiffiffi
3

p
Þ

31ð1þ
ffiffiffi
3

p
Þ
s
Es

‘

t

� �3

; ð111Þ

and the shear modulus G ¼ s=c becomes:

G
Es

¼ 31ð1þ
ffiffiffi
3

p
Þ

8ð21þ 4
ffiffiffi
3

p
Þ

t
‘

� �3

¼ 0:474�q3: ð112Þ

The truncated-trihexagonal lattice is in-plane isotropic and we find
that G ¼ E=ð2ð1þ mÞÞ.

The maximum bending moment in a truncated-trihexagonal
lattice is:

Mee ¼ 3ð29þ 19
ffiffiffi
3

p
Þ

186þ 62
ffiffiffi
3

p F‘; ð113Þ

and equating this to the fully plastic moment (Eq. (1)) returns the
plastic collapse strength in shear, which is:

spl
rys

¼ 31
3ð29þ 19

ffiffiffi
3

p
Þ

t
‘

� �2

¼ 0:194 �q2: ð114Þ

2.5. Snub-square lattice

The snub-square lattice has three triangles and two squares
meeting at each vertex, see Fig. 8, and therefore, it has a nodal con-
nectivity Z ¼ 5. Their and St-Pierre [32] have shown that its beha-
viour is stretching-dominated in compression, but it is bending-
dominated in shear, as we will show below. This tessellation has
a 4-fold rotational symmetry and consequently, its in-plane elastic
properties are not isotropic [37]. Its relative density is given by:

�q ¼ 20

ð1þ
ffiffiffi
3

p
Þ2

t
‘

� �
¼ 2:680

t
‘

� �
: ð115Þ

2.5.1. Compression
The uniaxial compressive behaviour of the snub-square lattice

was investigated previously by Their and St-Pierre [32]. Their ana-
lytical work revealed that the snub-square lattice is stretching-
dominated in compression with an elastic modulus:

E2

Es
¼ 3

4
t
‘

� �
¼ 0:280�q: ð116Þ
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Using the internal loads provided in Their and St-Pierre [32], we
find that the Poisson’s ratio is:

m12 ¼
ffiffiffi
3

p

4
¼ 0:433: ð117Þ

In compression, the snub-square lattice can fail by either elastic
buckling or yielding, depending on its relative density. The yield
strength of the snub-square lattice is [32]:

ðrplÞ2
rys

¼ 2
ð1þ

ffiffiffi
3

p
Þ

t
‘

� �
¼ 0:273 �q; ð118Þ

whereas the elastic buckling strength is given by [32]:

ðrelÞ2
Es

¼ n2p2

6ð1þ
ffiffiffi
3

p
Þ

t
‘

� �3

¼ 0:090 �q3; ð119Þ

where the end constraint factor n ¼ 1:693 is derived analytically in
Appendix A.5. Finally, note that E1 ¼ E2; ðrelÞ1 ¼ ðrelÞ2 and
ðrplÞ1 ¼ ðrplÞ2 due to symmetry.

2.5.2. Shear
In shear, the snub-square lattice deforms by bending, and the

deformation of its unit cell is characterised by a deflection D and
a rotation h, see Fig. 8. The shear stress s is replaced by an equiv-
alent force:

F ¼ ð1þ
ffiffiffi
3

p
Þ

2
sb‘: ð120Þ

Equilibrium of forces, along x1, at vertex b requires that:

Nab þ
ffiffiffi
3

p
Vab ¼ F; ð121Þffiffiffi

3
p

Nba0 � Vba0 � Vbb ¼ F; ð122Þ
where Nab ¼ Nba0 is the axial load in bar ab. Combining these two
equations to remove Nab yields:

4Vba0 þ Vaa ¼ 12EsI
‘2

5D
‘

� h

� �
¼ ð

ffiffiffi
3

p
� 1ÞF: ð123Þ

Otherwise, equilibrium of moments at vertex a gives:

2ðMab þMab0Þ þMaa ¼ 2EsI
‘

3D
‘

� 7h
� �

¼ 0: ð124Þ

Using the last two equations to find h and D returns:

h ¼ ð
ffiffiffi
3

p
� 1Þ

128
F‘2

EsI
; ð125Þ

D ¼ 7ð
ffiffiffi
3

p
� 1Þ

384
F‘3

EsI
: ð126Þ

Next, the shear strain can be expressed as:

c ¼ 2ð
ffiffiffi
3

p
� 1ÞD

ð
ffiffiffi
3

p
þ 1Þ‘ ¼ 7ð

ffiffiffi
3

p
� 1Þ2

32
s
Es

‘

t

� �3

; ð127Þ

and the shear modulus becomes:

G12

Es
¼ 32

7ð
ffiffiffi
3

p
� 1Þ2

t
‘

� �3

¼ 0:443�q3: ð128Þ

The maximum bending moment in a snub-square lattice subjected
to shear is:

Mba ¼
ffiffiffi
3

p
� 1
8

F ¼ 1
8
sb‘; ð129Þ

and equating this to the fully plastic moment (Eq. (1)) returns the
plastic collapse strength in shear:

spl
rys

¼ 2
t
‘

� �2

¼ 0:279�q2: ð130Þ

2.6. Elongated-triangular lattice

The elongated-triangular lattice has three triangles and two
squares meeting at each vertex, see Fig. 9; these are the same poly-
gons as in a snub-square tessellation, but their arrangement is dif-
ferent. Therefore, the elongated-triangular lattice also has a nodal
connectivity Z ¼ 5, but it is clear, upon inspection, that its beha-
viour is stretching-dominated when compressed in x1 or x2, and
bending-dominated in shear. Its elastic properties are not isotropic,
and its relative density is:

�q ¼ 10
ð2þ

ffiffiffi
3

p
Þ

t
‘

� �
¼ 2:680

t
‘

� �
; ð131Þ

which is the same as a snub-square lattice, see Eq. (115).

2.6.1. Compression
Consider the elongated-triangular lattice loaded in compression

along the x2 direction, see Fig. 9a. A unit cell is shown in Fig. 9a,
where the nominal compressive stress r is replaced by an equiva-
lent force:

F ¼ rb‘: ð132Þ
For this loading scenario, all bars are carrying axial forces only.
Using the method of sections, it is straightforward to find the axial
load in each bar and this gives:

Naa ¼ F; ð133aÞ
Nab ¼ Nbc ¼ Fffiffiffi

3
p ; ð133bÞ

Nac ¼ � F

4
ffiffiffi
3

p ; ð133cÞ

where a negative sign indicates a tensile force. The shortening u of
the unit cell is obtained by equating the work done by external
forces to the internal energy. This gives:

u ¼ 1
F

NabDab þ NbcDbc þ NaaDaa þ 2NacDacð Þ ¼ 41
24

F‘
Esbt

; ð134Þ

where the shortening of bar ij is Dij ¼ Nij‘=ðbtEsÞ. Next, the nominal
compressive strain in x2 is:

e2 ¼ u

ð1þ
ffiffiffi
3

p
=2Þ‘ ¼

41
12ð2þ

ffiffiffi
3

p
Þ
r
Es

‘

t

� �
; ð135Þ

and the elastic modulus E2 ¼ r=e2 becomes:

E2

Es
¼ 12ð2þ

ffiffiffi
3

p
Þ

41
t
‘

� �
¼ 0:408 �q: ð136Þ

Fig. 8. Deformation of a snub-square lattice under shear.
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Otherwise, the nominal strain in x1 is:

e1 ¼ Dac

‘
¼ � 1

4
ffiffiffi
3

p r
Es

t
‘

� �
; ð137Þ

which gives a Poisson’s ratio:

m12 ¼ � e1
e2

¼ 3þ 2
ffiffiffi
3

p

41
¼ 0:158: ð138Þ

In compression, the elongated-triangular lattice fails by either elas-
tic buckling or yielding depending on its relative density. For load-
ing in x2, the highest compressive force is in bar aa and setting
Naa ¼ rysbt gives us the yield strength of the elongated-triangular
lattice:

ðrplÞ2
rys

¼ t
‘

� �
¼ 0:373 �q: ð139Þ

Otherwise, equating Naa to the Euler buckling load (Eq. (2)) returns
the elastic buckling strength of the lattice:

ðrelÞ2
Es

¼ n2p2

12
t
‘

� �3

¼ 0:033�q3; ð140Þ

where the end constraint factor n ¼ 0:881 is derived in Appendix
A.6.

The same procedure can be followed to derive the properties for
compression in x1. In this case, the internal loads are:

Nac ¼ ð2þ
ffiffiffi
3

p
Þ

4
rb‘; ð141aÞ

Naa ¼ Nab ¼ Nbc ¼ 0; ð141bÞ

and the elastic modulus becomes:

E1

Es
¼ 4

2þ
ffiffiffi
3

p t
‘

� �
¼ 0:400�q; ð142Þ

which is almost equal to E2. Otherwise, the yield strength is:

ðrplÞ1
rys

¼ 4
2þ

ffiffiffi
3

p t
‘

� �
¼ 0:400 �q; ð143Þ

whereas the elastic buckling strength is given by:

ðrelÞ1
Es

¼ n2p2

3ð2þ
ffiffiffi
3

p
Þ

t
‘

� �3

¼ 0:105 �q3; ð144Þ

where the end constraint factor n ¼ 1:515 is derived in Appendix
A.6.

2.6.2. Shear
In shear, the elongated-triangular lattice deforms by bending

bar aa, see Fig. 9b. The deformation of the unit cell is characterised
by only two variables: the transverse deflection D and rotation h of
beam aa. The shear stress s can be replaced by an equivalent force:

F ¼ sb‘; ð145Þ
and the transverse load in beam aa can be expressed as:

Vaa ¼ 12EsI
‘2

D
‘
� h

� �
¼ F: ð146Þ

Moreover, equilibrium of moments at vertex a gives:

2ðMab þMacÞ þMaa ¼ 6EsI
‘

D
‘
� 5h

� �
¼ 0: ð147Þ

Using the last two equations to solve for h and D returns:

h ¼ F‘2

48EsI
; ð148Þ

D ¼ 5F‘3

48EsI
: ð149Þ

Next, the shear strain is given by:

c ¼ D

ð1þ
ffiffiffi
3

p
=2Þ‘ ¼

5
2ð2þ

ffiffiffi
3

p
Þ
s
Es

‘

t

� �3

; ð150Þ

and the shear modulus becomes:

G12

Es
¼ 2ð2þ

ffiffiffi
3

p
Þ

5
t
‘

� �3

¼ 0:078�q3: ð151Þ

In shear, the maximum bending moment in an elongated-triangular
lattice is:

Maa ¼ F‘
2

¼ sb‘2

2
; ð152Þ

and equating this to the fully plastic moment (Eq. (1)) gives us the
plastic collapse strength of the lattice in shear:

spl
rys

¼ 1
2

t
‘

� �2

¼ 0:070 �q2: ð153Þ

2.7. Snub-trihexagonal lattice

A snub-trihexagonal lattice has four triangles and a hexagon
meeting at each vertex, see Fig. 10. It has a nodal connectivity
Z ¼ 5, and our analysis below will show that its behaviour is
stretching-dominated in both compression and shear. Its elastic

Fig. 9. Deformation of a elongated-triangle lattice under (a) compression and (b) shear.
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properties are isotropic since this pattern has a 6-fold rotational
symmetry [37]. Its relative density is given by:

�q ¼ 10
ffiffiffi
3

p

7
t
‘

� �
¼ 2:474

t
‘

� �
: ð154Þ

2.7.1. Compression
In compression, the cell walls of the snub-trihexagonal lattice

are carrying axial forces only. The unit cell, shown in Fig. 10a,
includes nine independent bars and their axial loads are labelled
N1;N2; . . . ;N9. Equilibrium equations at vertices a; b and c give:

2N1 � N2 � N6 � 2N7 þ N8 ¼ 0; ð155aÞ
� N2 þ N6 þ N8 ¼ 0; ð155bÞ
� 2N1 þ N3 þ 2N5 þ N8 � N9 ¼ 0; ð155cÞ
� N3 þ N8 þ N9 ¼ 0; ð155dÞ
� N2 � N3 þ N4 þ 2N5 þ N6 ¼ 0; ð155eÞ
� N2 þ N3 þ N4 � N6 ¼ 0: ð155fÞ
Next, the macroscopic stress field is r11 ¼ 0;r12 ¼ 0, and r22 ¼ r,
and these give:

4N1 þ N2 þ N3 þ N4
2 þ 4N5 þ N6 þ 2N7 þ N8 þ N9

2 ¼ 0; ð156Þ
2N2 � 2N3 þ N4 � 2N6 þ 2N8 � N9 ¼ 0; ð157Þ
2N2 þ 2N3 þ N4 þ 2N6 þ 2N8 þ N9 ¼ 14ffiffi

3
p rb‘; ð158Þ

respectively. The previous nine equations are used to solve for the
axial forces, and this returns:

N1 ¼ �
ffiffiffi
3

p

12
rb‘;N2 ¼ 2

ffiffiffi
3

p

3
rb‘; ð159aÞ

N3 ¼ 5
ffiffiffi
3

p

12
rb‘;N4 ¼ 5

ffiffiffi
3

p

6
rb‘; ð159bÞ

N5 ¼ �
ffiffiffi
3

p

6
rb‘;N6 ¼ 7

ffiffiffi
3

p

12
rb‘; ð159cÞ

N7 ¼ �2
ffiffiffi
3

p

3
rb‘;N8 ¼

ffiffiffi
3

p

12
rb‘; ð159dÞ

N9 ¼
ffiffiffi
3

p

3
rb‘; ð159eÞ

where a negative sign indicates tension. Next, the nominal com-
pressive strain can be obtained by equating the work done by the
external load to the internal strain energy, and this gives:

e2 ¼ 2
7
ffiffi
3

p 1
Esrb2t‘

2N2
1 þ 2N2

2 þ 2N2
3þ

�
N2

4 þ 2N2
5 þ 2N2

6 þ N2
7 þ 2N2

8 þ N2
9

�
¼ 13

ffiffi
3

p
14

r
Es

‘
t

� �
:

ð160Þ

Finally, the elastic modulus becomes:

E
Es

¼ 14
ffiffiffi
3

p

39
t
‘

� �
¼ 0:251 �q: ð161Þ

Using the principle of virtual work, we find that the strain along x1
is:

e1 ¼ 1
7‘

3D1 þ D3 � D4 þ 2D5 � D6 þ 2D7 þ D8ð Þ

¼ �17
ffiffiffi
3

p

42
r
Es

‘

t

� �
; ð162Þ

where Di ¼ Ni‘=ðbtEsÞ is the extension/shortening of bar i. With this
result, the Poisson’s ratio becomes:

m ¼ � e1
e2

¼ 17
39

¼ 0:436: ð163Þ

The snub-trihexagonal lattice fails by elastic buckling or yielding
depending on the relative density. For compression in x2, bar 4 car-
ries the highest compressive force. Setting N4 ¼ rysbt gives us the
yield strength of the lattice:

ðrplÞ2
rys

¼ 2
ffiffiffi
3

p

5
t
‘

� �
¼ 0:280 �q: ð164Þ

Otherwise, equating N4 to the Euler buckling load (Eq. (2)) returns
the elastic buckling strength:

ðrelÞ2
Es

¼ n2p2

10
ffiffiffi
3

p t
‘

� �3

¼ 0:089 �q3; ð165Þ

where the end constraint factor n ¼ 1:541 is derived analytically in
Appendix A.7.

The same procedure can be used for uniaxial compression in x1.
For this loading scenario, the internal loads are:

N1 ¼ 3
ffiffiffi
3

p

4
rb‘;N2 ¼ 0; ð166aÞ

N3 ¼
ffiffiffi
3

p

4
rb‘;N4 ¼ �

ffiffiffi
3

p

2
rb‘; ð166bÞ

N5 ¼
ffiffiffi
3

p

2
rb‘;N6 ¼ �

ffiffiffi
3

p

4
rb‘; ð166cÞ

N7 ¼
ffiffiffi
3

p
rb‘;N8 ¼

ffiffiffi
3

p

4
rb‘; ð166dÞ

N9 ¼ 0: ð166eÞ
Of course, we find the same elastic modulus in x1 since this topology
is isotropic. Here, the highest compressive load is in bar 7, and set-
ting N7 ¼ rysbt returns the yield strength:

ðrplÞ1
rys

¼ 1ffiffiffi
3

p t
‘

� �
¼ 0:233 �q: ð167Þ

Finally, equating N7 to the Euler buckling load (Eq. (2)) yields the
elastic buckling strength:

ðrelÞ1
Es

¼ n2p2

12
ffiffiffi
3

p t
‘

� �3

¼ 0:087 �q3; ð168Þ

Fig. 10. A snub-trihexagonal lattice under (a) compression and (b) shear.
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where the end constraint factor n ¼ 1:661 is derived in Appendix
A.7.

2.7.2. Shear
In shear, the cell walls of the snub-trihexagonal lattice also

carry axial forces only. The unit cell includes nine independent bars
and these are identified in Fig. 10b. The six equilibrium equations
in (155) are also valid for shear. Otherwise, the macroscopic stress
field is r12 ¼ s;r22 ¼ 0, and r11 ¼ 0, and these give:

� N2 þ N3 � N4

2
þ N6 � N8 þ N9

2
¼ 7sb‘; ð169Þ

2N2 þ 2N3 þ N4 þ 2N6 þ 2N8 þ N9 ¼ 0; ð170Þ
4N1 þ N2 þ N3 þ N4

2 þ 4N5 þ N6 þ 2N7 þ N8 þ N9
2 ¼ 0; ð171Þ

respectively. With these three equations and those in (155), we can
solve for the nine axial forces, which returns:

N1 ¼ �1
2
sb‘;N2 ¼ �sb‘; ð172aÞ

N3 ¼ 3
2
sb‘;N4 ¼ �2sb‘; ð172bÞ

N5 ¼ sb‘;N6 ¼ 1
2
sb‘; ð172cÞ

N7 ¼ �sb‘;N8 ¼ �3
2
sb‘; ð172dÞ

N9 ¼ 3sb‘; ð172eÞ
where a negative sign denotes tension. Then, the shear strain is
obtained by equating the work done by external forces to the strain
energy, and this yields:

c ¼ 2
7
ffiffi
3

p
‘b2tEss

2N2
1 þ 2N2

2 þ 2N2
3þ

�
N2

4 þ 2N2
5

þ2N2
6 þ N2

7 þ 2N2
8 þ N2

9

�
¼ 8ffiffi

3
p s

Es
‘
t

� �
:

ð173Þ

Finally, the shear modulus becomes:

G
Es

¼
ffiffiffi
3

p

8
t
‘

� �
¼ 0:088 �q: ð174Þ

The relationship G ¼ E=ð2ð1þ mÞÞ is respected since the snub-
trihexagonal lattice is in-plane isotropic.

In shear, bar 9 carries the highest (compressive) load. Setting
N9 ¼ rysbt gives us the yield strength of the lattice:

spl
rys

¼ 1
3

t
‘

� �
¼ 0:135 �q; ð175Þ

whereas equating N9 to the Euler buckling load (Eq. (2)) returns the
elastic buckling strength:

sel
Es

¼ n2p2

36
t
‘

� �3

¼ 0:055 �q3; ð176Þ

where the end constraint factor n ¼ 1:741 is derived analytically in
Appendix A.7.

3. Finite Element modelling

Finite Element simulations were conducted to validate the ana-
lytical expressions derived in Section2. All simulations were done
using the implicit solver of the commercial software Abaqus 6.18.
The parent material was modelled as an isotropic linear elastic,
perfectly-plastic solid with a Young’s modulus Es ¼ 200 GPa, a
Poisson’s ratio m ¼ 0:3 and a yield strength rys ¼ 200 MPa. For each

topology, the relative density was varied from 0.01 to 0.3 by chang-
ing the thickness t of the cell walls, while keeping their length fixed
at ‘ ¼ 10 mm. The cell walls were discretised using shear-flexible
Timoshenko beam elements (B21 in Abaqus notation), and a mesh
convergence study showed that ten elements per bar (correspond-
ing to a mesh size of 1mm) offers accurate predictions, see Supple-
mentary material. All simulations included a small geometric
imperfection, which had the shape of the first eigenmode and an
amplitude of 0:05t. This small imperfection was necessary to trig-
ger buckling, but had a negligible effect on the stiffness of the
lattice.

Each topology was modelled using a periodic unit cell (see
Fig. S1 in Supplementary material). Periodicity was enforced with
the following equations [26]:

Dui ¼ �ijDxj and Dh ¼ 0; ð177Þ

where Dui and Dh are the differences in displacement and rotation,
respectively, between two corresponding points on either sides of
the unit cell; Dxj is the vector connecting these two corresponding
points; and �ij is the macroscopic strain tensor. The compressive
response along x2 was simulated by prescribing �22 and letting Aba-
qus calculate r22 provided that r11 ¼ r12 ¼ 0. Similarly, the com-
pressive response in x1 was obtained by setting �11 and
calculating r11 with r22 ¼ 0. Otherwise, the response in shear was
obtained by imposing �12 and computing r12 while ensuring that
r11 ¼ r22 ¼ 0. More details on how these periodic boundary condi-
tions were implemented in Abaqus are given in Supplementary
material.

4. Results and discussion

4.1. Comparison between analytical and Finite Element results

Analytical results are compared to FE simulations in Fig. 11,
where four properties (E2;r2;G12; and s12) are plotted as a function
of relative density. In each plot, results are shown for all eight
semi-regular lattices (including, for completeness, the trihexagonal
tessellation even though its properties were derived analytically by
Wang and McDowell [25], Fan et al. [23]). For each topology, there
is an excellent agreement between analytical and FE predictions,
and this holds true for the four properties plotted in Fig. 11. Note
that there is also an excellent agreement between analytical and
FE results for E1 and r1, but these results are not shown here for
the sake of brevity and because E1 ¼ E2 and r1 ¼ r2 for many
topologies.

Our analytical work predicts that the failure mode of stretching-
dominated lattices will switch from yielding to elastic buckling as
the relative density decreases. This transition is clearly visible in
Fig. 11b,d and for both failure modes, there is an excellent agree-
ment between analytical and FE predictions. Based on our analyt-
ical modelling, the compressive strength r2 of bending-dominated
lattices should display a similar transition (from plastic collapse to
elastic buckling) but this switch is not visible in Fig. 11b because it
occurs at �q < 0:01 for this choice of material properties where
rys=Es ¼ 0:001. The relative density at which the failure mode
changes to elastic buckling is sensitive to rys=Es [21]; therefore
additional FE simulations were performed with rys=Es ¼ 0:01 to
capture this transition for bending-dominated lattices. These
results are provided in Appendix B and show a very good agree-
ment between analytical and FE predictions.

Note that the FE simulations presented here are done using
Timoshenko beam elements, which account for axial, bending
and shear deformations. In contrast, our analytical model neglects
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(i) axial and shear deformations inside the cell walls of bending-
dominated lattices and (ii) bending and shear deformations for
the bars of stretching-dominated topologies (see Section2). These
assumptions are justified based on the excellent agreement
between analytical and FE results, see Fig.11 and AppendixB.
Therefore, we conclude that the analytical expressions derived in
Section2 are validated for relative densities ranging from 0.01 to
0.3.

4.2. Comparison between regular and semi-regular lattices

The mechanical properties of all eight semi-regular lattices are
compared to those of regular tessellations in Table 1. Topologies

are divided in three groups depending on their behaviour: (i)
bending-dominated lattices; (ii) topologies that are stretching-
dominated in compression, but bending-dominated in shear; and
(iii) stretching-dominated lattices. Below, we discuss each group
in turn.

Four of the eight semi-regular lattices have a bending-
dominated behaviour, and their properties are compared to those
of a regular hexagonal tessellation in Table 1. Note that all
bending-dominated lattices are in-plane elastically isotropic,
except for the truncated-square topology. Amongst all bending-
dominated lattices, the truncated-hexagonal tessellation clearly
offers the best performances: it is 85% stiffer than a hexagonal lat-
tice and has a slightly higher plastic collapse strength. This is true

Fig. 11. Comparison between analytical (lines) and FE (symbols) results for the normalised mechanical properties of semi-regular lattices: (a) elastic modulus E2, (b)
compressive strength r2, (c) shear modulus G12, and (d) shear strength s12, all plotted as a function of relative density �q. The properties of the parent material are Es ¼ 200GPa
and rys ¼ 200MPa.
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for both compression and shear. The truncated-hexagonal has a
lower elastic buckling strength than a hexagonal lattice, but this
failure mode occurs only at low values of relative densities. Other-
wise, the truncated-square and truncated-trihexagonal lattices
have performances that are similar to those of the hexagonal topol-
ogy. Finally, the rhombi-trihexagonal tessellation has by far the
lowest properties: it is three times more compliant and about
two times weaker than the hexagonal lattice.

Two semi-regular topologies, the elongated-triangular and the
snub-square lattices, are stretching-dominated in compression
along x1 or x2, but bending-dominated in shear. The elongated-
triangular topology has similar properties to a regular square lat-
tice: they both have a high elastic modulus and compressive
strength in x1 or x2, but they are very compliant in shear. In con-
trast, the snub-square lattice has a shear modulus about five
times higher than that of the elongated-triangular and square
topologies, but its elastic modulus and compressive strength
are lower.

Finally, only two semi-regular tessellations have a stretching-
dominated behaviour: trihexagonal and snub-trihexagonal lat-
tices. Their properties are compared to those of a regular trian-
gular lattice in Table 1. Note that these three lattices are in-
plane elastically isotropic. The snub-trihexagonal lattice is 30%
more compliant and has a lower yield strength than the triangu-
lar and trihexagonal topologies (which have identical values for
E2;G12; ðrplÞ1 and ðrplÞ2). The three lattices differ in their resis-
tance to elastic buckling: the snub-trihexagonal lattice is 43%
stronger than a triangular lattice, but weaker than a trihexagonal
topology.

5. Conclusion

The in-plane mechanical properties of seven semi-regular lat-
tices were presented in this study. For each topology, analytical
expressions were derived for the elastic modulus and strength
under uniaxial compression and shear. These analytical equations
were then verified with finite element simulations.

The analysis allowed us to classify the behaviour of these seven
tessellations: four were found to be bending-dominated; one was
stretching-dominated; and two were stretching-dominated in
compression but bending-dominated in shear. The properties of

these seven semi-regular tessellations were also compared to
those of regular lattices, and this revealed the potential of the
truncated-hexagonal lattice. The truncated-hexagonal tessellation
is elastically isotropic and it is 85% stiffer and 11% stronger than
its hexagonal counterpart. With such combination of properties,
the truncated-hexagonal lattice is a promising topology for auto-
motive, rail and aerospace applications where a high stiffness
and strength are required. Finally, work is underway to manufac-
ture these semi-regular lattices and measure the properties
derived in this study.

6. Data availability

The raw/processed data required to reproduce these findings
cannot be shared at this time as the data also forms part of an
ongoing study.
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Appendix A. End constraint factor

At low relative densities, lattices often fail by elastic buckling.
This occurs when the compressive force in a bar reaches the
Euler buckling load, Eq. (2), which is a function of the end con-
straint factor n. The end constraint factor n was derived analyt-
ically by Fan et al. [25] for square, triangular, and trihexagonal
lattices, and here, we extend their analysis to other semi-
regular topologies.

The approach used by Fan et al. [25] to derive n is based on an
extension of the stiffness matrix introduced earlier in Eq. (3). Con-
sider that an axial compressive load P is added to the beam shown

Table 1
The mechanical properties of all eight semi-regular lattices are compared to those of regular tessellations (hexagonal, square and triangular). A reference frame is included in
Fig. 1 for regular lattices. Expressions for regular topologies and for the trihexagonal lattice are taken from Gibson and Ashby [21], Wang and McDowell [23], Fan et al. [25].

Topology �q
t=‘

E2
Es

m12 G12
Es

ðrplÞ2
rys

ðrpl Þ1
rys

ðrelÞ2
Es

ðrelÞ1
Es

ðsplÞ
rys

ðselÞ
Es

Bending-dominated topologies
Hexagonal 1.154 1.500�q3 1 0.375�q3 0.500�q2 0.500�q2 0.145�q3 - 0.217�q2 -
Truncated-hexagonal 0.746 2.780�q3 1 0.695�q3 0.556�q2 0.556�q2 0.082�q3 - 0.243�q2 -
Rhombi-trihexagonal 1.856 0.542�q3 1 0.135�q3 0.221�q2 0.221�q2 0.071�q3 - 0.106�q2 -
Truncated-square 1.029 1.833�q3 1 0.183�q3 0.553�q2 0.553�q2 0.168�q3 0.168�q3 0.195�q2 -
Truncated-trihexagonal 0.928 1.896�q3 1 0.474�q3 0.411�q2 0.411�q2 0.202�q3 0.182�q3 0.194�q2 -

Stretching-dominated in compression and bending-dominated in shear
Square 2.000 0.500�q 0:5ms �q 0.063�q3 0.500�q 0.500�q 0.059�q3 0.059�q3 0.125�q2 -
Snub-square 2.680 0.280�q 0.433 0.443�q3 0.273�q 0.273�q 0.090�q3 0.090�q3 0.279�q2 -
Elongated-triangular 2.680 0.408�q 0.158 0.078�q3 0.373�q 0.400�q 0.033�q3 0.105�q3 0.070�q2 -

Stretching-dominated topologies
Triangular 3.464 0.333�q 0.333 0.125�q 0.500�q 0.333�q 0.069�q3 0.061�q3 0.289�q 0.051�q3

Trihexagonal (Kagome) 1.732 0.333�q 0.333 0.125�q 0.500�q 0.333�q 0.224�q3 0.194�q3 0.289�q 0.244�q3

Snub-trihexagonal 2.474 0.251�q 0.436 0.088�q 0.280�q 0.233�q 0.089�q3 0.087�q3 0.135�q 0.055�q3
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in Fig. 3. This force affects the stiffness matrix, which becomes
[36]:

Mij

Mji

V ij

8><
>:

9>=
>; ¼ EsI

‘

s sc �s=‘

sc s �s=‘
�s=‘ �s=‘ s�=‘2

2
64

3
75

hi
hj
Dij

8><
>:

9>=
>;; ð178Þ

where s�, and �s are:

s� ¼ 2�s� P‘2

EsI
; ð179Þ

and

�s ¼ sð1þ cÞ; ð180Þ
respectively, and where the parameters s and c depend on the axial
load P. In compression ðP > 0Þ; s and c are given by:

s ¼ kðsin k� k cos kÞ
2� 2 cos k� k sin k

; ð181Þ

c ¼ k� sin k
sin k� k cos k

; ð182Þ

where k is related to the load P and the end constraint factor n via:

k ¼
ffiffiffiffiffiffiffi
P‘2

EsI

s
¼ np: ð183Þ

Otherwise, for tension ðP < 0Þ, the coefficients become:

s ¼ s1 ¼ k1ðk1 cosh k1 � sinh k1Þ
2� 2 cosh k1 þ k1 sinh k1

; ð184Þ

c ¼ c1 ¼ sinh k1 � k1
k cosh k1 � sinh k1

; ð185Þ

where:

k1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
�P‘2

EsI

s
: ð186Þ

Note that the subscript 1 is used only to differentiate between ten-
sion and compression. Finally, if P ¼ 0, we have:

s ¼ 4; c ¼ 0:5; ð187Þ
and the stiffness matrix returns to Eq. (3).

The procedure to derive the end constraint factor n is as follows.
For a given topology and loading direction, the periodic buckling
mode with the longest wavelength is identified1. Then, equilibrium
conditions are combined with Eq. (178) to obtain a constitutive
equation where k is the only unknown. Solving for k, it is then
straightforward to compute the end buckling constraint since
n ¼ k=p, see Eq. (183).

A.1. Truncated-hexagonal lattice

When compressed in x2, the truncated-hexagonal lattice is
anticipated to buckle in the swaying mode shown Fig. 12. Equilib-
rium of moments at vertices a and b, and the transverse forces in
bars aa and ab give the following set of equations:

Maa þ 2Mab ¼ 0;
Mba þMbb þMbc ¼ 0;
Vaa ¼ 0;

Vab � EsI
4

kaa
‘

� �2 ¼ 0;

8>>>><
>>>>:

ð188Þ

where each moment and transverse force can be expressed as a
function of h1; h2;D1 and D2 using Eq. (178). This gives:

Maa ¼ EsI
‘

saað1þ caaÞh1 þ
�saa
‘

D1

� �
; ð189aÞ

Mab ¼ EsI
‘

sab h1 þ sabcab h2 þ
�sab
‘

D2

� �
; ð189bÞ

Mba ¼ EsI
‘

sabcab h1 þ sab h2 þ
�sab
‘

D2

� �
; ð189cÞ

Mbb ¼ EsI
‘

s1bbð1þ c1bbÞh2; ð189dÞ

Mbc ¼ EsI
‘

sbcð1� cbcÞh2; ð189eÞ

Vaa ¼ EsI
‘

2
�saa
‘

h1 þ s�aa
‘2

D1

� �
; ð189fÞ

Vab ¼ EsI
‘

�sab
‘

ðh1 þ h2Þ þ s�ab
‘2

D2

� �
; ð189gÞ

where �sij; s�ij; sij and cij are all functions of kij as defined in Eqs. (179)–
(186). Substituting Eq. (189) in (188) returns a linear system of
equations: A½h1; h2;D1;D2�T ¼ 0, where the determinant of A should
be zero for a non-trivial solution to exists. Setting detðAÞ ¼ 0
returns a lengthy expression that includes kaa; kab; kbb, and kbc . Each
kij is proportional to the axial load in bar ij (see Eq. (183)); therefore,
using structural analysis, we find that:

k2ab ¼ 0:702k2aa;

k21bb ¼ 0:538k2aa;

k2bc ¼ 0:250k2aa:

8><
>: ð190Þ

Above, each kij is expressed as a function of kaa, since bar aa is the
most loaded strut and the one expected to buckle. Substituting
Eq. (190) in detðAÞ ¼ 0 yields an expression where kaa is the only
unknown. Solving this numerically gives kaa ¼ 1:240, and conse-
quently, the end constrain factor for a truncated-hexagonal lattice
compressed in x2 is:

n ¼ kaa
p

¼ 0:394: ð191Þ

A.2. Rhombi-trihexagonal lattice

A rhombi-trihexagonal lattice is expected to buckle elastically
in the swaying mode shown Fig. 13 when compressed in x2. The
buckling shape is characterised by rotations h1 and h2, and a lateral
displacement D. Equilibrium of moments at vertices a and b, as
well as the transverse load in bar ae return the following set of
equations:

1 While the analysis in this appendix is entirely analytical, we have verified, using
FE eigenvalue buckling predictions, that the anticipated buckling patterns corre-
sponds to the first eigenmode for each topology.

Fig. 12. Buckling mode of a truncated-hexagonal lattice compressed in x2.
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Maa þMab þMac þMae ¼ 0;
2ðMba þMbdÞ ¼ 0;
Vae ¼ 0;

8><
>: ð192Þ

where the moments and transverse load are obtained using Eq.
(178) and expressed as:

Maa ¼ EsI
‘

s1aað1þ c1aaÞh1; ð193aÞ

Mab ¼ EsI
‘

sab h1 � sabcab h2ð Þ; ð193bÞ

Mac ¼ EsI
‘

sac h1 þ saccac h2ð Þ; ð193cÞ

Mae ¼ EsI
‘

saeð1þ caeÞh1 þ
�sae
‘

D
� �

; ð193dÞ

Mba ¼ EsI
‘

sabcab h1 � sab h2ð Þ; ð193eÞ

Mbd ¼ � EsI
‘

sbdcbd h1 þ sbd h2ð Þ; ð193fÞ

Vae ¼ EsI
‘

2
�sae
‘

h1 þ s�ae
‘2

D
� �

: ð193gÞ

The next steps are the same as those detailed in Appendix A.1. First,
substitute (193) in (192) to form a linear system of equations and
set the determinant of the coefficient matrix equal zero. Second,
express the resulting equation as a function of kae only (since this
is the bar expected to buckle) using the following relations:

k21aa ¼ 0:122k2ae;

k2ab ¼ 0:494k2ae;

k2ac ¼ k2bd ¼ 0:250k2ae:

8><
>: ð194Þ

Solving the resultant expression returns kae ¼ 2:736. Therefore, the
end constraint factor for a rhombi-trihexagonal lattice compressed
in x2 is:

n ¼ kae
p

¼ 0:871: ð195Þ

A.3. Truncated-square lattice

A truncated-square tessellation is anticipated to buckle in a
periodic swaying mode as shown in Fig. 14 when compressed in
x2. The analysis below is for compression in x2, but, due to symme-
try, the result is exactly the same when the lattice in compressed in
x1. The buckling shape in Fig. 14 is characterised by two rotations,
h1 and h2, and two transverse displacements, D1 and D2. Equilib-
rium of moments at vertices a and b, as well as the transverse loads
in bars aa and bb return the following set of equations:

Maa þ 2Mab ¼ 0;
Mbb þ 2Mba ¼ 0;
Vaa ¼ 0;
Vbb ¼ 0;

8>>><
>>>:

ð196Þ

where Mij and Vij are obtained using Eq. (178) and given by:

Maa ¼ EsI
‘

saað1þ caaÞh1 þ
�saa
‘

D1

� �
; ð197aÞ

Mab ¼ EsI
‘

sab h1 � sabcab h2ð Þ; ð197bÞ

Mbb ¼ EsI
‘

�sbbð1þ cbbÞh2 þ
�sbb
‘

D2

� �
; ð197cÞ

Mba ¼ EsI
‘

sabcab h1 � sab h2ð Þ; ð197dÞ

Vaa ¼ EsI
‘

2
�saa
‘

h1 þ s�aa
‘2

D1

� �
; ð197eÞ

Vbb ¼ EsI
‘

�2
�sbb
‘

h2 þ s�bb
‘2

D2

� �
: ð197fÞ

Note that bar bb does not carry any axial load and therefore, sbb ¼ 4
and cbb ¼ 0:5. Following the same procedure used for the two previ-
ous topologies, and the fact that k2ab ¼ 0:353k2aa, we find that
kaa ¼ 2:307. Thus, the end constraint factor for a truncated-square
lattice is:

n ¼ kaa
p

¼ 0:734: ð198Þ

A.4. Truncated-trihexagonal lattice

A truncated-trihexagonal lattice may fail by elastic buckling
when compressed in either x1 or x2. The periodic buckling shapes,
for both loading directions, are given in Fig. 15. First, consider com-
pression in x1: the buckling shape is a swaying mode characterised
by h1; h2; h3;D1 and D2. Equilibrium of moments at vertices a; c, and
d, and transverse loads of bars aa and dd give the following set of
equations:

Maa þMab þMac ¼ 0;
Mca þMcd þMce ¼ 0;
Mdd þMdf þMdc ¼ 0;
Vaa ¼ 0;
Vdd ¼ 0;

8>>>>>><
>>>>>>:

ð199Þ

where

Fig. 13. Buckling mode of rhombi-trihexagonal lattice compressed in x2.
Fig. 14. Buckling mode of a truncated-square lattice compressed in x2.
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Maa ¼ EsI
‘

saað1þ caaÞh1 þ
�saa
‘

D1

� �
; ð200aÞ

Mab ¼ EsI
‘
sabð1þ cabÞh1; ð200bÞ

Mac ¼ EsI
‘

sac h1 þ saccac h2ð Þ; ð200cÞ

Mca ¼ EsI
‘

saccac h1 þ sac h2ð Þ; ð200dÞ

Mcd ¼ EsI
‘

scd h2 þ scdccd h3ð Þ; ð200eÞ

Mce ¼ EsI
‘

sce h2 � scecce h3ð Þ; ð200fÞ

Mdd ¼ EsI
‘

sddð1þ cddÞh3 þ
�sdd
‘

D3

� �
; ð200gÞ

Mdf ¼ EsI
‘

sdf h3 � sdf cdf h2
� �

; ð200hÞ

Mdc ¼ EsI
‘

scd h3 þ scdccd h2ð Þ; ð200iÞ

Vaa ¼ EsI
‘

2
�saa
‘

h1 þ s�aa
‘2

D1

� �
; ð200jÞ

Vdd ¼ EsI
‘

2
�sdd
‘

h3 þ s�dd
‘2

D2

� �
: ð200kÞ

Note that bar ab, does not carry any axial load and therefore, sab ¼ 4
and cab ¼ 0:5. Substituting Eq. (200) in (199), then setting the deter-
minant of the coefficient matrix to zero, and making use of the fol-
lowing relations:

k2aa ¼ 0:150k2dd;

k2ac ¼ 0:075k2dd;

k2cd ¼ 0:210k2dd;

k2ce ¼ k2df ¼ 0:500k2dd;

8>>>><
>>>>:

ð201Þ

returns an expression where kdd is the only unknown (bar dd is the
bar expected to buckle for compression in x1). Solving this expres-
sion numerically returns kdd ¼ 2:491; therefore, the end constrain
factor for a truncated-trihexagonal lattice compressed in x1 is:

n ¼ kdd
p

¼ 0:793: ð202Þ

Next, consider a truncated-trihexagonal lattice compressed in x2,
see Fig. 15b. We have:

Maa þMab þMac ¼ 0;
Mca þMcd þMce ¼ 0;
Mdd þMdf þMdc ¼ 0;
Vab ¼ 0;

Vac ¼ EsI
5

kac
‘

� �2
;

Vdd ¼ 0;

8>>>>>>>>><
>>>>>>>>>:

ð203Þ

where the moments and transverse forces are:

Maa ¼ EsI
‘
saað1þ caaÞh1; ð204aÞ

Mab ¼ EsI
‘

sabð1þ cabÞh1 þ
�sab
‘

D1

� �
; ð204bÞ

Mac ¼ EsI
‘

sac h1 þ saccac h2 þ
�sac
‘

D2

� �
; ð204cÞ

Mca ¼ EsI
‘

saccac h1 þ sac h2 þ
�sac
‘

D2

� �
; ð204dÞ

Mcd ¼ EsI
‘

scd h2 � scdccd h3ð Þ; ð204eÞ

Mce ¼ EsI
‘

sce h2 þ scecce h3ð Þ; ð204fÞ

Mdd ¼ EsI
‘

�s1ddð1þ c1ddÞh3 þ
�s1dd
‘

D3

� �
; ð204gÞ

Mdf ¼ EsI
‘

�sdf h3 � sdf cdf h2
� �

; ð204hÞ

Mdc ¼ EsI
‘

�scd h3 þ scdccd h2ð Þ; ð204iÞ

Vab ¼ EsI
‘

2
�sab
‘

h1 þ s�ab
‘2

D1

� �
; ð204jÞ

Vac ¼ EsI
‘

�sac
‘

ðh1 þ h2Þ þ s�ac
‘2

D2

� �
; ð204kÞ

Vdd ¼ EsI
‘

�2
�s1dd
‘

h3 þ s�1dd
‘2

D3

� �
: ð204lÞ

For compression in x2, bar ab is expected to buckle and the propor-
tionality between axial forces implies that:

k2aa ¼ k21dd ¼ 0:341k2ab;

k2ac ¼ 1:034k2ab;

k2cd ¼ 0:261k2ab;

k2ce ¼ k2df ¼ 0:250k2ab;

8>>>><
>>>>:

ð205Þ

Following the same procedure as in x1, we find that kab ¼ 2:143 and
the end constrain factor for compression in x2 is:

n ¼ kab
p

¼ 0:682: ð206Þ

A.5. Snub-square lattice

A snub-square lattice may fail by elastic buckling when com-
pressed in x1 or x2. The analysis is the same for both loading direc-
tions due to symmetry and therefore, we will consider only
compression in x2 here. The periodic buckling mode for this loading
scenario is shown in Fig. 16. Equilibrium of moments at vertex a
requires that:

2ðMab þMadÞ þMac ¼ 0; ð207Þ
where the moments are:

Mab ¼ EsI
‘

�4ð Þh ð208aÞ

Mad ¼ EsI
‘

�sadð Þh ð208bÞ

Mac ¼ EsI
‘

sacðcac � 1Þð Þh: ð208cÞ

Note that the above results are based on the internal loads derived
by Their and St-Pierre [32]. They showed that Nab ¼ 0, whereas bars
ad and ac are both in compression with Nad ¼ 0:577Nac . Substituting
these moments in Eq. (207) gives:

sac cac � 1ð Þ � 2sad � 8 ¼ 0; ð209Þ

Fig. 15. Buckling modes of a truncated-trihexagonal lattice compressed in (a) x1
and (b) x2.
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and, with the definitions in Eq. (181) and (182), this becomes:

kacðkac � 2 sin kac þ kac cos kacÞ
2� 2 cos kac � kac sin kac

� 2kadðsin kad � kad cos kadÞ
2� 2 cos kad � kad sin kad

� 8 ¼ 0:

ð210Þ
This equation can be expressed as a function of kac only since
k2ad ¼ 0:577k2ac . Doing that and solving numerically returns
kac ¼ 5:319 and consequently, the end constraint factor for a
snub-square lattice is:

n ¼ kac
p ¼ 1:693: ð211Þ

A.6. Elongated-triangular lattice

An elongated-triangular lattice is anticipated to buckle in the
pattern shown Fig. 17a when compressed in x1. Equilibrium of
moments at vertex a requires that:

2Mab þMac þMad þMae ¼ 0; ð212Þ
where

Mab ¼ EsI
‘

sab � sabcabð Þh; ð213aÞ

Mac ¼ EsI
‘

4þ 2ð Þh; ð213bÞ

Mad ¼ Mae ¼ EsI
‘

4� 2ð Þh: ð213cÞ

The above expressions are based on the fact that bar ab is in com-
pression whereas bars ac; ad and ae do not carry any axial load for
compression in x1, see Eq. (141). Substituting Eq. (213) in (212)
gives:

sabð1� cabÞ þ 5 ¼ 0 ) kabðkab � 2 sin kab þ kab cos kabÞ
2 cos kab þ kab sin kab � 2

þ 5

¼ 0: ð214Þ

Solving this expression numerically returns kab ¼ 4:761 and conse-
quently, the end constraint factor for compression in x1 is:

n ¼ kab
p

¼ 1:515: ð215Þ

Otherwise, an elongated-triangular lattice is expected to buckle in
the swaying pattern shown in Fig. 17b when compressed in x2.
The vertical bar ae has a transverse displacement D, and all vertices
have the same rotation h. Again, the sum of moments should be zero

at vertex a and therefore, Eq. (212) remains valid, but for this load-
ing direction the moments are:

Mab ¼ EsI
‘

s1ab þ s1abc1abð Þh; ð216aÞ

Mac ¼ Mad ¼ EsI
‘

sac � saccacð Þh; ð216bÞ

Mae ¼ EsI
‘

sae þ saecaeð Þh� �sae
‘
D

� �
; ð216cÞ

where the subscript 1 appear in Mab because this bar is under ten-
sion. In addition, Mac ¼ Mad since they have the same rotations and
carry the same axial compressive load, see Eq. (133). Substituting
Eq. (216) in (212) yields:

2s1abð1þ c1abÞ þ 2sacð1� cacÞ þ saeð1þ caeÞð Þh� �sae
‘
D ¼ 0; ð217Þ

and the transverse force in bar ae gives:

Vae ¼ EsI
‘

2�sae
‘

h� s�ae
‘2

D
� �

¼ 0: ð218Þ

The last two expressions form a system of linear equations and set-
ting the determinant of the coefficient matrix equal to zero, along
with the fact that the proportionality between internal axial loads
(see Eq. (133)) implies that:

k21ab ¼ 0:144k2ae;

k2ac ¼ 0:577k2ae;

(
ð219Þ

we obtain a long expression where kae is the only unknown. Solving
this expression numerically returns kae ¼ 2:767 and consequently,
the end constraint factor n for compression in x2 is:

n ¼ kae
p

¼ 0:881: ð220Þ

A.7. Snub-trihexagonal lattice

The snub-trihexagonal lattice is stretching-dominated and may
fail by elastic buckling when loaded in compression or shear. First,
consider the lattice under uniaxial compression in the x1 direction.
The periodic buckling shape for this loading scenario is shown in
Fig. 18a, and equilibrium of moments at vertices b; c, and d return:

Mbc þMba þMbl þMbk þMbj ¼ 0; ð221aÞ
Mcb þMcj þMci þMch þMcd ¼ 0; ð221bÞ
Mdc þMde þMdf þMdg þMdh ¼ 0; ð221cÞ
respectively. Using Eq. (178) to express each moment as a function
of the rotations, the above three equations become:

Fig. 16. Buckling mode of a snub-square lattice compressed in x2.
Fig. 17. Buckling modes of an elongated-triangular lattice compressed in (a) x1 and
(b) x2.
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sbcðh3 � cbch2Þ þ sabðh3 � cabh1Þþ
sblðh3 � cblh1Þ þ sbkðh3 � cbkh2Þþ

sbjðh3 þ cbjh3Þ ¼ 0;
ð222aÞ

sbcð�h2 þ cbch3Þ þ scjð�h2 þ ccjh3Þþ
scið�h2 � ccih1Þ þ schð�h2 þ cchh2Þþ

scdð�h2 þ ccdh1Þ ¼ 0;
ð222bÞ

scdðh1 � ccdh2Þ þ sdeðh1 � cdeh3Þþ
s1df ðh1 þ c1df h1Þ þ sdgðh1 � cdgh3Þþ

s1dhðh1 þ c1dhh2Þ ¼ 0;
ð222cÞ

respectively. Note that scd ¼ sbj ¼ 4 and ccd ¼ cbj ¼ 0:5 since these
bars are not carrying any axial load, see Eq. (166). The three expres-
sions above form a linear system of equations Ah ¼ 0, where the
determinant of A should be zero to ensure that a non-trivial solu-
tion exists. Setting detðAÞ ¼ 0 returns a lengthy expression with
coefficients smn and cmn, which can be expressed as a function of
kmn using Eqs. (181)–(185). Next, we use the internal loads given
in Eq. (166) to express each term as a function of kch (this is the
bar expected to buckle for compression in x1) and this yields:

k2bc ¼ 0:75k2ch;

k2ab ¼ k2bk ¼ k2cj ¼ k2ci ¼ k2de ¼ k21dh ¼ 0:25k2ch;

k2bl ¼ k21df ¼ k2dg ¼ 0:5k2ch:

8>><
>>: ð223Þ

This returns a lengthy expression where kch is the only unknown,
and solving numerically yields kch ¼ 5:219. Therefore, the end con-
straint factor n for compression in x1 is:

n ¼ kch
p

¼ 1:661: ð224Þ

Next, consider the snub-trihexagonal lattice compressed in the x2
direction. The anticipated buckling pattern for this case is shown
in Fig. 18b. The three expressions in Eq. (221) are still valid, but
the moments are different for this loading scenario, which gives:

s1bcðh3 � c1bch2Þ þ sabðh3 � cabh1Þþ
sblðh3 þ cblh1Þ þ sbkðh3 � cbkh2Þþ

sbjðh3 þ cbjh3Þ ¼ 0;
ð225aÞ

s1bcð�h2 þ c1bch3Þ þ scjð�h2 þ ccjh3Þþ
scið�h2 þ ccih1Þ þ s1chð�h2 � c1chh2Þþ

scdð�h2 þ ccdh1Þ ¼ 0;
ð225bÞ

scdðh1 � ccdh2Þ þ sdeðh1 � cdeh3Þþ
sdf ðh1 � cdf h1Þ þ s1dgðh1 þ c1dgh3Þþ

sdhðh1 � cdhh2Þ ¼ 0:
ð225cÞ

Otherwise, the internal loads given in Eq. (159) implies that:

k21bc ¼ k2bk ¼ k2cj ¼ 0:1k2df ;

k2ab ¼ k2de ¼ 0:5k2df ;

k2bl ¼ k21dg ¼ 0:2k2df ;

k2bj ¼ 0:4k2df ;

k2ci ¼ k2dh ¼ 0:7k2df ;

k21ch ¼ k2cd ¼ 0:8k2df :

8>>>>>>>>>>><
>>>>>>>>>>>:

ð226Þ

Following the same procedure detailed above (for compression in
x1), we obtain a constitutive equation as a function of kdf only, since
this is the most loaded bar and the one expected to buckle. Solving
this expression returns kdf ¼ 4:841, and therefore, the end con-
straint factor for compression in x2 is:

n ¼ kdf
p

¼ 1:541: ð227Þ

Finally, a snub-trihexagonal lattice can also buckle elastically under
shear according to the pattern shown in Fig. 18c. For this buckling
mode, the three expressions in Eq. (221) become:

s1bcðh3 � c1bch2Þ þ sabðh3 � cabh1Þþ
sblðh3 � cblh1Þ þ sbkðh3 þ cbkh2Þþ

sbjðh3 � cbjh3Þ ¼ 0;
ð228aÞ

s1bcð�h2 þ c1bch3Þ þ s1cjð�h2 � c1cjh3Þþ
scið�h2 þ ccih1Þ þ s1chð�h2 � c1chh2Þþ

s1cdð�h2 þ c1cdh1Þ ¼ 0;
ð228bÞ

s1cdðh1 � c1cdh2Þ þ sdeðh1 � cdeh3Þþ
s1df ðh1 þ c1df h1Þ þ sdgðh1 � cdgh3Þþ

sdhðh1 � cdhh2Þ ¼ 0:
ð228cÞ

In addition, the internal loads in Eq. (172) implies that:

k21bc ¼ k2ci ¼ k2dh ¼ 0:167k2bj;

k2ab ¼ k2bk ¼ k2cj ¼ k2de ¼ 0:5k2bj;

k2bl ¼ k21ch ¼ k21cd ¼ k2dg ¼ 0:333k2bj;

k21df ¼ 0:667k2bj:

8>>>>><
>>>>>:

ð229Þ

Following the same procedure employed for compression, we
obtain a constitutive equation as a function of kbj and find
kbj ¼ 5:469. Consequently, the end constraint factor in shear is:

n ¼ kbj
p

¼ 1:741: ð230Þ

Fig. 18. Buckling modes of a snub-trihexagonal lattice (a) compressed in x1, (b) compressed in x2, and (c) in shear.
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Appendix B. Elastic buckling strength of bending-dominated
topologies

Additional FE simulations were performed to capture the elastic
buckling strength of the four bending-dominated semi-regular lat-
tices. These FE predictions were conducted using the methodology
described in Section 3, except that the properties of the parent
material were changed to Es ¼ 4GPa and rys ¼ 40MPa. These
material properties are representative of many polymers.

The compressive strengths in both directions, r1 and r2, are
plotted as a function of �q in Fig. 19. In each plot, analytical predic-
tions (lines) are compared to FE results (symbols) for all four
bending-dominated semi-regular topologies. The failure mode
switches from plastic collapse (at high values of relative density)
to elastic buckling (at low values of �q). There are, however, two
exceptions: the truncated-hexagonal and rhombi-trihexagonal lat-
tices do not fail by elastic buckling when compressed in x1, which
is in-line with our analytical model (see Sections 2.1.1 and 2.2.1).
In general, there is an excellent agreement between analytical
and FE results; therefore, we conclude that our analytical expres-
sions for the elastic buckling strength of bending-dominated lat-
tices are verified.

Appendix C. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.matdes.2021.
110324.
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