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Abstract

Renewable energy sources have recently been integrated into microgrids that are in turn
connected to electric vehicle (EV) charging stations. In this regard, the optimal plan-
ning of microgrids is challenging with such uncertain generation and stochastic charging/
discharging EV models. To achieve such ambitious goals, the best sites and sizes of pho-
tovoltaic and wind energy units in microgrids with EV are accurately determined in this
work using an optimization technique. This proposed technique considers 1) generation
profile uncertainty in photovoltaic and wind energy units as well as the total load demand,
2) photovoltaic and wind generation units’ DSTATCOM operation capability, and 3) var-
ious branch and node constraints in the microgrid. Most importantly, the possible EV
requirements are also taken into account, including initial and predetermined state of
charge (SOC) arrangements, arrival and departure hours, and diverse regulated and unreg-
ulated charging strategies. A bi-level metaheuristic-based solution is established to address
this complex planning model. The outer level and inner-level functions optimize renewable
energy sources and EV decision variables. Sub-objectives to be optimized voltage devia-
tions as well as grid power. The results demonstrate the effectiveness of the introduced
method for planning renewable energy sources and managing EV to effectively achieve
autonomous microgrids.

1 INTRODUCTION

Renewable energy sources (RESs) are being more widely used
around the world. Global policies to minimize greenhouse gas
emissions drive this trend, but innovations in future electri-
cal power generation technologies are anticipated [1–3]. Due
to their elasticity and cost-effectiveness, photovoltaic (PV) and
wind turbine (WT) are the most prominent RES variants.
Remarkably, RESs have the potential to have a positive impact
on distribution system efficiency. Such PV and WT systems,
in particular, could improve supply efficiency, solve voltage
problems, reduce power losses, improve power quality, and
reduce the loading on traditional controlling units, thanks to
their smart functions [4, 5]. However, the PV and WT units’
extremely intermittent generation could cause a slew of func-
tional and operational issues, limiting their authorized accom-

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is

properly cited.
© 2021 The Authors. IET Generation, Transmission & Distribution published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology

modating capacities in the grid [6–8]. In line with the rising pop-
ularity of PV andWT, interest in electric vehicles (EVs) has been
growing rapidly around the world [9, 10].
There is a growing interest in the recent literature for deter-

mining the sites and sizes of various RESs in distribution
systems to enhance various grid performance indices. The
authors of [11] have proposed a two-stage data-driven robust
optimization model (for placement RESs, considering both load
and generation uncertainties to minimize the total installation
and operational costs. In [12], a probabilistic model has been
introduced to allocate different RESs in distribution systems
to maximize energy loss mitigation while still meeting system
limits. A novel fast yet accurate approach for optimally sizing
PV in distribution systems based on machine learning has been
proposed in [13] to minimize energy losses. Different analyti-
cally based approaches are proposed in [14, 15] that can deliver
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fast results in terms of the optimal sizes and sites of multiple
PV and WT systems by considering expected load/generation
conditions. In [16], a multi-objective method for efficiently
planning PV and WT systems in distribution networks has been
proposed, taking into account their probabilistic frameworks
while minimizing emissions and total costs. Wide varieties have
been used for RES planning in distribution systems, particularly
for multi-objective structures, resulting from recent revolu-
tions in implementing and sustaining effective meta-heuristic
optimization problem solvers. Crow search algorithm auto-
drive particle swarm optimization method [17], gravitational
search algorithm [18, 19], tabu search optimization solver [20],
genetic-based optimization method [21], artificial ecosystem-
based optimization method [22], equilibrium optimizer [23],
simulated annealing optimization method [24], and ant colony
optimization method [25] are some examples of optimization
solvers. The authors of [26] have proposed an adaptive robust
co-optimization method for capacity allocation and bidding
approach of a prosumer interconnected with PV, WT, and
a battery energy storage system. The importance of energy
storage systems and EVs in increasing RES hosting flexibility
has been investigated in [27]. In [28], a new planning model for
wind-based DGs and fast-charging stations has been proposed
considering residential loads and renewable power generation.
In [29], the long-term capacity expansion planning model is

investigated in microgrids interconnected to EVs and various
RES types. The authors of [30] have examined the generation
planning problem in island microgrids with RES to reduce envi-
ronmental impact. In [31], a technique for optimum design of a
DC microgrid for electric vehicle supply infrastructure has been
proposed with considering various converter types and topolo-
gies. In [32], a two-level problem is presented for isolated micro-
grids with EVs. The authors of [33] have proposed a method for
planning microgrids with EV charging demand to determine the
most economical configuration for maximizing RES utilization.
In [34], a comprehensive framework for optimally planning and
operating EV batteries has been proposed for microgrids. In
[35], a study for the impacts of EV integration approaches has
been performed on utility grids’ operation. Accordingly, most
of the suggested work is based on assumptions to simplify the
RES with the EVs planning model. Some of these approaches
assume a single RES allocation or use deterministic RES and
load models, but they do not take EVs into account. Even
techniques that take into account the intermittent and unpre-
dictable nature of RES and loads ignore the presence of EVs.
The present techniques in the RES allocation problem do not
take into account the various control systems of EVs units, their
stochastic character, or their detailed model. As a result, further
research and development are still needed to solve this RES allo-
cation model in microgrids.
As demonstrated above, with the uncertain generation of

photovoltaic and wind energy systems and stochastic charging/
discharging EV models, microgrids’ economic and optimal
operation is problematic. In this work, the optimal locations
and sizes of photovoltaic and wind energy units in microgrids
with EV charging stations are precisely calculated using an
optimization technique to achieve autonomous microgrids. The

novelty of the suggested approach includes taking into account
RES and load uncertainty, as well as the stochastic character of
EVs. Besides, the optimization model considers EV operation
restrictions such as various charging control schemes of EVs,
including controlled and uncontrolled charging strategies. This
technique takes into account generation profile intermittency
in photovoltaic and wind energy systems, as well as overall
load demand, DSTATCOM operating ability of inverter-based
photovoltaic and wind generation stations, and various branch
and node constraints in the microgrid. EV conditions, such as
initial and predetermined state of charge (SOC) arrangements,
arrival and departure hours, and various controlled and uncon-
trolled charging strategies, are also considered. To solve this
multipart planning model accurately, we established a bi-level
metaheuristic-based optimization approach. Renewable energy
sources and EV decision variables are optimized using the outer
level (main problem) and inner level (sub-problem) functions,
respectively. Total voltage deviations, as well as grid energy, are
treated as sub-objectives to be optimized. A series of tests and
case studies are used to assess the viability of the proposed
solution. The conclusions show that the proposed approach
for planning renewable energy sources and controlling EVs
effectively achieves autonomous microgrids with photovoltaic,
wind, and EV charging stations.

2 PROPOSED RES PLANNINGMODEL

The planning model for planning PV and WT units in micro-
grids integrated with EV charging stations is described in this
section. Owing to the incorporation of PV and WT in the
microgrid, the tie-line control between the utility network and
the microgrid may have high volatility, which may trigger vari-
ous technical issues such as voltage fluctuations and severe volt-
age deviations. Besides, reducing tie-line control reduces the
microgrid’s autonomy. As a result, the tie-line power and energy
deficits are used here as sub-objectives in the planning problem
to be reduced. Below, we describe in detail the panning model
of PV and WT units considering the various constraints.

2.1 Objective function

Minimize {F 1,F 2} (1)

in which F1 and F2 represent, respectively, the total voltage
deviations in the distribution system and the tie-line power,
which are formulated as:

2.1.1 Voltage deviations

The total voltage deviations in the distribution system can be
formulated as follows:

F 1 =
nt∑
t=1

ns∑
s=1

VDt
s × PM (2)
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in which

VDt
s =

NB∑
i=1

(
Vi −Vn

Vn

)2

(3)

whereVDt
s represents the total voltage deviations in the micro-

grid, whose number of buses isNB at time instant t during state
s. Note that nt and ns represents, respectively, the number of time
instants as well as the states’ number. Vi and Vn are, respec-
tively, the voltage at node i and the normal voltage (1 pu). It
is worth noting that we have considered a complete probabil-
ity model (denoted by PM) for wind speed, solar irradiance, and
total load, where the detailed formulation is given in previous
work [18], [19].

2.1.2 Tie-line power

F 2 =
nt∑
t=1

ns∑
s=1

Pt
TL,s × PM (4)

in which Pt
TL,s represents the amount of tie-line power fed by

the main grid to the microgrid.

2.1.3 Constraints

NWTiP
t
WT ,i,s + Pt

PV ,i,s + Pt
Diesel ,i,s − Pt

D,i,s ± Pt
C ,i,s

−V t
i,s

nb∑
j=1

V t
j ,s[Gi j cos𝛿

t
i j ,s

+Bi j sin𝛿
t
i j ,s]

= 0
(5)

NWTiQ
t
I ,WT ,i,s + Qt

I ,PV ,i,s + Qt
Diesel ,i,s − Qt

D,i,s

−V t
i,s

nb∑
j=1

V t
j ,s

⎡⎢⎢⎣
Gi j sin 𝛿

t
i j ,s

+Bi j cos 𝛿
t
i j ,s

⎤⎥⎥⎦ = 0,

∀i ∉ 𝜙b, s, t

(6)

V min
≤V t

i,s ≤V max , ∀i ∈ 𝜙b, s, t (7)

Pmin,t
C ,i,s ≤ Pt

C ,i,s ≤ Pmax,t
C ,i,s , ∀i ∈ 𝜙b, s, t (8)

Pmin,t
Diesel ,i,s ≤ Pt

Diesel ,i,s ≤ Pmax,t
Diesel ,i,s , ∀i ∈ 𝜙b, s, t (9)

Nmin
WTi ≤ NWTi ≤ Nmax

WTi , ∀i ∈ 𝜙b (10)

Cmin
PV ,i ≤ CPV ,i ≤ Cmax

PV ,i , ∀i ∈ 𝜙b (11)

Cmin
WT ,i ≤ CWT ,i ≤ Cmax

WT ,i , ∀i ∈ 𝜙b (12)

NPV∑
i = 1

PPV ,i ≤ Rmax
PV (13)

NWT∑
i = 1

PWT ,i ≤ Rmax
WT (14)

Qmin,t
Diesel ,i,s ≤ Qt

Diesel ,i,s ≤ Qmax,t
Diesel ,i,s , ∀i ∈ 𝜙b, s, t (15)

Qmin,t
I ,PV ,i,s ≤ Qt

I ,PV ,i,s ≤ Qmax,t
I ,PV ,i,s , ∀i ∈ 𝜙b, s, t (16)

Qmin,t
I ,WT ,i,s ≤ Qt

I ,WT ,i,s ≤ Qmax,t
I ,WT ,i,s , ∀i ∈ 𝜙b, s, t (17)

⎧⎪⎪⎨⎪⎪⎩
Qmax,t
I ,PV ,i,s =

√
S 2I ,PV ,i −

(
Pt
PV ,i,s

)2

Qmin,t
I ,PV ,i,s = −

√
S 2I ,PV ,i −

(
Pt
PV ,i,s

)2
(18)

⎧⎪⎪⎨⎪⎪⎩
Qmax,t
I ,WT ,i,s =

√
S 2I ,WT ,i −

(
Pt
WT ,i,s

)2

Qmin,t
I ,WT ,i,s = −

√
S 2I ,WT ,i −

(
Pt
WT ,i,s

)2
(19)

SOCn,d ,s ≥ SOCn,min,s (20)

I ti j ,s ≤ I maxi j , ∀i j , s, t (21)

Equations (1)–(4) denote the objective function, while Equa-
tions (5), (6) and (7)–(21) represent the equality constraints and
inequality constraints, respectively, of PV, WT, EV, diesel gen-
erators, and the distribution system. Equations (7)–(12) ensure
that the voltage level, charging station power, diesel generator
power, number of WT units, PV unit capacity, and WT unit
capacity across all the microgrid nodes are kept within desired
limits, respectively. On the other hand, the desired limits of the
reactive power injected/absorbed by the diesel generator and
interfacing inverters of RES are given in Equations (15)–(17),
while the minimum limit of the SOC of each EV at departure
time is given in Equation (20). The line thermal capacities are
described in Equation (21). Note that we have used an index
subscript i in Equations (5)–(20) to indicate the RES location
while the sizing of RES is mentioned in Equations (11) and (12).
Gij and Bij stand for the values of the conductance and suscep-
tance of the branch ij in the microgrid with nb nodes. V

t
i,s and

𝛿ti j ,s stand for, respectively, the voltage magnitude and angle at
node i; NWT,i represents the numbers ofWT units integrated at
bus i. The output generation of PV, WT, and diesel generator
at bus i are represented by Pt

PV ,i,s , P
t
WT ,i,s , and Pt

Diesel ,i,s , respec-
tively, while the total demand of reactive power is denoted by
Qt
D,i . P

t
D,i and Pt

C , j ,s symbolize the total active load demand
and charging station of EV, respectively. CPV ,i andCWT ,i stand
for the sizes of PV and WT systems, respectively, while the
highest allowed total PV, and WT capacities are symphonized
by Rmax

PV and Rmax
WT , respectively. Regarding the interacting

inverter of PV, its rated capacity is denoted by SI ,PV ,i while
the corresponding reactive power contribution is Qt

I ,PV ,i,s at
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ith node. In turn, regarding the interacting inverter of WT, its
rated capacity is denoted by SI ,WT ,i while its corresponding
reactive power contribution is Qt

I ,WT ,i,s at ith node. Further,
the reactive power of the diesel generator is represented by
Qt
Diesel ,i,s .Vector 𝜙b involves system buses. With respect to the

EV model, SOCn,d,s characterizes the amount of state of charge
(SOC) of nth EV battery at parting time. In turn, SOCn,min,s
characterizes the least SOC selected by the EV operator. The
probability model (PM) includes an integrated set of the solar
irradiance probability (probtR (Gx )), wind speed probability
(probtw (Gy )), and load demand probability (probtl (Gz )), which is
represented by:

PMt (𝜆s ) = probtR (Gx ) × probtw
(
Gy

)
× probtl

(
Gz

)
(22)

Then, the PM is constructed for all possible solar irradiance,
wind speed, and load combinations. Therefore, the complete
PM (ψ) is represented by:

𝜓 =
[
{𝜆s , PM (𝜆s )} ∶ s = 1 ∶ nS ] (23)

in which PM (𝜆s ) involves the components of the PM based on
the matrix λ. It is worth mentioning that Beta pdf, Weibull pdf,
and normal pdf are employed to model the solar irradiance, the
wind speed, and the load demand, respectively. The detailed
modelling of the EV battery and the stochastic model can be
founded in [36–38].

3 MULTI-OBJECTIVE GREYWOLF
OPTIMIZER (MOGWO)

3.1 Optimization algorithm

The grey wolf optimization (GWO) algorithm is a new meta-
heuristic algorithm and it was developed in [39]. The main
inspiration of this algorithm is the social leadership and hunting
technique of grey wolves. The GWO is firstly developed to solve
a single-objective optimization problem. The main operators
needed for the reproduction process include social hierarchy,
encircling prey, hunting and attacking prey, and searching for
prey.
During designing GWO, to model the social hierarchy of

wolves, the best, second best, and third best solutions are
denoted by alpha (α), beta (β), and delta (δ) wolves, respectively.
On the other hand, the candidate solutions’ remainders are rep-
resented by omega (ω) wolves. The hunting in this algorithm
is driven by α, β, and δ wolves while the rest wolves (ω) fol-
low them in the search for the global optimal. To simulate the
behaviour of encircling for the wolves during the hunt, the fol-
lowing formulas are developed:

D⃗ = |||C⃗ .X⃗p (t ) − X⃗ (t )||| (24)

X⃗ (t + 1) = X⃗p (t ) − A⃗.D⃗ (25)

where t represents the current iteration; A⃗ and C⃗ represent the
coefficient vectors; X⃗p represents the position vector of the vic-

tim; X⃗ is the position vector of a wolf.
The coefficient vectors A⃗ and C⃗ can be calculated as follows:

A⃗ = 2a⃗. ⃗r1 − a⃗ (26)

C⃗ = 2. ⃗r2 (27)

where a⃗ is an element that linearly decreased from 2 to 0 over
the whole iterations; ⃗r1 and ⃗r2 indicate random vectors in [0,1].
To obtain the optimal solution of an optimization problem, the
simulated social leadership and encircling mechanism are used
in GWO. In this algorithm, the best, second best, and third best
are saved, and other search agents are obliged (ω) for updat-
ing their positions with respect to them. For each search agent,
to mimic the hunting and find favourable regions of the search
space, the following mathematical formulations are run con-
stantly during optimization:

⃖⃖⃗D𝛼 = ⃖⃖⃗|C1 .X⃗𝛼 − ⃖⃗X | (28)

⃖⃖⃗D𝛽 = ⃖⃖⃗|C2 .X⃗𝛽 − ⃖⃗X | (29)

⃖⃗D𝛿 = ⃖⃖⃗|C3 .X⃗𝛿 − ⃖⃗X | (30)

⃖⃗X1 = ⃖⃗X𝛼 − ⃖⃗A1.⃖⃖⃗D𝛼 (31)

⃖⃗X2 = ⃖⃗X𝛽 − ⃖⃗A2.⃖⃖⃗D𝛽 (32)

⃖⃗X3 = ⃖⃗X𝛿 − ⃖⃗A3. ⃖⃗D𝛿 (33)

X⃗ (t + 1) =

(
⃖⃗X1 + ⃖⃗X2 + ⃖⃗X3

)
3

(34)

The GWO algorithm’s optimization starts by creating a set
of random solutions as the first population. The three best
solutions which are obtained during the optimization should
be saved as α, β, and δ solutions. The other search agents (ω
wolves) are updating their positions according to Equations
(28)–(34). In the meantime, a and A parameters are decreased
in a linear manner over the iteration. Hence, the search agents

diverge from the victim when ⃖⃖⃗|A| is greater than one while they
tend to converge towards the victim ⃖⃖⃗|A| is less than one. In the
end, the score and position of α solution are returned as the
best solutions obtained throughout optimization when an end
condition is satisfied.
To performmulti-objective optimization based on GWO, the

Multi-Objective Grey Wolf Optimizer (MOGWO) algorithm
was proposed and utilized in [40]. The process is like its sin-
gle objective, as mentioned above. Nevertheless, to employ this
algorithm for solving a multi-objective optimization problem,
the concept of dominance is utilized. A Pareto archive is respon-
sible for storing and updating a set of non-dominated Pareto
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optimal solutions obtained so far. A leader selection strategy is
used as the second component to assist in choosing α, β, and
δ solutions as the archive’s hunting process leaders. The archive
is normally set to have a limited size due to computer memory
usage. In MOGWO, the adaptive grid (or hypercube segments)
algorithm is used to deal with this task. This algorithm should
work in which the generated adaptive grids can cover all the cur-
rent non-dominated solutions. In the most crowded hypercube,
the members would be selected randomly and removed from
the archive until the number of residual members is equal to the
maximum archive size. For choosing α, β, and δ, a roulette wheel
is applied in MOGWO to select a segment in which its proba-
bility is inversely proportional to its number of members. Three
members in the selected segment will be assigned as the lead-
ers. Suppose the segment contains members less than the three
leaders. In that case, the roulette wheel selection will be exe-
cuted for selecting another segment, and the process is repeated
until having the three leaders. The MOGWO starting with the
initial population and Pareto archive. Then, the roulette wheel
and adaptive grid operators are used to select the three lead-
ers. After that, all the search area agents are updated based on
Equations (28)–(34). The non-dominated solutions sorted from
the combination of members in the previous archive and the
new agents’ positions are used to update the Pareto archive. The
three leaders α, β, and δ are then updated, and the next gen-
eration is generated. This process is repeated until a termina-
tion criterion is met. It is important to mention that this work’s
focus is to build a planning model for inverter-based RES not to
improve the MOGWO. Consequently, any other optimization
technique can be used for solving this RES planning model. The
MOGWO has been employed due to its superior performance
in wide applications to get global solutions [40].

3.2 Non-Dominated sort technique

The non-dominated sort technique can be employed to gener-
ate the Pareto optimal ranking, which split the obtained solu-
tions into various fronts with different ranks. Therefore, the
Pareto optimal technique is employed to trade-off the objective
functions and introduce multiple solutions for the optimization
problem. The ranking of the solutions is achieved based on the
non-dominated sort. The Pareto optimal ranking can be illus-
trated as given in Figure 1. If x1 and x2 are two solutions for a
multi-objective optimization problem. Therefore, any of these
two solutions can be dominant or non-dominant in the other
solution. In the case of a minimization problem, the solution x1
dominates the solution x2 if [41]:

∀i ∈
{
1, 2, … ,Nob j

}
∶ fi (x1) ≤ fi (x2) (35)

∀ j ∈
{
1, 2, … ,Nob j

}
∶ f j (x1) ≤ f j (x2) (36)

whereNobj is the number of objective functions, the solution x1
will not dominate the solution x2, if any of the above conditions
is violated. In the case of dominating of the solution x1 the solu-
tion x2, the solution x1 is called the non-dominated solution.

FIGURE 1 Mechanism of non-dominated sorting

FIGURE 2 The linear membership function

3.3 Best compromise solution

At the end of MOGWO, the Pareto optimal solution is
obtained; it is necessary to choose a solution among the non-
dominated solutions. This solution represents the best com-
promise solution based on the decision maker’s requirements.
However, the judgment of the decision-maker has inaccurate
nature. Hence, it is assumed that the decision-maker has fuzzy
nature goals of each objective function. Therefore, the fuzzy
set theory is utilized as a decision-maker [42]. The membership
functions of the fuzzy set theory represent the targets of each
objective function. Based on the experiences and conjectural
knowledge of the decision-maker, the membership function can
be defined. Here, a simple linear membership function depicted
in Figure 2 is considered for each objective function. The
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membership function can be described by [41, 43]:

𝜇i =

⎧⎪⎪⎨⎪⎪⎩

1, fi ≤ f mini

f maxi − fi

f maxi − f mini

, f mini < fi < f maxi

0, fi ≥ f maxi

(37)

where f maxi and f mini represent the maximum and minimum
values of ith objective function, respectively. The membership
function 𝜇i varies from 0 to 1, where 𝜇i = 0 and 𝜇i = 1
indicate, respectively, the incompatibility and full compatibility
of the solution with the set.
For each non-dominated solution k, the normalized member-

ship function 𝜇k can be determined as follows:

𝜇k =

Nob j∑
i=1

𝜇ki ∕
Nnd∑
k=1

Nob j∑
i=1

𝜇ki (38)

where Nnd represents the number of non-dominated solutions.
The membership function 𝜇kis the membership function of
non-dominated solutions in a fuzzy set. The solution that has
maximum 𝜇k membership in the fuzzy set is the best compro-
mise solution.

4 SOLUTION PROCESS

The proposed methodology for optimal planning of inverter-
based RES in the microgrids accommodating charging stations
of EVs is described in Figure 3. This figure shows that the
process has three main phases. In the first phase, reading and
preparing the input data, the microgrid data, and the historical
dataset of the solar irradiance, wind speed, and load demand
have been read. These data are employed to estimate the prob-
abilistic models of the RES and load demand. Furthermore,
this phase defines the zones in the microgrid, constraints of
the microgrid (e.g. RES constraints, EVs constraints, diesel con-
straints, and constraints of the inverters), and the EV charging
stations’ location and charging schemes of the EVs.
In the second phase, developed bi-level optimization, an opti-

mization model is established to solve the planning problem.
This model consists of two levels called outer level (main prob-
lem) and inner level (sub-problem). MOGWO is employed in
the two levels to solve the main and sub-problems of the model.
The outer level suggests optimal sizes and locations of the RES
and passes them to the inner level. Based on these locations
and sizes of the RES, the inner level analysis of the microgrid
for 24-h using a power flow solver along with the optimizer to
determine the optimal charging/discharging power of the EVs,
optimal power of the diesel, and optimal reactive power of the
interfacing inverters of the RES. Therefore, the inner level cal-
culates the objective functions (tie-line power and VD) for each
state according to their occurrence probability. The total sum of
each objective function is utilized as an objective function for

the outer level. This indicates that the outer level includes the
inner level. Hence, for each iteration of the outer level, the inner
level should be completely executed until its convergence.
In the end, the optimal sizes and locations of the RES, opti-

mal charging/discharging power of the EVs, optimal reactive
power of the RES inverters, and optimal power of the diesel
generator are shown in the third phase. It is important to note
that the capital costs and maintenance expenses of RES are not
considered in the planning model. Differently, we show the ben-
efits of EVs charging and reactive power capabilities of the inter-
facing RES inverters.

5 RESULTS AND DISCUSSIONS

5.1 Microgrid and dataset

The IEEE 69-bus distribution system is chosen as a microgrid
to examine the proposed methodology. The complete line and
bus data of the distribution system are obtained from [44, 45].
However, the proposed model in Section 2 is generally formu-
lated to be applied for any other distribution test systems. In
this work, this microgrid is split into six different zones (Zone
1, Zone 2,…, Zone 6) as shown in Figure 4. The PV units can
be allocated in Zone 1, Zone 2, and Zone 3 while theWT can be
allocated in Zone 4, Zone 5, and Zone 6. The microgrid accom-
modates four charging stations connected to buses 33, 36, 52,
and 65 as depicted in Figure 4. The maximum capacity of each
charging station is sixty EVs. The arriving times of these EVs
during a day follow Figure 5, while the initial SOC for each EV
at that time is depicted in Figure 6.
Tesla Model S batteries are used for EVs. The capacity of the

utilized battery is 85 kWh [46]. According to the daily nature of
the EV’ owners, the EVs normally leave the charging station in
the morning and back home after working hours. Therefore, it
is expected that each EV can connect to the microgrid for 12 h
(i.e. 7:00 AM-06:00 PM). Vehicle-to-grid (V2G) technology can
be employed during the connecting of the EVs to the microgrid
with guaranteeing enough SOC for daily trips at the departure
time of each EV. The maximum charging and discharging rate
of each EV is 20% of the battery capacity (0.2 × 85) [47]. Two
different types of RES are optimally planned in the microgrid
for minimizing the total voltage deviation and the tie-line power
between the microgrid and the utility.
Three-years historical datasets of solar irradiance, wind

speed, and load demand are used for calculating their probability
distribution functions. Here, a day within the three years is used
to represent by these years in which it is divided into the 24-
h time period. Considering that each year has 365 days, hence,
each time period has 1095 data points for solar irradiance, wind
speed, and load demand (3 years × 365 days per year). By uti-
lizing these data, at each time period, the mean and standard
deviation can be determined, and so the Beta, Weibull, and
Normal probability density functions can be generated for each
time period. The historical data of solar irradiance, wind speed,
and load demand are taken from [48, 49], and [50], respectively.
Two different situations are followed for the planning of the
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Developed Bi-level Optimization

Inner Level Problem

• 24- EVsconsidering analysis hour , generatordiesel , reactive and 
power of the RES inverters.

• calculate to optimizer the with along solver flow power a Uses 
optimal charging/discharging power of EVs, optimal generated power 

generatordiesel from , optimaland , power reactive optimal and 
injected/absorbed by RES inverters to minimize the objective function 
at each state based on its occurrence probability at that state (2), (4).

• Save the optimal results for each state.

Reading and Preparing the Input Data

• Read the micro-grid data and the historical dataset of solar irradiance, wind speed and load demand.
• Estimate the probabilistic models of the solar irradiance, wind speed, and load demand.
• Define the zones and constraints of the micro-grid.
• Determine the location of the charging stations of the EVs.
• Define the charging scheme of the EVs.

Outer Level Problem

• locations optimal the Calculates 
and sizes of the PV and WT units 
to minimize the objective 
functions given in (1).

• Control variables are the sizes and 
locations of PV and WT units

Calculate the total tie-line power and 
total VD for all states

(objective function of Outer Level)

Suggested sizes and locations of PV 
and WT for each iteration of the 

optimizer

Showing the Output Results

• Optimal locations and sizes of the PV units.
• Optimal locations and sizes of the WT units.
• Optimal reactive power of the interfacing inverters.
• Optimal charging/discharging power of the EVs.
• Optimal active power of the diesel generator.

FIGURE 3 Solution process of the proposed methodology

microgrid. In the first situation, the RES (PV and WT) are opti-
mally planned the microgrids with applicability for transferring
an amount of the power between the microgrid and the util-
ity. In contrast, the second situation the planning of the RES is
done considering autonomous microgrid in which the tie-line
power between the microgrid and the utility is zero. The pro-
posed methodology is performed in the cases of disabling and
enabling the reactive power capability of the interfacing invert-
ers of the RES. We have written the code of the optimization
problem (MOGWO optimization algorithm and the planning
model of the inverter-based RES) in MATLAB 2017b, and this
program has been carried out on a Core I5 PC with 8GB RAM.
The maximum iterations and populations of the optimizer for
both levels are 100 and 50, respectively.

5.2 Case studies

To evaluate the efficiency of the proposed methodology for
optimal planning of the inverter-based RES, four different cases
have been carried out and compared to allocate a mix of three
PV units and three WT units in the grid-connected microgrid
which accommodates EV charging stations. The different four
cases can be explained as follows:

∙ Case 1: In this case, the RES are optimally planned in the
microgrid without considering neither reactive power sup-
port from the RES inverters nor EVs.

∙ Case 2: This case considers only the EV charging/
discharging.
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FIGURE 4 Single-line diagram of the IEEE 69-bus distribution system

FIGURE 5 Distribution of the EVs at the charging stations throughout a
day

∙ Case 3: In this case, the EV charging/discharging, and the
reactive power support of the RES inverters are considered.

∙ Case 4: This case is like the previous case (Case 3) while a
diesel generator at bus 6 is considered here.

In this work, we have carried out ten runs for each simulated
case study while the best solution among them is chosen as the
final solution. Further, it is assumed that all EVs are equipped
with Tesla Model S, while the proposed model can adopt any
other battery models.

FIGURE 6 Probability distribution function of EV initial SOC

FIGURE 7 Pareto-optimal solutions obtained for combined in Case 1

FIGURE 8 Pareto-optimal solutions obtained for combined in Case 2

5.3 Analysis of the cases

In Cases 1 and 2, the inverters of the RES are working at unity
power factor while in Cases 3 and 4, the RES inverters have the
DSTATCOM functionality in which they can inject/absorb the
reactive power to/from the microgrid based on the amount of
generated active power by the RES. Furthermore, the effect of
EVs charging/discharging on the planning problem is consid-
ered in Cases 2, 3, and 4 while the EVs are considered to charge
with a fixed rate of 20% of the total capacity regardless of the
system state is considered in Case 1.
The set of dominant points (f1 and f2) for the four different

cases are depicted in Figures 7–10. The optimal sites and sizes of
the PV units and WT units which are computed by employing
the different cases along with the values of the corresponding

FIGURE 9 Pareto-optimal solutions obtained for combined in Case 3
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FIGURE 10 Pareto-optimal solutions obtained for combined in Case 4

FIGURE 11 Pareto-optimal solutions obtained in case 4 including all
solutions (dominated and non-dominated solutions)

average voltage deviation and average tie-line power are given in
Table 1. Figures 7–10 and Table 1 show that Case 4 gives better
results compared to the other cases in terms of voltage magni-
tude deviation and tie-line power in which they are significantly
decreased. For instance, the voltage deviation reductions in Case
2, Case 3, and Case 4 compared to Case 1 are 1.89%, 40%, and
57%, respectively. On the other hand, the values of the tie-line
power are decreased by 5%, 73%, and 81% in the case of Case 2,
Case 3, and Case 4, respectively, compared to the Case1. It can
be noted that the optimal locations and sizes of the RES differ
according to the applied case as illustrated in Table 1. Figure 11
shows the Pareto-optimal solutions obtained in Case 4 including
all solutions (dominated and non-dominated solutions). Multi-
objective ant lion optimizer (MOALO) is employed to solve the

FIGURE 12 Pareto-optimal solutions obtained in case 4 using MOALO
and MOGWO

FIGURE 13 Hourly tie-line power between the utility and the microgrid
for the four different cases

proposed approach and compared with MOGWO in Figure 12.
This figure shows the superiority of MOGWO over MOALO
to get best optimal solutions.
The hourly active tie-line power between the utility and the

microgrid and the voltage magnitude deviation are displayed
in Figures 13 and 14, respectively. These figures show that
enabling the reactive power capability of the RES inverters can
significantly reduce the tie-line power and the voltage magni-
tude deviation as in Case 3 and Case 4. However, the hourly
tie-line power and the voltage magnitude deviation in Case 4 are
lower than those in the other cases. This is thanks to simultane-
ous optimization of reactive power of the interfacing inverters,
EV charging/ discharging, and the active power of the diesel
generator. The optimal reactive powers of the RES inverters

TABLE 1 Computed results for 69-bus distribution system

Item Case 1 Case 2 Case 3 Case 4

PV locations 47 61 66 47 63 66 50 62 66 48 61 67

WT locations 14 32 40 12 29 40 20 34 45 23 29 42

PV sizes (MW) 0.67 2.61 0.10 0.78 1.98 0.76 0.10 2.21 0.40 0.20 2.01 0.80

WT sizes (MW) 1.97 1.54 0.58 2.44 1.42 0.75 0.81 0.92 2.24 0.82 1.00 0.27

Average voltage deviation (pu) 0.53 0.52 0.32 0.23

Voltage deviation reduction (%) — 1.89 40 57

Average tie-line power (MVA) 2.61 2.48 0.71 0.50

Reduction of tie-line power (%) — 5 73 81
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FIGURE 14 Hourly voltage magnitude deviation for the four different
cases

FIGURE 15 Hourly reactive power of the RES inverters for Case 3

injected/absorbed to/from the microgrid for Case 3 and Case 4
are given in Figures 15 and 16, respectively. It is worth mention-
ing that the positive values mean that the RES inverters inject
the reactive powers to the microgrid, while the negative val-
ues indicate that the inverters absorb the reactive powers from
the microgrid. On the other hand, the optimal hourly active
power of the diesel generator which is employed in Case 4 is
depicted in Figure 17. The optimized reactive powers of RES
inverters and active power of the diesel generator along with the
charging/discharging power of the EVs can greatly contribute
for minimizing the objective functions.
Regarding the charging/discharging power of the EVs, Fig-

ures 18 and 19 show the charging power and SOC of the EVs
in Case 1. In this case, EVs are considered to charge once they
arrived at the charging station with a fixed rate of 20% of the
total capacity regardless of the system. To avoid the repetition

FIGURE 16 Hourly reactive power of the RES inverters for Case 4

FIGURE 17 Hourly active power of the diesel generator for Case 4

FIGURE 18 Hourly charging power of the EVs at charging station
connected to bus 36 for Case 1

of the result, only the charging/discharging powers and SOC of
the EVs connected to the charging station at bus 36 are depicted
here. It is important to mention that, in this work, the EVs that
arrive at the end of the previous day have been considered, in
which they have to continue charging at the beginning of the
next day. Figure 19 shows that the SOC of all EVs at departure
time is 100%. The charging and discharging powers for Cases 2,
3, and 4, in which the V2G technology is employed, are shown
in Figure 20. The positive values indicate that the EVs are
charging from the microgrid while the negative powers indicate
that they are discharging to the microgrid. Figure 21 illustrates
the SOC of the EVs at the charging station connected to bus 36
for Case 4. The SOC in Cases 2 and 3 follow the same trend.
Therefore, they have not been shown here. It is clear that the
EVs can charge and discharge to the microgrid (i.e. the SOC are

FIGURE 19 SOC of the EVs connected to bus 36 for Case 1
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FIGURE 20 Hourly charging/discharging powers of the EVs at charging
station connected to bus 36 for Cases 2, 3, and 4

FIGURE 21 SOC of the EVs connected to bus 36 for Case 4

increasing and decreasing) while the SOC of all EVs at parting
time is high enough for daily trips.

5.4 Application to autonomous microgrid

In this subsection, the proposed methodology is applied for
the autonomous operation of the microgrid. For this purpose,
Case 4 is applied here with giving the full priority to the
objective function of the tie-line power between the microgrid
and the utility. The optimal locations, optimal sizes, average
voltage magnitude deviation, and average tie-line power by
employing this case are given in Table 2. This table shows
that the average tie-line power is zero. This indicates that the
microgrid is autonomous in which the load demand in the
microgrid is fed only by the RES and diesel generator. It is

TABLE 2 Obtained results in the case of autonomous operation of the
microgrid

Item Case 5

PV locations 50 54 66

WT locations 26 28 44

PV sizes (MW) 0.36 0.54 0.16

WT sizes (MW) 0.85 0.11 3.55

Average voltage deviation (pu) 1.26

Average tie-line power (MVA) 0.0

FIGURE 22 Hourly voltage magnitude deviation and tie-line power in
the case of autonomous microgrid

FIGURE 23 Hourly active power of the diesel generator in the case of
autonomous microgrid

important to note that the optimal locations and sizes of PV
units and WT units are changed compared to Case 4 in the
case of the grid-connected microgrid. For instance, the optimal
locations of the PV units are buses 50, 54, and 66, while the
optimal locations of the WT units are buses 26, 28, and 44.
On the other hand, the optimal sizes of the PV units are 0.36,
0.54, and 0.16 MW, respectively. The optimal sizes of the WT
units are 0.85, 0.11, and 3.55 MW, respectively. The hourly
voltage magnitude deviation and tie-line power are shown in
Figure 22, while the active power of the diesel generator is
depicted in Figure 23. Moreover, the optimal reactive powers of
the interfacing inverters are displayed in Figure 24.

FIGURE 24 Hourly reactive power of the RES inverters in the case of
autonomous microgrid
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6 CONCLUSIONS

The optimal planning of microgrids is challenging with the
uncertain generation of PV and WT systems and stochastic EV
models. To address these issues, the best locations and sizes
of photovoltaic and wind energy units in microgrids with EV
charging stations are accurately calculated in this study using
an optimization methodology to achieve autonomous micro-
grids. In particular, this introduced method considers gener-
ation profile intermittency in PV and wind energy systems,
total load requirement, DSTATCOM operational capacity of
inverter-based photovoltaic and wind generation stations, and
microgrid branch and node restrictions. EV requirements are
also taken into account, including initial and predetermined
SOC schedules, arrival and departure hours, and various regu-
lated and unregulated charging techniques. Accordingly, we have
developed a bi-level metaheuristic-based optimization approach
to efficiently deliver accurate solutions for this multipart plan-
ning model. The outer level (main problem) and inner level
(sub-problem) functions are used to maximize renewable energy
sources and EV decision variables, respectively. Total voltage
deviations and grid energy are considered sub-objectives that
must be optimized. The feasibility of the potential solution is
determined by a sequence of experiments and case studies. The
voltage deviation and the tie-line power reductions by the pro-
posed method are 57% and 81%, respectively, which is higher
than those of the existing approaches. The findings indicate that
the suggested method for designing renewable energy sources
and monitoring EVs is successful in achieving autonomous
microgrids with EV charging stations interconnected to pho-
tovoltaic and wind generation units. In this work, we have not
considered the microgrid islanding mode, and will be consid-
ered in a future study.

Nomenclature

X⃗p position vector of the victim
⃗r1, ⃗r2 random vectors in [0,1]

A⃗, C⃗ coefficient vectors
CPV ,i capacity of PV unit
Cmax
PV ,i highest capacity of PV unit at bus i

Cmin
PV ,i lowest capacity of PV unit at bus i

CWT ,i capacity of WT unit
Cmax
WT ,i highest capacity of WT unit at bus i

Cmin
WT ,i lowest capacity of WT unit at bus i
I ti j ,s the current flows in line ij
I maxi j maximum allowed current rate
Nmax
WTi maximum allowed number of WT units at bus i

Nmin
WTi minimum allowed number of WT units at bus i

Pt
C , j ,s charging station power at bus j for state s

Pt
D,i,s load demand at bus i for state s during segment t

Pt
Diesel ,i,s active power output of the diesel generator

PMt (𝜆s ) amalgamated probability model of the solar irradi-
ance, wind speed, and demand load

Pt
PV ,i,s power output of PV unit
Pt
TL,s the amount of tie-line power fed by the main grid

Pt
WT ,i,s power output of WT unit

Pmax,t
c,i,s maximum charging station power

Pmin,t
c,i,s minimum charging station power

Qt
D,i,s reactive power demand at bus i for state s

Qmax,t
Diesel ,i,s highest reactive power of diesel generator at bus i

Qmin,t
Diesel ,i,s lowest reactive power of diesel generator at bus i

Qmax
I ,PV ,i,s highest reactive power of PV at bus i

Qmin
I ,PV ,i,s lowest reactive power of PV at bus i

Qt
I ,PV ,i,s reactive power of the PV interfacing inverter

Qmax
I ,WT ,i,s highest reactive power of WT at bus i

Qmin
I ,WT ,i,s lowest reactive power of WT at bus i

Qt
I ,WT ,i,s reactive power of the WT interfacing inverter
Rmax
PV maximum total PV power

Rmax
PV maximum total WT power

VDt
s total voltage deviations of distribution system for

the state s during time segment t
X⃗ position vector of a wolf
a⃗ an element that linearly decreased from 2 to 0 over

the whole iterations
f maxi , f mini maximum and minimum values of ith objective

function
probtR (Gx ) solar irradiance probability of state x
probtl (Gz ) load demand probability of state z
probtw (Gy ) wind speed probability of state y

𝛿ti j ,s voltage angles variance at ith and jth nodes
𝜇i membership function
𝜙b set of the system buses
Bij susceptance of line ij
Gij conductance of line ij
NB number of nodes
Nnd number of non-dominated solutions
Nobj number of objective functions
ns number of the states
nt number of time segments

NWTi number of WT units at bus i
SI,PV, i inverter rating of PV
SI,WT, i inverter rating of WT

SOCn,d,s SOC of nth battery at departure time
SOCn,min minimum SOC set by the vehicle’s owner

Vi voltage magnitude at bus i
Vmax highest voltage limit
Vmin lowest voltage limit
Vn normal voltage magnitude
x1 non-dominated solution
x2 dominated solution
α the best solution
β second best solution
δ third best solution
λ a matrix with two columns which comprises all

possible amalgamations of PV power, WT power
and the load demand states

𝜓 complete probability model
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