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a b s t r a c t

MNEflow is a Python package for applying deep neural networks to multichannel electroencephalo-
grapic (EEG) and magnetoencephalographic (MEG) measurements. This software comprises Tensorflow-
based implementations of several popular convolutional neural network (CNN) models for EEG–MEG
data and introduces a flexible pipeline enabling easy application of the most common preprocessing,
validation, and model interpretation approaches. The software aims to save time and computational
resources required for applying neural networks to the analysis of EEG and MEG data.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Code metadata

Current code version 0.3.1
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-20-00108
Code Ocean compute capsule 7934771
Legal Code License BSD-3
Code versioning system used git
Software code languages, tools, and services used Python
Compilation requirements, operating environments & dependencies Python >= 3.6

Tensorflow >= 2.1.0
MNE-Python >= 0.19
NumPy, SciPy, MatPlotLib

If available Link to developer documentation/manual https://mneflow.readthedocs.io
Support email for questions ivan.zubarev@aalto.fi

1. Motivation and significance

Deep neural networks are becoming increasingly popular in
the analysis of the measurements of electromagnetic brain activ-
ity [1]. While outperforming traditional methods in many other
domains, their success in decoding brain signals has been lim-
ited mainly due to small dataset sizes and high dimensionality
of the measurements. With advances in data-sharing initiatives,
however, large standardized neuroimaging datasets are becoming
increasingly available. Yet, besides the data, a successful brain-
decoding study also requires a robust and reproducible machine-
learning workflow that would take into account the specificity
of the measurement technique, experimental design and other
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method-specific factors. In other words, these studies require
combined expertise from machine learning and neuroimaging.

The motivation behind MNEflow is to provide neuroscientists
with a robust, reproducible, and time-efficient tool for apply-
ing neural networks to large EEG and MEG datasets efficiently.
Implementing a (deep) convolutional neural network (CNN) in-
volves numerous design choices such as selecting the model
architecture, objective function, and evaluation approach. Unless
the user is well-informed in the machine-learning domain, ex-
ploring all possible options requires a considerable investment
of time. Moreover, as many neuroimaging studies seek to dis-
cover new knowledge, it is often desirable to gain insights in
patterns that a machine-learning model extracts from the data.
Interpretation of patterns that neural networks learn to extract
from data, however, is a non-trivial task and remains an area of
active research [2–4].
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Fig. 1. MNEflow architecture and workflow.

MNEflow aims at alleviating these problems by providing a
general, streamlined workflow for model development, optimiza-
tion, and interpretation. The proposed workflow is designed for
optimal memory usage and minimal repetition of operations,
which is achieved by storing intermediate results, trained models,
and training logs on a PC storage device, and allowing to access,
reproduce and inspect the results.

MNEflow allows e.g. running different models on the exactly
same training, validation and test sets enabling their fair bench-
marking. Furthermore, the modular structure of the software
allows for an easy implementation of new models. Thus, we hope
that MNEflow also contributes to the reproducibility of science.

Recent review identified low reproducibility of EEG studies
applying deep-learning techniques as one of the core challenges
of the field [1]. Among the key contributing factors are unavail-
ability of data, code, and overall low transparency in describing
the experimental pipelines.

2. Software description

Machine learning methods are usually applied to probe if
information encoded by an experimental design can be decoded
from measurements of the brain activity. The goal of the experi-
ment is often to discriminate between a set of discrete conditions,
leading to a classification problem. Alternatively, the goal could
be to predict the value of a continuous variable, leading to a
regression problem. Once a model is trained, it is often desirable
to be able to explore the patterns that allow the model to make
successful predictions [4–7].

MNEflow provides utilities allowing to streamline processing
of EEG/MEG data by solving classification or regression problems
using a community-supported and expanding pool of implemen-
tations of (deep) neural networks and several domain-specific
utilities for preprocessing, evaluation, and interpretation of the
findings.

2.1. Software architecture

The functionality of MNEflow can be divided into two major
blocks:

• Preprocessing includes various manipulations aiming to pre-
pare EEG/MEG data for the neural network, including scal-
ing, resampling, partitioning into training/validation/test
sets, and augmentation of the measurement data as well
transformations (e.g. log-transform) of the target variables.

• Experimentation includes selecting an architecture of the
neural network, adjusting hyperparameters, training, and
assessing performance. Since this process typically requires
several iterations, MNEflow also keeps record of the training
runs, facilitating parameter optimization.

EEG/MEG measurements typically comprise large amounts of
multidimensional data and require pre-processing which can be
very time-consuming. MNEflow makes use of the local file system
to store the processed measurement data using the Tensorflow
serialized record (TFRecord) format [8] as well as associated
metadata. Storing intermediate results avoids unnecessary re-
running of the preprocessing pipeline, optimizes memory usage,
and speeds up model training at the expense of using disk space.
Additional benefits of this approach stem from the fact that
comparing different models can be done using the exact same
partitions of the dataset. A trained model is also saved to a file
and can be readily tested with a different data set, applied in real-
time decoding of on-going MEG/EEG, or used for investigating the
patterns of the brain activity informing the model performance.

2.2. Software functionality

Import. MNEflow supports several input data formats. EEG/MEG
data can be imported directly from MNE-Python [9] by provid-
ing the mne.Epochs object as an argument to MNEflow. When
using other EEG/MEG signal-processing software, the data can be
provided as a 3d-array with the structure [trials, sensors, time
points]. Alternatively, one can provide paths to data files stored
in any of the supported formats indicated in Fig. 1.

Preprocessing. MNEflow implements several basic preprocess-
ing functions that can be applied to the data when producing
TFRecord datasets. These include filtering, scaling, selecting a
subset of channels, and resampling. While all these utilities are
already implemented in MNE-Python, this step is done so that
the most basic preprocessing techniques can be applied also to
the data exported from other software packages as well.

Preprocessing utilities specific to machine-learning include
partitioning the dataset into training/validation/test sets, split-
ting the data into smaller and possibly overlapping segments
(augmentation), producing sequences for RNN-type models, and
manipulating data with target variables.

Part of these preprocessing functions can be also applied once
the TFRecord files have been already produced. This is done in
order to minimize time and disk space in case user wants to try
a different preprocessing approach.

Model development. MNEflow implements several published
models that were shown to perform efficiently on EEG and MEG
data [4–6]. These models inherit the same parent class (mne-
flow.BaseModel) and thus differ only in terms of their computa-
tional graphs and hyperparameter specifications. Such structure
ensures that the same optimizers, datasets, and validation rou-
tines can be used interchangeably on different models. Similarly,
users can easily specify their own models by e.g. only designing a
custom computational graph, while re-using other components.
This saves time when experimenting with new model designs.
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Fig. 2. Illustration of the recursive elimination approach. Weights of each node of the output layer (red circle) is set to zero, effectively disabling the influence of
the corresponding spatial wk and temporal ak filters comprising the kth latent component on the classification performance. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Training and evaluation. Optimization and training consist of
specifying an objective function, performance metric and op-
timization algorithm. The current version of MNEflow (0.3.1)
requires Tensorflow version 2.1.0 or newer and relies on the Keras
API. The optimizer used by all MNEflow models is Adam [10] with
categorical cross-entropy [11] as the default objective function
for classification tasks, and mean-squared error (MSE) [12] - for
regression tasks. Early stopping is used as the default model
training approach. Different optimizers, objective functions and
performance metrics can be specified by providing additional
arguments to model.build().

Model inspection. MNEflow aims at providing users with a set of
tools to inspect the patterns that the model learns from the data.
These methods, although potentially very informative, are highly
model-specific and still need to be studied and validated. At
present, model interpretation is only available for LF-CNN [4] and
includes several heuristic approaches to identify spatial patterns,
waveforms and frequency properties of the signal components
contributing to the one-dimensional target variable (e.g. class in
a classification problem). LF-CNN introduces a conditional inde-
pendence assumption on the latent components learned from
the data. Thus, features are grouped into a small number of
conditionally-independent spatial–temporal latent factors allow-
ing a researcher to inspect their spatio-temporal properties. To
date, three general approaches for identifying relevant features
are implemented:

• Recursive elimination. Nodes of the network corresponding
to each latent component are switched off by setting their
corresponding weights to zero. Performance of the network
with n − 1 latent components is then evaluated on the
validation set [13]. Feature relevance is ranked based on
the effect that their removal has on the value of the loss
function. This approach is illustrated by Fig. 2.

• Correlation with the target variable, computed for each fea-
ture individually. For regression problems, feature relevance
is ranked by its (absolute) Spearman correlation coefficient
with the target variable. For classification problems, categor-
ical cross-entropy [11] is used as the distance metric.

• Weight-based contributions. Feature relevance is ranked by
the value of the corresponding weights. Example of com-
ponent selection based on the l2 norm of its weights is
illustrated in Fig. 3.

3. Illustrative examples

Generating TFRecords and metadata. If MNE-Python is used to
import and process measurement data, the user just has to pro-
vide an mne.Epochs object (or a list of mne.Epochs objects)
to the produce_tfrecords utility, specifying the data id and
path to save the serialized TFRecord files. Optionally, additional
import and preprocessing parameters can be specified. Alterna-
tively, one can use produe_tfrecords which takes path(s) to
files in other compatible formats that were save to disk. When
importing datasets saved in the *.mat or *.npz format, an
additional keyword argument array_keys may be required to
identify the measurement data and the target variables. Finally,
in case of more complex preprocessing pipelines, one can feed
data and labels as a tuple of numpy arrays.

1 # Read MEG/EEG epochs from a file
2 import mne
3 import mneflow
4
5 epochs = mne.read_epochs(filename)
6
7 # Specify import options
8 import_opt = dict(savepath=’C:\\data\\tfr\\’,
9 out_name=’mne_sample_epochs’,

10 fs=600,
11 input_type=’trials’,
12 target_type=’int’,
13 n_folds=5,
14 scale=True,
15 test_set=’holdout’)
16
17 # Process inputs and write TFRecord files and metadata

file to disk
18 meta = mneflow.produce_tfrecords(epochs, **import_opt)

Listing 1: Data importing and preprocessing.

Calling mneflow.produce_tfrecords returns a metadata
file that is saved to disk along with the TFRecord files. If the
metadata file already exists at the specified path and data_id,
MNEflow will load the existing TFRecords unless the overwrite
option is specified. This is done to avoid re-running time-
consuming produce_tfrecords multiple times for the same
dataset.

Initializing the dataset object. The metadata file is then used to
initialize the Dataset object. This object includes several meth-
ods that allow experimenting with the dataset without the need
to repeat the preprocessing or overwriting the TFRecord files
each time. For example, one can train a classifier model using
any subset of classes, channels or reduce the sampling rate by
decimating in the time domain.
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Computational graph. MNEFlow implements several published
neural network architectures that have been designed for
EEG/MEG decoding. In the most basic case, the user can pick
one of these models from mneflow.models. Since all mod-
els inherit from the same mneflow.BaseModel parent class,
switching from one model to another only requires changing the
computational graph accordingly. Furthermore, designing custom
architectures in MNEflow can be done easily, as it only requires
specifying a new computational graph. This can be done by
overriding the default computational graph in the parent class
(see the advanced examples in Documentation for details). The
regularization parameters may include l1 and l2 penalty on the
trainable weights, which can be applied separately to different
layers (e.g. convolution kernels, dense-layer weights etc.).

Once all the parameters are specified, the model is compiled
and can be trained.

1 # Initialize the dataset object
2 dataset = mneflow.Dataset(meta, train_batch=100)
3
4 # Specify parameters for LF-CNN
5 lf_params = dict(n_latent=32, # Number of latent

factors
6 filter_length=17, # Convolutional

filter length in time samples
7 nonlin=tf.nn.relu,
8 padding=’SAME’,
9 pooling=5,

10 stride=5,
11 pool_type=’max’,
12 model_path=import_opt[’savepath’],
13 dropout=0.5,
14 l1_scope=[ " weights " ],
15 l1=3e-4)
16
17 # Build and train the model
18 model = mneflow.models.LFCNN(dataset, lf_params)
19 model.build()
20 model.train(n_epochs=10, eval_step=100, early_stopping

=3)

Listing 2: Building and training the model.

Investigating model parameters. Because methods implemented
in MNEflow belong to discriminative (as opposed to genera-
tive) learning techniques, their primary goal is to approximate
a set of conditional distributions of target variables given the
measurement. Thus, generally speaking, there is no reason to
believe that patterns that these models extract from the data to
make their predictions can be used to adequately describe the
underlying data-generating (in our case — neurophysiological)
process. In some cases, however, inspecting these parameters can
lead to useful insights, particularly when used in combination
with standard encoding approaches [14]. Alternatively, feature
interpretation can be useful to e.g. estimate the contribution of
physiological artifacts in model performance, or as a tool for
a quick explorative analysis when designing new experimental
protocols.

In either case, however, interpreting features that discrimina-
tive models use to produce their predictions is always dependent
on the quality of these predictions and only produces useful
information if model performance is close to optimal.

MNEflow implements basic interpretation tools for some of
the implemented models. These may include spatial patterns,
latency, or frequency content of the activity informing the model.
In this example, we will use LF-CNN [4], an interpretable neural
network following the generative model of an EEG/MEG signals,
to explore patterns of the brain activity providing the greatest
contribution to each class of stimuli.

1 # Compute and show the informative patterns
2 model.compute_patterns()
3 f1 = model.plot_patterns(sensor_layout=’Vectorview -

grad’,
4 sorting=’l2’,
5 scale=True)
6 f2 = model.spectra(sorting=’l2’)

Listing 3: Inspecting informative patterns.

4. Impact

MNEflow aims to provide researchers with a tool for repro-
ducible, time-efficient and streamlined application of neural net-
works for decoding brain states from EEG/MEG measurements.
This goal is achieved by providing a general workflow that mini-
mizes the risk of falling into the most common pitfalls and thus,
ultimately, optimizing time spent doing meaningful research.

MNEflow implements a number of domain-specific utilities to
streamline the interface between standard M/EEG processing and
machine-learning pipelines. These include various preprocessing,
scaling, and data augmentation approaches, efficient ways to log
training iterations as well as utilities for typical cross-validation
procedures such as leave-one-subject-out etc.

Using an efficient intermediate data storage format avoids re-
peating the same time-consuming preprocessing operations and
allows running the analysis on massive open datasets that begin
to emerge in the field.

MNEflow implements a constantly-extended pool of popular
neural network models that can be easily applied to classifica-
tion and regression tasks as well as used as feature extraction
methods for long-term sequence modeling with Recurrent Neural
Networks within a single API [4–6].

Apart from using the implemented models, designing custom
models in MNEflow can also be performed efficiently. The user
can only specify the computational graph while making use of
the existing data handling, optimization, performance measuring
and model inspection pipelines. The pool of implemented models
can then be conveniently used as benchmarks to compare to.

Because knowledge discovery is of particular interest in de-
coding brain data, MNEflow implements several methods for it,
allowing convenient exploration of spatial and temporal patterns
that inform the model.

5. Conclusions

Taken together, we believe that MNEflow will contribute to
promoting the use of (deep) neural networks as a general re-
search and knowledge discovery tool in imaging neuroscience
and specifically in brain–computer interfacing.
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Fig. 3. Example of model inspection output for the ‘multimodal’ example dataset from MNE-Python. Informative features are grouped into spatio-temporal components
allowing to visualize their topographies (top row) and spectral properties (middle and bottom rows). In this example, components having maximum l2-norm of their
spatial and temporal weight vectors are selected for display for each class separately.
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