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Inverse Foraging: Inferring Users’ Interest in Pervasive Displays
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Users’ engagement with pervasive displays has been extensively studied, however, determining how their content is interesting
remains an open problem. Tracking of body postures and gaze has been explored as an indication of attention; still, existing
works have not been able to estimate the interest of passers-by from readily available data, such as the display viewing
time. This article presents a simple yet accurate method of estimating users’ interest in multiple content items shown at
the same time on displays. The proposed approach builds on the information foraging theory, which assumes that users
optimally decide on the content they consume. Through inverse foraging, the parameters of a foraging model are fitted to the
values of viewing times observed in practice, to yield estimates of user interest. Different foraging models are evaluated by
using synthetic data and with a controlled user study. The results demonstrate that inverse foraging accurately estimates
interest, achieving an R? above 70% in comparison to self-reported interest. As a consequence, the proposed solution allows
to dynamically adapt the content shown on pervasive displays, based on viewing data that can be easily obtained in field
deployments.
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1 INTRODUCTION

Pervasive displays are increasingly employed to convey diverse information in different settings, from private
spaces to urban environments [54]. Researchers have investigated how to draw users’ attention toward the
displays, primarily by creating new interaction methods: multi-touch displays [19, 46] and the use of external
devices such as cell phones [9, 22, 27, 45] or eye-trackers [26, 61, 64], to name a few. This article addresses a hard
problem in the design and deployment of pervasive displays: how to know what content users are interested
in [4]. The key idea is that users interested in certain content will devote more time to peruse it. Instead, users
will attend less to displays that show content they do not consider interesting [37, 41]. However, when multiple
content items are presented, how can one estimate users’ interest without asking them or tracking their gaze?
Although extensive research has been conducted to characterize users’ engagement with pervasive displays,
less effort has been directed towards methods suitable for the non-interactive scenarios that are prevalent in many
applications [6]. One solution is to measure users’ attention with tracking devices together with computer-vision
methods. The main idea behind this approach is to determine users’ level of attention on the basis of their head

Authors’ addresses: Maria L. Montoya Freire, Aalto University, Espoo, Finland, maria. montoyafreire@aalto.fi; Antti Oulasvirta, Aalto
University, Espoo, Finland, antti.oulasvirta@aalto.fi; Mario Di Francesco, Aalto University, Espoo, Finland, mario.di.francesco@aalto.fi.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike International 4.0 License.

© 2021 Copyright held by the owner/author(s).
2474-9567/2021/9-ART122
https://doi.org/10.1145/3478103

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 3, Article 122. Publication date: September 2021.



https://doi.org/10.1145/3478103
https://doi.org/10.1145/3478103
https://creativecommons.org/licenses/by-nc-sa/4.0/

122:22 + Montoya et al.

Display 1
[ ]
WEATHER a8
Taday Wy Tuesday - .
viewing
times ;
° »  Parameter fiiting ——>» ;Qﬁ;i?és
BUS TIMETABLE
4k
Mext bus at 0900 am
Platform: 23
foraging model
| ]
4

Fig. 1. Overview of the proposed approach. Inverse foraging refers to the process of inferring users’ interest in content from
the corresponding viewing data. This method takes as input both viewing times and information on what was shown on
different displays. Users’ interest is estimated by fitting the interest parameters of a foraging model to collected data.

posture and gaze direction with respect to the screen [2, 36]. Precisely, the use of tracking devices leverage
mobility (i.e., of body parts or eye gaze) to derive attention. However, attention itself is an indication of noticing
something (e.g., a flashing light) and is not immediately connected to interest, particularly, in visual content.

User modeling is a widely used approach in human-computer interaction (HCI) to inform interface design and
optimize systems to improve performance given certain inputs [14]. It has been as well applied to generate more
engaging display content through models that link users’ attention to their interest [39]. Specifically, so-called
foraging models have been employed to characterize the behavior of a user deciding on which content to direct
attention to. These models, rooted in economics and biology, are based on a principle of optimality: from among
a set of sources, the user selects the one that provides the greatest benefit — for instance, the source that yields
the most informative value. The rationale of these models is that users’ preferences and goals affect their decision
to attend to a particular content item, as does the time available. Foraging models highlight that visual attention
is not related to interest in a straightforward manner. In fact, the time spent attending to content is affected by
several other factors, such as the amount of information contained in it and its visual prominence.

Furthermore, a common approach to solve problems in HCI has been to build forward models [44]. In forward
modeling, human-like data is generated from a model. To produce realistic data, the corresponding parameters
must be assigned meaningful values, which often entails employing findings from previous studies or manually
setting the values. In some cases, values assigned in this way might not suffice for the study at hand, thereby
affecting model accuracy. To overcome this issue, researchers have also employed inverse modeling, in which
the optimal values for model parameters are found by fitting the model to observed data [24]. In other words,
forward modeling involves building a model to obtain data, whereas inverse modeling employs data to infer
parameters for a model [58]. Recent studies [15, 21, 23, 24] have demonstrated that complex interaction data can
be handled by modern inverse modeling methods.

Motivated by these considerations, this article addresses users’ engagement with displays by adopting an
inverse modeling approach. To the best of the authors’ knowledge, this approach has not been applied before,
particularly, in the context of pervasive displays (Section 2). Specifically, this work proposes inverse foraging,
a method to estimate user interest in the individual content items shown on a display. To this end, it employs
foraging models for fitting data on viewing times (see Figure 1). As a result, the proposed approach can precisely
determine the content considered interesting for users among all the different items shown on the display. This is
a simple yet accurate method of inferring interest, in that it does not require any user interaction but only relies
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on aggregate viewing times. Accordingly, inverse foraging can be meaningfully applied to the challenging case of
non-interactive displays, whose content is not explicitly requested by users. The proposed approach allows to
dynamically adapt the content shown on pervasive displays based on viewing data, as a form of implicit feedback
on the corresponding interest. For this reason, it could be easily adopted and deployed in real settings.

This work establishes the following contributions.

¢ Two foraging models are proposed to characterize the behavior of users looking at a pervasive display
(Section 3). These models are expressive, as they capture the distinctive features of tiled display layouts.
They are also simple, thus, suitable for inversion.

¢ A method to estimate users’ interest is devised by considering the viewing process of a display as an inverse
problem (Section 4). In particular, the proposed method takes viewing data as input and derives the values
of the parameters in the foraging models to maximize prediction accuracy.

¢ The quality of the model is examined through simulation with synthetic data (Section 5). The evaluation
shows that an accurate characterization is achieved in practice with only a few layouts.

¢ A user study is carried out to validate the model with real-world data (Section 6). The results demonstrate
that the proposed method can effectively estimate users’ interest.

e Finally, guidelines for applying inverse foraging in real settings are provided (Section 7). They also include
a practical method to obtain viewing data from display audience with limited instrumentation, without
relying on devices carried by users.

2 RELATED WORK

Inverse modeling is increasingly applied in HCI research to better exploit predictive models in explaining and
improving interaction. The discussion below outlines several approaches proposed in the literature that are
relevant to this work.

2.1 Inverse Models in HCI Research

Prior work has applied inverse models to characterize users’ actions in several contexts, such as keyboard
layouts [21] and task interleaving [15]. In addition, research has been carried out to explore new approaches to
estimate models’ parameters from data. For instance, Approximate Bayesian Computation (ABC) [24] has been
proposed to compute posterior distributions for parameters, which can aid in understanding the identifiability
of models. When recently compared to non-Bayesian methods of inverse modeling in the context of cognitive
models, the ABC approach demonstrated itself to be efficient [23]. While prior work attests to the efficiency of
inverse models in multiple contexts, scenarios with pervasive displays have not been considered. Hence, this
article elaborates on inverse models to address the challenging case in which multiple content items are shown
on a display.

2.2 Information Foraging

The information foraging theory has been applied to understand interactive behavior that can be described as
choices. The assumption is that users (foragers) search sources of information and choose one with the goal
of maximizing information gain, in a manner similar to how animals search for food [47]. Emerging evidence
suggests that humans adopt foraging behavior not only to search information in external environments but also
inside the mind [17, 59]. Previous studies have explored the use of foraging models in various domains, including
image retrieval [20, 33], recommender systems [53], Web search [11, 48, 60], and programming tasks [25, 28, 30, 31].
Montoya et al. [39] addressed the problem of engaging users with pervasive displays by applying the information
foraging theory. They introduced the display foraging model, which enables maximizing users’ information gain
during reading of content shown on a display with tiled layouts. The model is built under the assumption that
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users, having limited time and attention, optimize their selection of content. While the proposed approach here is
mainly based on such information foraging models, the main idea is to estimate parameters from data; thereby,
one can obtain a better estimate of the user’s interest with regard to the individual content items displayed on a
screen.

2.3 Interest Models

There is a growing body of literature on the use of click data to estimate user interest in the context of Web
search [5, 34, 56, 65]. Utilizing user’s behavioral data has been proven effective to improve the Web search
results [1]. Shen et al. [56] introduced a framework in which personalized Web search results are provided by
means of a collaborative-filtering approach, which involves collecting information from many users about their
behavior and item preferences, to serve as seeds for new recommendations. Also employing a collaborative-
filtering approach, Liu et al. [34] combined this technique with data obtained from user profiles to generate
personalized news recommendations. Instead, Qiu and Cho [51] developed an algorithm to learn users’ interests
from their click history by considering their topic preferences. While the findings from using click-behavior data
are promising, clicks do not necessarily reflect interest in a given item; for instance, the user might click on an
item because of its title but then find the content unsuitable and not interesting, which leads the user to express a
negative preference for it. As a consequence, other studies [35, 63] have incorporated alternative features into the
solution, such as dwell time, which offers insight into how long the user reads the content. To address such issues
in the context of pervasive displays, where clicks are not available, the study reported upon here took a relatively
simple approach, which requires only collecting users’ viewing time data for estimation of their interest with
respect to a set of content items. Moreover, the proposed approach is practical as it does not require any user
input.

2.4 Measuring Attention to Pervasive Displays

Several studies have investigated techniques to measure user attention directed toward a pervasive display. For
instance, tracking devices (e.g., Kinect) have been used by researchers to analyze user behavior by detecting
facial features [13, 42]. Thereby, it is possible to determine whether users are looking at a display on the basis of
their head orientation or the direction of their gaze. Schiavo et al. [52] developed an approach to estimate users’
interest from a set of conditions (i.e., distance from the screen, head orientation, and social context). Certainly,
this approach allows to estimate user attention to a screen; however, it only considers information connected
with user behavior, while no consideration is given to the content shown. In other works, researchers have
achieved promising results with solutions that replace tracking devices with off-the-shelf cameras to estimate the
user’s attention. For instance, Asteriadis et al. [3] presented a system that can estimate the level of frustration or
attention by combining head posture with gaze features. Moreover, AggreGaze [57] employed an appearance-
based gaze-estimation method specifically to estimate user attention to a display spatio-temporally. This approach
indeed provides more accurate information on what part of the display the user is focusing on, but its use has
been limited to an evaluation only involving video content. In specialist domains, systems have been developed
to estimate user attention in real-world contexts. For instance, MyAds [10] has employed RFID tags to collect data
and, thereby, produce display-relevant advertisements in line with user profiles. Similarly, BlueScreen [55] exploits
the presence of mobile devices with enabled Bluetooth functionality to advertise content judged interesting
to users. In addition, a multifaceted approach proposed by Miiller and Kriiger [40] employs several features
for estimation of user’s interest, such as time, location, and the number of people looking at a given display.
All these solutions require user intervention, in that one must be carrying one’s phone or RFID-tagged items,
which might not be practical in some scenarios. These and the other previous studies have relied on external
devices to measure interest and adapt the content shown on that basis. With particular devices, the information
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Fig. 2. lllustration of the patch model in the IFT for (a) a food foraging scenario and (b) its application to tiled display layouts.
A bird forages areas containing food (namely, patches) in the environment, spending time for both finding and consuming
them. Likewise, a user peruses tiles in a display layout, by looking at the different content items therein.

obtained is limited to physical features of a user’s response to the display, hence the system does not provide any
insight related to the content itself. Moreover, a recent study [38] presented a novel approach that can provide
viewer-centric digital signage analytics (e.g., number of viewers per content item and time spent on a display).
The approach consists of combining traditional sign data analytics with user mobility simulations. While the
findings demonstrate the potential of this solution, it could only provide insights to improve content scheduling
and how to effectively place displays. This article, in contrast, mainly focuses on the content shown and on an
associated numerical value for purposes of distinguishing between content items that are interesting, according
to users, and those that are not.

3 FORAGING MODELS FOR PERVASIVE DISPLAYS

This section first introduces the key concepts behind the information foraging theory that is employed to model
how people process and consume informative content. It then presents two different models that apply the related
theory to the specific context of pervasive displays. In the considered scenario [39], the area of these displays is
divided into separate tiles, showing different content items and organized into a space-filling arrangement (i.e., a

layout).

3.1 Information Foraging Theory

The Information Foraging Theory (IFT) [47] explains the behavior of an agent (i.e., a user) seeking information
from a set of sources by drawing upon concepts and techniques originally developed in behavioral ecology. The
analogy is based on how organisms forage for food in an environment subject to certain constraints. The key idea
is that these organisms seek an optimal foraging strategy: they aim at maximizing their energy intake given the
availability of food and the effort in obtaining it. Likewise, users spend a certain time in consuming information
sources to maximize the efficiency in accomplishing a task. This is explained based on the assumption that users
are rational, willingly selecting actions to achieve a goal, based on their knowledge [43].

There are different types of foraging models. The patch model is the one most relevant to this work: the
environment is divided into different areas (indeed called patches) containing food items, each offering a certain
reward (Figure 2a). Patches can vary in terms of prevalence (their relative occurrence) and profitability (the
amount of food / reward). A forager looks for a patch and stays therein to consume its content, then continues to
another patch and so on. The optimization problem here is finding the optimal amount of time to spend within
a patch before going forward (i.e., moving between patches). This can be formulated in terms of the so-called
gain, a measure of the value resulting from foraging. Individual patches have their own gain function, which
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is generally characterized by diminishing returns: the rate of gain reduces over time and eventually remains
constant. For this reason, logarithmic gain functions in the form g(t) = a - In(t) — b are widely used, wherein
a is a scaling factor and b the offset of the function on the vertical axis, respectively. Diminishing returns are
due to the fact that rewards are limited and not replenishable. For instance, a bird foraging berries in a bush can
eventually eat all of them; while the gain increases quickly at the beginning as there are plenty of ripe berries
that are easy to reach, it later decreases as fewer, less ripe berries remain in locations that are more difficult to
get to. Accordingly, the forager should remain in a patch only as long as the marginal value of the related gain
function is higher than the average rate of gain of the environment.

3.2 The Display Forager

The display forager applies the IFT to the case of tiled display layouts to characterize non-interactive, multi-
content pervasive displays, similar to [39]. In these settings, the layout is considered as the environment, tiles
are patches, and different content items are types of rewards (Figure 2b). More formally, a given layout [ is
composed by K tiles, individually denoted with an index k, with 1 < k < K. Each tile is characterized by different
parameters: the coefficients ai and by of a logarithmic gain function, which are assumed to be the same for all
tiles in a layout (i.e., ax = aj and by = b, ¥V k : 1 < k < K); an interest value ii; the geometry-related parameters
s for the area and ry. for the aspect ratio of tile k, respectively. Individual content items can be shown on tiles
with different geometry, in which case they are adapted according to the tile size and aspect ratio.

The display forager derives the total time a user spends by looking at a layout as a function of the tiles contained
therein. Specifically, the time #; spent by a certain user to inspect tile k is defined as follows [39, Section 2.3.2]:
@, by - sg

b =

(1)
Ik Tk

The right hand-side of the equation is composed of two terms. The first relates to the scaling factor of the
gain function, which is affected by the interest as the profitability in the IFT, thereby explaining the inversely
proportional relationship [47, p. 34]. The second term refers to the offset of the gain function and the geometry of
the tile: the area describes its visual prominence, while the aspect ratio is an indication of how it is cumbersome
to inspect content that deviates from a horizontal arrangement [12].

The total time Tj of perusing a layout can then be calculated as the sum of the values #; for the individual tiles
shown therein:

X a  by-sg
ne (2t ©
= VK Tk
With reference to the IFT, this choice considers the overall foraging time as the sum of the time within the patches
in the environment, under the assumption that the time between patches is negligible (since the tiles are adjacent

to each other).

3.3 The Tile Forager

The tile forager is a simplified version of the display forager, which does not rely on the parameters associated
with the information gain (i.e., a; and b;) to derive the total viewing time.

In detail, the tile forager assumes that the time spent on tile k jointly depends on the area s and the interest
value i, associated with a content item shown therein. Such a relation indicates that the prominence of the tile
affects the viewing time proportionally to the interest of the user in a particular content item. The total time T;
for perusing layout [ is then calculated as a linear combination of the time for an individual tile, weighted by a
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Fig. 3. Example of the tile forager as a forward and an inverse model. (a) Simple layout used for illustration purposes,
composed of two tiles of the same size; the information about the layout (i.e., the content associated to the tiles and
their geometry) are always known in the considered context. (b) In forward modeling, all the other parameters (i.e., the
alpha coefficient and the interest for individual content items) are also assumed to be known and the total viewing time is
derived through Eq. (3). (c) In inverse modeling, only the total viewing time is known (through observations) and black-box
optimization is applied to derive the unknown parameter values.

coefficient a;:
K
l"t:ﬂfzsk'fk 3)
k=1

As a normalization factor that allows more flexibility in the possible choices of interest values across tiles.

The tile forager assumes that the size of the tile is the primary factor: the larger the tile, the more informative
content and the greater the attention. This model further assumes that the relationship between size and interest
is directly proportional, unlike that in the display forager. Such relaxations depart from the theoretical foundation
of the IFT [47]; however, they are beneficial in that the model is very simple, with only a few parameters. This
makes inversion easier and prevents overfitting. As will be shown in Section 5, accurate predictions are obtained
notwithstanding the low number of parameters.

4 INVERSE MODELING

The previous section discussed information foraging in the context of forward modeling. Accordingly, forward
modeling builds a mathematical abstraction that generates human-like data [44]. For instance, the IFT-based
models introduced in the previous section can be applied to predict the total viewing time by knowing all the
parameters describing a layout: the geometry of tiles, their content items and the related interest (Figures 3a and 3b).
The viewing time, in turn, can be leveraged for the computational design of informative display layouts that
maximize the information gain [39]. Such an approach is solid, as grounded on theories that accurately describe
human behavior in realistic settings by drawing from cognitive science. However, it is not at all straightforward
to set the values of the parameters for specific settings, as this may require conducting preliminary studies that
are cumbersome to carry out or difficult to generalize.

A different option is given by inverse modeling. Broadly speaking, inverse modeling is a data-driven approach
to customize a mathematical representation of a system for a certain scenario. More specifically, inverse modeling
applies computational parameter-fitting methods to estimate the actual values in a target model that best explain
the user behavior expressed by the data [58]. In contrast with forward modeling, here parameter values are
unknown and are treated as variables, which are then instantiated on the basis of available observations —
realizations of the model output through a quantitative characterization of user behavior (Figure 3c). Inverse
modeling is also practical, as long as the output of the model can be measured with some accuracy in an
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unobtrusive way. As for the above-mentioned IFT-based models, inversion only requires obtaining the time spent
by a user in perusing a certain layout. This can be achieved, for instance, with the method described in Section 7.

A preliminary step for model inversion is data collection based on observations of actual user behavior. In the
considered context, an observation consists of measuring the user-specific viewing time for a given layout. A
dataset can be built by considering multiple observations: as distinct displays showing different layouts that do
not change over time, a single display that cycles through different layouts, or both. The exact realization does
not matter, as long as there are enough layouts and variety in their configurations (i.e., diversity in the geometry
and content of tiles). Otherwise, the model parameters might not be correctly recovered, as it will be further
explained in the next section.

Once viewing times are available, it remains to apply parameter fitting. The actual parameters to be estimated
depend on the considered model. The interest ix for individual content items is derived for both IFT-based models;
furthermore, the a; and b; coefficients associated with the gain function are obtained for the display forager,
the a coefficient for the tile forager. Moreover, different methods can be used for model fitting, including those
for black-box optimization that do not even require knowing the analytical expression of a function - e.g., grid
search or Bayesian optimization [24]. Such an optimization consists in minimizing the difference between model’s
prediction and the observed data. Widely used methods include: Powell [49], employing two search vectors
to define the direction for searching parameter values; Nelder-Mead [29], leveraging a modified version of the
simplex method and iterative reshaping of the search space; and Differential Evolution (DE) [50], applying a
genetic algorithm. A preliminary study revealed that both Powell and Nelder-Mead were not effective in the
considered scenario, whereas DE achieved considerably smaller prediction errors when its hyperparameters were
selected through Bayesian optimization. As a consequence, the latter was selected to perform parameter fitting.

5 ASSESSING PARAMETER RECOVERY

Before fitting the models to empirical data, it is essential to check that model parameters can actually be estimated
from such data. This step is called parameter recovery [16]. To this end, synthetic data were first generated and
fed to the models, then an evaluation was carried out to assess whether the parameters generated can be inferred
from said data [62]. Accordingly, the model that generated the data is fitted, and effectiveness is quantified
in terms of accuracy. Ideally, there should be a strong correlation between the true values and the recovered
parameters. Indeed, parameter recovery is an important (though often overlooked) step in modeling, in that it
allows to discover possible issues affecting model quality. The following subsections describe the method to
generate the synthetic data and present the results obtained for the considered cases.

5.1 Data Generation

Diverse realistic simulated scenarios were created for evaluation wherein different numbers of layouts were
viewed by different users. Synthetic data were created by considering various numbers of layouts and also several
types of content items. In total, four datasets were created, each containing several layouts with distinct number
of tiles (between 2 and 6). As for the type of content items, 8 options were selected in line with the assumption
that the content would be shown in a university setting. The content was randomly assigned to individual tiles
for all the layouts. Also, the body of data was created under the assumption that there are several users standing
in front of the display and that some content items are found to be more interesting than others. Accordingly, the
data included the time devoted to each layout, with its value set within the range of 1.9 to 6.6 seconds, which is
consistent with the values reported in prior work [18, 39]. The interest ratings were employed as the ground
truth, with values defined in a range of 1 to 7, for content items deemed “least interesting” and “very interesting”,
respectively. The foraging models were assessed for estimating interest under two evaluation scenarios: five
content items with 6 and 14 layouts as well as eight content items with 14 and 20 layouts.
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Table 1. Evaluation results obtained for the individual models with synthetic data.

Tile forager Display forager
No. of layouts Content items AIC BIC RMSE R?  AIC  BIC RMSE R?
6 5 27.27 2064 1342 0.789 36.59 2744 1.008 0.771
14 5 41.39 30.72 1.015 0816 72,57 56.32 1.378 0.826
14 8 60.70 5141 1425 0832 97.37 88.70 2376 0.850
20 8 70.79 6190 1.258 0.848 11598 10794 1.662 0.872
Mean 50.04 41.17 1260 0.821 80.63 70.10 1.606 0.830
SD 1947 18.84 0.177 0.025 3432 3553 0579 0.043

5.2 Implementation

The IFT-based models were implemented in Python. Model inversion was realized through the DE algorithm as
available in the scipy.optimize library. The hyperparameters of DE were fitted through the tools for Bayesian
optimization in the scikit-optimize library!. The code was optimized for parallel execution, and model-fitting
was carried out on a high-performance computing cluster.

5.3 Results

The following reports accuracy in terms of the following metrics: root mean square error (RMSE), expressed
in the same units as the interest ratings (i.e., on the 1-7 scale); and R?, which explains how well the model fits
the data, from 0% to 100%. In addition, the following metrics are calculated to compare the models: the Akaike
Information Criterion (AIC) as an estimate of how well the model fits the data without overfitting; and the
Bayesian Information Criterion (BIC), used for model selection.

Before reporting the overall findings, the results obtained for the considered scenarios are described below.
The first features five content items arranged in up to 14 distinct layouts. Table 1 shows examples wherein the
two foraging models were fitted to synthetic user data from six and 14 layouts. When using six layouts, the
models reach similar levels of accuracy, with R? above 0.75. However, the prediction error is smaller for the
display forager, with an RMSE value of 1.008. The R? increases when 14 layouts are used. Here, the tile forager
obtains a value of 0.816 and the RMSE decreases to 1.015. In contrast, the display forager obtains a higher R?
value, 0.826, while the RMSE also increases, by 0.363, from that with the tile forager. From these results, it can be
concluded that having more displays to draw data from increases the accuracy of the inverse modeling.

Moreover, the number of content items per layout was varied. When more content items are presented, the
display forager achieves higher accuracy than the tile forager, with R* = 0.872 as shown in Table 1. However,
the tile forager obtains lower RMSE values in both cases, and for 20 layouts that model actually performs better,
with a minimum prediction error of 1.258 units. In contrast, the display forager shows a prediction-error value of
2.376 when 14 layouts are used.

Both models were effective for inversion, as shown by the aggregated results. The tile forager performed
slightly better, as it obtained lower values of both prediction error (an average RMSE of 1.260) and AIC (50.04 on
average), indicating less overfitting than the display forager. A similar pattern can be observed in the BIC for the
two models. Figure 4 shows sample results obtained by the tile forager which obtained lower prediction errors on
average for the two considered scenarios.

Ihttps://scikit-optimize.github.io/dev/index.html
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Fig. 4. Parameter recovery, with selected results from inverting data synthetically generated by the tile forager. The first
row (top) shows the predictions obtained by the model for five content items. The second row (bottom) depicts the model’s
predictions for eight content items. The results show that the model can estimate the original interest parameters with very
satisfactory accuracy.

6 EMPIRICAL EVALUATION

A controlled user study was conducted to evaluate the accuracy of inverse foraging with real viewing data on
tiled display layouts. To this end, a free-viewing task [39] was employed wherein participants were asked to view
different layouts with multiple content items, one by one, pressing a button when done with each. The benefit of
organizing the research as a controlled study was to mitigate the influence of confounding variables and to gain
higher precision in (viewing time) measurements than field studies would permit [7]. After viewing the layouts,
the participants were asked to fill in a rating form to express their interest in the content presented. Accordingly,
the interest ratings served as the ground truth to assess the accuracy of the inverse foraging.

6.1 Participants

Sixteen participants were recruited at the authors’ institution (10 male and 6 female). The participants had diverse
educational background and their ages ranged between 25 and 33 years (M = 28.43, SD = 2.70). Recruitment was
performed via several messaging platforms; participation in the study was voluntary and subject to informed
consent.

6.2 Materials

For the study, a Web-based application was implemented to generate layouts, similar to the one described by
Montoya et al. [39]. The application randomly generated 200 distinct layouts, with each layout containing between
two and six tiles. Those layouts were then exported as high-resolution images for use in the survey. The study
was conducted in a university context, therefore content items were created from data sources related to the
university. To this end, several types of content were considered, including upcoming events, local news, and
posts on social media. A probability distribution was the criterion employed to assign content items to individual
tiles.

A Web-based survey was realized by following a within-subject design, with two variables considered for
analysis: the viewing time of a layout and the user’s interest in certain content items. The first variable was
measured as the duration of viewing a layout, the second was expressed in terms of participant’s ratings. The
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Fig. 5. Screenshots of the interface employed in the user study, consisting of two phases. (a) In the first one, users were
shown layouts with multiple content items and asked to press a button once they found them no longer interesting. (b) In
the second phase, ground-truth measurements for interest were obtained in a rating task.

survey showed a sequence of five layouts and asked 11 questions. The interface was easy to use: participants
merely had to press a button to show the next layout or question (Figure 5). The study was carried out online,
therefore participants used their own equipment as long as it was either a laptop or a desktop (workstation) with
a large-enough widescreen display.

6.3 Procedure

Participants were informed about the data collected during the study and were given a URL to access the survey.
The participant had to read the instructions to use the tool and was asked for informed consent before starting
the experiment. There was no time limit to complete the study, hence participants could perform the tasks at
their own pace.

The participants had to perform two tasks to complete the study. Accordingly, the study was divided into two
phases: self-paced viewing and content ratings.

6.3.1 Phase I: Self-paced Viewing. Firstly, participants were shown a random sequence of five distinct layouts.
These were shown one at a time, and the participants had to request the next layout by clicking a button. The
survey provided only a button to move forward, as the viewing time was recorded once for each layout. Figure 5a
depicts a sample layout of four tiles shown to a participant.

6.3.2 Phase Il: Content Ratings. Once the layouts were shown, participants were asked to rate 11 distinct content
items, displayed one by one. To this end, two questions were asked: one to rate the content items displayed on the
screen; and another to assess the participant’s engagement in terms of attention to previously-displayed content
items. Participants could rate content items on a scale of 0 to 100, from “least interesting” to “very interesting”.
Figure 5b shows a sample page, wherein the participant was asked to rate a content item related to weather.

Finally, participants were asked to fill in a demographic questionnaire for statistical purposes. The experiment
took, on average, 10 minutes for each participant.

6.4 Data Collection and Preprocessing

The following data were recorded during the experiments: the time spent on each layout shown, measured in
seconds; the ratings given to each content item to express interest; and the answers pertaining to the content
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Fig. 7. Observed versus predicted interest found in the empirical user study: (a) for data aggregated by content type, and (b)
for individual-level per-content-type data.

items observed earlier. Moreover, the actual content items shown in the experiment were stored to validate
participants’ answers regarding the content seen. Collected data were checked to verify that all participants in the
user study were engaged during the experiments, in terms of long-enough viewing times and consistent answers
on content seen in previously-shown layouts. Before fitting the data, the interest ratings were normalized over a
smaller scale, and Gaussian noise was added to the viewing-time observations.

6.5 Results

The following reports the results obtained by leveraging the data collected in the user study for inverting the
proposed IFT models. Specifically, the considered data included a number of layouts ranging from two to five,
leading to estimates of eleven interest values in addition to other parameters (see Section 3). The following
focuses on interest values only, as this is the main scope of the work and also because the other parameters
are model-specific. The same metrics described in the previous section were considered; interest ratings were
normalized to the range 0 to 1 for comparison purposes.

6.5.1 Fitting Results. The first set of experiments focuses on fitting accuracy. For simplicity, the obtained results
are presented for the tile forager only. Table 2 reports the model accuracy as a function of the number of layouts.
The results show that the RMSE slightly increases with the number of layouts, except for the case of five layouts
where the RMSE decreases to a value between those obtained for two and three layouts. Instead, the R* values
always increases with the number of layouts with an almost linear trend, as it could be better seen from Figure 6.
These results demonstrate that the proposed model can infer users’ interest even when only two layouts are
shown; a stronger correlation is achieved when fives are presented, as done in the user study. The following
discussion on correlation considers five layouts, as that is the setting providing the best accuracy. Figure 7a
shows the correlation between observed versus predicted interest ratings, wherein each data point represents a
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Table 3. Both foraging models achieved very satisfactory accuracy in estimating ground-truth interest data in the empirical
user study (N=16). The text in boldface denotes the best values obtained by each model under the considered metrics.

Tile forager Display forager
User AIC BIC RMSE R? AIC BIC RMSE R?

1 12.30 3.62 0.206 0.832 30.16 20.14 0.253 0.684
2 10.68 2.00 0.191 0.757 16.30 6.28 0.134 0.848
3 11.34 3.16 0.201 0.833 3341 2338 0.293 0.733
4 3483 26.15 0574 0.772 28.38 18.36 0.233 0.753
5 8.34 -0.80 0.170 0.706 1649 7.15 0.143 0.795
6 3520 26.53 0583 0.797 22.08 12.06 0.175 0.873
7 37.17 2849 0.638 0.760 31.89 21.87 0.273 0.690
8 24.76 16.09 0.360 0.640 4226 32.24 0.451 0.493
9 28.64 1996 0433 0701 17.12 7.10 0.140 0.755
10 10.31 1.63 0.188 0.628 46.73 36.71 0.537 0.824
11 10.77  2.09 0.192 0.775 346 2458 0309 0.700
12 35.82 27.14 0.600 0645 19.37 9.35 0.155 0.839
13 5.12 -3.55 0.148 0.897 325 2248 0.281 0.318
14 5.58 -3.09 0.151 0.883 3247 2245 0.281 0.909
15 8.80 0.12 0.175 0.821 3648 2646 0.337 0.638
16 1464 5.96 0.229 0.797 3322 2320 0.291 0.782

Mean 19.37 10.66 0.315 0.765 29.59 19.61 0.268 0.758
SD 11.93 1196 0.185 0.083 9.10 9.04 0.112 0.103

content item. The figure clearly shows a strong correlation: the predicted values are close to the observed ones,
demonstrating that the model adequately fits. Figure 7b shows the correlation in terms of individual participants,
which are represented as data points therein. The results exhibit a similar pattern also in this case.

6.5.2 Comparing the Two Foraging Models. The next set of experiments aims at comparing the display forager
and the tile forager. For this purpose, the results are reported for the individual participants, averaged over all
the number of layouts in the data. Accordingly, Table 3 presents the accuracy of the two models per user; the
best values of the considered metrics are boldfaced for better illustration. First of all, both models achieve high
accuracy, with R* > 0.75 on average. In terms of RMSE, the values obtained by the display forager differ slightly
from those for the tile forager, with average values of 0.268 and 0.315, respectively. For a comparison between
them, the analysis focuses on ascertaining which model obtains lower values of the AIC and BIC metrics. In
this respect, it is clear that the tile forager yields lower values than the display forager for the majority of cases
— there are only five cases wherein the display forager performs better than the tile forager. These results are
as expected since the display forager searches for more parameters (i.e., the a and b coefficients) than the tile
forager (i.e., only @) in addition to the interest ratings. Conversely, the display forager is also more complex;
in fact, fitting its parameters takes about twice as much time as for the tile forager. Note that the number of
parameters depends both on the number of content items and on the number of layouts.

6.5.3 Insights from Collected Data. Overall, the time spent viewing the content shown in the layouts ranged
between four seconds and two minutes, with an average of 42 seconds. Note that these values are likely to be
much higher than those in real scenarios [8, 18, 36], due to the particular conditions considered in the experiment.
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@ (b)
Fig. 8. Sample output of the system prototype for characterizing user behavior. (a) Facial features of the users (represented
as red dots) are detected to determine if they are looking at the display or not. (b) This allows to distinguish between users
paying attention to the content of the display (in green rectangles) and the rest of the people in the deployment area (in
white rectangles).

Nevertheless, they clearly indicate that participants were more engaged with certain layouts than others. The
average rating for the content items was 50%, and participants gave similar ratings to all content items in a few
cases. However, most of the participants rated at least one of the content items “least interesting” and “very
interesting” While responses vary considerably across all the participants, the proposed models can still estimate
such values with high accuracy.

7 APPLICATION PROCEDURE FOR INVERSE FORAGING

The results obtained through both simulation and the controlled experiment demonstrated that the models
are effective in deriving interest from aggregate viewing times. This is a very important aspect for practical
applications. In fact, determining the viewing time of individual tiles is generally cumbersome or impractical,
depending on the chosen instrumentation — for instance, gaze trackers generally have a limited range and require
prior calibration. In contrast, it is possible to obtain the total time a user spends in perusing a layout (i.e., all the
tiles therein) more easily and accurately, as explained next.

Before proceeding further, it is worth noting that inverse foraging as presented here can be employed in
scenarios that fulfill the following conditions: (1) at least five distinct multi-content-item layouts are presented
over time (2) such that the contents are drawn from a pool of 5-11 content categories, where (3) reliable data
are available on how long users spend viewing each layout. The rest of this section focuses on the latter, by
introducing a system that reliably measures per-user viewing times with limited instrumentation and no explicit
user intervention. The method presented in this article does not distinguish between different users. As a
consequence, it could be applied to characterize the audience of pervasive displays on average terms, which is
relevant to the considered scenario.

With these considerations in mind, a pervasive display prototype was implemented for inverse foraging. The
prototype consists of a client—server architecture wherein the pervasive display client presents layouts produced
by a server. It also employs computer vision to track users’ viewing durations (Figure 8), without the need for
gaze tracking. Specifically, Microsoft Kinect v. 2 was employed to capture depth images of people walking in
front of a display, since this system has been widely employed to measure users’ attention by detecting their
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head posture and position [2, 42]. This solution also can recognize facial features of users (i.e., eyes, nose, and
mouth) within a two-meter distance range. These features were used to obtain a better estimate of attention. In
fact, users too far away from the display cannot distinguish the content shown therein. Moreover, users who are
close enough may not be looking at the display.

The prototype was evaluated with a small group of researchers’ to measure the accuracy of detecting actual
views and their duration. Figure 8a presents an example clearly showing two users looking at a display, because
their eyes and nose are directed towards the device. The two users behind them, at a distance of four meters from
the display, are just considered bystanders. Therefore, the prototype is able not only to determine users and their
viewing times but also the number of people present in the deployment area. This is more clearly indicated in
Figure 8b, wherein users devoting attention to the display are enclosed within a green rectangle, while the rest of
people (ignoring it) with a white rectangle.

8 DISCUSSION

This work has demonstrated the feasibility of using inverse modeling to infer the interest of a user with respect
to differing content shown on a display. The approach was evaluated through data collected from a controlled
experiment and by means of synthetic data employed to assess parameter recovery. The results demonstrate that,
even with fairly few data samples, it is possible to achieve reasonably high accuracy in estimating users’ interest.

While the approach has limited scope at present (as discussed in the previous section), it demonstrates several
benefits. It is simple and practical to implement — in particular, it does not require user input or depend on
eye-tracking devices. Also, the method is applicable in diverse scenarios (e.g., at universities, airports, and
shopping malls) since it relies only on viewing-time data, which can be collected in different ways (a survey
being only one of them). Practitioners could benefit from this approach to support decisions on selecting certain
content options to be shown on a display, since the method provides an indicator of interesting content items,
represented as a numerical value.

Some limitations should be noted. Firstly, in the controlled experiment carried out to collect data, the participants
were explicitly asked to read the content shown on the screen. Secondly, the task was performed remotely on a
laptop or other workstation. Yet, this approach was the most suitable to evaluate the models, since the conditions
were similar to those involved in use of a public display. Irrespective of the associated limitations, the data
collected can be considered valid for evaluation of the proposed model, because the users explicitly indicated
their level of interest in the content shown, using a scale. This technique made it possible to analyze how the
predictions differ from the observed data. Hence, the results obtained constitute a promising starting point for
further research in this field.

It would be interesting for future work to explore other approaches to improve the modeling’s accuracy. One
research direction is to add new inputs to the model - for instance, utilizing data collected from tracking devices.
To this end, the proposed model could employ information about the number of people standing in front of the
screen when certain content items are shown as an indicator of interest. A higher count would indicate that
more people are clustered around the display when certain content is presented, thus providing feedback that
such content is interesting. Alongside this, the model could make use of the recorded viewing time values as is
already done. Furthermore, the proposed prototype could be used to conduct a field study to collect data in a more
realistic scenario, thereby establishing ecological validity. Finally, the proposed approach could be complemented
by exploring the use of a contextual-bandit technique [32] to optimize the selection of the content items to be
shown on the display.

21t was not possible to conduct a field study by using this prototype at the time of writing this article due to COVID-related restrictions.
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