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Chronic oxidative stress eventually leads to protein aggregation in combination with impaired autophagy, which has been
observed in age-related macular degeneration. We have previously shown an effective age-related macular degeneration disease
model in mice with nuclear factor-erythroid 2-related factor-2 (NFE2L2) knockout. We have also shown pinosylvin, a
polyphenol abundant in bark waste, to increase human retinal pigment epithelium cell viability in vitro. In this work, the
effects of commercial natural pinosylvin extract, Retinari™, were studied on the electroretinogram, optical coherence
tomogram, autophagic activity, antioxidant capacity, and inflammation markers. Wild-type and NFE2L2 knockout mice were
raised until the age of 14:8 ± 3:8 months. They were fed with either regular or Retinari™ chow (141 ± 17:0mg/kg/day of
pinosylvin) for 10 weeks before the assays. Retinari™ treatment preserved significant retinal function with significantly
preserved a- and b-wave amplitudes in the electroretinogram responses. Additionally, the treatment prevented thinning of the
retina in the NFE2L2 knockout mice. The NFE2L2 knockout mice showed reduced ubiquitin-tagged protein accumulation in
addition to local upregulation of complement factor H and antioxidant enzymes superoxide dismutase 1 and catalase.
Therefore, the treatment in the NFE2L2 KO disease model led to reduced chronic oxidative stress and sustained retinal
function and morphology. Our results demonstrate that pinosylvin supplementation could potentially lower the risk of age-
related macular degeneration onset and slow down its progression.

1. Introduction

Age-related macular degeneration (AMD) is the most com-
mon cause of blindness in the elderly in the western world.
The disease is classically divided into dry (nonexudative)
and wet (exudative) AMD forms. The dry form of the dis-

ease is more prevalent, accounting for up to 90% of all cases.
Currently, there is no effective treatment against dry AMD,
while wet AMD can be managed with intravitreal injections
of antivascular endothelial growth factor (anti-VEGF) [1, 2].
The pathogenesis of AMD is multifactorial. It involves the
progressive degeneration of the retinal pigment epithelium
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(RPE) and photoreceptors of the macular region of the eye.
Chronic oxidative stress and inflammation can be consid-
ered the main molecular mechanisms involved in pathogen-
esis [3–5]. Furthermore, oxidative damage limiting system
dysfunction and inflammation-related accumulation of lipo-
fuscin and drusen deposits in the retina are inherently part
of the pathogenesis [6, 7].

Recently, we reported that the nuclear factor-erythroid
2-related factor-2 (NFE2L2) and peroxisome proliferator-
activated receptor gamma coactivator 1-alpha (PGC1-α)
double knockout (KO) mice develop a dry AMD resembling
phenotype that coincides with visual loss [8]. The NFE2L2
deficiency was responsible for the majority of molecular
changes observed in the RPE cells, including oxidative stress.
In its inactive state, the NFE2L2 transcription factor is
bound to kelch-like ECH-associated protein 1 (Keap1) in
the cytoplasm. In response to oxidative stress, NFE2L2 is
released from the complex and translocated to the nucleus
where it binds to the antioxidant response element (ARE)
which triggers the expression of various cytoprotective genes
[9–14]. However, despite the clear effects of NFEL2 defi-
ciency on oxidative stress and disease-like phenotype,
NFE2L2 signalling is not the only pathway controlling oxi-
dative stress [15, 16]. For example, many protective antioxi-
dative enzymes are regulated by several other factors,
including activator protein 1 (AP-1) and forkhead box tran-
scription factors of the class O (FoxO) [17].

The spontaneous decline of the NFE2L2-ARE pathway
and increased oxidative stress during ageing calls for func-
tional damage limiting pathways, including autophagy and
inflammatory response [18–21]. Autophagy is a dynamic
process where ubiquitin-conjugated proteins destined to
degradative pathways aggregate and are sequestered to auto-
phagosomes with the interaction between cargo receptor
p62/SQSTM1 (p62) and autophagosome marker
microtubule-associated protein 1A/1B-light chain 3 (LC3)
[22]. Ubiquitinated proteins, cargo, and autophagosome
markers are degraded later in autolysosomes formed after
the fusion of autophagosome and lysosome. In the immune
system, the complement system has been implicated as one
factor in the pathogenesis of AMD, as reviewed recently by
Armento et al. [23]. Specifically, the alternative pathway of
the complement system, which is regulated by complement
factor H (CFH), has been connected in part to the pathogen-
esis of AMD [23]. A common genetic variant, Y402H poly-
morphism, in the CFH gene is a risk factor for the
development of AMD due to the role of CFH in regulating
the alternative pathway [24, 25]. The complement system
disbalance caused by the Y402H variant can be observed as
increased chronic inflammation and accumulation of the
inflammation marker C-reactive protein (CRP) in the dru-
sen [24, 26].

Pinosylvin (3,5-dihydroxy-trans-stilbene) is a lipophilic
polyphenolic stilbene found in Scots pine (P. sylvesteris). It
is thought to be an analogue of resveratrol (3,4′,5-trihy-
droxy-trans-stilbene) which is the most studied polypheno-
lic compound. While resveratrol has been shown to
combat the detrimental effects of oxidative stress and induce

autophagy in human cell cultures [27–30], it has poor bio-
availability. Although resveratrol is absorbed remarkably
well, it is very quickly metabolized and thus has negligible
systemic bioavailability [31]. Additionally, the low concen-
tration of resveratrol in natural substances requires it to be
produced in a laboratory setting which is not cost-effective.
These factors have prompted the search for a cost-effective
analogue of resveratrol with better bioavailability. A mere
one additional hydroxyl group is present in resveratrol in
comparison to pinosylvin. This difference makes pinosylvin
more lipophilic with a partition coefficient logP of 3.5 [32],
compared to resveratrol (logP 3.1) [33]. This would suggest
that pinosylvin permeates the cell membrane better. How-
ever, the majority of orally administered stilbene compounds
become metabolized before reaching the circulatory system
[34]. Interestingly, one of the main metabolites of pinosylvin
seems to be resveratrol [35, 36]. This opens an opportunity
for pinosylvin to act as a precursor for resveratrol when
administered orally.

Pinosylvin has strong protective effects in response to
oxidative stress in cell cultures and animal models [37, 38].
While NFE2L2 signalling has been identified as the main
target of pinosylvin in oxidative stress protection, resveratrol
may enhance antioxidant defence via several other pathways
including AP-1 and SIRT1 (sirtuin 1)/FoxO signalling
[38–40]. Since NFE2L2 KO mice lack the NFE2L2 gene
response and exhibit AMD-like changes including oxidative
stress, changes in autophagic activity, and accumulation of
ubiquitin-tagged proteins in the retina [8, 41], we were curi-
ous to analyse the effects of pinosylvin in this animal model
as well as wild-type (WT) animals with intact NFE2L2 sig-
nalling. We studied the electrophysiology of the visual sys-
tem with ERG, morphological changes in optical coherent
tomography (OCT), and antioxidant defence system func-
tionality as well as markers of inflammation, lipid peroxida-
tion, and autophagic protein clearance.

2. Materials and Methods

2.1. Animals. All animal protocols were approved by the
Project Authorisation Board of Finland (ESAVI/8621/
04.10.07/2017 on 13.12.2017) and conducted in compliance
with the European Community Council Directives 2010/
63/EU and ARVO statement for the Use of Animals in Oph-
thalmic and Vision Research. 3R principles were applied.
Two types of mice were raised in the Lab Animal Centre
of the University of Eastern Finland: WT and NFE2L2 KO
(NFE2L2-/-), both of which were derived from C57BL/6J
inbred strain. The breeding scheme involved interbreeding
heterozygote NFE2L2+/- to produce WT (NFE2L2+/+), het-
erozygote (NFE2L2+/-), or homozygote (NFE2L2-/-) mice
for the study. The heterozygote strain is regularly back-
crossed with WTs from a larger population to maintain as
healthy a strain as possible. The retinal degeneration 8
(rd8) mutation is absent in these subpopulations. The
genotyping of these strains has been presented earlier [8].
The mice were housed in 12 : 12-hour light-dark conditions
and given food and water ad libitum.
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The mice were raised until the age of 14:8 ± 3:8 months
with some selection involved to produce as homogenous a
population as possible in terms of their age. 10 WT and 10
NFE2L2 KO mice were initially grown for the Retinari™
treatment trial, with each type having half assigned to the
Retinari™ treatment group and the other half to the control
group. The treatment was carried out with a commercial
substance named Retinari™. It is a novel commercial pino-
sylvin extract product in development. Retinari™ is obtained
from Scots pine wood material through a proprietary raw
material treatment and solvent extraction process. The
resulting substance subsequently undergoes an affinity chro-
matography process that enriches the available pine stilbe-
noids and especially the pinosylvin content in the final
product. Retinari™ contains not less than 10% pine stilbe-
noids (6% weight per weight pinosylvin) among other natu-
ral pine phytocompounds. The treatment group was fed
with Retinari™, baked into a standard chow, for 10 weeks
prior to the ERG recordings while the control group contin-
ued with regular chow. Standard chow was ground to
homogenous powder and split in half. Geometric dilution
was used for adding Retinari™ (1.5% weight per weight) to
the other half of chow powder. Water was added for both
halves to increase baking quality. Round-shaped balls weigh-
ing approximately 13 g were baked from both halves, dried
at room temperature, and stored at -20°C. The selected pino-
sylvin consumption target was set to 50–250mg/kg/day. The
mice were single-housed for the treatment period. Fresh
chow with or without Retinari™ was delivered three times
a week, and the food consumption was monitored weekly
to calculate the pinosylvin intake. The intake was normalised
against animal weight.

2.2. ERG Recording. Before ERG recordings, the mice were
dark-adapted overnight. Preparations for the recordings
were performed in the dark with dim red LED-aided flash-
lights. The mice were anaesthetised using intraperitoneal
injections with a mixture of 1.0mg/kg body weight of mede-
tomidine (Domitor® vet 1mg/ml, Orion Pharma, Espoo,
Finland) and 75mg/kg body weight of ketamine (Ketalar®/
Ketaminol® 50mg/ml, Pfizer Oy Animal Health, Espoo, Fin-
land) and then placed on a thermal pad in the full-field ERG
dome, maintaining body temperature at approximately
38°C. The pupils were dilated with tropicamide (Oftan Tro-
picamid 5mg/ml, Santen Pharmaceutical Co., Ltd., Tam-
pere, Finland), and the surface of the cornea was
moisturised with carbomer artificial tears (Viscotears
2.0mg/g, Alcon® a Novartis company). The recordings were
conducted first in scotopic, followed by photopic protocol.

The ERG signals were recorded (Espion ERG; Diagnosys
LLC, Cambridge, UK) using a gold wire electrode placed on
both eyes corneally. The signals were amplified with a band-
pass setting of 1–300Hz for scotopic and 0.3–500Hz for
photopic with a sampling frequency of 2 kHz. A platinum
needle reference electrode was placed subcutaneously on
the forehead and a platinum needle ground electrode subcu-
taneously just superiorly from the tailbone. Both eyes were
stimulated equally with ColorDome Ganzfeld full-field
ERG. The scotopic protocol included recording dark-

adapted responses to five distinct stimulus intensities of blue
light: 0.003, 0.007, 0.03, 0.5, and 1 Cd × s/m2. 15 sweeps of
250ms at each intensity were recorded with a delay of 10
seconds between each sweep. A 60-second light-adaptation
period in 20Cd/m2 white light (6500K) was applied before
the photopic responses. The photopic protocol consisted of
light-adapted responses to six distinct stimulus intensities
using white light: 0.1, 1, 3, 5, 10, and 20 Cd × s/m2 in the
presence of continuous background illumination of 20Cd/
m2. 25 sweeps of 300ms were recorded with a delay of 5 sec-
onds between each sweep. An additional 60 seconds of wait
time was included between the changes in stimulus intensi-
ties. The baseline was set identically for all the recording
protocols using the average voltage reading from the dura-
tion of 20ms preceding the stimulus onset. The responses
were then exported for off-site analysis.

2.3. ERG Signal Processing and Feature Extraction. Postpro-
cessing of the exported ERG data was performed with
MATLAB (MathWorks® MATLAB® R2018b). For a-wave
analysis, the sweeps were averaged and the a-wave trough
was determined as the lowest point of the signal following
stimulus onset and preceding the rising phase of the b-
wave. The individual sweeps were then low-pass filtered
using 5th order Bessel filter with a stopband edge frequency
of 60Hz and then averaged for each stimulus intensity. The
b-waves were mapped on the averaged Bessel-filtered signal
by fitting a 2nd order polynomial in the surrounding of the
highest value of voltage following a-wave. The width of the
polynomial was dynamically set as twice the time elapsed
from the a-wave trough to the highest voltage point of the
signal (initial estimate of b-wave peak). The polynomial fit
was iterated five times or until no change in fit parameters
occurred, always in the surrounding of the peak of the
parabola. All peak fits were visually checked and adjusted
manually if determined inaccurate. The b-wave amplitude
values were reported as the difference between the deter-
mined b-wave peak and a-wave trough. The peak time of
each wave was the time elapsed from the stimulus onset until
the determined trough (a-wave) or peak (b-wave) of the
signal.

2.4. OCT Imaging. Following the ERG recordings, OCT was
performed on the mice (Phoenix MICRON™ Image-Guided
OCT, Phoenix Technology Group, LLC, Pleasanton, CA,
USA) to infer total retinal thickness. 50 repetitive images
were acquired and averaged. The retinal layers from the
averaged OCT images were evaluated by analysis with
InSight image segmentation software (Voxeleron LLC, San
Francisco, CA, USA). The acquired layer thickness data were
then exported for off-site statistical analysis.

2.5. Antioxidant Capacity Analysis. The blood samples were
collected by cardiac puncture under terminal anaesthesia,
which was followed by cervical dislocation and eye enucle-
ation. The blood samples were placed in Eppendorf tubes
and stored for coagulation at room temperature for two
hours. After coagulation, samples were centrifuged for
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15min (1500 × g) at 4°C and the separated serum was col-
lected for antioxidant capacity analysis.

The Total Antioxidant Capacity Assay Kit (#MAK187,
Sigma-Aldrich, St. Louis, MO, USA) was used to measure
the total antioxidant capacity as well as small molecule anti-
oxidants by masking the protein activity according to the
manufacturer’s instructions. Enzymes measured by the kit
include catalase (CAT) and peroxidase. The small molecule
antioxidants include tocopherols, carotenes, vitamin A, ubi-
quinols, glutathione, and ascorbate. Briefly, serum samples
were diluted with water in a ratio of 1 : 350 to measure total
antioxidant capacity. When measuring small molecule anti-
oxidant capacity, the samples were first diluted with Protein
Mask solution in a ratio of 1 : 1 and then to a similar concen-
tration as in the total antioxidant capacity measurement.
100μl of diluted samples were placed on a 96-well plate,
and 100μl of Cu2+ Working Solution was added to each
well. After the addition of the Cu2+ Working Solution, the
plate was incubated at room temperature for 90min. The
absorbance of reduced Cu+, representing antioxidant capac-
ity by chelation with a colorimetric probe, was recorded
using a spectrophotometer (BioTek ELx808, BioTek Instru-
ments, Winooski, VT, USA) at 570nm. A Trolox standard
curve was used for quantitation. The results are presented
as Trolox equivalents.

2.6. Immunohistochemical Staining. The enucleated eyes
were quickly rinsed in PBS (pH7.4), followed by fixation
in 4% paraformaldehyde in 0.1M phosphate buffer for 24–
48 hours and continued with ethanol dehydration and
embedded in paraffin. 5μm thick parasagittal serial sections
were cut with a microtome (SM2000 R, Leica, Heidelberg,
Germany) for immunohistochemical analysis. The cut tissue
sections were deparaffinised using xylene and rehydrated.
Then, the glass sections were incubated for 25min in the
dark with 0.5% Sudan Black B (Acros Organics, Morris
Plains, NJ, USA) in 70% ethanol. The sections were encircled
with a PAP pen and quenched with 0.1M glycine in PBS for
10mins prior to a 0.1% Triton-X wash for 10min before
continuing with blocking for 30min. Quenched slides were
incubated with 20% goat serum for 30min before adding
the first primary antibodies (Table 1) and incubated over-
night at 4°C. The sections were incubated at room tempera-
ture for 30min and washed in the dark for 10min. Then, the
first secondary antibodies were added and incubated for 3 hr.
Finally, DAPI (Sigma-Aldrich, St. Louis, MO, USA) was
added at a ratio of 1 : 10 000 and incubated for 30min
followed by 5min wash with TBS. Then, the slides were
mounted using Mowiol mounting media and stored in the
dark at room temperature. The correct location near the
optic nerve and the quality of the sections were monitored
with haematoxylin and eosin (H&E) staining.

The secondary antibodies were Goat anti-Rabbit Alexa
Fluor 594 (A11037) and Goat anti-Mouse Alexa Fluor 594
(A11032) (ThermoFisher Scientific, Waltham, MA, USA)
diluted at 1 : 500.

2.7. Confocal Imaging. The RPE layer of the stained sections
was examined with a confocal microscope (Zeiss AX10

Imager A2, Zeiss, Germany) using a 63x (NA:1.42. Plan
Apochromat) oil (Zeiss Immersol™, Germany) immersion
objective. The microscopy settings were kept identical for
all pictures taken and held constant during imaging. Repre-
sentative high-power microphotos were taken close to the
vicinity of the optic nerve with ZEN blue v2.3 (Carl Zeiss
Microscopy, Germany). At least nine repetitive images were
taken per animal, and several regions of interest were ana-
lysed per view and averaged. All the captured images were
processed using ImageJ (version 1.52a). The background
was subtracted using a default rolling ball radius method.
Regions of interest (ROIs) were drawn followed by mean
grey-value measurement. ROIs were kept constant within
each antibody analysed. All the imaging analyses were
blindly quantified at least by 3 independent researchers.
The number of biological replicates per group varied
between four and five (Table 2). Images were color enhanced
using Adobe Photoshop® for visual representation.

2.8. Statistics. The statistical analysis and plotting of the ERG
results were done with R (version 3.5.3). The regular two-
way analysis of variance (ANOVA) was used to infer statis-
tical significance for each stimulus intensity with Bonferroni
correction. The main effect between each treatment group
and the genotype was determined by two-way ANOVA
using the genotype and stimulus intensity as independent
variables. If significance was determined, the test was
followed by the Bonferroni post hoc test with multiple pair-
wise comparisons using Student’s t-test. The statistical anal-
ysis for the OCT and serum antioxidant capacity data was
also determined with Student’s t-test. The Mann–Whitney
U test was used in the immunohistochemical staining anal-
ysis. Values of p < 0:05 were considered significant. Data
are presented as the mean ± standard deviation ðSDÞ. Both
eyes were utilised in the statistical analysis of ERG, OCT,
and immunohistochemical staining.

3. Results

3.1. Retinari™ Consumption. The subpopulation size, age
distribution, and pinosylvin intake for each group are
reported in Table 2. The average pinosylvin consumption
in all treated mice was 141:5 ± 17:0mg/kg/day. The WT
mice consumed 138:7 ± 19:0mg/kg/day of pinosylvin, and

Table 1: List of primary antibodies.

Primary
antibodies against

Isotope
Working
dilution

Supplier/catalogue
number

p62 Polyclonal 1 : 100 CT-5114

LC3B Monoclonal 1 : 100 CT-3868

Ubiquitin Monoclonal 1 : 100 CT-3936

4-HNE Polyclonal 1 : 100 LS-C68182

SOD1 Polyclonal 1 : 100 ab13498

CAT Polyclonal 1 : 100 ab16731

CRP Polyclonal 1 : 100 ab65842

CFH Monoclonal 1 : 50 NBP2-90802
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the NFE2L2 KO mice consumed 147:1 ± 9:8mg/kg/day for
the 10 weeks. No statistical differences were observed
between the ages of each study group nor in the pinosylvin
consumption between the WT and NFE2L2 KO mice.

3.2. Retinari™ Preserves Retinal Function of the NFE2L2 KO
Mice in Scotopic ERG. The scotopic a- and b-wave ampli-
tudes of the NFE2L2 KO control mice were substantially
smaller than those of the WT treated and control groups
(dashed red and black lines in Figures 1(a)–1(d); p < 0:001
for each group), suggesting accelerated retinal degeneration
in the NFE2L2 KO mice compared to the WT mice. How-
ever, the 10-week-long Retinari™ treatment more than dou-
bled both the scotopic a- and b-wave amplitudes in the
NFE2L2 KO mice while it had only a minor effect on the
a- and b-wave amplitudes of the WT mice. The relative
increase in the a- and b-wave amplitudes in the NFE2L2
KO treated mice was highly significant (Figures 1(a) and
1(b); p < 0:001 for both waves), surpassing the amplitudes
of even the WT control group. This would seem to suggest
that Retinari™ prevents the negative degenerative changes
in the NFE2L2 KO mice from occurring.

3.3. Retinari™ Preserves Retinal Function of the NFE2L2 KO
Mice in Photopic ERG. Similarly, as in the scotopic ERG, also
the photopic ERG demonstrated more inferior b-wave
amplitudes in the NFE2L2 KO control group than the WT
control group, although this was not statistically significant
(Figure 2). While the photopic WT mouse b-wave ampli-
tudes were preserved at the same level in treatment and con-
trol groups, the NFE2L2 KO treated mice surpassed the
values of WT treated (p < 0:05), WT control (p < 0:01),
and NFE2L2 KO control (p < 0:001) mice. This indicates
diminished levels of degeneration in retinal function.

3.4. Retinari™ Preserves the Retinal Thickness in NFE2L2 KO
Mice. Ten-week-long Retinari™ treatment of NFE2L2 KO
mice resulted in significantly higher total retinal thickness
(TRT; Figure 3) as measured from the retinal nerve fibre
layer (RNFL) to RPE (p < 0:01). TRT in the WT control
group was significantly thicker than in the NFE2L2 KO con-
trol group (p < 0:05). The WT treated mice had visibly
increased TRT compared to the WT control group, although
this did not reach a statistical significance.

3.5. Retinari™ Treatment Enhances Serum Antioxidant
Enzyme Capacity in WT Mice. After attaining clear electro-
physiological and morphological results in favour of the
Retinari™ treatment, we wished to analyse its systemic effect
on antioxidative mechanisms. The WT mouse serum sam-

ples showed increased enzyme-derived antioxidant capacity
after 10 weeks of Retinari™ treatment (Figure 4(a); p < 0:01
). Simultaneously, the capacity of small molecule antioxi-
dants reduced (p < 0:05) resulting in no change in total anti-
oxidant capacity. NFE2L2 KO mice showed no response to
the Retinari™ treatment. Instead, the antioxidant capacities
of small molecule antioxidants and protein antioxidants
remained at a basal level (Figure 4(b)).

3.6. Long-Term Retinari™ Treatment Increased Antioxidant
Levels in the RPE Layer in NFE2L2 KO Mice. Since the serum
data on the antioxidant capacity revealed no systemic bene-
fits for the NFE2L2 KO mice in contrast to our ERG and
OCT findings, we proceeded to analyse the levels of antiox-
idants directly in the RPE layer. As a result of the 10-week-
long Retinari™ treatment, highly significant increases in
the levels of the antioxidant enzymes superoxide dismutase
1 (SOD1) and CAT were detected in NFE2L2 KO mice
(Figure 5; p < 0:001 for both). The increased levels of
SOD1 and CAT implicate upregulated antioxidant capacity
in the RPE. WT mice also exhibited increased values for
SOD1 (p < 0:001) and CAT (p < 0:01).

3.7. Long-Term Retinari™ Treatment Increased p62,
Ubiquitin, and LC3B Levels in the RPE Layer of WT Mice
but Decreased Ubiquitin Content in the RPE Layer of
NFE2L2 KO Mice. After 10 weeks of Retinari™ treatment,
immunohistochemical analysis of the RPE layer of WT mice
revealed an increase in ubiquitin (p < 0:001) and p62
(p < 0:001), markers of proteins destined for degradation
and protein aggregates, respectively (Figures 6(a) and 6(b)).
However, the mice showed an increase in autophagosome
marker LC3 (p < 0:001) as well, suggesting a decrease in
autophagic degradation. The marker of lipid oxidation, 4-
HNE, showed no change between the control and Retinari™
treated WT mice. The decrease of autophagy activity after
Retinari™ treatment did not evoke oxidative stress. The
NFE2L2 KO mice showed a decreased level of ubiquitin
(p < 0:05) after Retinari™ treatment (Figures 6(c) and
6(d)). However, the autophagy markers p62 and LC3 and
lipid oxidation marker 4-HNE remained at a basal level.

3.8. Long-Term Retinari™ Treatment Decreased
Inflammation in the RPE Layer in NFE2L2 KO Mice. The
inflammation marker, CRP, levels increased in the retina of
WT mice (Figures 7(a) and 7(b); p < 0:01) and had an even
higher increase in the RPE layer (Figure 7(c); p < 0:001). In
contrast, CFH levels experienced a highly significant
decrease in the retina of WT mice as a response to the

Table 2: The genotype- and trial group-specific sample sizes, age distribution, and pinosylvin intake.

Genotype Trial group n Age Pinosylvin intake

WT
Control 5 16:5 ± 3:6 months 0mg/kg/day

Treatment 4 15:2 ± 2:6 months 138:7 ± 19:0mg/kg/day

NFE2L2 KO
Control 5 15:2 ± 4:0 months 0mg/kg/day

Treatment 5 15:3 ± 4:5 months 147:1 ± 9:8mg/kg/day
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treatment (Figures 7(b); p < 0:001), whereas the change was
nonsignificant when observed in the RPE layer (Figure 7(c)).
For the NFE2L2 KO mice, CRP levels remained unchanged
in treated mice in the retina and RPE layer (Figures 7(d)–
7(f)). A highly significant increase in CFH levels was
detected in the retina in response to the treatment
(Figure 7(e); p < 0:001). When examined in the RPE layer,
a similar relative increase was detected (Figure 7(f); p <
0:05). Since CRP and CFH are related to each other in an
inverse relationship in AMD retinas, the results seem to sug-
gest that the retina of the WT mice experienced slightly

increased inflammation in treated individuals. On the other
hand, the clear CFH increase in the retina and RPE layer of
NFE2L2 KO mice treated individuals suggests a possible
protective effect against chronic inflammation, although
the change was not observed in the CRP levels.

4. Discussion

In this study, pinosylvin was administered as a standardised
natural extract from pinewood material, named Retinari™.
Specifically of interest were the effects of Retinari™ on the
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Figure 1: Scotopic ERG in the Retinari™ treatment trial. The treated mice were fed Retinari™ for 10 weeks prior to ERG while controls
received regular chow. (a) The ERG a-wave amplitudes of NFE2L2 KO Retinari™ treated mice (n = 5) increased significantly compared
to the control mice (n = 5). WT mice had no significant effects between the treatment group (n = 4) and the control group (n = 5). (b) b-
wave amplitudes were significantly higher in NFE2L2 KO Retinari™ treated mice versus NFE2L2 KO and WT control mice. The
NFE2L2 KO control group had significantly lower amplitudes than the other genotypes’ controls and WT treatment group. (c) Averaged
raw ERG signals of each group at a flash intensity of 0.03 Cd × s/m2. (d) Filtered (5th order low-pass Bessel filter with a cut-off at 60Hz)
ERG signals of the same responses as in (c). The b-wave location was determined from the filtered signal. ∗p < 0:05, ∗∗p < 0:01, and∗∗∗p
< 0:001, Student’s t-test.
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NFE2L2 KO mice, a phenotype with dry AMD-like changes
in the retina. Previous studies have introduced pinosylvin via
intraperitoneal injections ranging from 10 to 100mg/kg as a
single dose [42] and 2–10mg/kg/day in a 10-day-long exper-
iment [37, 43]. Studies with the enteral introduction of res-
veratrol on mice have shown beneficial effects at
concentrations of 50–250mg/kg/day [44–46]. Furthermore,
one study investigated 50mg/kg/day oral pinosylvin, finding
systemic effect on antioxidant defence after 28 days of treat-
ment [47]. However, because the transfer of the observed
molecular changes onto the retinal function might take lon-
ger, we set our treatment duration to 10 weeks. Subse-

quently, our target consumption of pinosylvin was 50–
250mg/kg/day.

There was a significant baseline difference in ERG and
TRT between WT and NFE2L2 KO control mice with the
latter showing lowered a- and b-wave amplitudes in scotopic
ERG and thinner retina. A similar baseline difference was
observed for photopic ERG b-wave amplitude values. The
a-wave stems mainly from the photoreceptor cells, and its
reduction has been connected to AMD, especially in the late
stages [48–50]. Thus, the reduced retinal function and
decreased TRT are indicative of higher retinal dysfunction
in NFE2L2 KO mice. This is in line with previous knowledge
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Figure 2: Photopic ERG in the Retinari™ treatment trial. The treated mice were fed Retinari™ for 10 weeks prior to ERG while controls
received regular chow. (a) The ERG b-wave amplitudes of WT Retinari™ treated mice (n = 4) experienced no significant differences
compared to the control mice (n = 5). b-wave amplitudes were significantly higher in NFE2L2 KO Retinari™ treated mice (n = 5)
compared to the NFE2L2 KO control (n = 5), WT control, and WT treated groups. (b) Averaged raw ERG signals of each group at a
flash intensity of 5 Cd × s/m2. (c) Filtered (5th order low-pass Bessel filter with a cut-off at 60Hz) ERG signals of the same responses as
in (b). ∗p < 0:05 and∗∗p < 0:01, Student’s t-test.
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Figure 3: OCT in Retinari™ treatment trial. (a) Representation of the total retinal thickness as measured from the RNFL to RPE. A
significant increase was inferred for NFE2L2 KO treated (n = 5) with Retinari™ in comparison to the control group (n = 5). The WT
control group (n = 5) had a significantly higher total retinal thickness than the NFE2L2 KO control group (n = 4). (b) Representative
OCT images of control and treated WT and NFE2L2 KO mice. The scale bar indicates 100μm. (c) Representative microscope images
(20x) of H&E-stained mouse retinas from control and treated WT and NFE2L2 KO mice. GCL= ganglion cell layer; INL = inner nuclear
layer; IPL = inner plexiform layer; ONL= outer nuclear layer; OPL = outer plexiform layer; PL = photoreceptor layer; RPE = retinal
pigment epithelium. The scale bar indicates 20 μm. ∗p < 0:05 and ∗∗p < 0:01, Student’s t-test.
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of the detrimental effects of the lack of the NFE2L2 gene on
retinal function [41]. NFE2L2 KO mice, despite their lower
baseline retinal function and thinner TRT compared to
WT, responded remarkably well to Retinari™ treatment.
The Retinari™ treated NFE2L2 KO mice presented with a
highly significant increase of scotopic a- and b-wave ampli-
tudes as well as thicker TRT in OCT. A similar increase
was observed for photopic ERG b-wave amplitudes. Previous
studies reveal that resveratrol increases b-wave amplitudes
and contributes to a thicker outer nuclear layer in the aged
mouse retina [51, 52]. Retinal thickness across the retina
has been shown to decrease with age [53], and it is related
to AMD progression [54, 55]. Our results suggest a strong
protective effect of Retinari™ against the gradual decline of
retinal function observed in ageing and the dry AMD
mouse models.

Due to significantly improved retinal function discov-
ered in NFE2L2 KO mice and directional improvements in
WT mice, we studied the possible molecular factors involved
in these changes first by measuring antioxidant levels from
the serum. The treatment in WT mice yielded higher protein
antioxidant capacity. However, there was no change in the
total antioxidant capacity. We have previously demonstrated
pinosylvin to function as an antioxidant defence system
enhancer in human RPE cells (ARPE-19) via activating
NFE2L2, a master regulator of antioxidant defence [38]. Sev-
eral antioxidant enzymes are under the control of NFE2L2
[12–14]; therefore, the increase in the serum antioxidant
enzyme capacity supports the results gained from in vitro
work. However, the antioxidant defence system is strictly
regulated to sustain redox homeostasis, a balanced environ-

ment for normal biological functions [56]. The increased
antioxidant defence may lead to reductive stress, and there-
fore, the system would need to be balanced. In this case, the
treated mice seemed to reduce small molecular antioxidants
in their serum to balance the redox environment. Despite
the similar outcomes in total antioxidant capacity between
the controls and the treated mice, antioxidant enzymes can
be considered more efficient in combating oxidative stress.
This is due to their ability to neutralise free radicals at the
site of origin and function repetitively, whereas nonenzy-
matic antioxidants mainly protect from ongoing free radical
chain reactions [57]. The desirable systemic effect seen in
WT mice was not observable in NFE2L2 KO mice. Due to
the clear ERG findings in preserving the retinal function of
NFE2L2 KO treated mice, we anticipated local Retinari™
effects on the retina. This led us to inspect RPE-level effects
where we found a clear increase in the expression of antiox-
idant enzymes SOD1 and CAT in the RPE layer of the
treated NFE2L2 KO mice. Increases were also detected for
the WT mice, although CAT levels experienced a slightly
lower relative increase than the NFE2L2 KO mice. Since
the NFE2L2 KO mice lack NFE2L2, the primary target of
pinosylvin, but still demonstrate an enhancement of antiox-
idant defence, the potential antioxidant defence upregula-
tion effect may arise from one of the metabolites of
pinosylvin: resveratrol [35, 36]. Resveratrol exhibits neuro-
protection through increased superoxide dismutase 2 and
thioredoxin 2 production when exposed to a neurotoxin
[58, 59]. Furthermore, SOD1 upregulation is not generally
considered a result of NFE2L2 activation whereas CAT
seems to be directly controlled by NFE2L2 [17]. Known
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Figure 4: Serum antioxidant assay. Retinari™ increased serum protein antioxidant capacity of WT treated mice (n = 4) compared to the WT
control mice (n = 5) without affecting total antioxidant capacity. No differences were detected in NFE2L2 treated (n = 5) individuals in
comparison to the control mice (n = 5). Serum total antioxidant, small molecular antioxidant, and protein antioxidant capacities of (a)
WT mice and (b) NFE2L2 KO mice expressed in mM Trolox equivalent after 10 weeks of Retinari™ treatment. ∗p < 0:05, Student’s t-test.
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targets of resveratrol, AP-1, and FoxO on the other hand can
induce both SOD1 and CAT expression [17, 39, 40]. In addi-
tion, although pinosylvin has been found to act via NFE2L2
signalling in vitro [38], other possible targets cannot be ruled
out, especially for in vivo models. Therefore, it seems con-
vincing that Retinari™ upregulates local antioxidant enzyme
production in the RPE which is the primary site affected in
AMD pathogenesis and the site experiencing high rates of
oxidative stress in the retina.

In addition to upregulated antioxidant enzyme levels, a
possible mechanism of Retinari™ is elicited via the autoph-
agy clearance system. The increase of ubiquitin and p62 in
the RPE layer of the treated WT mice suggests reduced
autophagic activity as well as accumulation of ubiquitin-
conjugated proteins and protein aggregates. However,
increased LC3 levels imply still functional autophagy due
to the formation of autophagosomes, suggesting rather
downregulation of autophagic degradation than inhibition.
In contrast, Retinari™ treatment of NFE2L2 KO mice
showed a decrease in ubiquitin content in RPE cells. How-
ever, the markers of autophagy activity remained at a basal

level. Autophagy can be considered a part of the antioxidant
defence system [60–62], and therefore, its downregulation
may serve as a marker of increased antioxidant defence. In
fact, long-term NFE2L2 activation has been shown to
decrease autophagy [63], and the role of NFE2L2 on the reg-
ulation of autophagy shows dynamic adaptation to environ-
mental conditions [64]. On the other hand, if the
antioxidant defence system is enhanced by Retinari™, there
might not be material for autophagic degradation due to
reduced oxidative stress. Recently, pinosylvin has been
found to protect from cerebral ischemia by activating anti-
oxidant defence via NFE2L2 and mitophagy, a selective form
of autophagy to remove dysfunctional mitochondria, result-
ing in decreased oxidative stress due to enhanced antioxi-
dant defence and removal of reactive oxygen species-
(ROS-) leaking mitochondria [65].

The inflammatory marker CRP was not affected in
NFE2L2 KO mice as a result of the treatment but was inter-
estingly increased in the WT mouse RPE cells and the entire
retina. The CRP increase in WT mice could be explained by
a host defence stress reaction to polyphenolic Retinari™.
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Figure 5: Immunohistochemical staining of antioxidant activity in the RPE cells. (a) Representative high-power confocal microscopy images
of SOD1 and CAT in a WT mouse. (b) The treated WT mice (n = 4) exhibited increased levels of SOD1 and CAT in the RPE layer when
compared to the control mice (n = 5). (c) Representative high-power confocal microscopy images of SOD1 and CAT in an NFE2L2 KO
mouse. (d) The SOD1 and CAT levels were enhanced in treated individuals (n = 5) than in control (n = 5) NFE2L2 KO mice. Scale = 5
μm. ∗∗p < 0:01 and∗∗∗p < 0:001, Mann–Whitney U test.
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Figure 6: Immunohistochemical staining of autophagy markers in the RPE cells. (a) Representative high-power confocal microscopy images
of p62, LC3B, ubiquitin, and 4-HNE in a WT mouse. (b) The treated (n = 4) WT mice exhibited increased levels of p62, LC3B, and ubiquitin
in the retina compared to the control mice (n = 5). The 4-HNE levels slightly decreased in response to treatment. (c) Representative high-
power confocal microscopy images of p62, LC3B, ubiquitin, and 4-HNE in an NFE2L2 KO mouse. (d) The ubiquitin levels were higher in
NFE2L2 KO control (n = 5) than in treated (n = 5) mice. The levels of p62 and LC3B showed a marginal increase and 4-HNE a marginal
decrease in treatment groups. Scale = 5μm. ∗p < 0:05 and ∗∗∗p < 0:001, Mann–Whitney U test.
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Figure 7: Immunohistochemical staining of inflammation markers across the whole retina and in the RPE cells. (a) Representative high-
power retinal cross-section microscopy images of CRP and CFH in a WT mouse retina. (b) The treated (n = 4) WT mice exhibited
increased retinal levels of CRP and decreased CFH levels compared to the control mice (n = 5). (c) In the RPE layer, CRP was similarly
increased in WT mice, but CFH remained at basal levels. (d) Representative high-power retinal cross-section microscopy images of CRP
and CFH in an NFE2L2 KO mouse. (e) The retinal levels of CRP were unaffected, and the CFH levels were enhanced in treated (n = 5)
NFE2L2 KO individuals in comparison to controls (n = 5). (f) In the RPE layer, CRP remained at basal levels in NFE2L2 KO mice while
CFH was slightly higher in treated individuals. Scale = 10μm. GCL= ganglion cell layer; INL = inner nuclear layer; ONL= outer nuclear
layer. ∗p < 0:05, ∗∗p < 0:01, and∗∗∗p < 0:001, Mann–Whitney U test.
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Since NFE2L2 KO shows upregulated stress markers, CRP
elevation is not needed anymore or its production is sup-
pressed [8]. The CFH levels, on the other hand, climbed in
the RPE cells and the retina as a whole in the NFE2L2 KO
mice. It is well known that CFH inhibits the alternative com-
plement pathway [23]. Our observations reveal that Reti-
nari™ reduces complement system-mediated tissue
inflammation in the retina including the RPE cells of
NFE2L2 KO mice. The WT mice were found to have
reduced retinal CFH levels while remaining at basal levels
in the RPE cells. Polyphenolic compounds, including resver-
atrol, inflict low-level stress reaction within normal cells
[66]. Such stress is beneficial in combating oxidative stress
and enhancing autophagic clearance. Taken together, the
apparent inflammatory marker increase is not alarming,
considering that the absolute levels are very low in the
untreated WT mice. The stress levels of NFE2L2 KO mice,
on the other hand, are already at such a high state initially
that the effect seems to be rather a reduction in
inflammation.

Since Retinari™ contains approximately 6% pinosylvin,
it cannot be conclusively determined whether pinosylvin
alone or its metabolite, resveratrol, as a cocontributor,
explains our findings. More importantly, it is clear that Reti-
nari™ elicits a positive impact on the NFE2L2 KO mice.
Although it contains a large proportion of other phytochem-
icals and wood-derived material, pinosylvin and resveratrol
are the most likely compounds explaining our findings due
to their known role in antioxidative defence and autophagy.
For example, pinosylvin is able to reduce nitrosative stress
and enhance removal of ROS generating damaged mito-
chondria having an impact on total oxidative stress met in
the cell [65, 67]. Resveratrol in turn has been linked to anti-
oxidant defence and autophagy enhancement as well as
inflammatory response regulation, including CFH-linked
complement system modulation [40, 68, 69]. Furthermore,
improved ERG function has also been associated with res-
veratrol in aged rats [70] and mice with light-induced retinal
degeneration [51, 52]. All molecular characteristics men-
tioned above are in logical continuum generating a treadmill
worsening the situation on the retina in every turn.
Increased oxidative stress creates a demand for efficient
removal of damaged proteins and cell organelles. When
damaged material starts to accumulate creating more oxida-
tive stress due to insufficient removal, cellular wellbeing is
compromised leading to cell death and inflammatory
response [71]. These molecular changes can be traced to
AMD at a local and systemic level [72]. Increased oxidative
stress can be seen as the trigger of this damaging cycle; there-
fore, oxidative stress limiting strategies, not forgetting treat-
ment of its aggravating factors, including dysfunctional
autophagy and inflammation, are of interest.

5. Conclusions

Our study demonstrates the positive impact of Retinari™
treatment as an effective polyphenolic extract on the retinal
function and TRT of NFE2L2 KO mice. This effect is likely
mediated by local effects in the RPE layer, such as enhanced

antioxidant enzyme activity by CAT and SOD1 as well as by
reduced chronic inflammation as indicated by the increased
CFH levels. The main benefits of pinosylvin-containing Reti-
nari™ include its vast availability in nature in comparison to
pinosylvin’s thought analogue, resveratrol, its consecutive
affordability in concern to extraction and production to die-
tary supplement, and its metabolism to resveratrol in vivo.
We hypothesise that patients with increased risk factors for
developing AMD could benefit from oral Retinari™ supple-
mentation to slow down the degenerative disease onset by
inflicting its main positive effects on antioxidant enzyme
production and locally reduced chronic inflammation. Even
patients with AMD could potentially benefit from the sup-
plement by improving retinal function and defence against
age-related oxidative stress. Clinical trials for Retinari™ for
AMD are highly anticipated.
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