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A B S T R A C T

Deep learning methods based on convolutional neural networks have shown to give excellent results in semantic
segmentation of images, but the inherent irregularity of point cloud data complicates their usage in semantically
segmenting 3D laser scanning data. To overcome this problem, point cloud networks particularly specialized for
the purpose have been implemented since 2017 but finding the most appropriate way to semantically segment
point clouds is still an open research question. In this study we attempted semantic segmentation of point cloud
data with convolutional neural networks by using only the raw measurements provided by a multiple echo
detection capable profiling laser scanner. We formatted the measurements to a series of 2D rasters, where each
raster contains the measurements (range, reflectance, echo deviation) of a single scanner mirror rotation to be
able to use the rich research done on semantic segmentation of 2D images with convolutional neural networks.
Similar approach for profiling laser scanner in forest context has never been proposed before. A boreal forest in
Evo region near H€ameenlinna in Finland was used as experimental study area. The data was collected with FGI
Akhka-R3 backpack laser scanning system, georeferenced and then manually labelled to ground, understorey, tree
trunk and foliage classes for training and evaluation purposes. The labelled points were then transformed back to
2D rasters and used for training three different neural network architectures. Further, the same georeferenced
data in point cloud format was used for training the state-of-the-art point cloud semantic segmentation network
RandLA-Net and the results were compared with those of our method. Our best semantic segmentation network
reached the mean Intersection-over-Union value of 80.1% and it is comparable to the 80.6% reached by the point
cloud -based RandLA-Net. The numerical results and visual analysis of the resulting point clouds show that our
method is a valid way of doing semantic segmentation of point clouds at least in the forest context. The labelled
datasets were also released to the research community.

1. Introduction

Laser scanning is a measurement technique to determine shape, and
possibly the appearance, of real-world objects and environments in the
form of a point cloud. The development of point cloud generation op-
toelectronics has been fast, the first Airborne Laser Scanners (ALS) were
built in the early 1990s; the first Mobile Laser Scanners (MLS) were
developed in the early 2000s. Today, MLS point coulds can be collected
with multiple techniques, for example using hand-held, backpack, and
mini-unmanned aerial vehicle (UAV) laser scanning. Lidar-based vision
system prototypes targeted and tested at autonomous driving context
today use similar technologies to MLS, permitting autonomous

perception.
Modern MLS systems can cover large areas and measure huge quan-

tities of data quickly. Processing and getting useful information from
large point clouds manually is time consuming and automatic methods
are required. Semantic segmentation of the data to useful classes is an
important step in utilizing 3D data as it enables users to concentrate on
parts of the point clouds they are interested in. Deep learning is one the
fastest-growing technologies in analyzing measurement and big data,
characterized by deep neural networks (DNN) involving more than two
hidden layers. Deep learning has been applied in several image analysis
tasks, including semantic segmentation and object detection Kattenborn
et al. (2021). Common convolutional architectures require highly regular
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input data formats, such as 2D rasters or 3D voxels, to carry out, e.g.,
weight sharing and other kernel optimizations, but many approaches to
utilize them with irregular point cloud data have also been explored Guo
et al. (2020).

Point clouds are an important type of geometric data structure in
many applications related to mapping and perception/detection. The
kinematically obtained range information is converted into point clouds
typically using direct georeferencing, i.e., with position and orientation
data provided by Global Navigation Satellite System (GNSS) and Inertial
Measurement Unit (IMU), by Simultaneous Localization and Mapping
(SLAM) methods, or as with our use case, a combination of both. While
point clouds are irregular, it is quite common that data before georefer-
encing is regular, i.e., in sequential order based on the time of
measurement.

In this research we investigated whether non-georeferenced, raw
mobile/kinematic laser scanner measurements in forest context contain
enough information to classify the points for the purpose of modeling and
analyzing forest structures. Currently the best-performing Convolutional
Neural Networks (CNN) provide the state-of-the-art results in pixel-wise
semantic segmentation of images Kattenborn et al. (2021). Since raw
laser scanner measurements can easily be formatted into a data structure
mimicking raster image, similar well documented CNN based approaches
can be applied to classify laser scanner data. By having a classification
pipeline, which uses just the raw data provided by the laser scanner, the
anticipated errors in the subsequent georeferencing do not affect the
classification result. It is also possible to use the pipeline as a pre-
processing step to, for example, select or downsample points to speed up
further processing by involving only points relevant for an application
such as SLAM or tree parameter estimation.

To test this novel idea for profiling laser scanner in forest context, we
manually classified two georeferenced 3D point clouds from two boreal
forest plots and used this data to train neural networks to do point-wise
classification. Point clouds were acquired with FGI’s Akhka-R3 backpack
MLS system. For feeding the data to the neural networks, the classified
data was arranged as scans, where each scan was structured as a 3-dimen-
sional array containing measurements taken during one rotation of the
scanner mirror. The first dimension was the sequential pulse number, the
second the received echo number pertaining to the pulse and the third
dimension had the actual measurements (range, reflectance, and echo
deviation) of the echo.

The key aim of this paper was to test whether it is possible to do se-
mantic segmentation of 3D point cloud data by just using raw 2D laser
scanner measurements fed into a convolutional neural network. In
addition, we investigated whether it can be done in real time, how
important are the multi-echo capabilities of the laser scanner we use and
how our semantically segmented data could be used in forestry. Finally,
we released the manually labelled point clouds to the research commu-
nity to give people the possibility to advance the research on 3D data in
forest context. The dataset is available at https://doi.org/10.23729
/8d2d3765-b5a0-4998-82c1-13a6f8bc9de3, please cite this article if
you use it in your research.

2. Related work

A review and meta-analysis of different deep learning methods used
in processing remote sensing data can be found in Ma et al. (2019). In the
following we go through some relevant studies done in the field of
forestry, the applied neural network architectures, and related research
on semantic segmentation of point clouds and images with convolutional
neural networks. The latter is included as our method is closely related to
semantic segmentation of images.

2.1. Semantic segmentation of images with convolutional neural networks

Long et al. (2015) showed that it is possible to adapt deep neural
networks utilized for image classification to do pixel-wise semantic

segmentation of an image by replacing fully connected layers with con-
volutional layers. In their architecture, instead of aggregating the infor-
mation extracted by the convolutional layers over the whole image with
the fully connected layers, the hierarchy of features encoded by the
convolutional layers on each pixel is used to do pixel-wise classification.
To overcome the problem of degrading learning ability of deeper neural
networks, He et al. (2016) proposed to modify network architecture by
adding shortcut connections to every few convolutional layers. This way
the convolutional layers are allowed to learn residual mapping, which is
easier for the optimizer and enables the use of deeper networks, which in
turn provides improved classification capability. A residual block con-
taining residual mapping can be seen in Fig. 5b. They named their
network as ResNet. Wu et al. (2016) applied residual networks to se-
mantic segmentation and similarly reported improved results. Inspired
by the fully convolutional network of Long et al. (2015), Ronneberger
et al. (2015) introduced the U-net architecture where they increased the
amount of both the skip connections between the encoder and decoder
sides and the number of convolutional filters on the decoder side. These
changes enable the network to propagate the higher semantic level in-
formation which has lower resolution to the higher resolution layers near
the output side of the network.

Further research on semantic segmentation with convolutional neural
networks can be found in Badrinarayanan et al. (2017); Chen et al.
(2018); Zoph et al. (2020) and Zhao et al. (2017).

2.2. Semantic segmentation of point clouds

Traditionally semantic segmentation of point clouds has relied on a
combination of hand-crafted features and a machine learning based
classifier. Examples can be found in the works of Hackel et al. (2016) and
Munoz et al. (2008).

In principle, if the point cloud is made to conform to a grid like
format, for example by voxelizing it, convolutional neural network
methods used for semantic segmentation of images could be extended to
the 3rd dimension and used in a similar fashion. Unfortunately, in
practice it is not feasible, because of the curse of dimensionality and
incurring exponential growth of memory requirements combined with
the inherent sparsity of the point cloud. Graham et al. (2018) took
advantage of the sparsity by proposing the use of submanifold sparse
convolutional networks. They use a hash table to increase the perfor-
mance and decrease the memory usage by only applying convolutional
calculations to locations where there are data points.

To get around hand-craft features Qi et al. (2017a) proposed PointNet
architecture, which works directly on unordered points and learns a set of
functions that describe local information about the input points. The
functions can then be maximum pooled to create a global descriptor
about the point cloud. A point-wise semantic classification neural
network can be trained by concatenating the global descriptor with in-
dividual local descriptors. Pointnetþþ Qi et al. (2017b) improved the
capacity of the Pointnet to capture hierarchy of local structures.

Riegler et al. (2017) employed a grid of shallow octrees as their data
format and implemented accompanying functions required to create a
CNN, which can take advantage of the data formatting. With grid-octrees
they were able to have much higher resolution than with a normal dense
CNN while keeping the memory and processing requirements
manageable.

Landrieu and Simonovsky (2018) proposed a new architecture called
superpoint graph where groups of homogenous points are partitioned
together and these superpoints are then used as building blocks of a
supergraph. Graph convolutions are utilized to enable fast processing of
large point clouds. Hu et al. (2020) proposed the RandLA-Net neural
architecture for semantic segmentation of very large point clouds. Their
method employs random sampling combined with a novel local feature
aggregation module, which encodes local geometry. By stacking these
local feature aggregation modules, intervened with random sampling,
they can encode information for each point with a large receptive field

R. Kaijaluoto et al. ISPRS Open Journal of Photogrammetry and Remote Sensing 3 (2022) 100011

2

https://doi.org/10.23729/8d2d3765-b5a0-4998-82c1-13a6f8bc9de3
https://doi.org/10.23729/8d2d3765-b5a0-4998-82c1-13a6f8bc9de3


with relatively small memory footprint and fast processing time to enable
the processing of large point clouds.

3D laser scanners with multiple beams produce point clouds which
can easily be transformed to range images, if done in the increments of a
single scanner rotation. Regular 2D image segmentation methods can
then be employed to do the semantic segmentation. Wu et al. (2018) used
spherical projection to transform the point clouds to range images with
range, intensity and cartesian coordinate information for each pixel
which is then segmented with a SqueezeNet like network combined with
conditional random field. Biasutti et al. (2019a) adapted a similar
approach but only used range and intensity information with U-Net ar-
chitecture in their RIU-Net architecture, reaching similar accuracy. In
Biasutti et al. (2019b) the authors further improved RIU-Net performance
by adding a 3D feature extractionmodule which learns a descriptor of the
local geometry for each range value as the first step of the segmentation
pipeline.

Other approaches can be found in Thomas et al. (2019), Zhang et al.
(2019b), Lu et al. (2019), Wang et al. (2021a), Boulch et al. (2020), Xu
et al. (2020), and Li et al. (2020). A survey of different deep learning
approaches on 3D data can be found in Guo et al. (2020).

2.3. Semantic segmentation in forestry

Semantic classification and deep learning have been applied already
quite extensively for forest applications, namely for detecting forest fires
(Zhang et al. (2016); Peng and Wang (2019)), for tree species classifi-
cation (Hafemann et al. (2014); Guan et al. (2015); Zou et al. (2017); Liu
et al. (2019); Xi et al. (2020); Seidel et al. (2021); Hamraz et al. (2019);
Dechesne et al. (2017)), for biomass and volume estimation (Zhang et al.
(2019a); Narine et al. (2019); Ayrey and Hayes (2018); Liu et al. (2019)),
for forest damage assessment (Hamdi et al. (2019)), for detection of
stems (Windrim and Bryson (2020)), for individual tree isolation (Wang
et al. (2019); Chen et al. (2021)), for forest area or deforestation area
determination (Ye et al. (2019); Dong et al. (2019); Sothe et al. (2020);
Rizaldy et al. (2018)), and for ground point filtering of ALS data of
forested areas (Jin et al. (2020)).

Digumarti et al. (2019) explore variety of convolutional neural
network architectures to semantically segment RGB-D images of trees to
trunk, branch, twig and leaf classes. Guan et al. (2015) classified tree
species from mobile laser scanning data. The processing steps included
removal of ground points, tree segmentation using Euclidean distance
clustering and voxel-based normalized cut segmentation, and use of
waveform representation to model geometric structures of trees. Ten (10)
tree species classes were classified with an overall accuracy of 86.1%.
Wang (2020) semantically segmented 3D terrestrial laser scanning (TLS)
point cloud data into leaf and wood classes. Morel et al. (2020) seman-
tically segmented TLS point clouds of single trees into leaf and wood
classes by first enhancing the point cloud by creating local descriptors
which encode local geometry and then using PointNetþþ inspired neural
network model to do classification on the enhanced point cloud reaching
mIoU values of 85.59 to 97.07. Krisanski et al. (2021) use PointNetþþ
inspired neural network model to semantically segment point clouds to
terrain, vegetation, coarse woody debris and stem classes. By manually
labelling 7 extensive forest point cloud datasets and using them for
training of their model they reached excellent result of 95.4% overall
accuracy.

3. Experiment materials and methods

3.1. Applied mobile laser scanner system

The data for this study was collected with the Finnish Geospatial
Research Institute (FGI) Akhka-R3 backpack laser scanning system
(Fig. 1). The system consists of Riegl VUX-1HA laser scanner, NovAtel
Flexpak6 GNSS receiver and Pinwheel 703GGG antenna to observe
Global Positioning System (GPS) and GLONASS constellation satellites

for positioning complemented with a fibre optical gyroscope and
microelectromechanical accelerometer data from NovAtel UIMU-LCI in-
ertial measurement unit for 200Hz trajectory output. The system receiver
also serves the lidar unit with PPS time pulses, National Marine Elec-
tronics Association (NMEA) messaging and Inertial Navigation System
Position Velocity Acceleration (INSPVA) data for real-time trajectory
display.

In addition to range, the Riegl VUX-1HA laser scanner provides
reflectance and echo deviation information for each received echo and
this information was used to help classify the points. The echo deviation
value tells how much the received echo shape deviates from the original
pulse shape with small values representing small change, typically cor-
responding to hard surfaces, e.g. tree trunks or building walls. This in-
formation can reveal something about the material or angle in which the
pulse is reflected. Large values can be due to, for example, the target
being slanted or reflections from multiple targets at close range resulting
in one, widening echo, if the scanner is unable to differentiate the
different targets. Both values are provided by the Riegl data. The scanner
can receive multiple echoes for each emitted laser pulse.

Fig. 1. Applied Akhka-R3 backpack laser scanner instrument scans 360-degree
cross track profiles while GNSS-IMU tracks the platform dynamics during the
kinematic mapping.
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For scanning the forest structure we set the scanner mirror to rotate at
100Hz and set the pulse repetition rate to 500 kHz, which works out to
around 5000 pulses per full revolution of the mirror. Though not limited,
in practice we never detected more than 10 echoes per pulse in our
datasets. The scanning geometry can be seen in Fig. 2.

3.2. Test site

A boreal forest in Evo region near H€ameenlinna in Finland (61.19 N,
25.11 E) was used as experimental study area. The laser scanning mea-
surements were conducted on three test sites (A, B and C) of size 32 m 32
m. Data from A and B sites were labelled and used for neural network
training, validation and testing while C site was only used for additional
verification of the method. All sites consisted mainly of pines with some
spruce and birches. Descriptive statistics of the sites are provided in
Table 1. All point clouds cover a considerably wider area than the test site
because of the long range of the laser scanner.

3.3. MLS data processing

The GNSS-IMU data from the MLS system was post-processed using
Waypoint Inertial Explorer software to incorporate differential GNSS
correction using Virtual Reference Station (VRS) base station data
(Trimnet) and precise ephemeris and satellite clock data in a multi-pass
process with three forward and reverse solutions combined and
smoothed in tightly coupled processing to generate the initial trajectory.
The lidar data was then calibrated for bore-sight alignment and
computed into point clouds based on the trajectory by using Riegl RiP-
rocess software with SDC, MTA and RiWorld modules.

The trajectory was then refined by graph SLAM method where we
formulate the trajectory as a graph, detect tree stems in the point cloud
and then use the detections of the same tree at different timestamps as
additional constraints in the graph. If there are errors in the initial

trajectory, the detections of the same tree stem at different timestamps
don’t align spatially and this information is used by graph optimization to
do corrections to the trajectory. Then the new optimized trajectory is
used for generating new point cloud. In-depth explanation on the tra-
jectory correction pipeline can be found in Kukko et al. (2017). The
tree-based trajectory optimization leaves some errors to the height
component of the trajectory. These errors were manually corrected to
remove heightwise discrepancies in the point cloud to facilitate manual
classification process.

The points in the clouds were then labelled manually to ground,
understorey, tree trunk and foliage classes to enable supervised learning.
The low vegetation - ground cut was done by extracting the ground points
with the Terrascan (Terrasolid, Finland) function. Terrascan has a region
growing algorithm that starts growing from the lowest point of a 1-m-by-
1-m area and grows to neighboring low points if the angle between them
is under a threshold value and then adds all points closer than 2.5 cm to
it. Rest of the labelling process was done by drawing a closed polygon of
points in different classes on 2D views of the point cloud with Cloud-
Compare software (Girardeau-Montaut (2016)).

The labelling process was extremely time consuming because it is
often hard even for a human to discern to which class some group of
points belong, especially in areas where the point density is low, or points
are very irregularly distributed. The cut between foliage and tree trunk
classes and between ground and low foliage classes is also difficult to do.
It is often practically impossible to say, where the tree trunk stops and
foliage class starts, as there really isn’t a clear-cut difference between tree
trunks, larger branches, smaller branches and needles or leaves, in
particular that holds for deciduous trees. Similarly, with the ground and
low vegetation classes, the location of the actual ground level is rather
ambiguous in forest with dense low undergrowth vegetation. That is why
some level of misclassification between these classes is to be expected.
Points further than 70 m from the scanner were not labelled but were
included in the dataset to give context to the points with labels. There

Fig. 2. Slice of a point cloud with single scan (mirror rotation) highlighted with colors to show the scanning geometry. (For interpretation of the references to color in
this figure legend, the reader is referred to the Web version of this article.)
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were also humans, some buildings and some points labelled as noise in
the point clouds. These points were included in the training but ignored
during testing as there was only a small number of them and they were
not well spread between the training, validation, and test sets. A total of
202 million points were labelled out of 203 million.

The laser scanner provides timestamp, mirror angle φ and echo
number value for each point of the point cloud. To facilitate moving
between point cloud (Fig. 2) and 2D scan format (Fig. 3), timestamp and
mirror angle values are used to calculate scan index and pulse index
values for each point of the point cloud according to Algorithm 1.

Algorithm 1. Generate scan index and pulse index for each point in a
point cloud where points are sorted according to their timestamps

The point cloud from plot A contains 16 725 scans and plot B contains
9889 scans for a total of 26 614 scans. For deep learning purposes the
dataset is then be formatted as two arrays with dimensions of
26614x10x5120x3 for the input data and 26614x10x5120x1 for the
supervised learning target data. The first dimension is the scan index,
second is the echo number, third is the pulse index and the last contains
the actual data fields (range, reflectance and echo deviation for input and
class labels for target data). A part of single scan is shown in Fig. 3. We
can move between the data formats easily as the location of the data in
the array corresponds with the indice fields in the point cloud.

The first 2601 scans out of 16 725 scans of plot A were used as test set
and the next 2600 scans were used for validation. The remaining 11 524

Table 1
Stand descriptive statistics of the test site locations.

Stand Basal area (m2/ha) Volume (m3/ha) Mean diameter (mm) Mean height (m) Height dominant layer (m) Stems (/ha) Total biomass (tons/ha)

A 37.49 503.65 227 20.12 32.94 654 213.11
B 24.82 223.25 173 16.43 21.08 898 120.91
C 21.48 205.26 227 18.73 21.02 488 102.33

Fig. 3. Visualization of the format of the data fed to the network. The class array is the target of the supervised learning, which the neural networks try to learn to
predict based on the range, reflectance and deviations arrays. Most pulses get only a few echoes, thus the array is mostly filled with zeros. Only part of a full scan
containing 5120 pulses is shown here.
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scans and all 9889 scans of plot B were used for training. The walking
trajectory during data collection formed circles, hence the same area was
contained in scans taken at different times. Points in the spatial region of
the test dataset were removed from scans in training and validation
datasets. 63 million labelled points were eliminated. It is likely that
including those points would have improved our training results, but we
did this to ensure that absolutely no information was leaked from
training to the final semantic segmentation of the test data. This was not
done to separate validation and training datasets to conserve the amount
of training data. Spatial distribution of the split on plot can be seen in
Fig. 4, as plot B is fully used for training it is not shown. The validation
dataset was only used for hyperparameter optimization and to decide
when to stop training, so even if the network would inadvertently learn
from the validation data set this would only give false confidence to the
network and likely result in lower performance with the test set.

3.4. Deep learning methods used

Keras with Tensorflow 2.3.1 was utilized as the deep learning
framework. The general neural network architectures selected for this
study were inspired by research on image classification and semantic
segmentation of images. We call our segmentation network Laser Scan
Segmentation Network or LSSegNet. We tested three different ap-
proaches named LSSegNet1 - LSSegNet3 in this paper.

LSSegNet1 follows the architecture of Fully Convolutional Neural
Network by Long et al. (2015), but with the plain convolutional layers
replaced with ResNet (He et al. (2016)) like residual blocks as it enables
deeper networks. The network architecture and an example of a residual
block can be found in Fig. 5. LSSegNet2 and LSSegNet3 are based on
U-Net (Ronneberger et al. (2015)) architecture. LSSegNet2 6 is similar to
the original U-Net but with a different number of convolutional filters. In
LSSegNet3 the regular convolutional blocks on the encoder side are
replaced by residual blocks.

In the LSSegNet2 and 3 networks (Fig. 6) the left (contracting) side

functions as an encoder, where the convolutional layers encode pro-
gressively higher-level contextual information, while the pooling layers
reduce the resolution to keep the memory requirements manageable. The
decoder side combines the information contained in the encoded filters
while increasing the resolution to the original resolution to perform the
point-wise classification. In the LSSegNet1 network (Fig. 5a) the
consecutive residual blocks work as an encoder while the Con-
v2DTranspose layers and the final convolutional layers carry out the
decoding. Some basic details of the networks can be found in Table 2.

In all networks we replaced Dropout (Srivastava et al. (2014)) layers
with SpatialDropout2D (Tompson et al. (2015)) layers. Both layer types
regularize the network weights and help avoid overfitting, but Spatial-
Dropout2D is more geared towards use with fully convolutional networks.

Values for the number of filters and strides, dropout percentage and
the number of residual blocks for each base architecture were selected
based on standard hyperparameter optimization with grid search, with
target being maximum mean Intersection over Union (IoU) value on
validation data set. In addition to the IoU values, processing speed with
each hyperparameter combination was also considered. If two networks
gave similar results the one with lower number of parameters was
selected.

Adam optimizer was utilized as an optimizing backend and was used
to minimize the categorical cross-entropy loss. The learning rate was set
with a cyclical learning rate scheduler built according to Smith (2017).
Their triangular2 scheduling policy was employed and the minimum and
maximum learning rates were set with the learning rate range test
introduced in the same paper. In triangular2 scheduling policy the
learning rate oscillates between the set maximum and minimum values
with the maximum value being halved each time it has been reached. The
data was augmented by randomly mirroring the scans on the longest
dimension. The networks were trained until the loss on validation set
stopped decreasing and the network with the lowest validation loss was
used to process the test set for final results. Nvidia GeForce GTX 1070
GPU was used to do the computations.

Fig. 4. Training-validation-test data split from plot A as viewed from above. Red areas correspond to test data, blue to training and validation (they overlap spatially)
and gray areas are unlabeled points. The apparent overlap between test and other data is due to the MLS system not scanning vertically but with an angle. (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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The RandLA-Net neural network architecture by Hu et al. (2020) was
used to compare our method with the current state of the art of semantic
segmentation of point clouds. RandLA-Net was chosen as it is fast and
works well with very large point clouds, such as ours, and has shown to
give excellent results in SemanticKitti, Semantic3D and S3DIS semantic
segmentation benchmarks, Hu et al. (2020). The same test data was used

for our method and RandLA-Net. As RandLA-Net uses point cloud as
input, the training - validation data division was done by cutting a
spatially continuous segment from the training and validation data point
cloud with a similar number of points as in the 2600 scans used for
validation in our method (around 13,7 million points). RandLA-Net was
run with the RGB fields replaced by range, reflectance and echo deviation
fields provided by the scanner, and with smaller batch sizes, to account
for our GPU having a lower amount of memory. Otherwise, the default
parameters used for S3DIS dataset were used.

To gauge the ability of segmentation networks to extract tree trunks
for the purpose of stem curvature and or tree height estimation we
manually measured the heights of 15 trees from the bottom of the stem to
the topmost point of foliage and compared with the corresponding
measured height determined by the points classified as representing tree
trunk. The trees in this evaluation were selected from the C plot with
varying lateral distance up to 25 m from the scanner.

Fig. 5. LSSegNet1 with the used parameters showing and one residual block. F represents the number of filters in the layer, S in max pooling is the stride used.

Fig. 6. LSSegNet2 architecture used in this research. Each convolution block consists of two consecutive Conv2D - BatchNorm - Relu layer combinations. Arrows on
the top are the skip connections. In the selected LSSegNet3 architecture the number of filters is multiplied by 1.5 and each convolutional block on the encoder side is
replaced with 3 sequential residual blocks.

Table 2
Networks used in the study. Conv layers is the total number of convolutional
layers in the network, conv filters is the number of convolutional filters in the
first layer. Parameters are the total number of parameters in the network.
Inference speed is the number of scans the network can process in a second.

Network Conv layers Conv filters Parameters Inference speed (Hz)

LSSegNet1 24 64 5 794 310 24.51
LSSegNet2 23 32 7 440 295 53.48
LSSegNet3 43 48 45 432 355 18.02
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4. Results and discussions

RandLA-Net gave slightly better results than our best network
LSSegNet3 (Table 3). The results are, however, encouraging as RandLA-
Net is one of the highest performing point cloud semantic segmentation
methods, and our way of doing segmentation is much more information
starved. Still, inspection of the resulting point cloud shows that in prac-
tice RandLA-Net results are even better than could be inferred from the
small differences in IoU values. With both methods most of the classifi-
cation errors occur between the ground and understorey classes, under-
storey and foliage classes and tree trunk and foliage classes, as can be
seen in the confusion matrices in Tables 4 and 5. The spatial location of
these misclassifications are also found mostly in the boundary areas
where the class changes from one to another, as could be expected as
there are imperfections in the labelling of the data. The largest difference
is that our method labels some of the branches into the tree trunk class
instead of the foliage class. Having branches as their own class in the
training data could remedy this problem and detecting them would also
be useful to estimate forest and tree parameters. Another problem with
our method is due to the fact that scans were classified independently.
The misclassifications in each scan are not correlated with the mis-
classifications in the other scans, and as such have spatially more
random-like locations after the scans have been georeferenced, which

can be seen in Fig. 7. With RandLA-net there is more local context for
each classification, which causes the misclassifications to be more
spatially aligned (blobs of misclassifications as opposed to random ”salt
and pepper” like misclassifications with our method). The amount of
misclassifications increases with distance from the scanner, as lower
point density gives less contextual information. This was seen for the
RandLA-Net results as well. Results with LSSegNet1 and 2 networks are
similar to LSSegNet3, as can be seen in Figs. 7 and 8, just with more
misclassifications as shown in Table 3.

The resulting spatially random misclassifications with our method
complicates the use of the resulting point cloud, but this can be remedied
by dropping points when the classifier is unsure about the classification.
The final softmax layer of the neural network outputs a probability dis-
tribution of a point belonging to different classes and we can select only
the points where the network is confident in the classification. Table 3
and the confusionmatrix in Table 6 shows the results from the LSSegNet3
network after 33% of points with the lowest classification probability in
each class were removed. Probability thresholds corresponding to
removing 33% of the points were 0.650 (ground), 0.858 (understorey),
0.955 (tree trunks) and 0.949 (foliage). The distribution of the confi-
dence values for tree trunk, foliage and understorey classes were skewed
extremely to high confidence values with a long tail for understorey. For
ground class the model was much less sure about it predictions with a
close to even distribution of confidence values between 0.95 and 0.50
with very few values outside that range.

While many points with the right classification are removed, more
importantly we get rid of almost all of the randomly distributed wrong
classifications and misclassified branches, which results in point clouds
that look much cleaner. We also tried to process the scans in batches of 3
consecutive scans to give more context to semantically segmenting the
central scan. We employed 3D convolutions for this but we could not get
any improvement on the segmentation results. The approach could be
explored more as only few tests were done. There are also other ways to
solve this problem such as conditional random fields (CRF) as done by
Wu et al. (2018) or k-nearest-neighbors (kNN) search-based consensus
voting scheme as done by Milioto et al. (2019) and we will explore them
in the future. One downside of our approach is that as it uses raw laser
scanner data, the trained model might not work if applied on other laser
scanners. Reflectance values will be different on laser scanners employ-
ing different wavelength and echo deviation values are also likely laser

Table 3
Classwise IoU, mean IoU and overall accuracy of the test set processed with
different networks. LSSegNet2_RRD uses all of the input fields (Range, reflec-
tance and echo deviation) R is using only range, RR has Range and Reflectanse
and RD has Range and echo deviation fields. LSSegNet3_67% contains the results
from LSSegNet3 network with 33% of the lowest probability points in each class
removed.

Network name Ground Understorey Tree
trunk

Foliage mIoU OA

LSSegNet1 58.4 83.5 80.3 94.3 79.1 92.9
LSSegNet2_RRD 58.4 83.0 79.4 94.0 78.7 92.6
LSSegNet2_R 56.2 77.2 73.7 91.7 74.7 90.3
LSSegNet2_RR 51.4 80.9 76.7 93.3 75.6 91.6
LSSegNet2_RD 59.4 83.0 76.3 90.0 78.0 92.2
LSSegNet3 60.2 83.8 81.6 94.6 80.1 93.1
RandLA-Net 59.8 79.9 87.2 95.7 80.6 92.9

LSSegNet3_67 82.6 95.2 96.5 99.3 93.4 98.3

Table 4
Confusion matrix of the test set processed with LSSegNet3 architecture.

Table 5
Confusion matrix of the test set processed with RandLA-Net architecture.
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scanner model dependant. On the other hand, segmentation models
trained only on range values could work, although different angular
resolution can be a challenge. The segmentation model might also not
generalize if the scanning geometry is changed. With Akhka-R3 MLS
system the scanner is oriented to scan at an angle which undulates several
degrees around 26� angle from the vertical when walking as seen in
Figs. 1 and 2. If the scanner would be oriented to scan on an angle closer
to horizontal the performance of the segmentation model could be
degraded.

Tests were done using different pieces of input information removed
in order to gauge the importance of an expensive laser scanner, having
multi echo capabilities, and more than just range information received
per echo. LSSegNet2 gave the highest mIoU results on validation data set
and was selected as the network for these tests. Results can be seen in
Tables 3 and 7 and in Figs. A.1 and A.2 in the Appendix. It should be
noted that the numbers in the particular tables are not comparable as the

single echo runs only use a subset of the points. Results indicate that
multi echo capability and all three fields give the best results but reveals
also that the segmentation can be done using just range information and
single echo. Therefore, the method should also be replicable with other
laser scanners, albeit with presumably higher error rates. Echo deviation
seems to be a more important predictor than the more commonly
available reflectance value. This would suggest that having more infor-
mation about the return, for example the full waveform of the echo, could
improve semantic segmentation results. In the single echo case, the
reflectance value didn’t bring any advantages and surprisingly, the best
results were acquired without it. It is possible that the reflectance value is
correlated to other reflectance values of the echoes of one laser pulse and
is less useful without that information.

In addition to the data with ground truth labels, altogether 16 033
scans from plot C with no ground truth were also processed with the
proposed classifier and the resulting semantic segmentation results were

Fig. 7. Single tree of the results on the test set including a fallen tree. For each image, the right-hand side has foliage and understorey points removed with only
ground and tree trunk classes present. Red: Foliage, Yellow: Tree trunk, Green: Understorey, Blue: Ground. (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article.)

Table 6
Confusion matrix of the test set processed with LSSegNet3 architecture with 33 of the lowest probability
points in each class removed.
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visually compared with the results on the test part of the training dataset.
The results look similar (see Fig. A.3 in Appendix) to the ones from the
test and we can be confident that the neural network generalizes and can
process data from other forest plots. The figure also shows that a point
cloud with georeferencing errors causes problems for methods such as
RandLA-Net, which utilize the whole point cloud. Trajectory errors in the
height component cause multiple levels of ground. RandLA-Net shows a
tendency to misclassify that to foliage class. This shows one advantage of
doing the semantic segmentation on raw laser scanner data as the result is
not dependent on the success of the georeferencing. Splitting the point
cloud according to measurement time to slices and processing the slices
independently with point cloud based segmentation method could also
overcome these problems caused by errors in georeferencing.

Our network can semantically segment laser scans at
53.48Hz–18.03Hz, depending on the network (Table 2) and, as the
scanner recorded them at 100Hz, we cannot process scans as fast as they

are measured. However, the Geforce 1070 GPU used in the computation
is aimed at gaming instead of deep learning and is over 5 years old as of
now. Newer generation GPU models easily have enough performance to
classify points in real time as they are measured by the scanner, at least
with the LSSegNet2 network and likely with the others, too.

Table 7
Classwise IoU, mean IoU and overall accuracy of the test set processed with different networks using only single echo per pulse. LSSegNet2_1E_RRD uses all of the input
fields (Range, reflectance and echo deviation) R is using only range, RR has Range and Reflectanse and RD has Range and echo deviation fields. LSSegNet2_1E_Res3_67
contains the results from LSSegNet2_1E_RRD network with 33% of the lowest probability points in each class removed. LSSegNet2_ME_RRD row has the results on the
same points extracted from results processed with multiple echoes for comparison.

Network name Ground Understorey Tree trunk Foliage mIoU OA

LSSegNet2_1E_RRD 60.5 82.5 78.5 92.3 78.5 90.5
LSSegNet2_1E_R 57.4 79.5 81.2 93.5 77.9 89.8
LSSegNet2_1E_RR 56.8 79.3 82.0 93.5 77.9 89.8
LSSegNet2_1E_RD 61.0 82.7 80.1 92.5 79.1 90.7
LSSegNet2_ME_RRD 58.4 83.9 81.5 93.1 79.2 91.1

LSSegNet2_1E_RRD 67 78.4 91.9 94.0 98.7 90.8 96.5

Table 8
Portion of the height of the tree trunk extracted by the semantic segmentation
network as compared to the full height of the tree. 15 trees with varying distance
from the scanner were used from the plot C.

Tree height (m) Detected portion

LSSegNet3 LSSegNet3 67%

Mean 20.0 72.6% 60.4%
Std 1.6 2.9% 5.2%
Min 16.6 66.4% 48.2%
Max 23.0 75.9% 68.0%

Fig. 8. Slice of the point cloud of the results on the test set. Rows from the top ground truth, RandLA-Net, LSSegNet3, LSSegNet3 with 33% of points with the lowest
probability in each class removed. On the right-hand side only ground and tree trunk classes are left.
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Wang (2020) partly focuses on the semantic segmentation of 3D point
cloud data into forestry components. According to Wang, validation
using simulated data resulted in an overall accuracy of 87.7% for clas-
sification to leaf and wood classes. Krisanski et al. (2021) segmented
forest point clouds to terrain, vegetation, coarse woody debris and stem
classes with corresponding IoU values of 89.1%, 93.6%, 40.7%, 91.3%.
As the dataset and classification targets are different, we shouldn’t put
too much weight on the specific numbers but it is encouraging that our
results are in the same ballpark.

Separation between ground, understorey, tree trunk and foliage classes
would be useful as a pre-processing method for all forestry application
development. Especially in the field of mobile laser scanning, such a tech-
nique would be highly useful as there are multiple challenges in processing
under-canopyMLS data. For example, pre-classification of point cloud data
on-the-fly would be highly useful for improving and assisting in SLAM ap-
proaches (Lehtola et al. (2019); Kukko et al. (2017)). When doing SLAM
with mobile laser scanner data, removing points corresponding to under-
storey and foliage can be advantageous as matching measurements ac-
quired of those areas at different times can be prone to mismatch errors.
They have extremely complex shapes, occlusions, and even light wind will
move them, which results in extreme difficulty to find andmatch the exact
same locations and objects observed at different times. Thus, having the
data classified in real time can be useful, in addition to SLAM also in
reducing saved or wirelessly relayed data volume. Data volumes recorded
bymodern laser scanners canbe large andgenerally not all of it is necessary.
For example, in case we are calculating forest parameters (e.g., number of
trees, stem diameter breast heights (DBH) and volumes), it is much simpler
if we only have the measurements corresponding to trees (tree trunk and
foliage class) as input for such a process.

Results for trying to extract tree trunks for stem curvature and tree
height estimation from the segmented point cloud are shown in Table 8.
Generally, the lower percentages achieved were from trees furthest from
the scanner with increased traverse of the laser light through foliage and,
thus, reduced visibility. Also, trees close to the scanner are measured
from below, while trees further away are covered with pulses at more
slant angles and with reduced spatial density (effect of angular resolu-
tion, also turning reduces the spatial density of the point). Stems could be
extracted up to 76% of relative height.

In comparison to earlier works (e.g., Hyypp€a et al. (2020); Wang et al.
(2021b)), the detection power for tree stem points with the proposed
method seems togive remarkablygood results. InHyypp€aet al. (2020), the
focus was on finding good-quality arcs determining the stem curvature.
Typically, the quality of arcs dropped at a relative height of 40% (the ratio
between the extracted stem curvature maximum height and the tree
height). In Wang et al. (2021b), the corresponding relative height was
64% in a very sparse forest. Corresponding relative mean heights of 60%
and 73% (Table 8) were obtained in this study. The corresponding den-
sities of the forests were as follows: 200 stems per hectare in Wang et al.
(2021b), 410–420 in Hyypp€a et al. (2020), and 488 in this study. Stem
curvature is the most important quality related parameter needed in
harvesting in deciding the optimal cutting of a trunk. An additional piece
of useful information is the amount of branches, especially living
branches, surrounding each height layer of the tree. The proposedmethod
also seems to provide (Fig. 8) a valuable contribution to this information.
The abundance of dead wood is considered to be an indicator of forest
biodiversity since many threatened species are dependent on decaying
woodas ahabitat.Our algorithm is able to provideprior informationwhen
looking for dead trees either laying on the forest floor or standing up. This
research was done with data collected in forests, but a similar approach
could also be applied on built environments on objects such as utility poles
and portals, traffic signs, road objects and building features, etc.

5. Conclusions

In this paper we showed that it is possible to semantically segment 3D
data measured by a mobile laser scanner with deep neural networks by

just using raw (non-georeferenced) 2D laser scanner measurements in 2D
raster format. We obtained 0.5 %-unit lower mean Intersection over
Union value when classifying forest point cloud data to ground, under-
storey, tree trunk and foliage classes with our method (80.1%) as
compared with the state-of-the-art point cloud based RandLA-Net
(80.6%). The results are promising, considering that our raw laser
scanner measurements based method has much less contextual infor-
mation for classifying each point. Our method tended to classify some
branches to the tree trunk class instead of foliage class, since large
branches appear pretty similar in surface texture, reflectivity, and echo
properties. Dropping unsure points was also found to be a good way to
reduce misclassification. This approach is acceptable in mobile laser
scanning applications as the distances from the scanner are relatively
short and the point density is often very high, providing redundant data.

By doing the semantic segmentation in increments of single scans
(mirror rotations) on raw measurements our method also avoids prob-
lems caused by possible errors in the trajectory of the MLS system. Errors
in trajectory cause spatial discrepancies such as duplicates of objects and
blurring of the geometry in the point cloud which can hamper automatic
interpretation of it.

In comparison to earlier works, the detection power to extract high
stem points with the proposed classification method seems to give
remarkably good results. This has significance in pursuit for automated
timber volume and stem quality estimates. 3D laser mapping systems
enhancedwith semantic segmentation pipeline such as ours will also help
in understanding the complexity of terrain and forest structures with
applications in, for example research on carbon sequestration by forests
or other forest ecosystems research.

This paper shows that classification of raw laser scanning data is
feasible, fast (real-time) and provides potential to speed up, e.g., SLAM
process to correct the data for geometric errors by reducing the search
space and adding semantics to the process. Classification also reduces the
processing power needed by permitting only classes of interest to be
selected for data processing, map compilation, and other interpretation
and modeling tasks. Further, an increase in performance would
contribute to implementation of edge computation solutions for time
critical applications such as robotics and UAV scene.
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Appendix

Fig. A.1. Semantic segmentation results of the A plot test set.

R. Kaijaluoto et al. ISPRS Open Journal of Photogrammetry and Remote Sensing 3 (2022) 100011

12



Fig. A.2. Semantic segmentation results of the A plot test set with only single echo used
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Fig. A.3. Semantic segmentation results of the C forest plot shown as approximately 5 m wide cross section taken from the classified point cloud; the second stem from
the left was out of this slice, but some foliage remains visible.
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