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A B S T R A C T

Deep learning methods based on convolutional neural networks have shown to give excellent results in semantic
segmentation of images, but the inherent irregularity of point cloud data complicates their usage in semantically
segmenting 3D laser scanning data. To overcome this problem, point cloud networks particularly specialized for
the purpose have been implemented since 2017 but finding the most appropriate way to semantically segment
point clouds is still an open research question. In this study we attempted semantic segmentation of point cloud
data with convolutional neural networks by using only the raw measurements provided by a multiple echo
detection capable profiling laser scanner. We formatted the measurements to a series of 2D rasters, where each
raster contains the measurements (range, reflectance, echo deviation) of a single scanner mirror rotation to be
able to use the rich research done on semantic segmentation of 2D images with convolutional neural networks.
Similar approach for profiling laser scanner in forest context has never been proposed before. A boreal forest in
Evo region near H€ameenlinna in Finland was used as experimental study area. The data was collected with FGI
Akhka-R3 backpack laser scanning system, georeferenced and then manually labelled to ground, understorey, tree
trunk and foliage classes for training and evaluation purposes. The labelled points were then transformed back to
2D rasters and used for training three different neural network architectures. Further, the same georeferenced
data in point cloud format was used for training the state-of-the-art point cloud semantic segmentation network
RandLA-Net and the results were compared with those of our method. Our best semantic segmentation network
reached the mean Intersection-over-Union value of 80.1% and it is comparable to the 80.6% reached by the point
cloud -based RandLA-Net. The numerical results and visual analysis of the resulting point clouds show that our
method is a valid way of doing semantic segmentation of point clouds at least in the forest context. The labelled
datasets were also released to the research community.
1. Introduction

Laser scanning is a measurement technique to determine shape, and
possibly the appearance, of real-world objects and environments in the
form of a point cloud. The development of point cloud generation op-
toelectronics has been fast, the first Airborne Laser Scanners (ALS) were
built in the early 1990s; the first Mobile Laser Scanners (MLS) were
developed in the early 2000s. Today, MLS point coulds can be collected
with multiple techniques, for example using hand-held, backpack, and
mini-unmanned aerial vehicle (UAV) laser scanning. Lidar-based vision
system prototypes targeted and tested at autonomous driving context
today use similar technologies to MLS, permitting autonomous
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Modern MLS systems can cover large areas and measure huge quan-

tities of data quickly. Processing and getting useful information from
large point clouds manually is time consuming and automatic methods
are required. Semantic segmentation of the data to useful classes is an
important step in utilizing 3D data as it enables users to concentrate on
parts of the point clouds they are interested in. Deep learning is one the
fastest-growing technologies in analyzing measurement and big data,
characterized by deep neural networks (DNN) involving more than two
hidden layers. Deep learning has been applied in several image analysis
tasks, including semantic segmentation and object detection Kattenborn
et al. (2021). Common convolutional architectures require highly regular
land.
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input data formats, such as 2D rasters or 3D voxels, to carry out, e.g.,
weight sharing and other kernel optimizations, but many approaches to
utilize them with irregular point cloud data have also been explored Guo
et al. (2020).

Point clouds are an important type of geometric data structure in
many applications related to mapping and perception/detection. The
kinematically obtained range information is converted into point clouds
typically using direct georeferencing, i.e., with position and orientation
data provided by Global Navigation Satellite System (GNSS) and Inertial
Measurement Unit (IMU), by Simultaneous Localization and Mapping
(SLAM) methods, or as with our use case, a combination of both. While
point clouds are irregular, it is quite common that data before georefer-
encing is regular, i.e., in sequential order based on the time of
measurement.

In this research we investigated whether non-georeferenced, raw
mobile/kinematic laser scanner measurements in forest context contain
enough information to classify the points for the purpose of modeling and
analyzing forest structures. Currently the best-performing Convolutional
Neural Networks (CNN) provide the state-of-the-art results in pixel-wise
semantic segmentation of images Kattenborn et al. (2021). Since raw
laser scanner measurements can easily be formatted into a data structure
mimicking raster image, similar well documented CNN based approaches
can be applied to classify laser scanner data. By having a classification
pipeline, which uses just the raw data provided by the laser scanner, the
anticipated errors in the subsequent georeferencing do not affect the
classification result. It is also possible to use the pipeline as a pre-
processing step to, for example, select or downsample points to speed up
further processing by involving only points relevant for an application
such as SLAM or tree parameter estimation.

To test this novel idea for profiling laser scanner in forest context, we
manually classified two georeferenced 3D point clouds from two boreal
forest plots and used this data to train neural networks to do point-wise
classification. Point clouds were acquired with FGI’s Akhka-R3 backpack
MLS system. For feeding the data to the neural networks, the classified
data was arranged as scans, where each scan was structured as a 3-dimen-
sional array containing measurements taken during one rotation of the
scanner mirror. The first dimension was the sequential pulse number, the
second the received echo number pertaining to the pulse and the third
dimension had the actual measurements (range, reflectance, and echo
deviation) of the echo.

The key aim of this paper was to test whether it is possible to do se-
mantic segmentation of 3D point cloud data by just using raw 2D laser
scanner measurements fed into a convolutional neural network. In
addition, we investigated whether it can be done in real time, how
important are the multi-echo capabilities of the laser scanner we use and
how our semantically segmented data could be used in forestry. Finally,
we released the manually labelled point clouds to the research commu-
nity to give people the possibility to advance the research on 3D data in
forest context. The dataset is available at https://doi.org/10.23729
/8d2d3765-b5a0-4998-82c1-13a6f8bc9de3, please cite this article if
you use it in your research.

2. Related work

A review and meta-analysis of different deep learning methods used
in processing remote sensing data can be found in Ma et al. (2019). In the
following we go through some relevant studies done in the field of
forestry, the applied neural network architectures, and related research
on semantic segmentation of point clouds and images with convolutional
neural networks. The latter is included as our method is closely related to
semantic segmentation of images.

2.1. Semantic segmentation of images with convolutional neural networks

Long et al. (2015) showed that it is possible to adapt deep neural
networks utilized for image classification to do pixel-wise semantic
2

segmentation of an image by replacing fully connected layers with con-
volutional layers. In their architecture, instead of aggregating the infor-
mation extracted by the convolutional layers over the whole image with
the fully connected layers, the hierarchy of features encoded by the
convolutional layers on each pixel is used to do pixel-wise classification.
To overcome the problem of degrading learning ability of deeper neural
networks, He et al. (2016) proposed to modify network architecture by
adding shortcut connections to every few convolutional layers. This way
the convolutional layers are allowed to learn residual mapping, which is
easier for the optimizer and enables the use of deeper networks, which in
turn provides improved classification capability. A residual block con-
taining residual mapping can be seen in Fig. 5b. They named their
network as ResNet. Wu et al. (2016) applied residual networks to se-
mantic segmentation and similarly reported improved results. Inspired
by the fully convolutional network of Long et al. (2015), Ronneberger
et al. (2015) introduced the U-net architecture where they increased the
amount of both the skip connections between the encoder and decoder
sides and the number of convolutional filters on the decoder side. These
changes enable the network to propagate the higher semantic level in-
formation which has lower resolution to the higher resolution layers near
the output side of the network.

Further research on semantic segmentation with convolutional neural
networks can be found in Badrinarayanan et al. (2017); Chen et al.
(2018); Zoph et al. (2020) and Zhao et al. (2017).

2.2. Semantic segmentation of point clouds

Traditionally semantic segmentation of point clouds has relied on a
combination of hand-crafted features and a machine learning based
classifier. Examples can be found in the works of Hackel et al. (2016) and
Munoz et al. (2008).

In principle, if the point cloud is made to conform to a grid like
format, for example by voxelizing it, convolutional neural network
methods used for semantic segmentation of images could be extended to
the 3rd dimension and used in a similar fashion. Unfortunately, in
practice it is not feasible, because of the curse of dimensionality and
incurring exponential growth of memory requirements combined with
the inherent sparsity of the point cloud. Graham et al. (2018) took
advantage of the sparsity by proposing the use of submanifold sparse
convolutional networks. They use a hash table to increase the perfor-
mance and decrease the memory usage by only applying convolutional
calculations to locations where there are data points.

To get around hand-craft features Qi et al. (2017a) proposed PointNet
architecture, which works directly on unordered points and learns a set of
functions that describe local information about the input points. The
functions can then be maximum pooled to create a global descriptor
about the point cloud. A point-wise semantic classification neural
network can be trained by concatenating the global descriptor with in-
dividual local descriptors. Pointnetþþ Qi et al. (2017b) improved the
capacity of the Pointnet to capture hierarchy of local structures.

Riegler et al. (2017) employed a grid of shallow octrees as their data
format and implemented accompanying functions required to create a
CNN, which can take advantage of the data formatting. With grid-octrees
they were able to have much higher resolution than with a normal dense
CNN while keeping the memory and processing requirements
manageable.

Landrieu and Simonovsky (2018) proposed a new architecture called
superpoint graph where groups of homogenous points are partitioned
together and these superpoints are then used as building blocks of a
supergraph. Graph convolutions are utilized to enable fast processing of
large point clouds. Hu et al. (2020) proposed the RandLA-Net neural
architecture for semantic segmentation of very large point clouds. Their
method employs random sampling combined with a novel local feature
aggregation module, which encodes local geometry. By stacking these
local feature aggregation modules, intervened with random sampling,
they can encode information for each point with a large receptive field



Fig. 1. Applied Akhka-R3 backpack laser scanner instrument scans 360-degree
cross track profiles while GNSS-IMU tracks the platform dynamics during the
kinematic mapping.
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with relatively small memory footprint and fast processing time to enable
the processing of large point clouds.

3D laser scanners with multiple beams produce point clouds which
can easily be transformed to range images, if done in the increments of a
single scanner rotation. Regular 2D image segmentation methods can
then be employed to do the semantic segmentation. Wu et al. (2018) used
spherical projection to transform the point clouds to range images with
range, intensity and cartesian coordinate information for each pixel
which is then segmented with a SqueezeNet like network combined with
conditional random field. Biasutti et al. (2019a) adapted a similar
approach but only used range and intensity information with U-Net ar-
chitecture in their RIU-Net architecture, reaching similar accuracy. In
Biasutti et al. (2019b) the authors further improved RIU-Net performance
by adding a 3D feature extraction module which learns a descriptor of the
local geometry for each range value as the first step of the segmentation
pipeline.

Other approaches can be found in Thomas et al. (2019), Zhang et al.
(2019b), Lu et al. (2019), Wang et al. (2021a), Boulch et al. (2020), Xu
et al. (2020), and Li et al. (2020). A survey of different deep learning
approaches on 3D data can be found in Guo et al. (2020).

2.3. Semantic segmentation in forestry

Semantic classification and deep learning have been applied already
quite extensively for forest applications, namely for detecting forest fires
(Zhang et al. (2016); Peng and Wang (2019)), for tree species classifi-
cation (Hafemann et al. (2014); Guan et al. (2015); Zou et al. (2017); Liu
et al. (2019); Xi et al. (2020); Seidel et al. (2021); Hamraz et al. (2019);
Dechesne et al. (2017)), for biomass and volume estimation (Zhang et al.
(2019a); Narine et al. (2019); Ayrey and Hayes (2018); Liu et al. (2019)),
for forest damage assessment (Hamdi et al. (2019)), for detection of
stems (Windrim and Bryson (2020)), for individual tree isolation (Wang
et al. (2019); Chen et al. (2021)), for forest area or deforestation area
determination (Ye et al. (2019); Dong et al. (2019); Sothe et al. (2020);
Rizaldy et al. (2018)), and for ground point filtering of ALS data of
forested areas (Jin et al. (2020)).

Digumarti et al. (2019) explore variety of convolutional neural
network architectures to semantically segment RGB-D images of trees to
trunk, branch, twig and leaf classes. Guan et al. (2015) classified tree
species from mobile laser scanning data. The processing steps included
removal of ground points, tree segmentation using Euclidean distance
clustering and voxel-based normalized cut segmentation, and use of
waveform representation to model geometric structures of trees. Ten (10)
tree species classes were classified with an overall accuracy of 86.1%.
Wang (2020) semantically segmented 3D terrestrial laser scanning (TLS)
point cloud data into leaf and wood classes. Morel et al. (2020) seman-
tically segmented TLS point clouds of single trees into leaf and wood
classes by first enhancing the point cloud by creating local descriptors
which encode local geometry and then using PointNetþþ inspired neural
network model to do classification on the enhanced point cloud reaching
mIoU values of 85.59 to 97.07. Krisanski et al. (2021) use PointNetþþ
inspired neural network model to semantically segment point clouds to
terrain, vegetation, coarse woody debris and stem classes. By manually
labelling 7 extensive forest point cloud datasets and using them for
training of their model they reached excellent result of 95.4% overall
accuracy.

3. Experiment materials and methods

3.1. Applied mobile laser scanner system

The data for this study was collected with the Finnish Geospatial
Research Institute (FGI) Akhka-R3 backpack laser scanning system
(Fig. 1). The system consists of Riegl VUX-1HA laser scanner, NovAtel
Flexpak6 GNSS receiver and Pinwheel 703GGG antenna to observe
Global Positioning System (GPS) and GLONASS constellation satellites
3

for positioning complemented with a fibre optical gyroscope and
microelectromechanical accelerometer data from NovAtel UIMU-LCI in-
ertial measurement unit for 200Hz trajectory output. The system receiver
also serves the lidar unit with PPS time pulses, National Marine Elec-
tronics Association (NMEA) messaging and Inertial Navigation System
Position Velocity Acceleration (INSPVA) data for real-time trajectory
display.

In addition to range, the Riegl VUX-1HA laser scanner provides
reflectance and echo deviation information for each received echo and
this information was used to help classify the points. The echo deviation
value tells how much the received echo shape deviates from the original
pulse shape with small values representing small change, typically cor-
responding to hard surfaces, e.g. tree trunks or building walls. This in-
formation can reveal something about the material or angle in which the
pulse is reflected. Large values can be due to, for example, the target
being slanted or reflections from multiple targets at close range resulting
in one, widening echo, if the scanner is unable to differentiate the
different targets. Both values are provided by the Riegl data. The scanner
can receive multiple echoes for each emitted laser pulse.
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For scanning the forest structure we set the scanner mirror to rotate at
100Hz and set the pulse repetition rate to 500 kHz, which works out to
around 5000 pulses per full revolution of the mirror. Though not limited,
in practice we never detected more than 10 echoes per pulse in our
datasets. The scanning geometry can be seen in Fig. 2.

3.2. Test site

A boreal forest in Evo region near H€ameenlinna in Finland (61.19 N,
25.11 E) was used as experimental study area. The laser scanning mea-
surements were conducted on three test sites (A, B and C) of size 32 m 32
m. Data from A and B sites were labelled and used for neural network
training, validation and testing while C site was only used for additional
verification of the method. All sites consisted mainly of pines with some
spruce and birches. Descriptive statistics of the sites are provided in
Table 1. All point clouds cover a considerably wider area than the test site
because of the long range of the laser scanner.

3.3. MLS data processing

The GNSS-IMU data from the MLS system was post-processed using
Waypoint Inertial Explorer software to incorporate differential GNSS
correction using Virtual Reference Station (VRS) base station data
(Trimnet) and precise ephemeris and satellite clock data in a multi-pass
process with three forward and reverse solutions combined and
smoothed in tightly coupled processing to generate the initial trajectory.
The lidar data was then calibrated for bore-sight alignment and
computed into point clouds based on the trajectory by using Riegl RiP-
rocess software with SDC, MTA and RiWorld modules.

The trajectory was then refined by graph SLAM method where we
formulate the trajectory as a graph, detect tree stems in the point cloud
and then use the detections of the same tree at different timestamps as
additional constraints in the graph. If there are errors in the initial
Fig. 2. Slice of a point cloud with single scan (mirror rotation) highlighted with color
this figure legend, the reader is referred to the Web version of this article.)
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trajectory, the detections of the same tree stem at different timestamps
don’t align spatially and this information is used by graph optimization to
do corrections to the trajectory. Then the new optimized trajectory is
used for generating new point cloud. In-depth explanation on the tra-
jectory correction pipeline can be found in Kukko et al. (2017). The
tree-based trajectory optimization leaves some errors to the height
component of the trajectory. These errors were manually corrected to
remove heightwise discrepancies in the point cloud to facilitate manual
classification process.

The points in the clouds were then labelled manually to ground,
understorey, tree trunk and foliage classes to enable supervised learning.
The low vegetation - ground cut was done by extracting the ground points
with the Terrascan (Terrasolid, Finland) function. Terrascan has a region
growing algorithm that starts growing from the lowest point of a 1-m-by-
1-m area and grows to neighboring low points if the angle between them
is under a threshold value and then adds all points closer than 2.5 cm to
it. Rest of the labelling process was done by drawing a closed polygon of
points in different classes on 2D views of the point cloud with Cloud-
Compare software (Girardeau-Montaut (2016)).

The labelling process was extremely time consuming because it is
often hard even for a human to discern to which class some group of
points belong, especially in areas where the point density is low, or points
are very irregularly distributed. The cut between foliage and tree trunk
classes and between ground and low foliage classes is also difficult to do.
It is often practically impossible to say, where the tree trunk stops and
foliage class starts, as there really isn’t a clear-cut difference between tree
trunks, larger branches, smaller branches and needles or leaves, in
particular that holds for deciduous trees. Similarly, with the ground and
low vegetation classes, the location of the actual ground level is rather
ambiguous in forest with dense low undergrowth vegetation. That is why
some level of misclassification between these classes is to be expected.
Points further than 70 m from the scanner were not labelled but were
included in the dataset to give context to the points with labels. There
s to show the scanning geometry. (For interpretation of the references to color in
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