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Abstract
When searching for information in a data collection, we are often interested not only
in finding relevant items, but also in assembling a diverse set, so as to explore different
concepts that are present in the data. This problem has been researched extensively.
However, finding a set of items with minimal pairwise similarities can be computa-
tionally challenging, and most existing works striving for quality guarantees assume
that item relatedness is measured by a distance function. Given the widespread use of
similarity functions in many domains, we believe this to be an important gap in the
literature. In this paper we study the problem of finding a diverse set of items, when
item relatedness is measured by a similarity function. We formulate the diversifica-
tion task using a flexible, broadly applicable minimization objective, consisting of the
sum of pairwise similarities of the selected items and a relevance penalty term. To
find good solutions we adopt a randomized rounding strategy, which is challenging to
analyze because of the cardinality constraint present in our formulation. Even though
this obstacle can be overcome using dependent rounding, we show that it is possible to
obtain provably good solutions using an independent approach, which is faster, sim-
pler to implement and completely parallelizable. Our analysis relies on a novel bound
for the ratio of Poisson-Binomial densities, which is of independent interest and has
potential implications for other combinatorial-optimization problems. We leverage
this result to design an efficient randomized algorithm that provides a lower-order
additive approximation guarantee. We validate our method using several benchmark
datasets, and show that it consistently outperforms the greedy approaches that are
commonly used in the literature.
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1 Introduction

In this paper we consider the problem of diversified item selection, which is ubiquitous
in search and recommendation scenarios. In the simplest embodiment of item selection
problems, one is given a query andmust then search the available database for themost
relevant results. In web search, for example, users input a set of keywords, and the
search enginemust produce the documents thatmost strongly relate to those keywords.
However, in the absence of adequate measures, the top results might be too similar to
each other, and thus only one of them might be of interest to the user. Therefore, it
is often desirable to select a number of items that are not only relevant to the given
query, but also not too similar to each other, so as to avoid redundant results.

We formalize the problem of selecting k diverse items from a collection of n items
as that of minimizing an expression of the form xTWx + cT x such that x ∈ {0, 1}n
and

∑
i xi = k. The n × n non-negative matrix W, which is assumed to have a zero

diagonal,models pairwise item similarity and c represents a relevance-loss vector. This
formulation transcends diversification and encompasses awide array of problems, such
as k-independent set, quadratic knapsack or k- Sparsest- Subgraph, and is thus of
special interest in combinatorial optimization.

Solving programs of this type is NP-hard in general, even when the variables
are relaxed to the convex set [0, 1]n (Vavasis 1992). Polynomial-time approximation
schemes are possible when the matrix in the quadratic term has at most one positive
or one negative eigenvalue (Hildebrand et al. 2016). In the optimization literature,
the focus has been chiefly on reformulations to leverage the existence of highly-
optimized solvers, such as convexification, linearization and semidefinite relaxations
(Carter 1984; Zhang 2000; Billionnet et al. 2008; Lima and Grossmann 2017), or in
the development of branch-and-bound methods to obtain exact solutions (Kalantari
and Bagchi 1990). The underlying goal is to obtain methods with good empirical
performance. A nice overview can be found in the recent work of Furini et al. (Furini
et al. 2019).

Quadratic programs, and perhaps more commonly the special case of linear pro-
grams, are also frequently the subject of attention in combinatorial optimization, as
many discrete problems can be written in this form. By relaxing the feasible set, e.g.,
to allow solutions x ∈ [0, 1]n , and then rounding the result back to {0, 1}n , it is
sometimes possible to obtain a feasible solution to the original problem with provable
quality guarantees (Jain and Vazirani 1999; Charikar and Li 2012).

Randomized rounding (Raghavan and Tompson 1987) is a common technique to
obtain a discrete feasible solution by solving first a continuous relaxation. The method
can be roughly described as follows: each discrete variable is randomly set to 1 with
a probability derived from the corresponding entry of the continuous solution to the
relaxed progream.When the rounding can be done independently for each variable, this
process is often easy to analyze and produces solutions with approximation guarantees
in expectation (Williamson and Shmoys 2011).
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Rounding under cardinality constraints Applying this technique to the problem we
consider in this paper is challenging due to the presence of a cardinality constraint,
as the independent nature of the rounding may result in solutions of any size. Some
attention has been devoted to obtaining samples respecting a constraint of this nature.
Srinivasan proposed a sampling algorithm to ensure the desired cardinality (Srinivasan
2001). Related alternatives, including derandomization methods, were later proposed
(Gandhi et al. 2002; Doerr 2005). But these approaches come at a cost: the dependent
nature of the process makes the algorithms slightly more involved to implement,
requiring substantially more coin flips, and hurts parallelizability. In certain scenarios,
one might wish to preserve the straightforward simplicity of independent rounding,
and the increased running time can be inconvenient in critical applications. Thus, in
this paper we aim to answer the following question: can we use independent rounding
and provide provable approximation guarantees in cardinality-constrained settings?

Weanswer this question positively.We rely on the fact that a natural relaxation of our
program induces a sampling distribution, which concentrates sharply around themean,
and thus we can obtain feasible solutions with high probability after a small number of
attempts. The procedure is not straightforward to analyze, as conditioning on feasibility
introduces unwieldy factors in the expected value of the solution. We bound these
factors by leveraging their symmetry, which allows us to reason about the structure of
the extrema. The derived bound applies to ratios of symmetric polynomials, which is
of independent interest. In the end we are able to show that, with high probability, we
can efficiently obtain a discrete solution of the desired cardinality whose value in the
objective iswithin a small constant of the continuous one. To the best of our knowledge,
this is the first result showing an approximation guarantee of independent randomized
rounding for the proposed quadratic programs under cardinality constraints. It should
be noted that our analysis leaves the simplest embodiment of randomized rounding
intact, and is therefore straightforward to implement and perfectly parallelizable. To
evaluate the practical advantages of the proposed method, we compare it empirically
to an existing method for rounding with cardinality constraints. The results show
that our approach achieves significant speed-ups in some regimes, especially when
parallelization is possible. Nevertheless, the existing dependent method can be faster
in some cases. In the experiments we delve into the details of these differences and
discuss pros and cons of each technique.
Applications To illustrate the applicability of our result, we address the problem
of search-result diversification, when the goal is to minimize pairwise similarities
between the retrieved items. Natural formulations of this objective are hard to approx-
imate, and thus the related literature has focused mostly on maximization variants.
However, we argue that minimization approaches for diversification are of interest
to the information-retrieval community, as similarity functions, instead of distances,
are commonly used to compare documents. Furthermore, we now illustrate with an
example that methods giving approximation guarantees in maximization formulations
can be arbitrarily bad for minimization.

Example 1 Given a collection of documents, we want to find a set of k documents
S for which the sum of pairwise cosine similarities

∑
x,y∈S,x �=y cos(x, y) is mini-

mized. Consider a problem instance in which the optimal solution S∗ contains k
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documents satisfying cos(x, y) = ε for all x, y ∈ S∗. We assume that vectors
are normalized, so Euclidean distances d(x, y) are related with cosine similarities
by d(x, y) = √

2 − 2 cos(x, y). For the documents in S∗ all pairwise distances are
δ = √

2 − 2ε. Assume that we maximize distance diversity using an algorithm with
approximation guaranteeα = 1

2 , Thus, the approximation algorithmmay return a solu-
tion S′ in which the average pairwise distances is δ′ = 1

2δ. But for a pair at distance
δ′, the cosine similarity will be σ ′, so that δ′ = √

2 − 2σ ′ = 1
2

√
2 − 2ε ⇔ σ ′ = 3+ε

4 .

Therefore, the cost of the optimal solution S∗ is k(k−1)
2 ε, while this scheme may yield

a solution S′ with cost approximately k(k−1)
2 · 3+ε

4 , which is arbitrarily bad compared
to S∗.

Despite the inapproximability of our formulation, we leverage our randomized-
rounding analysis to give an efficient algorithm that returns, with high probability, a
solution within a lower-order additive term and a small multiplicative constant of the
optimum. Our experiments show how this approach consistently outperforms greedy
method, which is the conventional approach that has been proposed to tackle similar
objectives.

Our approach is a significant step towards bridging a gap between theory and
practice for the problem of diverse-item selection. This gap stems from the fact that,
on the one hand, similarity functions are widely used in many real-world applications,
while on the other hand, the theory of diverse-item selection relies almost exclusively
on distance functions.
Contributions In summary, in this paper we make the following contributions:

– We present a novel analysis of independent randomized rounding with cardinality
constraints, applied to the minimization of 0-1 quadratic programs. In particular,
we show that the rounded solution is within a small constant factor of the given
fractional solution.

– We use this result to obtain an efficient algorithm with an additive approximation
guarantee for the problem of search-result diversification.

– Our experimental setup demonstrates how this approach outperforms greedymeth-
ods, which are the established method to tackle similar objectives.

– We carry out an extensive comparison of the proposed independent rounding
method and an existing dependent method.

The rest of this paper is organized as follows. In Sect. 2 we discuss the related work
and put our work in context. In Sect. 3 we formally define our problem formulation
and establish its hardness. In Sect. 4 we describe independent randomized rounding
and analyze it in our context. In Sect. 5 we describe some cases in which good contin-
uous solutions can be found efficiently. In Sect. 6 we show how our result can be used
to obtain provably good solutions to a widely applicable formulation of search-result
diversification. In Sect. 6 we discuss practical implementation issues and present a
scalable sampling-based adaptation of our method. In Sect. 7 we present our experi-
mental evaluation, and in Sect. 8 we offer concluding remarks and point to directions
for future work.
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2 Related work

Randomized rounding A long line of research has focused on randomized rounding
as a technique to obtain a provably good solution to a 0-1 integer linear program. The
technique was introduced by Raghavan and Tompson (Raghavan and Tompson 1987)
to derive approximation algorithms for various NP-complete problems. This approach
is not suitable for cardinality-contrained problems, as in our formulation, because the
entries of the solution vector are rounded independently and thus cardinality can
be violated. To address this issue, some works have proposed dependent rounding
methods, to respect cardinality as well as certain negative correlation properties useful
for proving concentration bounds (Srinivasan 2001; Doerr 2005). Ensuing work has
dealt with applications and related problems (Gandhi et al. 2002; Chekuri et al. 2010).
We recommend the comprehensive survey of Doerr and Wahlström for an overview
of the field (Doerr and Wahlström 2016).

The first method we are aware of for randomized rounding under cardinality con-
straints (Srinivasan 2001) works by modifying probabilities in pairs, which results in
a binary tree whose levels must be processed sequentially. This limits the paralleliz-
ability of the approach, requiring Ω(log n) sequential steps. A closely related line of
work was pursued by Doerr andWahlström (Doerr 2005; Doerr andWahlström 2015).
They preserve the required cardinality by rounding variable pairs at the bit level, so
as to preserve their sum, until all are integral. This entails Ω(n�) coin flips, where �

is the bit precision required to represent the available variables.
Our approach, in contrast, preserves the simplicity and full parallelizability of

straightforward independent rounding. As a trade-off, we require Ω(
√
k) attempts to

ensure a satisfactory solution with constant probability. Nevertheless, these attempts
can also be done in parallel.
Search result diversification With the Maximal Marginal Relevance (MMR) algo-
rithm, Carbonell and Goldstein were the first to propose a method for diversified
search results (Carbonell and Goldstein 1998). Their seminal paper spurred a range of
proposals taking different approaches to diversification (Ziegler et al. 2005; Radlinski
and Dumais 2006; Clarke et al. 2008; Dou et al. 2011; Santos et al. 2010; Capannini
et al. 2011). The works closer to ours in spirit are that of Zhang and Hurley, since they
propose maximizing a quadratic objective and rounding to an integral solution (Zhang
and Hurley 2008), and Rafiei et al. since they model the relationship between queries
and results as a random variable, and then optimize the argument of a quadratic form
on the covariance matrix (Rafiei et al. 2010).

More relevant is the line of research that focuses on approximation guarantess.
Diversification is closely related to dispersion (Chandra and Halldórsson 2001). Some
authors rely onwell-known results on themaximization ofmonotone submodular func-
tion subject to cardinality (Nemhauser et al. 1978) and matroid (Calinescu et al. 2007)
constraints (Bansal et al. 2010; Tsaparas et al. 2011; Tong et al. 2011; He et al. 2012).
Bansal et al. consider discounted cumulative gain and per-user subtopic coverage con-
straints, and give a PTAS for the case where each user requires one topic (Bansal et al.
2010). Borodin et al. give a 2-approximation to a maximization objective similar to
ours (Borodin et al. 2017), a result later extended to semimetrics (Zadeh and Ghadiri
2015). He et al. propose a submodular objective that penalizes relevance with a pair-
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wise similarity function. To satisfy the requirements for approximation guarantees,
however, the relevance term easily overwhelms similarity (He et al. 2012). Abbassi
et al. give a local-search 2-approximation for a maximization objective under matroid
constraints (Abbassi et al. 2013). Küçüktunç et al. argue that some commonly used
objectives can promote query-oblivious results, and propose a submodular function to
overcome the issue (Küçüktunç et al. 2013). Ashkan et al. propose a polynomial-time
solvable objective and an optimal greedy algorithm (Ashkan et al. 2015). Bhaskara
et al. give an 8-approximation for a metric sum-min objective with matroid con-
straints (Bhaskara et al. 2016). The problem of diversification by minimization is
closely related to the k- Sparsest- Subgraph problem. Despite its inapproximability,
special cases can be approximated or solved in polynomial time (Watrigant et al. 2012).
Finally, Gollapudi and Sharma propose a set of desirable axioms for diversification
objectives (Gollapudi and Sharma 2009), and show no objective can simultaneously
satisfy all of them.

3 Problem statement

Notation Lowercase boldface letters (x) denote vectors, uppercase boldface letters
denote matrices (A), and uppercase light letters denote sets (S). We write xi to denote
the i-th component of vector x, and Ai j to denote the entry in the i-th row and j-th
column of matrix A. We denote by ‖x‖ the norm of vector x. P [E] is the probability
of event E (the distribution will be clear from the context) and E [X ] is the expected
value of a random variable X . Finally, R+ is the set of non-negative real numbers.
Note All proofs that are not given in the text can be found in the appendix.

We address a quite general form of sparse/diverse item selection, which we formu-
late as follows:

Problem 1 Given a non-negative matrix W with zeros in the diagonal, find

minx∈{0,1}n xTWx + cT x

subject to 1T x = k.

This problem formulation encompasses a wide variety of problems of interest, such
as independent set or k-sparsest subgraph, and as such it is computationally hard. In
fact, it can be shown that Problem 1 cannot be approximated within any multiplicative
factor.

Theorem 1 It is NP-hard to approximate Problem 1 within any multiplicative factor.

In the next section we discuss the first step of our approach to obtain good solutions.

4 Relaxation, rounding and analysis

Weapproach Problem 1 by tackling a natural relaxation, consisting simply of replacing
the feasible set by [0, 1]n to allow continuous solutions. We will first treat the problem
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of mapping one such continuous solution to a discrete one. Later we will treat the
problem of obtaining good continuous solutions in cases of interest.

Assume we have obtained a solution z ∈ [0, 1]n to the “relaxed” variant of Prob-
lem 1. To construct a solution x ∈ {0, 1}n we adopt a randomized scheme: For each i ,
we set xi = 1 with probability zi , and xi = 0 with probability 1− zi . We refer to this
procedure as RandomizedRounding with input z.
Rounding with cardinality constraints This form of randomized rounding is often easy
to analyze in unconstrained settings, often leading to solutions with quality guarantees
(Williamson and Shmoys 2011). However, its application to Problem 1 is not straight-
forward, because of the constraint 1T x = k, which may be violated if we round each
coordinate i independently.

To address this issue, we propose a simple remedy: repeat the randomized rounding
procedure m times, and pick a solution x that satisfies the constraint 1T x = k. There
are two challenges with this approach: (i) show that a small number of trials m is
sufficient to find a solution that satisfies the constraint, and (i i) analyze the quality of
the solution, conditioned on feasibility. Note that even though the variables we sample
are independent, the variables we analyze are not, due to conditioning. This makes
the analysis significantly more difficult. We address these issues in the following two
sections.

Note that there exist methods to randomly round vectors so as to obtain solutions
respecting a cardinality constraint, but this entails introducing dependencies in the
process, which has disadvantages. For instance, the method of Srinivasan (Srinivasan
2001) requires the construction of a binary tree, which limits parallelizability. The
approach of Doerr (Doerr 2005) requires, for each entry of the vector, a number of
coin flips in the order of the machine precision.

On the contrary, the simple rounding approach we take requires a single random
experiment per vector entry, is fully parallelizable and trivial to implement. Moreover,
our approach is easy to derandomize, using conditional expectations and the fact
that Poisson-Binomial densities are efficiently computable using the Discrete Fourier
Transform (Fernández and Williams 2010).
Outline of the analysisThe rest of this section is devoted to the analysis of the proposed
method, and is structured as follows:

– In Sect. 4.1 we show how to obtain a feasible solution with high probability.
– In Sect. 4.2 we analyze the expected performance of a feasible solution.
– Said analysis involves bounding ratios of Poisson-Binomial distributions, which
is of independent interest and is carried out in Sect. 4.3

– In Sect. 4.4 we state the resulting approximation guarantees.

4.1 Obtaining a feasible solution

The proposed randomized-rounding procedure does not guarantee a feasible solution:
the resulting vector could have any number of entries equal to 1, but we require exactly
k. Thus, how many times do we need to run the RandomizedRounding procedure to
obtain a feasible solution to Problem 1?
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Our analysis relies on the fact that the number of entries equal to 1 follows a
Poisson-Binomial distribution, which we now define.

Definition 1 (Poisson-Binomial distribution) Let X1, . . . , Xn be independent, not
necessarily identically distributed Bernoulli random variables. Then the variable
X = ∑

i Xi is said to follow a Poisson-Binomial distribution (Wang 1993).

If the success probability of the Bernoulli variable Xi is pi , thenE [X ] = ∑
i pi . In our

case, we are interested in the variable xT x = ∑
i xi . Note that E

[
xT x

] = ∑
i zi = k.

We now analyze the number of attempts needed to guarantee a feasible solution
with high probability.

Lemma 1 Let the set S = {x1, . . . , xm} contain the output of m executions of Ran-
domizedRounding with input vector z, satisfying

∑
i zi = k. Then for some m =

O
(√

k log 1
δ

)
, and for sufficiently large n and k, with probability 1 − δ there exists

at least one x ∈ S satisfying xT x = k.

Proof First, observe that since E
[
xT x

] = k, the probability of k successes is lower-
bounded by the same event under a Binomial distribution with n tries and mean k
(Hoeffding 1956), that is

P

[
xT x = k

]
≥

(
n

k

) (
k

n

)k (
n − k

n

)n−k

= n!
k!(n − k)!

(
k

n

)k (
n − k

n

)n−k

.

We use Stirling’s approximation of the factorial, n! ≈ √
2πn

( n
e

)n to obtain, for
sufficiently large n and k,

P

[
xT x = k

]
≥

√
2πn

( n
e

)n

√
2πk

( k
e

)k √
2π(n − k)

( n−k
e

)n−k

(
k

n

)k (
n − k

n

)n−k

=
√
n√

2πk(n − k)
=

√
n

2πk(n − k)
=

√
1

2πk(1 − k/n)
≥ 1√

2πk
.

So we have P
[
xT x �= k

] ≤ 1 − 1√
2πk

=
√
2πk−1√
2πk

. Now, observe that

lim
k→∞ log

(√
2πk − 1√
2πk

)

≈ 1√
2πk

,

which follows from the fact that log
(√

2πk−1√
2πk

)
= −

(
log(

√
2πk) − log(

√
2πk − 1)

)

is asymptotically equal to minus the derivative of log(
√
2πk) w.r.t.

√
2πk. Thus, for

sufficiently large k,

P

[
xT x �= k

]
≤ exp

(
−1/

√
2πk

)
.

123



Provable randomized rounding for minimum-similarity…

This implies that
√
2πk log δ−1 tries guarantee success with probability at least

1 − δ, which concludes the proof. ��

4.2 Analysis of feasible solutions

After obtaining a feasible solution using the rounding procedure, we analyze its quality
with respect to the objective of Problem 1. First, observe the following:

E

[
xTWx + cT x

∣
∣ xT x = k

]
=

∑

i

∑

j

Wi jP

[
xi = 1, x j = 1

∣
∣ xT x = k

]

+
∑

i

ciP
[
xi = 1

∣
∣ xT x = k

]

=
∑

i

∑

j �=i

Wi j
P

[
xT x = k

∣
∣ xi = 1, x j = 1

]
P

[
xi = 1, x j = 1

]

P
[
xT x = k

]

+
∑

i

ci
P

[
xT x = k

∣
∣ xi = 1

]
P [xi = 1]

P
[
xT x = k

]

=
∑

i

∑

j �=i

Wi j zi z j
P

[
xT x = k

∣
∣ xi = 1, x j = 1

]

P
[
xT x = k

] +
∑

i

ci zi
P

[
xT x = k

∣
∣ xi = 1

]

P
[
xT x = k

] .

(1)

Here z is the obtained solution to the relaxed program. This equality shows that the
expected performance of the rounded vector is within a factor of the quadratic-program
solution, determined by a ratio of probabilities — rather, by the larger of two ratios.
Next, we bound these ratios to derive our approximation guarantee.

To upper bound the probability ratios in Eq. (1), it will be more convenient to
lower-bound their reciprocals:

P
[
xT x = k

]

P
[
xT x = k

∣
∣ xi = 1, x j = 1

] and
P

[
xT x = k

]

P
[
xT x = k

∣
∣ xi = 1

] ,

for all i �= j . We will show in Theorem 3 that these reciprocals can be lower-bounded
by a constant.

4.3 Bounding ratios of Poisson binomial densities

We rely on a simple but crucial fact: the variable (xT x | xi = 1, x j = 1) is a shifted
Poisson-Binomial with parameters (z1, . . . , zi−1, zi+1, . . . , z j−1, z j+1, . . . , zn)
(assuming i < j , without loss of generality).
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Thus, we can define Y to be (xT x | xi = 1, x j = 1)− 2, or xT x conditioned by the
event xi = 1, x j = 1, minus 2, and write

P
[
xT x = k

]

P
[
xT x = k

∣
∣ xi = 1, x j = 1

] = P
[
xT x = k

]

P [Y = k − 2]

= zi z j + (zi (1 − z j ) + (1 − zi )z j )P [Y = k − 1]

P [Y = k − 2]
+ (1 − zi )(1 − z j )P [Y = k]

P [Y = k − 2]
,

Similarly, by defining Z = (xT x | xi = 1) − 1 we get

P
[
xT x = k

]

P
[
xT x = k

∣
∣ xi = 1

] = zi + (1 − zi )P [Z = k]

P [Z = k − 1]
.

The main challenge in bounding the above expressions lies in the fractions of
probability densities, such as P[Y=k−1]

P[Y=k−2] . We now derive general bounds for fractions
of this kind, which are of independent interest and will constitute the cornerstone of
our approximation results.

Theorem 2 Let Y be a Poisson-Binomial variable with expected value E [Y ] = c−α,
for some c ∈ N and 0 ≤ α < 1. Then

P [Y = c]

P [Y = c − 1]
≥ 1 − α.

The full proof is given in the appendix, but we provide an outline here. Analyz-
ing this ratio is challenging given the form of the Poisson-Binomial density, which
involves the summation of an exponential number of terms. To sidestep this inconve-
niencewe resort to two tools. First, we characterize the ratio for distributions satisfying
the Karush-Kuhn-Tucker conditions (Boyd et al. 2004). Next, we combine said char-
acterization with the symmetry of the Poisson-Binomial density to reveal that optimal
points have a tractable analytical form, which in turn leads to the bound.

We can generalize the previous bound by relying on the log-concavity of the
Poisson-Binomial density (Hillion et al. 2017). The log-concavity implies that
P [Y = x]2 ≥ P [Y = x − 1]P [Y = x + 1], for all valid choices of x . From this
it is easy to obtain the following

Corollary 1 Let Y be a Poisson-Binomial variable with expected value E [Y ] = c−α,
for some c ∈ N and 0 ≤ α < 1. For any 1 ≤ i < c),

P [Y = c]

P [Y = c − i]
≥ (1 − α)i .

Finally, relying on these results we can show that the ratios arising in Eq. (1), which
relates our solutions to the optimum, are bounded from above by a constant.
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Theorem 3 Let X = ∑
i Xi be a Poisson-Binomial variable with expectationE [X ] =

k, for some k ∈ N.

P
[
X = k

∣
∣ Xi = 1, X j = 1

]

P [X = k]
≤ 1.73 and

P
[
X = k

∣
∣ Xi = 1

]

P [X = k]
≤ 4

3
.

4.4 Approximation guarantees

CombiningEq. (1)with the above results immediately yields ourmain results regarding
the quality of independent randomized rounding with cardinality constraints.

Theorem 4 Consider an instance of Problem 1with inputW, c and a vector z ∈ [0, 1]n
satisfying

∑
i zi = k. Let x be a solution obtained by runningRandomizedRounding

with input z. Then

E

[
xTWx + cT x

∣
∣ xT x = k

]
≤ 1.73(zTWz + cT z).

The expected performance of our rounding scheme is thus within a constant of the
relaxed solution. Armed with this fact we employ Markov’s inequality to show the
next result.

Theorem 5 Consider an instance of Problem 1, and a vector z ∈ [0, 1]n. There exists
a randomized algorithm that runs in

O
(

TQF

√
k log2(δ−1)

ε

)

( where TQF is the time required to compute a quadratic form of size n) and outputs
a solution x satisfying, with probability 1 − δ,

xTWx + cT x ≤ 1.73(1 + ε)(zTWz + cT z).

5 Finding continuous solutions

Wehave shown that independent rounding allows us to transform a continuous solution
to a quadratic programming problem into a discrete with loss bounded by a small
constant. Of course the quality of the solution will ultimately depend on the quality of
the continuous solution to the relaxed program. As thematrix we consider is indefinite,
finding a good continuous solutionmight itself be challenging. However, in some cases
it is possible to do this efficiently. In the next section we will analyze one such case.
Convexification The matrix W can be easily modified so that it becomes convex, by
shifting the diagonal. This introduces an additive term of at most k|λn|, where λn
is the smallest eigenvalue of matrix W. Thus, if the negative part of the spectrum
is bounded, this term can be negligible, or overwhelmed by the quadratic term. An
example is shown in Sect. 6. Other approaches might be used in some cases to obtain
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better additive terms. For instance, one can trade off the magnitude of the shift and
running time, as a small number of negative eigenvalues — as explained next — can
result in manageable running times for moderately sized data.
Low-rank matrices An indefinite quadratic program can be approximated in time
exponential in the number of negative eigenvalues of W (Vavasis 1992). Thus, if
the rank of W is bounded by a constant, a near-optimal continuous solution — and
therefore one to the 0-1 program — can be obtained in polynomial time. Low-rank
approximations can be used to ensure this is the case.

6 Application to search result diversification

Here we show that we can use our previous results to obtain a provably good solution
in a special case of our problem.

We consider a set W = {w1, . . . ,wn} of n items, each represented as a vector in
R
d , and a similarity function σ which maps pairs of items ofW into the interval [0, 1],

i.e., σ : W ×W → [0, 1]. The larger the value σ(wi ,w j ), the more similar the items
wi and w j . We assume that σ satisfies two properties:

(id) σ(w,w) = 1, for any w ∈ R
d ; and

(psd) for any subset {w1, . . . , xn} ⊆ R
d , the matrix

(
σ(wi ,w j )

)n
i, j=1 is symmetric

positive semidefinite.

Note that these properties (id) and (psd) are satisfied by a wide range of commonly-

used functions, such as Jaccard similarity, rbf kernels, or cosine similarity of non-
negative data.

The goal is, given a query and a natural number k, to return a set S of k items ofW
(i.e., S ⊆ W and |S| = k) that are relevant but not too similar to each other. Further,
we use a relevance loss function ρ(w), which is a measure of the cost incurred by
adding item w into S. The smaller the value of this loss function for an item, the more
relevant it is considered to be.

Problem 2 (MinSumSim) Consider a set W = {w1, . . . ,wn} of size n, an integer k,
and λ ∈ R+. Our goal is to choose a subset S of k items from W to minimize

cost(S) = λ
∑

w∈S
ρ(w) +

∑

x∈S

∑

v∈S
v �=w

σ(w, v),

where ρ is a relevance loss function and σ : W ×W → [0, 1] is a similarity function
satisfying the properties (id) and (psd).

We define an n × n matrixW as

Wi j =
{

σ(wi ,w j ) if i �= j

0 otherwise,
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and a vector c such that ci = λρ(wi ). It is clear that MinSumSim is an instance of
Problem 1.

In order to efficiently find a continuous solution to the relaxed problem, we inflate
W. We will show that in doing so we introduce a bounded additive term in the approx-
imation error.

In particular, defineW′ = W+I. Note thatW′ is the similaritymatrix fromproblem
MinSumSim, and is thus positive semidefinite. Let y∗ and x∗ be optimal solutions of
theMinSumSim problem with matrices W′ and W, respectively. Then

yT∗ W′y∗ + cT y∗ ≤ xT∗ W′x∗ + cT x∗ (optimality of y∗)

= xT∗ Wx∗ + cT x∗ +
∑

i

x2i (definition of W′).

Since
∑

i x
2
i ≤ k (note that the sum constraint is binding), the following result

follows.

Lemma 2 Let y∗ and x∗ be optimal solutions of theMinSumSim problemwithmatrices
W′ and W respectively, Then

yT∗ Wy∗ + cT y∗ ≤ xT∗ Wx∗ + cT x∗ + k.

Since convex quadratic programs with linear constraints are efficiently solvable, we
can obtain an optimal continuous solution to the problem using W′ in the quadratic
term. Applying Theorem 5, we immediately obtain the following result.

Theorem 6 Consider an instance (W, k, λ) of the MinSumSim problem, with λ ≥ 1
and |W| = n. Let OPT by the value of the optimal solution. Then, there exists a

randomized algorithm that runs in time O
(
TQP + TQF

√
k log2(δ−1)

ε

)
(where TQP is

the time required to solve a convex quadratic program of size n × n with linear
constraints and TQF is the time required to compute a quadratic form of size n) and
outputs a solution set S ⊆ W satisfying, with probability 1 − δ,

cost(S) ≤ 1.73(1 + ε)(OPT + k).

Scalability and complexity analysis The quadratic program can be solved using
interior-point algorithms in roughly O(n3) time (Potra and Wright 2000). Available
solvers are heavily optimized, and in practice are much faster than what worst-case
complexity suggests. This is further evidenced in our experimental evaluation. The
randomized rounding can be trivally parallelized, as the samples are independent of
each other.
Practical implementation It should be noted that it is not in general necessary to
construct the pairwise-similarity matrix in order to solve the problem. More details
are given in the appendix.
Scaling to large datasetsOur experiments demonstrate how our algorithm can process
large datasets in reasonable amounts of time. However, in time-sensitive scenarios one
might choose to trade off quality for running time.We propose amethod to accomplish
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Table 1 Collections of query-related documents used in the experiments: number of query-document
pairs(N ); dimensionality(d); range of relevance score ri

Dataset N d ri Data type

MQ2007 69623 46 {0,1,2} TF-IDF, BM25, LMIR

MQ2008 15211 46 {0,1,2} TF-IDF, BM25, LMIR

Gov2003hp 147606 64 {0,1,2} TF-IDF, BM25, LMIR

Census 2458285 68

Istella 5308608 220 {0,1,2,3,4} BM25

this. Given an instance (W, k, λ) of size nwe sample a small number of items (say
√
n)

fromW , uniformly without replacement, to produce a new instance (W̃, k, λ), which
can be solved much faster. We sample and solve a large number of such instances,
which can be done in a distributed fashion, and take the union of the solutions, each
of size k, to produce a final instance (Ŵ, k, λ), which we solve to produce the final
output. We show in the experiments how this scheme can provide significant speedup
at a small quality cost.

7 Experimental evaluation

We test our algorithm on real-world document collections, and compare its perfor-
mance against two greedy algorithms from the literature. Our experimental evaluation
shows how our method consistently outperforms competitors.
DatasetsWe select publicly available collections of documents resulting from queries.
Since each document is query-dependent, and the same document could be returned
by multiple queries (with some varying features), we consider query-document pair to
be unique. We consider datasets from the LETOR (Qin and Liu 2013; Qin et al. 2010),
Istella (Istella extended learning to rank) (Lucchese et al. 2018) and UCI (Dua and
Graff 2017) collections. Their characteristics are summarized in Table 1, and a more
detailed description is given in the supplement.
BaselinesWe consider two greedy methods from the literature: Edge- Greedy, (Gol-
lapudi and Sharma 2009) and Node- Greedy, (Borodin et al. 2017). Both give
2-approximations for maximization formulations. We run Node- Greedy using 10
and 50 tries, as the first item is chosen at random. We refer to our algorithm asMin-
SumSim.

These algorithms are straightforward to adapt to our minimization setting. We also
considered a local-search heuristic, as proposed by (Borodin et al. 2017). However,
running times became unmanageable and improvements, as observed by (Borodin
et al. 2017), were negligible. It should be noted that existingmethods for diversification
either tackle very different objectives to ours and are not comparable, or address similar
objectives using greedy heuristics. Thus, we believe that the baselines we consider
cover a good part of the available methods for an objective like ours.

In all experiments we use cosine similarity. We normalize relevances document-
query pairs in the given datasets to be in (0, 1]. If the relevance of a given document-
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Fig. 1 Comparison of the performance of baselines compared to our method (MinSumSim). Top: relative
performance, measured by the ratio cost of baseline versus the cost of our method. Bottom: running times.
Lower is better in both cases

Fig. 2 Performance for different values of λ

query pair is r , we set its relevance-loss score to be ρ(x) = 1 + log(1/r). All our
experiments are run on a Linux node with 14-core CPUs and 128GB of RAM.We use
the MOSEK fusion API as our quadratic program solver on python 3.7.6. The source
code is publicly available.1

Performance evaluationWefirst run the algorithms to find themost dissimilar items on
the complete datasets, that is, the caseλ = 0.We restrictEdge- Greedy to the smallest
one due to scalability limitations. The results are shown in Fig. 1 (top). We report the
ratio of the solution returned by the competing methods to ours, that is, if e.g.,Node-
Greedy achieves a solution of costG andMinSumSim a solution of cost A, we report
the ratio G/A. Note how our method consistently achieves superior performance, by
a large factor for small k. Running times are reported in Fig. 1 (bottom). Our method,
though initially slightly slower than the greedy alternatives, is much less sensitive to
the value of k.
The effect of parameter λ We use the document-query pairs in the datasets, along with
their corresponding relevance-loss scores, to evaluate how ourmethod compares to the
greedy algorithms when λ increases. We extract 100 queries from Istella, comprised
of 5000 documents each, and run the algorithms for λ = 0.2, 1, taking the average of
performance ratios. The results are shown in Fig. 2. When λ is large, Node- Greedy

1 https://version.helsinki.fi/mahadeva/diversified-item-selection-experiments.
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is expected to do better. We observe this to be the case in our experiments, where
its performance seems to converge with that of our method. Edge- Greedy remains
ineffective.
SubsamplingHerewe illustrate the effects of the scheme described in Sect. 6, designed
to obtain approximate solutions at a reduced computational cost. Our goal is to assess
how the number of random samples impacts the quality of the solution, as well as the
running time. We run our algorithm on the two larger datasets (Census and Istella),
taking an increasing number of random samples from the dataset. We repeat the exper-
iment for increasing values of k. Figure 3 shows the results. We simultaneously report
the ratio of the cost of the obtained solution to the solution obtained by solving the
complete instance (lower is better) and the speedup. The benefits of this approach are
of course more noticeable as the size of the dataset increases. Note how on Istella,
the larger of the two datasets, we can achieve 10× speed-up and obtain a solution
within approximately 5% of the one achieved by solving the full instance. The amount
of speedup gained clearly depends on the capabilities of the distributed environment
and the quality of the implementation.
Greed is not always good To better understand the weaknesses of greedy methods, we
design an example where their performance is poor.

We now describe the proposed structure. Consider a set X of n documents. We
consider a topic model comprised of d topics. For each item x ∈ X , xi ∈ R+ indicates
how relevant a topic i is to x.We assume that X is partitioned as X = Y∪Z . Documents
in Y are mostly uncorrelated with each other, as are documents in Z . However, some
documents in Y correlate with some documents in Z . The setting can be achieved with
a matrix with the following structure, where a � b (we highlight a in boldface to
emphasize the structure):

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a b b a b b a b b
b a b b a b b a b
b b a b b a b b a · · ·
a b b a b b a b b
b a b b a b b a b
b b a b b a b b a · · ·
a a a b b b b b b
b b b a a a b b b
b b b b b b a a a

...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Notice that each triplet of rows consist of rows that are completely uncorrelated
with each other, but correlated with rows from other triplets.

To consider a more realistic scenario, we build a generative model based on the
above structure: entries in positions with a follow a gamma distribution with shape
parameter α, and entries in positions labeled b follow a gamma distribution with
parameter β, with α � β. These matrices simulate random realizations of topic-
model vectors, correlating strongly with some topics and weakly with others.
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Fig. 3 Performance for the randomized subsampling scheme

Although the given structure may appear artificial, we now describe an example of
a use case that could give rise to a similar structure.

We consider the topics in the corpus to correspond to themes usually covered in
news articles, such as politics, sports, entertainment, etc. Furthermore, these topics are
further broken down into subtopics. In the example matrix above, each column triplet
corresponds to a topic (e.g. politics) and each column is a subtopic (e.g. domestic,
international, etc.). The first six rows are set Y , which contains articles summarizing a
selection of key events in various topics (e.g. a daily summary of headlines). The rest of
the rows, Z , contain articles focused broadly on one topic, covering various subtopics.
As the articles in Y pick a random selection of a few of the corresponding subtopics,
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Fig. 4 Performance of algorithms on adversarial example

they are weakly correlated with each other. However, they are fairly correlated with
the more focused articles from |Z |.

Absent relevance scores, a greedy algorithm might start selecting an article from
Y , and will eventually be forced to pick strongly correlated articles from Y or Z . On
the contrary, our QP formulation makes a choice based on the global structure of the
matrix, and will only choose articles from Z , resulting in a less correlated selection.

Of course, the previous example is idealized. However, for the greedy methods to
fail it is not necessary for the data set to be exactly like this. It suffices that the data
contains a similar structure, and the initial state of the algorithm to be a document in
Y .

To make our case stronger, we run the algorithms on such an adversarial example.
Figure 4 shows the results. When the relevance term is small, greedy methods can
fail to yield acceptable solutions. Edge- Greedy, as expected, is more robust than
Node- Greedy in this case, as it inspects pairwise correlations for the initial choice,
at an increased computational cost.

7.1 Independent versus dependent rounding

We compare the performance of the independent randomized rounding algorithm
proposed in Sect. 4 to the dependent scheme proposed by Srinivasan (Srinivasan
2001). We repeat the previous experiment, now considering both rounding methods.
We again report the cost ratios, but we only report the running times pertaining to the
rounding algorithms, as solving the quadratic program is independent of the rounding
technique employed. The results are shown in Fig. 5. Note how the cost ratio (top) is
always close to 1. The differences seen at small values of k do not consistently favour
any of the algorithms. We note here that in order to reliably obtain good values of the
objective using Srinivasan’s method, it was necessary to shuffle the fractional vectors
at each rounding attempt. This is presumably due to the low variance of the method,
and the fact that we optimize a proxy of our objective function, with additive error.
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Fig. 5 Comparison of the performance of the independent randomized rounding algorithm to the depen-
dent randomized rounding algorithm for the MinSumSim problem implemented in python. Top: relative
performance, measured by the ratio cost of baseline vs. the cost of our method. Bottom: running times of
the randomized rounding algorithms

The running times of the rounding algorithm are reported in Fig. 5 (bottom). The
proposed independent algorithm is faster at small k. However, when k grows signif-
icantly it becomes slower as a consequence of the Ω(

√
k) tries required to obtain a

feasible solution with theoretical guarantees (Lemma 1). Note that this dependency
can trivially be mitigated with further parallelization. At first it might seem striking
that the dependent algorithm exhibits decreasing running times as k increases. Upon
further analysis, we find that this trend is caused by a decreasing percentage of frac-
tional variables in z, the solution to the relaxed quadratic program.A higher percentage
of fractional variables corresponds to a taller binary tree in the dependent algorithm,
which in turn results in higher running times. We emphasize that our approach can
also take benefit of this condition. The entries equal to 0 can be discarded, and any
entries equal to 1 effectively reduce the value of k, which in turn reduces the number
of required attempts. For simplicity, we did not implement these optimizations, and
thus the reported running times may be slightly pessimistic for our method.

To provide further insight on this point, we report the percentage of fractional vari-
ables in z for all the datasets in Fig. 6. Note how the number decreases as k increases,
which explains the observed trend in running times for the dependent algorithm.

Finally, note how the impact of the running time of either optimized randomized
rounding algorithm is insignificant compared to the time to solve a quadratic problem
(TQP ) and the time to compute a quadratic form of size n (TQF ) for theMinSumSim
problem. Nevertheless, we remind the reader that the proposed method can be used in
conjunction with any other algorithm that requires rounding. The performance gains
for small values of k can be significant in other contexts.
Parallelizability. One of the main advantages of the proposed rounding method, other
than its simplicity, is its parallelizability. Even though we need to produce a num-
ber of rounded vectors in order to obtain quality guarantees, each of these vectors
can be created in full parallel fashion. Further, each of the entries can be rounded
independently (thus in parallel) as well. This is in contrast to the dependent method,
which requires Ω(log n) sequential steps due to the necessary variable pairing. We
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Fig. 6 Percentage of fractional variables in z as a function of k for different datasets

thus attempt to obtain an estimate of how our method would fare when equipped with
perfect parallelization, in comparison to the dependent method.

We measure the time it takes to obtain a single rounded solution, using synthetic
fractional vectors of increasing size, with both our independent method and Srini-
vasan’s dependent method. In order to generate Poisson-Binomial distributions with
user-definedmean and concentration, we consider the terms of a geometric series sum-
ming up to k. That is, the probability that the i-th experiment is 1 is P [Xi = 1] = ari ,
where a = k(1−r)

1−rn and r is set to control concetration (the smaller r , the more concen-
trated the distribution). Using the formula for the geometric series, it is easy to check
that

n−1∑

i=0

ari = k.

Further, if r satisfies r − rn/k ≥ (k − 1)/k, all entries will be between 0 and 1.
We generate vectors of size n ∈ [104, 109], with k = 2 and r = 1 − 10−6. The

results, shown in Fig. 7, illustrate how our method can be up to 30 times faster when
rounding large vectors. Of course, these speed-up factors will be mitigated in real
scenarios due to the overhead necessary to run the methods in parallel.

8 Conclusions

In this paper we have considered the problem of search-result diversification for
similarity-type measures. We have proposed a formulation of the problem of diver-
sification in minimization form, and proposed an efficient, scalable algorithm with
approximation guarantees. Our experimental results show how our method consis-
tently outperforms alternatives from the literature, while being comparable in speed
and sometimes faster.Our approach is a significant step towards bridging a gapbetween
theory and practice, as similarity functions are widely used by practitioners, while the
theory of diverse-item selection relies almost exclusively in distance functions.
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Fig. 7 Comparison of the time taken by each of the rounding methods to generate a single solution

As future work we would like to determine whether our approximation guarantees
can be improved. In particular, it would be interesting to explore natural alternative
minimization objectives for diversification, which admit multiplicative approximation
guarantees.
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Appendix

Proof of theorem 1 Consider an undirected, simple, loop-free graph with adjacency
matrix A, and an instance of MinSumSim where λ = 0, and σ(xi , x j ) = δAi j , for
some δ ∈ R+. By making δ small enough, we can ensure that property (psd) of σ is
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satisfied. If there exists an independent set of size k, a multiplicative approximation
ofMinSumSim would reveal it. Thus, running the algorithm for all possible values of
k would allow us to find the largest independent set in the graph. ��

The following technical lemma is a key ingredient in the proof of the bounds.

Lemma 3 If ∇pi
P[Yp=k]

P[Yp=k−1] = ∇p j

P[Yp=k]
P[Yp=k−1] then pi = p j .

Proof Wefirst expand the gradient.Wemultiply it by its denominator,which is constant
with respect to the choice of i , for ease of presentation.

P
[
Yp = k − 1

]2 ∇pi
P

[
Yp = k

]

P
[
Yp = k − 1

]

= ∇pi

(
P

[
Yp = k

])
P

[
Yp = k − 1

] − ∇pi

(
P

[
Yp = k − 1

])
P

[
Yp = k

]

= (
P

[
Yp−i = k − 1

] − P
[
Yp−i = k

])
P

[
Yp = k − 1

]

− (
P

[
Yp−i = k − 2

] − P
[
Yp−i = k − 1

])
P

[
Yp = k

]

= (
p jP

[
Yp−i, j = k − 2

] + (1 − p j )P
[
Yp−i, j = k − 1

])
P

[
Yp = k − 1

]

− (
p jP

[
Yp−i, j = k − 1

] + (1 − p j )P
[
Yp−i, j = k

])
P

[
Yp = k − 1

]

− (
p jP

[
Yp−i, j = k − 3

] + (1 − p j )P
[
Yp−i, j = k − 2

])
P

[
Yp = k

]

− (
p jP

[
Yp−i, j = k − 2

] + (1 − p j )P
[
Yp−i, j = k − 1

])
P

[
Yp = k

]
.

Since P
[
Yp = c

]
and P

[
Yp−i, j = c

]
do not vary if we switch i and j , for any p we

can pick constants a, b such that

∇pi
P

[
Yp = k

]

P
[
Yp = k − 1

] = ap j + b and

∇p j

P
[
Yp = k

]

P
[
Yp = k − 1

] = api + b,

which proves the lemma. ��
Proof of Theorem 2 We consider the variable Y to be parametrized by p = (p1, . . . ,
pn)T . In order to provide a lower bound, we use Karush-Kuhn-Tucker (KKT) theory
to characterize solutions of the following optimization problem with linear—and thus
qualified— constraints.

min
p

P [Y = c]

P [Y = c − 1]

s.t. 0 ≤ pi ≤ 1 i = 1, . . . , n
∑

i

pi = c − α
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We rewrite the problem in canonical minimization form:

min
p

P [Y = c]

P [Y = c − 1]

s.t. − pi ≤ 0 i = 1, . . . , n

pi − 1 ≤ 0 i = 1, . . . , n
∑

i

pi − c + α = 0

We introduce KKT multipliers αi , βi , λ, i = 1 . . . , n and obtain the following
necessary conditions for optimality:

Stationarity:

∇p
P [Y = c]

P [Y = c − 1]
−

∑

i

αi∇p(p
∗
i ) +

∑

i

βi∇p(p
∗
i − 1)

+ λ∇p(
∑

i

p∗
i − c + α) = 0

⇔ ∇pi
P [Y = c]

P [Y = c − 1]
= αi − βi + λ, i = 1, . . . , n

The feasibility conditions are the primal constraints, togetherwith the nonnegativity
of the multipliers: αi , βi ≥ 0, i = 1, . . . , n.

Finally, the complementary slackness conditions are:

−αi pi = 0 i = 1, . . . , n

βi (pi − 1) = 0 i = 1, . . . , n

Without loss of generality we consider pi > 0 for all i . Otherwise, we would just be
dealing with a case for smaller n. From the complementary slackness conditions we
have that αi = 0 for all i . We consider the following cases.

– pi = 1.
– pi �= 1. This implies that βi = 0. Since αi = 0, the stationarity condition states
that

∇pi
P [Y = c]

P [Y = c − 1]
= λ.

By lemma 3, we have the following implication.

∇pi
P [Y = c]

P [Y = c − 1]
= ∇p j

P [Y = c]

P [Y = c − 1]
⇒ pi = p j .

123



B. Ordozgoiti et al.

We thus have that if p is a minimizer, then for all i it is either pi = 1 or pi = C for
some constant C . The optimal probability vector is therefore of the form

p = (1, . . . , 1
︸ ︷︷ ︸

t

,
c − t − α

n − t
, . . . ,

c − t − α

n − t︸ ︷︷ ︸
n−t

)

for some 0 ≤ t < c. The ratio of probabilities we are trying to bound can be expressed
in simple analytical form for vectors of this class:

P [Y = c]

P [Y = c − 1]
=

(n−t
c−t

) (
c−t−α
n−t

)c−t (
1 − c−t−α

n−t

)n−c

( n−t
c−t−1

) (
c−t−α
n−t

)c−t−1 (
1 − c−t−α

n−t

)n−c+1

=
(n − c + 1)

(
c−t−α
n−t

)

(c − t)
(
1 − c−t−α

n−t

)

= (n − c + 1) (c − t − α)

(c − t) (n − c + α)

It is easy to see that this decreases in t and n, and is minimized for t = c − 1, c = 1
at 1 − α. This concludes the proof. ��

Proof of Theorem 3

To prove this theorem we consider two separate cases, which simplifies the analysis.
We consider that the events Xi = 1, X j = 1 happen with probabilities zi and z j
respectively.
Case zi + z j ≥ 1:

Lemma 4 Let X = ∑
i xi be a Poisson-Binomial variable with probabilities z =

(z1, . . . , zn) and expectation E [X ] = k, for some k ∈ N. Assuming zi + z j ≥ 1 we
have

P
[
X = k

∣
∣ Xi = 1, X j = 1

]

P [X = k]
≤ 27

20

Proof We write zi + z j = 1 + α, so that E [Y ] = k − 1 − α. We can thus apply
Theorem 2 to obtain P[Y=k−1]

P[Y=k−2] ≥ 1 − α = 2 − zi − z j . We can thus state

P [X = k]

P
[
X = k

∣
∣ Xi = 1, X j = 1

] ≥ zi z j + (zi (1 − z j ) + (1 − zi )z j )P [Y = k − 1]

P [Y = k − 2]

≥ zi z j + (zi (1 − z j ) + (1 − zi )z j )(2 − zi − z j ),

where the first inequality holds because all terms in the sum are non-negative.
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Therefore, in order to prove this result it suffices to solve the following constrained
minimization problem.

min
zi ,z j

zi z j + (zi (1 − z j ) + (1 − zi )z j )(2 − zi − z j )

subject to zi + z j ≥ 1

0 ≤ zi , z j ≤ 1

By computing KKT points and evaluating the expression at them, we obtain that the
minimum value is attained when zi = z j = 2

3 , yielding the following bound:

P [X = k]

P
[
X = k

∣
∣ Xi = 1, X j = 1

] ≥ 20

27
.

��
Case zi + z j < 1: The previous analysis is also helpful in treating this case. Note that
the case where we condition on a single variable is the same as in Lemma 4.

Lemma 5 Let X = ∑
i xi be a Poisson-Binomial variable with probabilities z =

(z1, . . . , zn) and expectation E [X ] = k, for some k ∈ N. Assuming zi + z j < 1 we
have

P
[
X = k

∣
∣ xi = 1, x j = 1

]

P [X = k]
≤ 64

37
≤ 1.73.

Proof To prove this bound we use two facts:

– First, the mode of a Poisson-Binomial distribution differs from the mean at most
by 1 (Darroch et al. 1964). SinceE [Y ] > k−1, we thus have thatP [Y = k − 1] ≥
P [Y = k − 2].

– Second, by Corollary 1 we have P[Y=k]
P[Y=k−2] ≥ (1 − α)2.

We thus have a lower bound given by

P [X = k]

P
[
X = k

∣
∣ Xi = 1, X j = 1

] ≥ zi z j + (zi (1 − z j ) + (1 − zi )z j )

+(1 − zi )(1 − z j )(1 − zi − z j )
2,

which is minimized at 37/64 ≈ 1/1.73. ��
We finally bound the terms involving densities conditioned on a single event.

Lemma 6 Let X = ∑
i xi be a Poisson-Binomial variable with probabilities z =

(z1, . . . , zn) and expectation E [X ] = k, for some k ∈ N. Then

P
[
X = k

∣
∣ Xi = 1

]

P [X = k]
≤ 4

3
.

��
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Proof Now, it is easy to see that

P [X = k]

P
[
X = k

∣
∣ Xi = 1

] = zi + (1 − zi )P
[
X = k

∣
∣ Xi = 1

]

P
[
X = k − 1

∣
∣ Xi = 1

] .

Applying Theorem 2 again with Y = (X
∣
∣ Xi = 1), we can bound the reciprocal

by solving the following constrained minimization problem.

min
zi

zi + (1 − zi )
2

subject to 0 ≤ zi ≤ 1,

which attains a minimum of 3
4 at zi = 1

2 . ��
Now, Theorem 3 follows trivially from the combination of lemmas 4, 5 and 6 . ��

Proof of Theorem 5 Let Xi = xTi Wxi + cT xi be the resulting objective function
obtained by the output of the rounding procedure. By Markov’s inequality we know
that

P [Xi ≥ (1 + ε)E [Xi ]] ≤ (1 + ε)−1.

Thus, if we define the set S = {X1, . . . , Xm}, whose elements are the resulting objec-
tive function ofm independent runs of the rounding procedure until a feasible solution
is obtained, then with probability at least 1 − (1 + ε)−m , there exists at least one
i such that Xi ≤ (1 + ε)E [Xi ] = 1.73(1 + ε)(zTWz + cT z). Thus, if we set

m = log(δ−1)
log(1+ε)

= O
(
log(δ−1)

ε

)
(for small enough ε), and combine this with Lemma 1,

we obtain the desired result. ��

Practical implementation

We demonstrate how to solve Problem MinSumSim in practice. Recall that the input
matrixW′ is positive semidefinite. Thus, we have

xTW′x = ‖Q�1/2x‖2,

whereW′ = Q�QT is the eigendecomposition ofW′. This is useful because convex
programming solvers can often handle input in the form Q�1/2. If the numerical
rank ofW′ is small, this representation will be much more memory-efficient thanW′.
Furthermore, we can approximate W′ using a low-rank approximation. Aside from
memory efficiency, this avoids convexity tests implemented by some solvers, which
suffer from numerical instability.

Perhaps more importantly, in practical settings we are usually given a data matrix
D ∈ R

n×m+ , consisting of document vectors instead of a similarity matrix, with n �
m (if n ≈ m, it is usually possible to reduce the dimensionality with little loss in
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accuracy). If using, say, cosine similarities, we do not need to build the matrix W′
explicitly, as providing D to a solver will suffice.

Randomized rounding algorithms

Dependent roundingWe implement the depedendent randomized rounding algorithm
described by Srinivasan (Srinivasan 2001). The algorithm works by picking a pair
of variables, rounding at least one of them, and deferring the remaining one (if any)
to the next step (see the simplify procedure in the cited work (Srinivasan 2001)).
Once all variables have been treated, the procedure is repeated on the ones not yet
rounded. This goes on until an integral solution is obtained. This results in a binary
tree, each of whose levels must be processed sequentially. As described by Doerr and
Wahlström (Doerr andWahlström 2015)we randomize the order of the variables in z to
ensure the quality of the rounded solutions.We emphasize that before we implemented
this step, this algorithm produced unsatisfactory results in some data sets. We then
collect log(δ−1)/ε feasible solutions, which is roughly the number required by our
independent method (see Theorem 5).
Independent rounding For the independent randomized algorithm, we generate a ran-
dom matrix of

√
k log2(δ−1)/ε rows and n columns. We obtain integral solutions by

rounding each row of random variables against z. These rounded solutions need not
be feasible wrt the cardinality constraint of k. Therefore, we compute the row sums
and return the first log(δ−1)/ε feasible solutions.

Tooptimize the space requirements,wedonot instantiate the randommatrix. Instead
we generate individual random numbers in parallel and proceed to immediately round
it. This reduces the space requirement from 64 bits for a random number to just 8 bits
to store a rounded variable. Further space optimizations are possible, as each rounded
variable requires only 1 bit. We experimentally observed that our implementation
produces, on average, twice as many feasible solutions as expected. This suggests that
our bounds are slightly pessimistic (see Theorem 5), which stems in part from the use
of the Binomial density as a lower bound in Lemma 1.

Tomake sure that the observed running times are not highly dependent on the chosen
programming language, we implemented both randomized rounding algorithms in C++

utilizing Cython (Behnel et al. 2011). While this produced a ten fold improvement in
running time for both algorithms, the overall trends remain similar, as seen in Fig. 8
(bottom). The objective ratios (top) are similar, and the differences are likely due to
the random elements inherent to the experimental setup.

Additional information on the datasets

We select publicly available collections of documents resulting from queries. Since
each document is query-dependent, and the same document could be returned by
multiple queries (with some varying query-dependent features), we consider query-
document pair to be unique. We consider the following datasets:
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Fig. 8 Comparison of the performance of the independent randomized rounding algorithm to the dependent
randomized rounding algorithm implemented in C++. Top: relative performance, measured by the ratio cost
of baseline vs. the cost of our method. Bottom: running times of the randomized rounding algorithms

Letor (Learning to rank) is a package of benchmark information-retrieval datasets.
LETOR4.0 (Qin and Liu 2013) contains two query sets from Million Query track of
TREC 2007 and TREC 2008, which we call MQ2007 and MQ2008. Each document
comprises 46 features such as TF-IDF, BM25 and LMIR and the relevance scores are
0, 1 and 2. We also consider one dataset (Gov2003hp) from the Web Track of TREC
2003 and TREC 2004 (LETOR3.0 (Qin et al. 2010)), an information-retrieval task on
a crawl of a .gov domain, with three tasks: homepage finding (hp), name page finding
(np), and topic distillation (td). Similarly to LETOR 4.0, each document comprises 64
features such as TF-IDF, BM25 and LMIR.
Census (Dua and Graff 2017) is a dataset extracted from the 1990 US census. It
contains 2 458 285 documents, each with 68 demographic features.
Istella (Istella extended learning to rank) (Lucchese et al. 2018) is composed of
10000 queries and 220 features representing each query-document pair. Istella-X
LETOR consists of 26791447 pairs produced by retrieving up to 5000 documents per
query according to the BM25F ranking score. It has been split to train, validation and
test sets according to a 60–20–20% scheme. We use the validation set.
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