
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Jhunjhunwala, Pranay; Vyatkin, Valeriy
Proposing and Prototyping an Extension to the Adapter Concept in the IEC 61499 Standard

Published in:
IEEE Access

DOI:
10.1109/ACCESS.2021.3137642

Published: 01/01/2022

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Jhunjhunwala, P., & Vyatkin, V. (2022). Proposing and Prototyping an Extension to the Adapter Concept in the
IEC 61499 Standard. IEEE Access, 10, 2564-2577. Article 9658548.
https://doi.org/10.1109/ACCESS.2021.3137642

https://doi.org/10.1109/ACCESS.2021.3137642
https://doi.org/10.1109/ACCESS.2021.3137642


Received November 14, 2021, accepted December 10, 2021, date of publication December 22, 2021,
date of current version January 7, 2022.

Digital Object Identifier 10.1109/ACCESS.2021.3137642

Proposing and Prototyping an Extension to the
Adapter Concept in the IEC 61499 Standard
PRANAY JHUNJHUNWALA 1, (Graduate Student Member, IEEE),
AND VALERIY VYATKIN1,2, (Fellow, IEEE)
1Department of Electrical Engineering and Automation, Aalto University, 02150 Espoo, Finland
2Department of Computer Science, Electrical and Space Engineering, Luleå Tekniska Universitet, 971 87 Luleå, Sweden

Corresponding author: Pranay Jhunjhunwala (pranay.jhunjhunwala@aalto.fi)

This work was supported in part by the HORIZON2020 Project 1- SWARM, and in part by the European Commission under Grant 871743.

ABSTRACT Component-Design Architecture has been in demand based on the growing needs for
modularity and flexibility in the automation industry. IEC 61499 standard, a component-based automation
architecture, provides various tools and techniques for automation developers to accommodate the need for
flexibility in automation sequences. However, the adapter concept, one of the significant features of the
standard, remains untouched and undeveloped since its inclusion in the standard and lacks the utilization of
its true potential. In this work, we enhance the adapter concept by proposing the addition of logic into them.
This proposition advances the adapter technology and gives the automation standard more capabilities to
support higher levels of modularization without the increase of applications complexity.

INDEX TERMS IEC 61499, adapters, handshaking, message verification, sub-application, component-
design.

I. INTRODUCTION
Industry 4.0 brings the need for flexibility in production
scenarios in the automation industry. With the growing need
for flexible production, the need for distributed and flexible
automation has been highlighted. Distributed automation
production scenarios replace large and costly controllers
with various small controllers connected over the wireless
networks. However, the need for distributed architecture and
the requirement for flexibility, has revealed a gap in higher
modularity standards in the industry.

A critical factor in achieving these higher modularity
and flexibility standards is enabling cross-vendor product
integration, defined as the seamless integration of devices
produced and developed by different vendors. Providing
such cross-vendor support compatibility is crucial at the
physical level and the level of the automation architecture.
Component design at the software level is necessary to
facilitate these needs at the automation architecture level.
Component design can be described as programming each
part as individual components or a set of components, which
encapsulate the implementation of the automation program.
These components can be easily replaced, deployed and

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana .

providing a set of interfaces for easy integration with other
modules of the architecture is necessary.

The IEC 61499 standard is a component-based architecture
providing the necessary means for automation system devel-
opers to work and develop applications that require modu-
larity and flexibility. IEC 61499 has well-defined interfaces,
which helps better component interactions. The standard also
supports a visual component design approach that appeals to
the automation systems developers in comparison to a purely
textual programming language. The graphical programming
method is more attractive for the developers because various
components and modules are connected using connection
links. Even though graphical, inter-component connections
and interactions can sometimes be challenging because of
various modules’ complicated and extensive interfaces.

Adapter links, an integral component of the IEC
61499 standard, are an efficient solution to abstract out
the complexity of inter-component relationships. Adapter
links are used to simplify connections and communications
between various modules of the automation program,
making the integration and replacement of components
more accessible and feasible. IEC 61499 is not only a
component-based architecture but also supports distributed
architecture. This means that components may be distributed
across devices and may have to communicate via networks.

2564 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-1359-4744
https://orcid.org/0000-0003-3264-185X


P. Jhunjhunwala, V. Vyatkin: Proposing and Prototyping Extension to Adapter Concept in IEC 61499 Standard

FIGURE 1. Composite function block network and internal composition.

Furthermore, the reliability of such connections may need to
be ensured at the application level following the end-to-end
principle, which can require complex protocols.

The existing adapter concept of IEC 61499 does not allow
hiding this complexity in the adapters, which means the
developers need to include additional modules to ensure this
cross-device reliability which complicates the application
design. This paper aims at addressing this issue by proposing
an extension to the adapter mechanism allowing encapsula-
tion of logic into the adapter interfaces. The benefits of the
proposal are confirmed on a presented case study.

This paper is structured as follows: Section II introduces
the IEC 61499 standard and explains the standard’s essential
parts. Section III highlights the previous work done using
the IEC 61499 standard, development using adapters, and
highlights the current limitations. Section IV explains the
proposed extension to the adapter concept, followed by the
used test-bed in Section V. In Section VI, the use-case is
discussed. Finally, section VII explains the prototyping of the
proposed extension in the IEC61499 standard, followed by
the Discussion and Conclusions in Section VIII.

II. DISTRIBUTED COMPONENT AUTOMATION
ARCHITECTURE OF THE IEC 61499 STANDARD
An extension to the IEC 61131-3 [1], standard for pro-
grammable logic controllers(PLC), IEC 61499 [2], is a
component-based architecture that enhances the exist-
ing IEC 61131-3 by means of distributed systems and
architecture.

A Function Block(FB) is the fundamental structural
element of the IEC 61499 standard and can be of three kinds:
basic, composite, or service-interface. A set of connected
FB’s have been shown in Figure 1, and the FB interface
definition can be later seen in Figures 14a and 15.

IEC 61499 being a component-based architecture, the
FB’s have very well-defined interfaces that encapsulate event
inputs and outputs, along with associated data inputs and
outputs.

Basic FB’s in the IEC 61499 are the building blocks of the
automation program being developed. Besides the standard
interface of a FB, they also support internal variables. Internal
variables declared in the basic FB are not displayed on the

interface of the basic FB, i.e., the internal variables are secure
and cannot be modified from outside. They can only be
modified during internal processing. Operation or processing
by a basic FB depends on a state machine referred to as the
Execution Control Chart(ECC).

ECC’s in the IEC 61499 standard are similar to the
Moore-Type state machine. ECC’s can have numerous states
connected to one another using transitions with guard
conditions. Only when the guard condition is satisfied will
the ECC transition from one state to another. Each state in
the ECC can contain single or multiple actions. Actions are
composed of two parts, an algorithm and an output event to be
fired. Usage of the actions and the inclusion of algorithms or
output events are all dependent on the requirements; a state
could use both algorithm and event output or use either of
them or use none.

IEC 61499 operates on an event-driven scenario and
FB’s are activated using event inputs, which are processed
based on the applications logic, and event outputs can be
generated based on the same. Various FB’s, irrespective of
their types, can be connected together using event and data
connections, resulting in a ‘Function Block Network’ shown
later in Figure 12. The execution order of the FB network is
determined based on the event connections, the internal logic
of the FB’s, and also depends on the received event sequence.

Composite Function Blocks(CFB) type, in the standard,
are used to combine a FB network into one large FB.
CFB’s can be composed of a network of only basic FB’s
or a combination of CFB’s and basic FB’s. As a result,
programmers and engineers can use CFB’s to develop more
extensive hierarchical automation programs and applications.
Shown in Figure 1 are three CFB’s connected with one
another, along with the CFB’s internal composition.

The main goals of the IEC 61499 standard were to
permit distributed deployment of FB’s across various devices
which has been further explained and demonstrated later in
section V, in which the control program for the application
has been distributed across 9 different controllers. The
standard also incorporates additional communication FB’s
that can link the FB’s in the network to external devices and
controllers that do not operate on the IEC 61499 standard.

Another essential feature of the IEC 61499 standard is the
Sub-application FB. Sub-applications are the same as CFB,
with the only difference being that they allow deployment of
their internal compositions to distributed devices compared
to a regular CFB. Thus, the sub-application enhances the
concept of CFB providing more flexibility to the application
and developers. The sub-application technology has been
further discussed in detail in section VII.
The standard also defines an adapter technology, which

further enhances the interfaces and interactions between vari-
ous FB’s in the network. As shown in Figure 2, adapters were
introduced to replace numerous event and data connections
between various CFB’s or Sub-Applications in the network
by a single thick connection that would encapsulate both
the events and data connections. Adapters encapsulate the

VOLUME 10, 2022 2565



P. Jhunjhunwala, V. Vyatkin: Proposing and Prototyping Extension to Adapter Concept in IEC 61499 Standard

FIGURE 2. Adapter interface of IEC 61499.

connections and enable two-way communication between the
FB’s they connect.

Each adapter definition consists of two parts, i.e,. the
‘Adapter Plug’ and ‘Adapter Socket’. As shown in Figure 2,
plugs and sockets mirror each other’s interface wherein
plugs are defined at the output of a FB, whereas sockets
are defined as the input of a FB. In Figure 2, we have
implemented the adapter technology above the regular data
and event connections between CFB’s shown in Figure 1.
As we can observe, event and data lines running across in
both directions are encapsulated in the thick central orange
connection making the network easier to access, debug and
operate.

For more information on IEC 61499, we direct the reader
to the proper introductory material, such as the book [3].

III. RELATED WORKS
IEC 61499 provides an appropriate engineering platform for
adapting the object-orientation concept to industrial automa-
tion. A similar trend has been later addressed by the Asset
Administration Shell (AAS) of the RAMI 4.0 architecture [4].
Themain idea of the adaptation is to provide design structures
for encapsulation of asset functionalities, masking their com-
plexities in the applications where the assets are involved in.
The relevant artifacts of IEC 61499 are basic function blocks
with embedded state machines, CFB’s and Sub-Applications,
enabling the construction of hierarchical applications and
adapters, encapsulating complex interconnections between
components into one line. The related works date back to the
concept of Automation Object [5], [6], which evolved to the
concept of intelligent mechatronic components (IMC) [7].

Researchers always have focused on seamless communi-
cation between the software components representing assets,
exemplified by works [8] and [9].

Several works have focused on enhancing the engineering
process of component automation systems in the context of

IEC 61499. Some early summaries can be found in [10], [11].
In particular, J.Christensen proposed using adapter interfaces
for a tidier implementation of the MVCDA object-oriented
design pattern in [12].

Zoitl et al. [13] present a method for developing modular,
reusable IEC 61499 control applications in the 4DIAC
IDE, and [14] explicitly focuses on hierarchical applications
design, demonstrating the use of the adapter connections.

In [15], the authors set the one-line engineering design
pattern based on the use of adapters. The authors explain
the need for the addition of additional logic to ensure
communication across devices when blocks of the one-line
engineering application are deployed to different devices.

In a recent standardization work of OPAF [16] and [17],
the adapter concept is widely used as a design artifact for
complex process control applications.

Handshaking implementation with adapters was demon-
strated in [18], and in [19], the authors provide a basic
model of handshake message verification systems used to
enhance communications reliability across smart devices and
controllers. Kajola et al. [20] propose an extension to IEC
61499 to allow dynamic adapter connections, which allow
for re-targeting plugs and sockets of interacting subsystems
during runtime.

Dai et al.in [21], showcase the methodology of imple-
menting service-oriented architecture based applications with
adapters and highlight the easy replacement of components
given that the adapter and service interfaces are the same
and the use of adapters to implement plug-and-play of
mechatronic components was demonstrated in [22].

In the recent surveys conducted by Lyu and Brennan in [23]
and [24], it is highlighted that the IEC 61499 standard adopts
the object-oriented programming pattern to design control
applications and also mentioned that adapters provide a kind
of inheritance similar for FB’s to share standard interfaces.
However, they lack the functionalities to attain the goals of

2566 VOLUME 10, 2022



P. Jhunjhunwala, V. Vyatkin: Proposing and Prototyping Extension to Adapter Concept in IEC 61499 Standard

FIGURE 3. The extended adapter concept in a nutshell.

polymorphism and inheritance. The authors in the discussion
in [24] emphasize the adapter design for IEC 61499 with
computing paradigms and CPS in Industry 4.0.

In [25], the authors discuss the benefits of the microser-
vices architecture for advanced manufacturing systems.
According to Homay et al.higher standards of flexibility,
modularity, heterogeneity can be achieved with the help
of microservices. Furthermore, microservices help develop
support for plug & play systems, one of the larger goals of
Industry 4.0.

The cited works provide a convincing set of challenging
use-cases for the adapter mechanism of component com-
munication. In private communication of the authors with
industrial adopters of IEC 61499 and in our own research
work, it is evident that the adapter mechanism is an attractive
instrument for application developers. On the other hand,
when actively using it, the developers experience certain
limitations which were not evident in the initial stages of the
concept development.

IV. EXTENDED ADAPTER IDEA
In the extension of the adapter concept proposed in this
paper, we propose ‘‘embedding’’ some logic into the standard
adapters. The extended adapters will perform the standard
adapter operation and, based on the included logic, perform
some additional operations on the data before communicating
them via the adapter connection. Finally, this modified data
will be processed again based on the included logic at the
receiving end, i.e., plug or socket.

The user/application-level interface of the extended
adapters remains similar to the standard IEC 61499 adapters,
as shown in Figure 3.

Similarly to the standard operation of IEC 61499 adapters,
when the sender generates an event and data, data ‘A’ and
event ‘REQ’ will be carried by the adapter connected to the
receiving side where the adapter socket will split the event
and data, and then pass it onto the receiver block.

In Figure 3, we demonstrate the working on an exam-
ple of message retransmission in case of an unreliable
connection. The plug and socket interface can have some
additional elements to define the retransmission parameters,
such as timeout duration or the limit on the number of
retransmissions.

Upon the reception of amessage from the sender, i.e., event
input ‘REQ’ and the associated data input ‘A,’ the adapter
plug before sending the data downstream processes it through
the additionally added state machine, includes a message ID.
It then transmits the data and event downstream to the adapter
socket. It also enables an internal timer for 1t, within which
it expects confirmation from the adapter socket. The user can
manually set parameter 1t during the configuration of the
extended adapters. If a confirmation is not received within
the 1t period, the adapter plug state machine increments the
count and resends the message using the same adapter link.

As shown in the sequence diagram in Figure 3, we first
demonstrate the case when a confirmation, i.e., CNF event,
is sent by the socket and is received within the 1t period.
In the following case, we see a confirmation is not received
for the first two transmissions; hence the plug increment’s the
value and resends the data.

When the bundled event and data are received via the
adapter socket, it would be passed through the included state
machine on the socket side, which will separate the message
count from the message. The event ‘REQ’ and message ‘A’
will then be passed on to the receiver block downstream,
and the socket will generate a CNF event which will be
sent upstream to the plug, confirming the reception of the
message.

The intended benefit of the proposed extension is in
masking the complexity of complex communication logic by
encapsulating it into the adapter connection.

The proposed notation of extended adapters will be
explained in this section on a series of examples of increasing
complexity.

A. SIMPLE RETRANSMISSION
Figure 4 illustrates the declaration of adapter interfaces
implementing retransmission. The declaration is made for the
pair plug-input and the socket-output. Similarly, the pair of
socket-input and plug-output could be a subject of another
such declaration. A textual syntax based on the standard has
been included in Appendix A. Also a textual representation
of adapters in Figure 4 has been highlighted in Appendix B.
However, as it will appear in subsequent use-cases, even

the single pair declaration (plug-input, socket-output) could
include additional signals for two other interfaces, i.e., plug-
output and socket-input for processing requirements of the
logic added on the plug-input and socket-output. As shown
in Figure 4, the additional data declaration for the plug-input
side consists of the interface variable DT of type TIME. It is
needed to define the retransmission time.

Besides, two state machines (SM) are defined for the plug
and socket side. It is assumed that the corresponding event
and data of the adapters can be used in the respective state
machines. The input elements can be used for reading and
the output ones - for writing. Communication between the
SMs is implemented using the send and recv commands.
The notation is as follows: to send a variable A, say, from
the plug-input SM to the socket-output SM, the command

VOLUME 10, 2022 2567



P. Jhunjhunwala, V. Vyatkin: Proposing and Prototyping Extension to Adapter Concept in IEC 61499 Standard

FIGURE 4. Declaration of adapter interfaces for retransmission.

FIGURE 5. Normal data transfer and data loss scenarios.

send(A) is used. The command send() sends an empty
message, effectively raising an event recv() on the other
side. To access the message payload for non-emptymessages,
recv(1).v returns the value of the first element in the
received message.

Figure 5 illustrates the behavior of the declared adapters
when the input event REQ arrives.

The reader should note that the standard case of usual (non-
extended) adapters can be represented using the introduced
notation as shown in Figure 6. Here the event REQ and the
associated data A and B are directly transferred from the plug
side to the socket side without any additional transformations
or actions. This implementation is assumed in the default case
when the corresponding state machines are omitted in the
adapter definition.

B. RETRANSMISSION WITH FINITE NUMBER OF
ATTEMPTS
Figure 7 illustrates the declaration of adapters implementing
a finite number of retransmission attempts, defined by
another input NR. Counting the number of attempts required
declaration of the integer variable i as an internal variable of
the plug-input.

FIGURE 6. Implementation of the standard adapter using the notation of
extended adapters.

FIGURE 7. Adapter declaration for a finite number of retransmission
attempts.

C. RETRANSMISSION WITH CONFIRMATION ON THE
SENDER SIDE
Figure 8 illustrates the declaration of adapters implementing
a finite number of retransmission attempts and producing a
confirmation event rsp at the sender side. The confirmation
event rsp will be transmitted to the blocks upstream,
indicating that the sent data was successfully transmitted.

This required declaration of an auxiliary interface element:
event rsp at the plug-output side, i.e., outside of the pair
(plug-input, socket-output). We will use small letters for the
auxiliary events to distinguish them from the events defined
as a part of the main adapter interface.

D. DATA AND EVENTS ON THE RECEIVER’s SIDE
Figure 9 illustrate the declaration of adapters which,
in addition to the previously defined retransmission details,
inform the receiving side about the number of retransmission
attempts before it succeeded. This required declaration of
the auxiliary data output Nrt at the socket output side.
The message from the plug now includes both A and the
counter i.
Figure 10 illustrates the behavior of the declared adapters

when the input event REQ arrives.

2568 VOLUME 10, 2022



P. Jhunjhunwala, V. Vyatkin: Proposing and Prototyping Extension to Adapter Concept in IEC 61499 Standard

FIGURE 8. Adapter declaration for finite number of attempts with
confirmation on the sender’s side.

FIGURE 9. Adapter declaration for finite number of attempts with
confirmation on the sender’s side.

FIGURE 10. Normal data transfer scenario for the adapters from Figure 9.

E. EXTENDED ADAPTER TYPES DECLARATIONS
The extended adapter type declaration will require the follow-
ing additional sections of interface and internal variables, for
example, for the plug-input side:

1) plug− input− event - input events;
2) plug− input− data- input data;
3) plug− input− var-internal variables.

FIGURE 11. EnAS at the Aalto factory of the future2(AFoF).

The ECC notation can be used to define the state machine
logic of each of the four interfaces:

1) plug− input− ECC;
2) socket− output− ECC;
3) socket− input− ECC;
4) plug− output− ECC;
It is assumed that ECCs 1 and 2, and 3 and 4 can

communicate with each other using the send(),recv()
commands.

The ECCs can use the data declared for the same interface
they belong to.

V. TEST BED-EnAS
Energy Autarkic Actuators and Sensors1 (EnAS) is a testbed
representing a small scale industrial production scenario and
is used for the development and testing of various industrial
automation techniques. Included with sets of pneumatic
operators such as jacks and grippers, motor-driven conveyors,
and laser sensors, EnAS, shown in Figure 11, provides
researchers a platform to test their developments without the
need for significant reconfigurability and hardware changes.

Shown in the upper right section of Figure 12 is the
Top-View diagram of the EnAS demonstrator consisting
of 6 motor-driven conveyors connected in a cyclic chain,
a pair of pneumatic jacks, and grippers used to perform, pick
and place operations over the work-pieces. Each conveyor
is equipped with a laser sensor which is used to detect
the position of the work-piece. Responsible for producing
two spherical work-pieces, it can demonstrate and evaluate
various automation techniques and scenarios.

The control application for the demonstrator has been
developed using the NXTStudio software by NXTControl.3

Figure 12 showcases the developed control application along
with the device mapping schematic. EnAS is equipped with
9 controllers, which communicate with one other over the
standard 2.4GHz WiFi protocol to facilitate and demon-
strate distributed automation. Each hardware component has
its own controller, i.e., each conveyor has its respective
controller, and each pneumatic production island has its
controller, i.e., Controller J1 and Controller J2. The 9th

1https://www.energieautark.com/
2https://www.aalto.fi/en/futurefactory
3https://www.nxtcontrol.com/en/engineering/

VOLUME 10, 2022 2569



P. Jhunjhunwala, V. Vyatkin: Proposing and Prototyping Extension to Adapter Concept in IEC 61499 Standard

FIGURE 12. EnAS control application and distributed deployment.

controller, i.e., controller 7, is responsible for the top-level
processes such as housing the HMI, the production scenarios,
the delivery and placement services.

Across these devices, data either in STRING type or
BOOLEAN type, or both are communicated. The control
commands for the conveyors and jacks produced by the
Production_Recipe FB and the operational confirmations
by the low-level agents use the DataType STRING. The
architecture of EnAS is a cyclic connection of conveyors.
For sequential operations of the conveyors, each conveyor
agent communicates its Boolean sensor reading to the
conveyors connected upstream and downstream. Thewireless
distribution of the controllers controlling EnAS questions
the reliability across these devices. Since these controllers
communicate over simple 2.4GHz WiFi, packet and infor-
mation loss has been a common point of failure reducing
the reliability and success rate of the control application
and production scenario. Therefore, a message verification
system has been explained below in section VI to improve
the reliability across various devices.

VI. USE CASE: HANDSHAKING AND RELIABILITY
ACROSS DISTRIBUTED DEVICES
An advanced handshake message verification system has
been developed to verify and exchange messages between
two or more FB’s. These FB’s can be executed on the same
device or distributed across various devices, but the main
idea is to ensure reliable communication across distributed
devices.

The handshake mechanism consists of two parts, i.e., the
sender and the receiver, respectively. Illustrated in Figure 13
is the sequence diagram representing the operation of the
handshake mechanism deployed between a controller(PLC)
and motor. In Figure 13, we assume that the PLC and
motor communicate using a wireless medium. In the desired
case, i.e., Case 1, as soon as the handshake mechanism
sender receives the command from the controller, it adds a
message-ID and sends the message to the other side. Once

FIGURE 13. Handshake message verification operation chart.

received by the receiver, it would isolate the message and ID
from one another and pass the message or command to the
device downstream(motor in this case), following which it

2570 VOLUME 10, 2022



P. Jhunjhunwala, V. Vyatkin: Proposing and Prototyping Extension to Adapter Concept in IEC 61499 Standard

will confirm to the sender by resending the received message
along with the confirmation command ‘‘;R.’’

Since the communication takes place over a wireless
channel, messages sent by the handshake sender or receiver
can get lost in the case of a lossy channel. To ensure the
successful delivery of the message to the receiver, the sender
initiates a timeout period, in which it expects confirmation
from the receiver after sending a message. If the confirmation
is not received within the timeout period, the sender will
resend/retransmit the original message but with an updated
message-ID. The message-ID is incremented to inform the
receiver that the command has been resent.

In Case 2 of Figure 13, we demonstrate the scenario in
which the message sent is lost and does not reach the receiver.
The receiver will not send a confirmation because it did not
receive anymessage. Hence, when the timeout period elapses,
the same command is again sent with an updated ID, i.e., ‘2’,
which is then processed by themessage verification algorithm
of the receiver.

In Case 3, we highlight the case where the confirmation
message sent from the receiver is lost. Upon completion of
the timeout period, the sender retransmits the message with
an updated ID. The received message is then passed through
the message verification algorithm of the receiver, and the
receiver takes the desired action.

Cases 2 and 3 bring out the need for verification at the
receiver’s end. In its ‘Message Verification Algorithm,’ the
receiver takes appropriate actions based on the command
and message-ID. Implementations of this have been further
explained in sub-section VI-A.

Case 4 in Figure 13 highlights a rather critical situation in
which the controller sends a new message during the retrans-
mission of an old message. When a new message arrives
during the transmission of old commands or sequences,
it is crucial for the message verification system to take into
account the new message and ensure that both the old and
newmessages are transmitted to the receiving end. Case 4 has
been handled at the sender’s end because it is related to new
messages received by the sender and is independent of the
receiver’s operation. Various SMs to counter-act this issue
have been discussed below in sub-section VI-B.

A. HANDSHAKE MECHANISM RECEIVER
The receiver function block shown in Figure 14a has been
designed to verify each incoming message from the sender
based on the message, the message-ID, and the status of
the previously executed operation. The message verification
is done in the SMs ‘MessageVerfication’ state shown in
Figure 14b. Initially, the verification algorithm isolates the
message and ID into individual variables and checks if it is
a new message, i.e., ID = 1. On the other hand, if the ID
is 1, the SM proceeds as per regular operations shown in
Case 1 of Figure 13. If the message ID is not 1, it is termed
a retransmission, i.e., Cases 2 and 3 in Figure 13, for which
the actions taken by the message verification algorithm have
been explained in sections VI-A1 and VI-A2.

FIGURE 14. Handshake mechanism receiver a) Interface and b) ECC.

1) NEW COMMAND
In the case of a retransmission, i.e., message-ID > 1, the
verification algorithm compares the received command to the
previously received and started operation. If the command
is new and was not previously processed by the receiver,
it updates the message to the downstream blocks and then
sends a confirmation to the sender, which is shown in Case 2
of Figure 13.

2) OLD COMMAND
When the received command is a retransmission of the
previously processed the command, i.e., the case in which
the command was passed downstream as highlighted in Case
3 of Figure 13, the receiver SM instead of going to the ‘Oper-
ationStart’ state directly jumps to the ‘ConfirmationSystem’
state in which it resends a new confirmation to the sender.
Doing so, the receiver SM prevents the receiver from passing
on repeated information to the blocks downstream.

B. HANDSHAKE MECHANISM SENDER
Shown in Figure 15 is the interface of sender FB, used for the
handshake message verification system. The block receives
as input the command to be transported and further attaches a
message ID to the command before transmitting the message
to the receiver. The event output ‘EDelay1’ and event input
‘Delay1Done’ are used to control the timer to check the 1t
timeout period.

Case 4 of the retransmission shown in Figure 13 was
tackled using 2 different approaches: 1) Checking for
updated-values after each transmission 2) Checking for
updated-values after N transmissions. Based on the perfor-
mance of both approaches, the final SM for sender was
deduced.

VOLUME 10, 2022 2571



P. Jhunjhunwala, V. Vyatkin: Proposing and Prototyping Extension to Adapter Concept in IEC 61499 Standard

FIGURE 15. Handshake message sender function block.

TABLE 1. Handshake mechanism operational data.

FIGURE 16. Handshake mechanism sender - SM 1.

To test and analyze the SMs, the number of production
cycles completed before producing one error was calculated
from the received data and analyzed. Then, based on the
analysis of various modes of operation, the final state
machines were designed and re-tested. Shown in Table 1 are
the results for the various rounds of testings performed with
the EnAS demonstrator.

1) CHECK UPDATED-VALUE AFTER EACH TRANSMISSION
The developed SM to check for updates after each transmis-
sion has been showcased in Figure 16. The SM re-checks
the updated incoming command after each timeout period
elapses. When an updated value is detected, the SM halts
the retransmission and transmits the new updated value.
However, if the value has not been updated the state
machine resumes retransmission from the next message
ID.

Using the SM shown in Figure 16, the system ran for
37 production rounds before giving an error and stopping the
production.

2) CHECK UPDATED-VALUE AFTER N TRANSMISSIONS
Shown in Figure 17 is the SM developed to check for updated
values after N retransmissions. The SM re-checks the updated

FIGURE 17. Handshake mechanism sender - SM 2.

incoming command after each ‘N’ retransmission of the
previous command. When an updated value is detected, the
SM halts the retransmission and transmits the new updated
value. If the value has not been updated, the SM resumes
retransmission from the following message ID and rechecks
for updated values after N transmissions.

Various rounds of testing were performed by changing the
number of retransmission ‘N’ and performing the production.
Shown in Table 1 are the results from the testing, in which
we observe with N = 3, the most number of rounds of
production were completed before an error was received, and
with N = 10, the efficiency was the least.
When N was 10, i.e., after retransmitting the message

10 times, the SM would check for an updated command.
So, for example, if a new command was received during the
6th transmission of the old command, and the receiver sends
back a confirmation for the 6th transmitted command, the
retransmission would be halted, and then the sender block
would wait for an updated command as discussed above.

Since in this case, N was 10, the sender SM would
have checked for the updated command at the 10th trans-
mission. However, because the retransmission was halted
at the 6th transmission, the SM did not get into the
state to re-check the updated command. Thereby missing
the new command received during the 6th transmission,
resulting in a system error. Thus, when the value of N
was reduced, the updated command was more frequently
checked, resulting in the program completing more success-
ful production rounds. For example, when N was 3, the
SM at every 3rd transmission would cross-check for updated
value.

Therefore, according to the discussion above, when
the value of N was reduced to 2, the efficiency should
have increased. However, as we can see in Table 1, the
number of successful rounds decreased, concluding that a
certain number of retransmissions are needed for successful
production rounds. In the case of the EnAS demonstrator the
value was found out to be 3 retransmissions.

2572 VOLUME 10, 2022



P. Jhunjhunwala, V. Vyatkin: Proposing and Prototyping Extension to Adapter Concept in IEC 61499 Standard

FIGURE 18. Handshake mechanism sender state machine.

FIGURE 19. Sub-application function block interface.

3) SENDER STATE-MACHINE
Based on the analysis of SM1 and SM2 above, we concluded
that the system needs a certain number of retransmissions of
old-messages, but should also check for updated messages at
a fixed interval. Furthermore, the analysis revealed the need to
check for an updated value once a confirmation was received.
This additional check needed to be performed irrespective
of the retransmission count. Hence, a new SM shown in
Figure 18 was developed and tested based on the analysis.

Instead of checking after each retransmission, the appli-
cation would retransmit the old command N times. Other
than the retransmission, the modified SM included an
additional state that would check the input commands’
updates after the sender confirmed the old command. The
updated statemachine, i.e., SM 3 resulted in themost efficient
retransmission mechanism and produced only one error after
685 rounds. The final SM shown in Figure 18 was housed
as the ECC for the Handshake sender FB represented in
Figure 15.
In the following section VII, the handshake sender and

receiver FB’s and the respective SMs, will be used to develop
sub-application FB using which the notion for the extended
adapters will be demonstrated and proven.

VII. PROTOTYPING WITH SUB-APPLICATION
The idea behind the proposed extended adapters is to
incorporate additional features or mechanisms into existing
adapter connections used in applications. Since the current
IEC 61499 tools do not support the proposed adapter
extension; it was prototyped using the existing means.

Shown in Figure 19, is the developed sub-application FB
used to demonstrate the proposed addition of logic to the

adapter technology. The sub-application was used because
of its capability to permit the deployment of various FBs
in its composition to distributed devices. The developed
sub-application FB was easily incorporated in the existing
control application for EnAS shown in Figure 12, and
the updated application can be seen in Figure 20. The
development and operation of the prototype will be explained
in depth by breaking the sub-application FB into layers.

The composition of the developed sub-application is shown
in Figure 21. The FB contains a single input and output
adapter connection, which can be connected across two FBs
communicating with one another. Based on the proposal
of the extended adapters above, the adapter type definition
is the same for the input and output. Along with that,
the sub-application also contains two initialization event
inputs which are used to initialize the ‘Plug and Socket
FB’ composing the sub-application. Individual initialization
events have been included due to the need for deployment to
distributed devices.

In this prototype, mapping of the CFB’s inside the
sub-application was performed based on the adapter exten-
sion proposal. The ‘Handshake_Plug CFB’ is deployed to
Controller 3 along with the Conveyor 3 FB, because the
‘Handshake_Plug CFB’ contains the logic that has to be
added into the extended adapter plug for the Conveyor 3 FB.
Similarly, ‘Handshake_Socket CFB’, containing the logic for
the extended adapter socket is deployed to controller 4 along
with the Conveyor 4 block.

Figure 22, an extension of Figure 21, showcases the
composition of the Handshake_Plug CFB and the Hand-
shake_Socket CFB. The CFBs use the developed handshake
sender and receiver blocks and houses the SMs explained
previously in section VI.

The extension proposal and the prototype developments
have been carried out taking into consideration the possi-
bility of asymmetrical communication between 2 distributed
devices. In Figure 22, along with the composition, we also
showcase the asymmetrical communication taking place
between Conveyors 3 and 4.

The asymmetrical operation using the prototyped FB has
been explained in depth in subsections VII-A and VII-B,
in which we take as an example the STRING Control
commands and the BOOLEAN sensor values from the
EnAS control program to demonstrate the versatility of the
developed prototype and proposed extended adapters.

A. COMMUNICATION FROM CONVEYOR 3 TO
CONVEYOR 4
To ensure reliability, STRING Control commands from
Conveyor 3 are sent to Conveyor 4 via the handshakemessage
verification system. Event and STRING type data generated
from the Conveyor 3 FB are received at the E_Data1 &
Data1 of the adapter input. Passed on further, these go
through the ‘Sender_String FB,’ which communicates the
command along with the desired message-ID.

VOLUME 10, 2022 2573



P. Jhunjhunwala, V. Vyatkin: Proposing and Prototyping Extension to Adapter Concept in IEC 61499 Standard

FIGURE 20. EnAS control application with sub-application.

FIGURE 21. Sub-application composition and device deployment.

The sent message is received by Controller 4 at the
‘Receive_String FB,’ which then isolates the command
and the message-ID from one another. The command
is then forwarded to the adapter sockets’ E_Data1 &
Data1, carrying the command to Conveyor 4. Based on
the message-ID, the ‘Receive_String FB’, communicates the
confirmation back to the ‘Sender_String FB’ inside the Plug
in Controller 3.

B. COMMUNICATION FROM CONVEYOR 4 TO
CONVEYOR 3
BOOLEAN sensor values from Conveyor 4 are sent to Con-
veyor 3 via the sub-application FB. The event and associated
BOOLEAN sensor data generated from the Conveyor 4
sensor FB are received at the E_Data5 & Data5 of the
adapter socket. Passed on further, these go through the
‘Sender_Boolean FB,’ which communicates the sensor value
along with the associated message-ID.

Controller 3 receives the value at the ‘Receive_Boolean
FB,’ isolating the sensor value and the message-ID from
one another. The sensor value is then forwarded to the
plugs’ E_Data5 & Data5, passing the sensor value to
Conveyor 3 FB. Then, based on the message-ID, the
‘Receive_Boolean FB’, communicates the confirmation back
to the ‘Sender_Boolean FB’.

The ECC’s in the prototype can be mapped to the extended
adapter types declaration in section IV-E as follows:

1) plug− input− ECC; = Handshake_Sender;
2) socket− output− ECC; = Handshake_Receiver;
3) socket− input− ECC; = Handshake_Sender;
4) plug− output− ECC; = Handshake_Receiver;

ECC 1 and 2 communicate with one another, i.e., the
case in section VII-A, and ECC 3 and 4 communicate with
one another, i.e., the case in section VII-B. The same has
been highlighted in Figure 22. Since the ‘Handshake_Plug
CFB’ and ‘Handshake_Socket CFB’, are mapped to different
devices, the mechanism ensures reliability across the wireless
channel.

This concept and idea can be applied for N number of
signals being transported in either of the directions. For each
signal the system would communicate, a pair of sender and
receiver handshake verification FB’s would be required on
each side of the adapter, i.e., plug and socket. For example,
we need to communicate N commands from controller 3 to 4;
we will need N number of handshake sender FB’s on the
adapter’s plug side and N number of handshake receiver FB’s
on the socket side of the adapter. The same approach will be
mirrored to enable two-way communication or transportation
of data. There will be a need for N number of handshake
sender FB’s at the adapter’s socket communicating with
N number of handshake receiver FB’s at the plug of the
respective block.

VIII. DISCUSSION AND CONCLUSION
The intended contribution of this paper is to improve the
design power of IEC 61499 by enhancing the adapter
concept. This is achieved by masking the design complexity
when implementing complex interactions between software
components. The added functionality into the adapters
aims to improve the standard’s plug-and-play capabilities
and semantic interoperability. It also improves reliability
of distributed applications by reducing failure points. The
proposal’s overall impact is intended to reduce the design

2574 VOLUME 10, 2022



P. Jhunjhunwala, V. Vyatkin: Proposing and Prototyping Extension to Adapter Concept in IEC 61499 Standard

FIGURE 22. Composition of the Handshake_Plug and Handshake_Socket composite function block.

FIGURE 23. Application comparison showing the benefit of the extended adapters4.

effort and improve the reliability of the resulting automation
software.

The proposed extension was prototyped on example of
a handshake message verification system used to ensure
communication reliability across distributed devices. Since
our concept is not yet implemented in the tools, it was pro-
totyped using sub-applications. It was demonstrated that the
developed sub-application FB was integrated into the same
control application without much difficulty. Furthermore, the
sub-application FB being an independent entity and separate
from all aspects of the control program made debugging
and testing of control sequences and low-level agents such
as conveyors and jacks easier and more convenient for
the developer. However, using the sub-application feature
induced much additional complexity at the application level,
as can be seen on the left side of Figure 23. To accomplish
the goals of reliability across the distributed architecture
numerous sub-application FB’s had to be incorporated within

4The purpose of the figure is to compare the resulting application and
show the proposal’s benefit. Readers wanting improved readability are
recommended to use the digital version and zoom-in.

the application. These sub-applications came with 3 levels
of complex hierarchy and FB networks each. In addition,
individual distributed mappings and deployment of these
sub-application FBs had to be taken care of.

As discussed above in section VII, this approach could
be scaled up to N number of signals being communi-
cated between 2 devices, which means for each signal
being communicated a pair of complex FB would have
to be included into the control application, eventually
making the application complicated and challenging to
debug.

However, incorporating specific logic or operations into
adapters could significantly reduce this added complexity.
On the right side of Figure 23, we showcase the resulting
structure of the application based on the proposed extended
adapters. In the proposal, we have streamlined the use
of state machines without the need of additional layers
as can be seen by performing a side-by-side comparison
of both applications. Additionally, we observe the reduced
complexity at the application layer because of the extended
adapter design. The inclusion of the state machines within

VOLUME 10, 2022 2575



P. Jhunjhunwala, V. Vyatkin: Proposing and Prototyping Extension to Adapter Concept in IEC 61499 Standard

the plug and socket interfaces would ensure that the adapters
would still provide the basic functionality of the IEC
61499 adapters, along with which they would perform the
operation of the added state machines if needed.

Furthermore, state machines included based on tested
component re-use would ensure reliability due to the reduced
failure points and also reduce debugging efforts for the
engineers and developers.

Other than the stated advantages above, the authors
believe that the microservice architecture applied in the IEC
61499 framework, as suggested by Homay et al.in [25] and
Dai et al.in [26], would benefit from applying the adapter
extension proposal of this paper. The expected benefits are
in both engineering efficiency and reliability of runtime
operation.

IX. FUTURE WORK
Future works would include the proposal of the extended
adapters to the IEC61499 standard and the exploration of
methods of integrating these adapters into software tools such
as NXTStudio.

To standardize the developments, we plan to test the
approach on other tests beds such as the FESTO CP-LAB5

and on process-control applications on the test bed [27].

APPENDIX A
TEXTUAL SYNTAX OF PROPOSED ADAPTER EXTENSION

adapter_type_declaration : :=
′ADAPTER′ adapter_type_name
fb_interface_list6

[ad_internal_variable_list]
[ad_ecc_declaration]
[ad_algorithm_declaration]

′END_ADAPTER′

ad_internal_variable_list : :=
′VAR′{internal_var_declaration}‘;′
′END_VAR′

ad_ecc_declaration : :=
′EC_PLUG_STATES′

{ec_states}6
′END_PLUG_STATES′

′EC_SOCKET_STATES′

{ec_states}6
′END_SOCKET_STATES′

′EC_PLUG_TRANSITIONS′

{ec_transition}6
′END_PLUG_TRANSITIONS′

5https://www.festo.com/us/en/e/technical-education/learning-
systems/factory-automation-and-industry-4-0/learning-systems-industry-4-
0/cp-lab-id_36133/

′EC_SOCKET_TRANSITIONS′

{ec_transition}6
′END_SOCKET_TRANSITIONS′

ad_algorithm_declaration : :=
‘ALGORITHM′algorithm_name ′IN′

language_type′ :′

algorithm_body
‘END_ALGORITHM′

algorithm_body : :=
<as defined in compliant standards>

APPENDIX B
TEXTUAL REPRESENTATION OF PROPOSED ADAPTER
EXTENSION

ADAPTER
EVENT_INPUT

REQ WITH A;
END_INPUT

VAR_INPUT
A: BOOL;

END_VAR

VAR
DT: TIME;

END_VAR

EC_PLUG_STATES
START; (*Initial States*)
Send : Send;

END_PLUG_STATES

EC_SOCKET_STATES
START;
Out : Out->REQ;

END_SOCKET_STATES

EC_PLUG_TRANSITIONS
START TO Send := REQ;
Send TO START := recv();

END_PLUG_TRANSITIONS

EC_SOCKET_TRANSITIONS
START TO Out := recv();
Out TO START := 1;

END_SOCKET_TRANSITIONS

ALGORITHM Send IN ST:
send(A);
timer.start(DT);

END_ALGORITHM

ALGORITHM Out in ST:
A := recv(1).v;
send();

END_ALGORITHM
END_ADAPTER

6Declaration is same as described in the Annex B.2.1 of the IEC 61499-
1:2005(E) standard.

2576 VOLUME 10, 2022



P. Jhunjhunwala, V. Vyatkin: Proposing and Prototyping Extension to Adapter Concept in IEC 61499 Standard

ACKNOWLEDGMENT
The authors would like to thank Hidenori Sawahara of Yokogawa Electric,
TX, USA, for the motivation of this research.

REFERENCES
[1] Programmable Controller—Part 3: Programming Languages, Standard

IEC 61131-3, Int. Electrotech. Commission, Geneva, Switzerland, 1993.
[2] Function Blocks—Part 1: Architecture, Standard IEC 61499, Int. Elec-

trotech. Commission, Geneva, Switzerland, 2012.
[3] A. Zoitl and R. Lewis, Modelling Control Systems Using, document IEC

61499, IET, 2014, vol. 95.
[4] P. Adolphs, H. Bedenbender, M. Ehlich, and U. Epple, ‘‘Reference

architecture model Industrie 4.0 (RAMI4. 0),’’ VDI/VDE, ZVEI,
Tech. Rep., 2015.

[5] O. J. L. Orozco and J. L. Lastra, ‘‘Adding function blocks of IEC 61499
semantic description to automation objects,’’ in Proc. IEEE Conf. Emerg.
Technol. Factory Autom., Sep. 2006, pp. 537–544.

[6] R. W. Brennan, L. Ferrarini, J. M. Lastra, and V. Vyatkin, ‘‘Automation
objects: Enabling embedded intelligence in real-time mechatronic sys-
tems,’’ Int. J. Manuf. Res., vol. 1, no. 4, pp. 379–381, 2006.

[7] V. Vyatkin, ‘‘Intelligent mechatronic components: Control system
engineering using an open distributed architecture,’’ in Proc. IEEE
Conf. Emerg. Technol. Factory Automat. (EFTA), vol. 2, Sep. 2003,
pp. 277–284.

[8] M. Hofmann and A. Zoitl, ‘‘Improved communication model for an IEC
61499 runtime environment,’’ in Proc. ETFA, Sep. 2011, pp. 1–7.

[9] R. Froschauer, F. Auinger, A. Schimmel, and A. Zoitl, ‘‘Engineering
of communication links with AADL in IEC 61499 automation and
control systems,’’ in Proc. 7th IEEE Int. Conf. Ind. Informat., Jun. 2009,
pp. 582–587.

[10] V. Vyatkin ‘‘IEC 61499 as enabler of distributed and intelligent
automation: State-of-the-art review,’’ IEEE Trans. Ind. Informat., vol. 7,
no. 4, pp. 768–781, Nov. 2011.

[11] V. Vyatkin, ‘‘Software engineering in industrial automation: State-of-the-
art review,’’ IEEE Trans. Ind. Informat., vol. 9, no. 3, pp. 1234–1249,
Aug. 2013.

[12] J. H. Christensen, ‘‘Design patterns for systems engineering with
IEC 61499,’’ in Proc. Verteilte Automatisierung. Magdeburg, Germany:
Otto-vonGuericke-Universitaet, 2000, pp. 63–71.

[13] A. Zoitl, T. Strasser, and G. Ebenhofer, ‘‘Developing modular reusable IEC
61499 control applicationswith 4DIAC,’’ inProc. 11th IEEE Int. Conf. Ind.
Informat. (INDIN), Jul. 2013, pp. 358–363.

[14] A. Zoitl andH. Prähofer, ‘‘Guidelines and patterns for building hierarchical
automation solutions in the IEC 61499 modeling language,’’ IEEE Trans.
Ind. Informat., vol. 9, no. 4, pp. 2387–2396, Nov. 2013.

[15] G. Kollegger and A. Kopitar, ‘‘Flexible and reusable industrial control
application,’’ in Distributed Control Applications. Boca Raton, FL, USA:
CRC Press, 2017, pp. 245–272.

[16] Adapter Control. Accessed: Jul. 1, 2021. [Online]. Available: https:
//www.holobloc.com/doc/fb/rt/opa/demo/Control.htm

[17] Adapter Control. Accessed: Jul. 1, 2021. [Online]. Available: https:
//www.holobloc.com/doc/fb/rt/opa/demo/Signal.htm

[18] S. Patil, D. Drozdov, and V. Vyatkin, ‘‘Adapting software design patterns
to develop reusable IEC 61499 function block applications,’’ in Proc. IEEE
16th Int. Conf. Ind. Informat. (INDIN), Jul. 2018, pp. 725–732.

[19] P. Jhunjhunwala, U. D. Atmojo, and V. Vyatkin, ‘‘Towards implementation
of interoperable smart sensor services in IEC 61499 for process
automation,’’ in Proc. 25th IEEE Int. Conf. Emerg. Technol. Factory
Autom. (ETFA), Sep. 2020, pp. 1409–1412.

[20] P. Kajola, J. O. Blech, U. D. Atmojo, and V. Vyatkin, ‘‘Dynamic adapter
connections for IEC 61499,’’ in Proc. 22nd IEEE Int. Conf. Ind. Technol.
(ICIT), Mar. 2021, pp. 1054–1059.

[21] W.W. Dai, J. H. Christensen, V. Vyatkin, and V. Dubinin, ‘‘Function block
implementation of service oriented architecture: Case study,’’ in Proc. 12th
IEEE Int. Conf. Ind. Informat. (INDIN), Jul. 2014, pp. 112–117.

[22] R. Sinha, V. Vyatkin, Z. Salcic, and H. J. Park, ‘‘Competitors or cousins?
Studying the parallels between distributed programming languages
SystemJ and IEC61499,’’ in Proc. IEEE Emerg. Technol. Factory Autom.
(ETFA), Sep. 2014, pp. 1–7.

[23] G. Lyu and R. W. Brennan, ‘‘Towards IEC 61499 based distributed
intelligent automation: Design and computing perspectives,’’ inProc. IEEE
17th Int. Conf. Ind. Informat. (INDIN), Jul. 2019, pp. 160–163.

[24] G. Lyu and R. W. Brennan, ‘‘Towards IEC 61499-based distributed
intelligent automation: A literature review,’’ IEEE Trans. Ind. Informat.,
vol. 17, no. 4, pp. 2295–2306, Apr. 2020.

[25] A. Homay, A. Zoitl, M. de Sousa, and M. Wollschlaeger, ‘‘A survey:
Microservices architecture in advanced manufacturing systems,’’ in Proc.
IEEE 17th Int. Conf. Ind. Informat. (INDIN), Jul. 2019, pp. 1165–1168.

[26] W. Dai, P. Wang, W. Sun, X. Wu, H. Zhang, V. Vyatkin, and G. Yang,
‘‘Semantic integration of plug-and-play software components for industrial
edges based on microservices,’’ IEEE Access, vol. 7, pp. 125882–125892,
2019.

[27] J. Peltola, J. Christensen, S. Sierla, and K. Koskinen, ‘‘A migration path
to IEC 61499 for the batch process industry,’’ in Proc. 5th IEEE Int. Conf.
Ind. Informat., vol. 2, Jun. 2007, pp. 811–816.

PRANAY JHUNJHUNWALA (Graduate Student
Member, IEEE) received the B.Tech. degree in
electronics and communication engineering from
the Vellore Institute of Technology, Vellore, India,
in 2019, and the M.Sc. degree in electrical and
automation engineering from Aalto University,
Finland, where he is currently pursuing the Ph.D.
degree.

Since 2019, he has been a Research Assistant
with the Information Technologies in Industrial

Automation (ITiA) Group, Aalto University. He has also worked as a
Teaching Assistant with the School of Electrical Engineering, helping
students with various tasks and requirements of the courses. His research
interests include distributed automation and industrial informatics, the IEC
61499 standard, software engineering for industrial automation systems,
distributed architectures, and multi-agent systems.

VALERIY VYATKIN (Fellow, IEEE) received the
Ph.D. and Dr.Sc. degrees in applied computer
science from the Taganrog Radio Engineering
Institute, Taganrog, Russia, in 1992 and 1999,
respectively, the Dr.Eng. degree from the Nagoya
Institute of Technology, Nagoya, Japan, in 1999,
and the Habilitation degree from the Ministry
of Science and Technology of Sachsen-Anhalt,
in 2002.

He is on joint appointment as the Chair of
dependable computations and communications with the Luleå University of
Technology, Luleå, Sweden, and a Professor of information technology in
automation with Aalto University, Finland. He is also the Co-Director of
the International Research Laboratory Computer Technologies, ITMO Uni-
versity, Saint-Petersburg, Russia. Previously, he was a Visiting Scholar with
Cambridge University, Cambridge, U.K., and had permanent appointments
with the University of Auckland, New Zealand; Martin Luther University,
Germany; and in Japan and Russia. His research interests include dependable
distributed automation and industrial informatics, software engineering for
industrial automation systems, artificial intelligence, distributed architec-
tures, and multiagent systems in various industries: smart grid, material
handling, building management systems, data centers, and reconfigurable
manufacturing.

Dr. Vyatkin was awarded the Andrew P. Sage Award for the Best IEEE
TRANSACTIONS paper, in 2012. He has been the Chair of IEEE IES Technical
Committee on Industrial Informatics, from 2016 to 2019.

VOLUME 10, 2022 2577


