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A B S T R A C T   

Researchers in production and operations management have studied the effect of worker learning and forgetting 
on system performance for decades. It remains an active research topic. Those studies have assumed that pro
duction interruptions (or production breaks) cause forgetting, which deteriorates performance. Research on 
human working memory provides enough evidence that continuous forgetting, precisely cognitive interference, 
results from overloading the memory with information. Despite the evidence, few studies have incorporated it 
into learning curve models. This paper presents an enhanced version of the power learning curve that accounts 
for a variable degree of interference when moving from a production cycle to the next. It adopts the concept of 
memory trace decay to measure the residual (interference-adjusted), not the nominal (maximum) cumulative 
experience. We test the developed model against learning data from manual assembly and inspection tasks, with 
varying numbers of repetitions and breaks. We also test three alternative power-form learning and forgetting 
curve models from the literature. The results show that the interference-adjusted model fits the data very well. 
The proposed learning and forgetting model and its individualized cumulative metrics can help identify strug
gling workers early and release precocious learners earlier than expected. As such, the model gives insights for 
managers on the occurrence of interference to enable individual learning support.   

1. Introduction 

Learning is a phenomenon reflected by performance improvements 
of individuals gaining experience by (repetitively) carrying out activities 
or tasks. A learning curve estimates the speed of an individual (or group) 
improvement using a regression line that fits scatterplots of raw learning 
data. Learning curves have been a central research topic for psycholo
gists for more than 100 years (Thurstone, 1919) and later an industrial 
production management tool (Wright, 1936). The Wright learning curve 
(WLC, 1936), a power-form model, continues to be widely used and well 
accepted by scientists and practitioners (Glock et al., 2019). Wright 
empirically showed that labor time/cost decreases by a constant rate 
each time cumulative production output doubles using data for aircraft 
production. However, WLC and many other traditional learning curves 
have a drawback that limits their usability; they do not account for 
production breaks, and consequently, regression in performance due to 
forgetting. Productivity losses due to forgetting are potentially dramatic, 
especially for short intermittent production runs (Baloff, 1970). 

Ebbinghaus (1885) was probably the first to develop learning and 
forgetting (LaF) curves to study human memory. He found that the 

longer a person studies, the longer the learned information is retained. 
LaF topic has enjoyed increasing attention among researchers in in
dustrial ergonomics (Anzanello and Fogliatto, 2011) and production and 
operations management (POM) (Glock et al., 2019) fields since its 
inception. Production could be interrupted for many reasons, e.g., 
manufacturing products in batches with breaks in-between (Adler and 
Nanda, 1974), strikes, and production-line downtime (Sikström and 
Jaber, 2002). Other reasons are worker cross-training to perform 
different tasks (Hewitt et al., 2015; Sayin and Karabati, 2007), rest time 
needed to recover during and between the working days, and vacation or 
other personal absences. Prolonged interruptions for weeks or months 
can lead to significant loss of knowledge or forgetting (Anderlohr, 1969; 
Globerson et al., 1998; Sanli and Carnahan, 2018). In the POM field, 
Hancock (1967) presumably was the first to investigate how production 
breaks affect workers’ performance. His findings suggested that short 
interruptions, e.g., coffee breaks, do not affect the learning processes, 
whereas overnight and longer breaks do. Next, we present a succinct 
review of mathematical learning curves that incorporate forgetting 
effects. 

The first attempts to mathematically model LaF in the POM field 
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were by Hoffmann (1968) and Adler and Nanda (1974), who incorpo
rated the effects of production breaks. Hoffmann (1968) modeled 
forgetting as a displacement on the original learning curve to measure 
the lost (not remembered) experience when the next batch resumes. He 
concluded that retained learning explains the nonlinearity observed in 
the start-up of manual runs for products similar to those performed in 
previous runs. Adler and Nanda (1974) noted that a break in production 
of a minimum of several days slows the production rate when produc
tion commences in the next cycle. Like Hoffmann (1968), they assumed 
a displacement in the cumulative number of units experienced 
(remembered) and treated it as an input parameter and, unlike Hoff
mann (1968), did not explain how it was determined. The reason for this 
was probably to keep the mathematics of their lot-sizing model with LaF 
effects less complex, an approach that has also been adopted by other 
researchers (Glock et al., 2019; Jaber and Bonney, 1999). Carlson and 
Rowe (1976) modeled the forgetting curve as a mirror image of the 
learning curve. They treated a learning curve intercept as a dependent 
parameter on the number of units produced in the current cycle and 
those remembered from the previous ones. They also assumed a fixed 
forgetting rate, i.e., not affected by accumulated experience. Globerson 
et al. (1989) suggested several potential functions to measure the time to 
perform the first repetition after a production break for their experi
mental data separating two learning sessions. They found a bivariate 
learning curve to fit their data the best. The learning curve that Globe
rson et al. (1989) proposed is dependent on the performance of the last 
repetition in the first session and the length of the break that separates 
the two sessions. Elmaghraby (1990) presented a learning forgetting 
model similar (in form) to that of Carlson and Rowe (1976) and assumed 
that the curve’s intercept and its exponent remain unchanged for every 
cycle. Unlike the models in Carlson and Rowe (1976) and Elmaghraby 
(1990), Jaber and Bonney (1996) developed a learn-forget curve model 
(LFCM) where the forgetting exponent and the intercept change from 
cycle to cycle (Fig. 1). In the LFCM, the forgetting exponent (rate) is 
dependent on the learning rate, the equivalent number of units 
remembered at the start of a cycle, the length of a break between two 
subsequent learning sessions, and the time for total forgetting to occur. 
They showed that their model produced results as good as those of 
Globerson et al. (1989), i.e., <0.5% error. In a follow-up paper, Jaber 
and Bonney (1997) compared their model with those of Carlson and 
Rowe (1976) and Elmaghraby (1990) and showed that the LFCM is 
consistent with the two hypotheses when the other models are not. 
Those hypotheses are: (1) the performance time on the forgetting curve 
reverts to its original value (i.e., the time to produce the first unit), and 
(2) the performance times on the LaF curves are the same at the point of 

interruption (which is the intersection point between the two). Jaber 
et al. (2003) provided additional support in favor of the LFCM and 
showed that it embodies characteristics that have been identified in 
experimental and empirical studies. Those characteristics are (1) prior 
experience and the length of the break influence the forgetting intensity, 
(2) relearning and learning rates are the same, (3) LaF curves are of 
power forms and mirror images of one another, and (4) the learning rate 
(speed) impacts how fast or slow forgetting occurs. Jaber and Sikström 
(2004a) tested the LFCM against LaF empirical dataset taken from 
Nembhard and Osothsilp (2001) and showed that it fitted that data 
reasonably well. The LFCM has also been modified to include cognitive 
and motor elements (Jaber and Kher, 2002) and a job similarity index 
(Jaber et al., 2003). Jaber and Kher (2002) provided another modifi
cation of the LFCM (M-LFCM), which is of interest to this paper, by 
relaxing the assumption of a fixed time for total forgetting, supported by 
the experimental findings of Hewitt et al. (1992) for cognitive tasks. 
They suggested that the M-LFCM may provide better performance esti
mates than the LFCM, but this was not conclusive as neither the M-LFCM 
nor the LFCM was tested against empirical data. Some researchers 
modeled the LaF process as an integrated model that is time-based, e.g., 
the Power-Integration-Diffusion (PID) model (Sikström and Jaber, 
2002). Since those models are not WLC-based, they are not relevant to 
this paper. Readers are referred to Jaber (2013) for a review of LaF 
models. 

Nembhard and Osothsilp (2001) introduced the recency model 
(RCM) in the context of the WLC and showed that it fitted the data well – 
surpassing the other 13 tested models. Jaber and Sikström (2004a) 
extracted a dataset from Nembhard and Osothsilp (2001, Fig. 1) and 
showed otherwise by comparing the fits of the LFCM and the RCM 
models. However, this result was not conclusive due to limited testing 
data. One should compare the fits of the two models using learning data 
of a varying number of repetitions and breaks of different lengths before 
generalizing Jaber and Sikström’s (2004a) findings. In this regard, Jaber 
and Sikström (2004b) numerically compared the three models, LFCM, 
RCM, and PID, and showed which type of learning (ranging from pure 
motor to pure cognitive) differentiates them. For example, the three 
models produced very close results for a moderate learning speed 
(number of motor task elements equals the cognitive ones). They 
concluded that the LFCM, RCM, and PID are best differentiated for LaF 
data characterized by high initial processing times, long production 
breaks, and tasks identified as being more motor than cognitive. Hoedt 
et al. (2020) recently tested how well the LFCM, M-LFCM, RCM, and PID 
can predict assembly performance in real-time. Their results showed 
that M-LFCM and PID performed the best. 

It is clear from the above presentation that forgetting curve models 
available in the literature associate deterioration in performance 
following an interruption in production with the length of the break 
separating two subsequent learning sessions or production cycles. Those 
models are used in the POM field as decision-support tools for:  

1. Optimizing the frequency and size of a production batch to satisfy 
demand and minimize production costs;  

2. Determining the optimal training schedule given a fixed training 
budget (e.g., should training be in four shorter or two longer sessions 
per year?) (see; Sanli and Carnahan (2018), for multi-day training 
sessions);  

3. Setting time standards; 
4. Estimating labor costs during strikes (Globerson et al., 1998; Nem

bhard and Uzumeri, 2000). 

The POM literature suggests that forgetting, or knowledge depreci
ation, can occur continuously over time (Li and Rajagopalan, 1998) and 
“throughout the learning process” (Badiru, 1994, p.44) due to lack of 
training, reduced retention skills, a lapse in performance, extended 
breaks in practice, and natural forgetting (Badiru, 2012). Hogan et al. 
(2020, p.432) recently stated that “the impact of forgetting may not wholly 

Fig. 1. Learn-forget curve model (LFCM) adapted from Jaber and Bonney 
(1996). n1 = number of units at the first cycle, b = learning exponent, T1 = time 
to produce first unit, T̂1 = forgetting curve intercept, f1 = forgetting exponent 
(rate), and y1 = number of units that would have been accumulated if inter
ruption did not occur at the first cycle. For detailed explanations of LaF func
tions, Tn and T̂n, see Eqs. (1) and (2) in Section 2. 
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eclipse the impact of learning but will hamper the learning rate while per
formance continues to increase at a slower rate.” They modified the 
power-form WLC model for diminishing learning rate, Tx =

T1x−b/(1+x/c), where c is a positive decay value and decreases the effect 
of the learning rate, b, with increasing the number of units produced. 
They tested the model against learning data from 69 production pro
grams and a total of 169 unique end products from the US Department of 
Defense. Compared to the WLC, the model with a diminishing learning 
rate had fewer errors for 43%, more errors for 5%, and equal error for 
52% of the observations. The results showed that the WLC un
derestimates the required resources, resulting in potential overruns of 
labor costs. Hogan et al. (2020) studied learning data in production lots 
by varying the number between 5 and 21 lots, as individual product data 
were not available. They calculated the lot midpoints and model pa
rameters iteratively as they could not find a closed-form solution. Their 
model relaxed the assumption of a fixed learning rate, but they did not 
account for forgetting due to breaks between the lots. For this reason, it 
is not suitable for the comparative study in this paper. 

For psychologists, interference explains long-term memory loss (or 
forgetting), observing a lower likelihood of memory retrieval of a given 
“image” as time passes (Anderson, 1983; Mensink and Raaijmakers, 
1988). In this line of research, the seminal work of Melton (1963) argued 
for the continuity of short-term and long-term memory, which is 
consistent with modern theories of memory. Learning and memory 
processes involve three stages: encoding, retention, and retrieval 
(Anderson, 1983). Encoding refers to the formation of the memory trace 
(initial learning of information). Retention refers to storing an infor
mation piece in memory, and retrieval is one’s ability to access the ac
quired information if necessary. Melton (1963) emphasized the role of 
the storage mechanism, especially consolidation, which refers to the 
assimilation of the memory traces and improves performance 
(McGaugh, 2000). Learning material, such as assembly instructions, 
comprises several information elements or units that a subject has to 
encode and remember. According to Melton (1963), the parameter of 
interest is the number of encoded meaningful groups of information, i.e., 
chunks. The intra-material interference, which is proportional to the 
number of ‘chunks’, is vital for short-term forgetting. Fig. 2(a) illustrates 
how the forgetting slope increases as the number of chunks increases 
from one to seven. Fig. 2(b) depicts how the forgetting slope decreases as 
the number of repetitions increases before retention. This suggests that 
repetition increases experience, thus, reducing the number of chunks 
allowing a subject to better recall the information (Melton, 1963). 
Gaining experience makes building up a salient picture of new infor
mation faster, as attention is more (intensively) focused on relevant 
information (Bruder and Hasse, 2019). 

The probability of retrieving a memory trace is proportional to the 

associative strength of the cues (which control the learning stimulus) to 
that trace relative to that of all associations (the interfering and unre
lated ones included) (Anderson, 1983; Mensink and Raaijmakers, 1988). 
Strong cues accompanied with fewer irrelevant ones reduce interference 
and improve retrieval of relevant knowledge and skill (Arthur et al., 
1998). 

The term cognitive interference, proposed by Sweller (2011), is based 
on cognitive load theory (CLT) which has to do with the distribution of 
cognitive resources during learning and problem-solving. Like previous 
studies, the CLT assumes that short-term or working memory is limited; 
it can handle only 7 ± 2 information units and actively process 2–4 units 
(Van Merriënboer and Sweller, 2010). In practice, dividing human 
attention among many information sources, overloads working memory 
and, subsequently, deteriorates performance. Cognitive interference 
could be:  

1. Content-dependent, where too many information sources disturb 
performance (especially at the early learning stage) (Battig, 1972), or 
where other (un)related activities (both when repeating a task and 
during a break) do affect (Anderson, 1983; Raaijmakers, 2003);  

2. Time-dependent, where memory traces from each repetition decay 
over time but consolidate (strengthen) in long-term memory, which 
improves performance (McGaugh, 2000);  

3. Worker-dependent, for example, those with learning disabilities may 
have difficulty maintaining task-relevant information while facing 
interference (as they suffer from working memory deficits related to 
controlled attentional processes) (Swanson and Siegel, 2001). 

One could easily observe from learning data for tasks performed in 
separate sessions, such as assembly learning data in Fig. 3, that, in 
addition to a break, deterioration in performance may occur between 
adjacent repetitions. Another thing that one can observe is that empir
ical learning data resemble the teeth of a saw, random variations in 
performance, which is conspicuous at its earliest learning stages. Two 
reasons may affect variations for novice learners at assembly work. First, 
if not fully instructed, they may change strategies (methods and se
quences) each time they repeat the assembly (Lim and Hoffmann, 2014). 
Second, they cannot absorb a large amount of information at once, 
reflecting various difficulties in working (Peltokorpi and Niemi, 2019). 
This finding is consistent with the concept of cognitive interference, 
which plays a crucial role in the early stage of learning (Battig, 1972) 
and variance in performance (Melton, 1963). In addition to experi
mental psychologists, researchers in industrial ergonomics have 
acknowledged the importance of cognitive processes (Chan et al., 2017; 
Fan et al., 2018; Fish et al., 1997; Goonetilleke et al., 1995) and inter
ference (Schwerha et al., 2007) in estimating the time of a psychomotor 

Fig. 2. Recall as a function of retention interval and (a) the number of chunks in the learning material; (b) the number of repetitions (1 s visual presentations of 3 
chunks learning material) before retention interval (Melton, 1963). 
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task over repetitions. Lee and Duffy (2015) addressed interference at 
repetitive tasks and divided its causes into interruption, distraction, task 
switching, and task interleaving. The difference between the first two is 
that “an ongoing task can continue in a situation with a distraction condition, 
but an ongoing task needs to be stopped in an interruption condition” (Lee 
and Duffy, 2015, p.140). Despite the growing interest in interference in 
the learning process, only recent studies (Jaber et al., 2021; Peltokorpi 
and Jaber, 2022) parameterized interference into an industrial learning 
curve model. None of those studies considered the combined effect of 
interference and production break. 

This paper contributes to the literature by developing an enhanced and a 
promising version of Wright’s learning curve, WLC, that accounts for 
cognitive interference when learning (repeating a task) and forgetting due to 
breaks. To do this, we have modified a recently developed interference- 
adjusted learning curve model by Jaber et al. (2021) to include multiple 
sessions with production breaks in-between them. Fig. 3 illustrates the 
behavior of the IALFCM (Interference-Adjusted Learning-Forgetting 
Curve Model) for two learning sessions separated by a break of 70 
days. In addition to forgetting as arising from production interruption, it 
shows that the experience gained during a learning session is not fully 
retained by the end of a learning session, i.e., when a break starts. The 
calculations to produce the fits (curves) in Fig. 3 are presented in the 
numerical example in Section 3.1. The reference model (WLC +

displacement) is like that of Hoffmann (1968), who modeled forgetting 
as a displacement on the original learning curve to measure lost expe
rience at the start of the next session. 

We compare the performance of our model with three other learning- 
forgetting models, based on the WLC, by fitting the models against 
learning data from various assembly settings (Bailey, 1989; Bailey and 
McIntyre, 1992, 1997; Nembhard and Osothsilp, 2001; Arkite NV, 
https://arkite.com/, personal communication, March 2020). Our results 
show that adjustment for interference improves the fit to learning data 
and captures the variation in performance well, which is a characteristic 
of assembly and other labor-intensive tasks. This paper has four more 
sections. Section 2 reviews the relevant learning-forgetting models. 
Section 3 introduces the interference-adjusted learning curve model 
with forgetting. Section 4 is for fitting the selected models to empirical 
data and for discussing the results and insights. Section 5 summarizes 
and concludes the study. 

2. Learning curve models with forgetting 

The POM literature documents that WLC (Wright, 1936) fits empir
ical data quite well; another advantage is that its mathematical form is 
easy to understand and use (Anzanello and Fogliatto, 2011; Glock et al., 
2019; Jaber, 2013). It is, therefore, used in this study to describe the 
learning phenomenon. This section, therefore, reviews learning curve 
models with forgetting that appear in the industrial ergonomics and 
POM literature. The WLC is of the form: 

Tn = T1n−b (1)  

where 

Tn time to produce unit n; 
n unit number or cumulative output; 
T1 time to produce the first unit, a fitting parameter; 
b learning exponent, 0 ≤ b < 1, a fitting parameter, measuring the 
rate at which Tn decreases as cumulative output doubles; i.e., 2−b =

T2n/Tn. 

Carlson and Rowe (1976) suggested that forgetting is a function of 
the break length and the performance time just before a break (i.e., a 
mirror function of WLC): 

T̂ n = T̂ 1yf (2)  

where 

T̂n time for nth unit of lost experience of the forgetting curve; 
y the number of units that would accumulate if interruption did not 
occur; 
T̂1 equivalent time of the first unit (intercept) of the forgetting 
curve, a fitting parameter; 
f forgetting slope, 0 ≤ f < 1, a fitting parameter. 

The parameter T̂1 varies with each break, but f does not. Globerson 
et al. (1989) showed that the forgetting function in Eq. (2), among seven, 
fitted the best to a dataset from data entry tasks with an interruption. 
The break between the two learning sessions varied from one up to 82 

Fig. 3. Illustrative example of the behavior of IALFCM for two learning sessions separated by a break of 70 days. WLC moves to the original learning curve when the 
second learning session starts. The models have been fitted to assembly data from Bailey and McIntyre (1992). 
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days. Contrary to the assumptions of Carlson and Rowe (1976), 
Elmaghraby (1990) assumed T̂1 and f are both fixed, i.e., that the 
forgetting speed is independent of the break length. 

2.1. Learn-forget curve model (LFCM) 

Jaber and Bonney (1996) extended the WLC model in Eq. (1) by 
incorporating forgetting effects, which resulted in the Learn-Forget 
Curve Model (LFCM). The LFCM assumes that the forgetting exponent 
f depends on the learning slope, the equivalent cumulative units pro
duced by the point of interruption, and the time it takes for total 
forgetting to occur, allowing T̂1 and f to vary from one learning session 
to another. The LFCM is of the following form: 

Tni = T1(ui + ni)
−b (3)  

where 

ui residual knowledge, measured in units, from previous cycles at 
the beginning of cycle i; 
ni units produced in cycle i up to the point of interruption; 
ui+1 the number of units produced at the beginning of cyclei + 1,

ui+1 = (ui + ni)
(1+fi/b)y(−fi/b)

i ; 
fi forgetting slope for cycle i, fi =

b(1−b)log(ui+ni)
log(1+dm/t(ui+ni))

; 
dm break time to which total forgetting occurs, Jaber and Bonney 
(1996) assumed to be given a priori, and Jaber and Sikström (2004b) 
as a fitting parameter, as we do; 
t(ui + ni) time to produce ui + ni units, where the latter is the 
production accumulated by the end of cycle i, t(ui + ni) =

T1
1−b(ui + ni)

1−b; 
yi number of units that would have been accumulated if production 
was not interrupted for di units of time, yi =
{

1−b
T1

[t(ui + ni) + di]

}1/(1−b)

. 

2.2. Modified learn-forget curve model (M-LFCM) 

The assumption of a fixed time for total forgetting is not consistent 
with the experimental finding of Hewitt et al. (1992) that the perfor
mance at the beginning of the next cycle is dependent on the interrup
tion time and the performance at the point of interruption. Based on this, 
Jaber and Kher (2004) modified the LFCM in Eq. (3), referred to as 
M-LFCM, by assuming the time to total forgetting varies from cycle to 
cycle, i.e., d1,m ∕= d2,m ∕= d3,m… ∕= di,m. Correspondingly, fi =

b(1−b)log(ui+ni)
log(1+di,m/t(ui+ni))

. In the next section, we fit both LFCM and M-LFCM to 
data. 

2.3. Recency model (RCM) 

Nembhard and Osothsilp (2001) modified the WLC by incorporating 
a factor indicating the ‘recency’ effect of experiential learning, which 
they borrowed from Nembhard and Uzumeri (2000). The recency theory 
advocates that a subject remembers the most recent trials (repetitions) 
rather than those performed earlier in the process. Thus, unlike LFCM 
and M-LFCM, the recency model (RCM) assumes each repetition is not 
equally effective. RCM is of the following form: 

Tni = T1

(
niRa

ni

)−b
, where Rni =

∑ni
i=1(ti − t0)

ni(tni − t0)
(4) 

In Eq. (4), the recency effect is determined by multiplying the cu
mulative work n by the discounting factor Ra

n, where a is the forgetting 
exponent, a fitting parameter, describing “… the degree to which the in
dividual forgets the task” (Nembhard and Osothsilp, 2001, p.286). Rni is 
the recency measure and is the ratio of the average elapsed time to the 
elapsed time of the most recent unit produced. The elapsed time 
(including breaks) for unit n is tn − t0, where the time to complete unit n 
is tn, and that at which the first (ni = 1) starts is t0. Rni is bounded by 
0 and 1, with 0 indicating the experience of the distant past and 1 
immediately preceding the current unit. For a constant production rate, 
Rni tends toward a value of 0.5. The forgetting exponent a > 0, where a 
closer to zero means less forgetting and away from it means otherwise. 
The RCM is fitted to the data in the next section. 

2.4. Modified Wright’s learning curve (MWLC) model and its 
approximate version (AMWLC) 

Jaber et al. (2021) modified the power learning curve model by ac
counting for a variable degree of cognitive interference while a subject is 
learning when moving from one repetition to the next. The idea is based 
on cognitive load theory (Sweller, 1994, 2011), which assumes that 
human working memory is limited. The model captures the cognitive 
interference by accounting for memory traces of repetitions to measure 
the residual (interference-adjusted), not the nominal (maximum) cu
mulative experience, and has two versions of memory trace decay 
functions, power and exponential. Jaber et al. (2021) showed that the 
exponential decay form fits experimental learning data (without breaks, 
i.e., one learning session) much better than the power one. Therefore, 
they selected the exponential representation for their actual tests. The 
modification of the WLC, MWLC henceforth, takes the following form: 

Tn = T1n−b
e = T1

(
∑n

j=1
e−α(t−tj)

)−b

(5)  

where ne is the equivalent number of units remembered (the residual 
cumulative experience). Jaber et al. (2021) provided an extensive 

Table 1 
Summary of the similarities and differences of the LaF models under study.  

Model Eq. (#) Cause CFV FCE FIP Form Comments 

LFCM 3 BL(d) ui  fi  T1, b, ni, d, dm  Pwr fi−1 ∕= fi ∕= fi+1 ∀i = 1, 2, …; fi depends on FIP; ui−1 ≤ ui ≤ ui+1. Total forgetting when d ≥ dm; dm is 
fixed  

M- 
LFCM 

3 BL(d) ui  fi  T1, b, ni, d, di,m  Pwr Same for LFCM expect that di−1,m ≥ di,m ≥ di+1,m  

RCM 4 BL(d) 
+ PT 

Rni  a t0, ti, tni , ni  Pwr Rni−1 ≤ Rni ≤ Rni+1 ∀i = 1, 2, …  

IALFCM 8h BL(d) 
+ INTF 

Ui  ai  ai, t, ni  Exp INTF causes exponentially decaying memory traces that are consolidated. Ui−1 ≤ Ui ≤ Ui+1 ∀i = 1, 2,

….  

BL: Break Length; Pwr: Power; Exp: Exponential; PT: Passage of time from a repetition to interruption; INTF: Interference. 
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explanation of how they arrived at the above relationship. As applying 
the model in Eq. (5) is cumbersome, they found the following simple and 
approximate expression: 

M = K
∑n

j=1
e−α(nt−(j−1)t) = K

1 − e−αtn

eαt − 1
= K

1 − e−γn

eγ − 1
(6)  

where γ = αt is a fitting parameter. Again, when there is no interference, 
α = 0, applying l’Hopital’s rule, ne = n; 0 < ne < n otherwise. Note that 
ne = M/K, where M and K are the numbers of information items accu
mulated and recalled, respectively. The approximate model, henceforth 
referred to as the AMWLC, takes the following form: 

Tn = T1n−b
e = T1

(
1 − e−γn

eγ − 1

)−b

(7)  

where, for simplification, K = 1. The AMWLC (Eq. (7)) was found to fit 
assembly learning data far better than the WLC (Eq. (1)), the MWLC (Eq. 
(5)), and the Plateau (bounded) learning curve model of (Baloff, 1970, 
1971). Note that Jaber et al. (2021) compared the models against many 
experimental and empirical learning data. The WLC did not perform 
well. In the next section, we borrow their model in Eq. (7) and extend it 
to the case of multiple learning sessions or production breaks. 

Table 1 differentiates the four LaF models, LFCM, M-LFCM, RCM, 
and IALFCM. The headings of Table 1 are ‘Model’ (acronym of the LaF 
model), ‘Eq. (#)’ (Learning curve equation), ‘Cause’ (what factor(s) 
causes (cause) forgetting), ‘CFV’ (Controllable Forgetting Variable), 
‘FCE’ (Forgetting Curve Exponent), ‘FIP’ (Forgetting Influential Pa
rameters), ‘Form’ (the form of the forgetting curve; i.e., power or 
exponential), and ‘Comment’ (specific features of the LaF model). The 
notations listed in Table 1 have been defined above, except for the 
proposed IALFCM in the next section (see Appendix for a list of abbre
viations and notations). The basic learning function for each model is the 
same power-form WLC (Eq. (1)), which has two fitting parameters, T1 
and b. 

3. The proposed Interference–Adjusted Learning-Forgetting 
Curve Model (IALFCM) 

There is evidence from the literature that cognitive interference, or 
the rate of a memory trace decay, could vary when moving from one 
cycle to another (Raaijmakers and Shiffrin, 1981). In practice, memory 
traces from previous cycles do not continue decaying at the same speed 
(exponent) as a new decay exponent also comprises the interference 
effects caused by a break. The above is also in line with the assumption 
of M-LFCM that the time for total forgetting to occur varies from cycle to 
cycle. Fig. 4 is a schematic of a memory trace that depletes over time. 

Assume now that between cycles 1 and 2, there is a break of length 
d1. Then, from cycle 1, the following is the number of units remembered 

at the beginning of the second cycle (no experience prior to the first 
repetition at the first cycle, Uo = 0): 

U1 =
∑n

i=1
e−α1(nt−(i−1)t+d1) =

e−α1d1 − e−α1(n1 t+d1)

eα1 t − 1
=

e−α1d1 (1 − e−α1n1 t)

eα1 t − 1
(8a)  

where αi is a decay parameter for cycle i = 1…i, and t is a fixed time step 
in calculation procedure, are the fitting parameters, and αit = γi is a 
decay exponent. Note that on the right side of Eq. (8a), we use n1 to refer 
to the number of repetitions performed in the first cycle. Note again that 
when there is no forgetting, U1 = n1, a total transfer of learning occurs 
between cycles 1 and 2. The equivalent number of units in the second 
cycle is computed as: 

ne2 = U1e−α2n2 t +
1 − e−α2 tn2

eα2 t − 1
(8b) 

Similar to Eq. (8a), the equivalent number of units remembered from 
cycles 1 and 2 at the beginning of the third cycle is computed as: 

U2 =U1e−α2(n2 t+d2) +
e−α2d2 −e−α2(n2 t+d2)

eα2 t −1
=e−α2d2

[

U1e−α2n2 t +
1−e−α2n2 t

eα2 t −1

]

(8c)  

where d2 is the breaktime between cycles 2 and 3. Again, when there is 
no forgetting, α2 = 0, U2 = n1 + n2 or U2 = 2n when n = n1 = n2; i.e., 
full transfer of learning. The equivalent number of units in the third 
cycle would be written as: 

ne3 = U2e−α3n3 t +
1 − e−α3 tn3

eα3 t − 1
(8d) 

Similar to Eq. (8c), the equivalent number of units remembered from 
the third and all earlier cycles at the beginning of the fourth cycle is 
computed as: 

U3 =U2e−α3(n3 t+d3) +
e−α3d3 −e−α3(n3 t+d3)

eα3 t −1
=e−α3d3

[

U2e−α3n3 t +
1−e−α3n3 t

eα3 t −1

]

(8e)  

where d3 is the break time between cycles 3 and 4. So the general forms 
are: 

Ui = e−αidi

[

Ui−1e−αini t +
1 − e−αini t

eαi t − 1

]

(8f)  

nei = Ui−1e−αini t +
1 − e−αi tni

eαit − 1
(8g) 

The general form of the Interference-Adjusted Learning-Forgetting 
Curve Model, henceforth IALFCM, is: 

Tni = T1nei
−b (8h)  

where Tni and T1 are estimated times to produce n th unit in cycle i and 
the first unit and b is the learning exponent, like Wright’s learning curve 

Fig. 4. Schematic showing decay of memory trace for repetition k < n over time.  
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(WLC, Wright, 1936), and nei is the residual (after interference/forget
ting) experience in cycle i. 

3.1. Numerical example of IALFCM 

In the example of Table 2 below, ŷj refers to the observed value of 
repetition j, where j = 1,2, …,19. Between the cycles 1 and 2, there is a 
break of length d1 = 70 days, which corresponds to 100800 min. The 
optimal values of the parameters of the IALFCM model that produce the 

results in Table 2 for which the MSE (
∑19

j=1
(ŷj − yj)

2
/19 = 0.158) is min

imum are y1 = 16.58, α1 = 0.0000139, α2 = 0.0000134, t = 24035.581, 
and b = 0.891. The optimal parameter values for the reference model 
(WLC + displacement) are y1 = 21.17 and b = 0.509, with MSE = 0.764. 
The IALFCM produced lower MSE for both the first (MSE = 0.141 vs 
1.111) and the second (MSE = 0.182 vs 0.286) learning session. The 
resultant decay exponents for cycles are γ1 = α1t = 0.335 and γ2 = α2t =

0.323, i.e., IALFCM captures interference and with a 4% lower exponent 
in the second cycle than in the first one. By the end of the first and 
second sessions, a worker retained ne11 = 2.45 and ne19 = 2.47 units of 
experience, and not 11 and 9.18 units as for the WLC + displacement 
model. The observed and estimated values of Table 2 are illustrated in 
Fig. 3 in Section 1. 

4. Computational analysis 

The ability of the IALFCM and the three alternative LaF models, the 
LFCM, the M-LFCM, and the RCM, to produce good fits is tested on 
empirical data from manual assembly and inspection tasks. The datasets 
were selected for three reasons. First, they were available for us. Second, 
they are highly relevant to industry (unlike, e.g., data entry task 
(Globerson et al., 1989)), more cognitive than motor tasks, thus subject 
to significant LaF effects (Abubakar and Wang, 2019). Third, the data
sets represent different numbers of learning sessions and breaks with 
varying lengths. The MSE (Mean Square of Errors) is used to assess the 
quality of fits of a learning curve to data, which is in line with the 
literature (Badiru, 1994; Nembhard and Sun, 2019; Sikström and Jaber, 
2012; Stratman et al., 2004; Towill, 1977). The mathematical form is 
given as: 

Minimize MSE =
1
N

∑n

i=1
(Ti − Ti)

2 (9) 

Subject to: 

T1 > 0  

0 ≤ b < 1  

0 ≤ αi < 1  

t > 0 

For comparison of the models, we use the following baseline: 

Tn = T1(ui + ni)
−b (10)  

where T1, ui and b are the fitting parameters, and u1 = 0, 0 ≤ ui ≤
∑j−1

j=2
uj. 

The baseline assumes a fixed learning exponent and varying prior 
experience for each learning cycle. As a performance indicator of the 
models, we use 

Δj = MSEj − MSEbaseline (11)  

where j = LFCM, M-LFCM, RCM, IALFCM. 
We used the Evolutionary Engine for Excel Solver to optimize the 

parameter values for each model. For each dataset and model, the results 
from the fits are presented, compared, and analyzed. 

4.1. Testing the models against Bailey (1989) and Bailey’s and 
McIntyre’s (1992, 1997) data 

The three product assembly datasets (Bailey, 1989; Bailey and 
McIntyre, 1992, 1997) were collected from experiments performed by 
students in a laboratory setting. The experiments consisted of two or 
three learning sessions separated by breaks of varying lengths. The se
lection of subjects’ learning data from Bailey’s experiments is based on 
the versatility of learning data, in terms of the number of breaks and 
their lengths, to ensure a proper comparison of how the LaF models fit 
various datasets. 

Bailey (1989) found that the forgetting exponent, f, is dependent on 
the amount learned before the break and the break length, d, but that it 
is independent of the initial performance time, T1, or the learning 
exponent, b. He also found that the learning exponent of the second 
cycle depends on that of the first. He initially considered 8 h of working 
in the first learning session. To reduce fatigue, ten individuals completed 
the session for two consecutive days, 4 h per day. We have considered 
overnight breaks (1-day) in the fits since they caused forgetting; i.e., 
T1,i+1 > Tn,i. Table 3 presents the descriptive statistics for the ten in
dividuals (IDs #1 − 10) in terms of the total number of repetitions, the 
number of repetitions in cycle i, and the length of a break, in days, 
separating cycles i and i + 1. 

Bailey and McIntyre (1992) compared different relearning curves (i. 
e., for the second cycle). Their results suggested that the functional form 
that is best for the learning curve is also best for the relearning curve and 
that the choice among alternative models becomes more crucial to 
increasing the level of forgetting. We have fitted the models against 
learning data from four individuals with the longest breaks (IDs #11 −
14, Table 3). Bailey and McIntyre (1997) studied a relearning curve 
starting anew (i.e., n = 1 for the first post-break repetition and deter
mining new parameter values). This approach provided more accurate 
predictions than backing up an existing learning curve, especially when 
a small number of repetitions are available to fit a relearning curve. We 
have tested the fits of the models against data from twenty-five subjects. 
These subjects (IDs #15 − 39, Table 3) form three subgroups, each with 
their dedicated break length of about 13, 34, and 42 days. Table 3 

Table 2 
Results from fitting the IALFCM and the WLC + displacement model to a sample 
dataset from Bailey and McIntyre (1992).  

j  i  Observed IALFCM WLC + displacement 

ni  ŷj  nei  yj  nei  yj   

1 1 1 22.48 0.72 22.35 1 21.17 
2  2 13.9 1.23 13.82 2 14.88 
3  3 10.02 1.59 10.95 3 12.11 
4  4 9.83 1.86 9.56 4 10.46 
5  5 8.8 2.04 8.78 5 9.34 
6  6 7.97 2.18 8.29 6 8.51 
7  7 8.3 2.27 7.98 7 7.87 
8  8 8.13 2.34 7.77 8 7.35 
9  9 7.77 2.39 7.63 9 6.92 
10  10 7.17 2.43 7.53 10 6.56 
11  11 7.78 2.45 7.46 11 6.25 

12 2 1 14.3 1.16 14.5 2.18 14.02 
13  2 11.65 1.57 11.12 3.18 11.57 
14  3 8.72 1.86 9.55 4.18 10.07 
15  4 9.03 2.07 8.68 5.18 9.03 
16  5 8.58 2.22 8.14 6.18 8.26 
17  6 7.83 2.33 7.8 7.18 7.65 
18  7 7.55 2.41 7.57 8.18 7.16 
19  8 7.05 2.47 7.41 9.18 6.75  
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Table 3 
Descriptive statistics of individual learning data from Bailey’s experiments. ID# = Individual id, Rep. Total = Total number 
of repetitions, Repetitionsi[Breakdaysi] = The number of consecutive repetitions and break days for each learning cycle, i, 
Δj = performance (MSEj) of the models, j, in relation to the baseline, with the best model highlighted in grey. An underlined 
grey number in square brackets indicates 1-day break does not cause forgetting. 

Fig. 5. (a) An example of observed learning data (ID#2 in Table 3) and fitted trend lines of the learning-forgetting models; (b) Residual (after forgetting/inter
ference) experience as a function of nominal experience. 
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compares the errors of model j to the baseline model in Eq. (10). The 
lower the result of the subtraction, MSEj − MSEbaseline, the better the 
performance. Note that since the data of Bailey and McIntyre (1992, 
1997) only consider one break, the M-LFCM reduces to the LFCM. 

Table 3 shows that either the M-LFCM (two breaks) or the LFCM (one 
break) produces a perfect fit in all cases, totaling 39, i.e., the same as the 
baseline in Eq. (10). When there are two breaks (IDs #1 − 10), the RCM 
performs the worst (ΔRCM,avg = 5.440, ΔRCM,best = − 0.766, and 
ΔRCM,worst = 29.381), the LFCM the second-worst (ΔLFCM,avg = 0.356, 
ΔLFCM,best = 0.002, and ΔLFCM,worst = 2.280), whereas the IALFCM per
forms the best (ΔIALFCM,avg = − 2.522, ΔIALFCM,best = − 9.268, and 
ΔIALFCM,worst = − 0.055). In the case of one break (IDs #11− 39), 
IALFCM performs the best (ΔIALFCM,avg = − 0.586, ΔIALFCM,best = −

5.954, and ΔIALFCM,worst = 4.489), and the RCM the worst 
(ΔRCM,avg = 0.435, ΔRCM,best = − 0.840, and ΔRCM,worst = 3.614), and 
outperform the baseline in 23 and 7 cases, respectively. In general, 
IALFCM performs the best (1st), the M-LFCM comes second, LFCM 
comes third, and the RCM comes last, suggesting that a model with the 
most parameters tends to have the best performance. Fig. 5 illustrates 
the behavior of the models over three learning sessions (and two breaks) 
by using the observed learning data from ID#2. Fig. 5a presents the 
fitted trend lines of the models. The WLC, a reference model, does not 
account for forgetting and overestimates the performance after the 
break. The LFCM and the M-LFCM account for the forgetting effects 
resulting from interruptions (i.e., production breaks). The latter model 
is, unlike the LFCM, flexible as its input parameter, which is the time for 
total forgetting to occur, varies with each break. This feature makes it 
adjust more effectively to relearning curves. The RCM and the IALFCM, 
on the other hand, assume forgetting occurs during a break and learning 
sessions (IALFCM through interference), allowing for the residual 
experience from each repetition could be less than the nominal, 
measured in cumulative units. Fig. 5b illustrates this with residual 
experience increasing at a decreasing rate through repetitions (and not 
linearly as with the WLC, LFCM, and M-LFCM). Learning data in Fig. 5a 
shows plateauing, a characteristic that is typical for assembly tasks. The 
IALFCM and the RCM capture the plateauing phenomenon the best, as 
they both adjust the curvature of the trend line to the data points. The 

IALFCM has an advantage over the RCM and the other models as it ac
counts for varying degrees of interference (curvature of the trend line) 
over learning-forgetting cycles. It also assumes, unlike the RCM, inter
ference (forgetting) effect applies to the first units in each session, which 
gives additional flexibility in estimating unit times. Fig. 5 is the only case 
of two breaks when RCM outperforms LFCM and M-LFCM (baseline). 
Table 3 shows that, on average, forgetting during a break (LFCM) fits 
Bailey’s data better than continuous forgetting through production runs 
and breaks (RCM). 

4.2. Testing the models against car safety-seat assembly data 

The other data set is from Arkite NV (https://arkite.com/, personal 
communication, March 2020) research team. It was collected from a car 
safety-seat assembly plant and sheltered workplace and contained the 
start and end times of jobs for a total of 14 workers. We have tested a 
minimum break length of one day (overnight) for which forgetting could 
occur and split the data into learning cycles accordingly. This approach 
is like the one in Bailey. Fitting the WLC model in Eq. (1) to data points 
comprising each learning cycle showed considerable scatter around the 
trend line and revealed values that were exceptionally far above the 
trend line. This finding was probably due to careless registration. On 
average, 7% of the data points are outliers (a 1% maximum false dis
covery rate on Prism 8 software) and, therefore, were removed. Table 4 
shows the descriptive statistics of (cleaned) learning data. Fitting the 
WLC to the mentioned data showed that, for 12 out of 14 workers, 
learning or forgetting does not occur (i.e., bi = 0 or T1,i+1 ≤ Tn,i), at least 
for one cycle. Such periods are described as underlined numbers (black 
for repetitions and grey in square brackets for break days, respectively). 
It is worth noting that no learning often means no forgetting during the 
subsequent break and vice versa. Table 4 also presents the results from 
fitting the models to the data. 

From Table 4, we analyze the cases with more than two breaks (IDs 
#3 − 14). LFCM (ΔLFCM,avg = 800.139, ΔLFCM,best = 35.672, and 
ΔLFCM,worst = 3435.478) and RCM (ΔRCM,avg = 865.095, 
ΔRCM,best = 117.997, and ΔRCM,worst = 3144.527) always perform worse 
than the baseline model. M-LFCM (ΔM−LFCM,avg = 41.707, 

Table 4 
Descriptive statistics of car safety seat assembly data. 
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ΔM−LFCM,best = 0.000, and ΔM−LFCM,worst = 197.655) performs equally in 5 
and worse in 7 cases than the baseline model. IALFCM 
(ΔIALFCM,avg = 544.233, ΔIALFCM,best = − 1438.829, and 
ΔIALFCM,worst = 6054.841) performs better than the baseline model in 3 
cases and worse in 9 cases, respectively. These results show that the M- 
LFCM fits, on average, the best (1st), the IALFCM comes second, the 
LFCM comes third, and the RCM comes last. The results show that the M- 
LFCM fits most of the data well, perhaps better for a smaller number of 
sessions (I = 4 − 10). The performance of the IALFCM varies depending 
on individual learning data. In some instances (IDs #3, 8, 12, and 13), it 
is worse, and in others (IDs #4, 10, 11, and 14) far better than the other 
models. Fig. 6 is an example where the IALFCM (trend line in red) does 
not fit the data that well. Note that the IALFCM has five fit parameters in 
this case, of which two are the same for the other models, which are T1 
and b. The third parameter, t, is a fixed time step in the calculation 
procedure, and the fourth and fifth parameters, αi (i = 1,2), are cycle- 
specific. The speed of the decay rate (interference factor), γi = αit, af
fects the curvature or plateauing behavior in when comparing to other 
learning curve models. The IALFCM, however, underestimated first-unit 
times and plateauing levels of most sessions in Fig. 6. The learning 
exponent was at the upper limit (b = 1), and memory traces entirely 
decayed during the breaks. 

Fig. 7 shows an example where the fit of the IALFCM outperforms the 
other models. The learning data points show an unusual rise on the third 
learning session/day, indicating excessive cognitive interference for this 
subject. It is worth noting here that the subjects experienced cognitive 
disabilities despite keeping the total cognitive load low. For some, it was 
high, which may cause additional interference. IALFCM captures such 
scatter in learning data the best by adjusting the interference factor. The 
M-LFCM captures, better than the other models, a typical early learning 
profile (i.e., the first two sessions) when performance shows a wide 

variation (scatter), but the trend is rapidly improving (e.g., IDs #7 − 9, 
13). In these cases, IALFCM seeks to capture the scatter by adjusting its 
curvature and plateauing forms. 

Table 4 shows that the LFCM and the RCM perform roughly equally. 
They fit very poorly when data show a large scatter (IDs #4, 10, and 13). 
The LFCM provides better fits when learning occurs through repetition 
and forgetting during breaks (IDs #3, 7, and 8), i.e., usual learning- 
forgetting profile, and RCM vice versa (IDs #10, 12, and 13). The 
recency measure of the RCM sensitivity to variations in break lengths is 
high. In this regard, the RCM fit to data separated by significantly long 
breaks is poor. 

4.3. Testing the models against car radio inspection data 

The last dataset from Nembhard and Osothsilp (2001, Fig. 1) rep
resents an individual worker. The data are from a final inspection station 
of a car radio manufacturer for six months. In total, 71 permanent 
workers performed 130 inspection steps for each of the six radio models. 
In Fig. 8, each data point is a median of the production time of 20 units, 
presented as a function of cumulative production. The study considered 
that the forgetting effect begins after a break of 50 h, which captures 
over weekend breaks. There were seven breaks having lengths of 3.7, 
6.5, 11.6, 3.8, 4.7, 3.7, and 11.2 days listed in chronological order. 
Nembhard and Osothsilp (2001) fitted the WLC model to each learning 
cycle while varying the learning slope showing that the initial produc
tion time increases following a break but decreases with cumulative 
experience. Table 5 summarizes the results from fitting the models to the 
data. Fig. 8 shows the learning-forgetting curves generated from 
observed data, whereas Fig. 9 shows the residual experience (after for
getting/interference) as a function of nominal experience measured in 
cumulative units. 

Fig. 6. Learning-forgetting curves fitted to the observed data (ID#3 in Table 4).  

Fig. 7. Learning-forgetting curves fitted to the observed data (ID#4 in Table 4).  
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The results in Table 5 show that the IALFCM fits car radio inspection 
data the best, followed by M-LFCM, LFCM, and RCM. The three best 
models approximately have the same estimated time to perform the first 
unit, T1. IALFCM has the fastest learning rate, LR = 2^(-b) = 87.9% and 
RCM the slowest, LR = 92.5%. By adjusting the interference factor, or 
memory traces decay exponent, IALFCM can adjust the curvature to fit 
the observed data. Fig. 9 shows the residual experience over repetitions, 
the variable that differentiates behavior between the models, where the 
WLC is the reference model. It has two fundamental drawbacks: (1) it 
does not account for the effect of forgetting during breaks, and (2) it 
assumes repetitions are equally effective. The LFCM and M-LFCM, to 
some extent, correct the first drawback, i.e., an event of production 
interruption results in experience loss. The RCM and IALFCM correct 
both drawbacks, i.e., the continuous loss of experience occurring 
through production and interruption periods. The IALFCM estimates the 
lowest residual experience over the entire data, RCM second lowest for 
the first half, and M-LFCM for the second half of production. The LFCM 
estimates the largest residual experience, except the RCM for the last 

Fig. 9. Residual (after forgetting/interference) experience as a function of nominal experience.  

Fig. 10. Cumulative SSEj − SSEbaseline.  

Table 5 
Results from fitting the models to data from Nembhard and Osothsilp (2001).  

Δj = MSEj − MSEbaseline  

j = LFCM  M − LFCM  RCM  IALFCM  

2.297E-06 1.128E-08 2.847E-06 − 1.439E-06  

Parameters 

T1 = 0.079 T1 = 0.077 T1 = 0.067 T1 = 0.076 
b = 0.148 b = 0.153 b = 0.113 b = 0.186 
dm = 1.31E+16 d1,m = 3188.841 a = 0.958 t = 5.133  

d2,m = 1.063E+9  α1 = 0.018  
d3,m = 1.8E+308  α2 = 0.005  
d4,m = 3.039E+7  α3 = 0.000  
d5,m = 1.27E+12  α4 = 0.008  
d6,m = 8.412E+6  α5 = 0.003  
d7,m = 1.8E+308  α6 = 0.009    

α7 = 0.001    
α8 = 0.004  

Fig. 8. Learning curves generated from observed learning data from Nembhard and Osothsilp (2001, Fig. 1).  
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three production runs. The lower the residual, i.e., the greater the 
correction of experience, the better the model performs. Fig. 10 illus
trates the cumulative performance of the models, how much they 
deviate from the baseline (SSEj − SSEbaseline). The performance of RCM 
deteriorates towards the end of production, where the LFCM slightly 
outperforms it by 1.4% lower SSE. This result is due to the recency 
measure resulting in later repetitions being less effective, while the ef
fect of forgetting is negligible (a = 0.958). The RCM also does not 
consider the relearning curve starting anew (i.e., n = 1 for the first post- 
break repetition and determining new parameter values). This result 
makes the RCM inaccurate, especially when a small number of repeti
tions are available to fit a relearning curve (e.g., the second last in 
Fig. 8). The fits of the IALFCM showed that interference plays a signif
icant role in the first cycle, where performance ceases quite fast, and 
interruption results in significant forgetting (Fig. 8). The second signif
icant interference occurs after about 200 units, where IALFCM does not 
estimate improvement through repetitions at all. 

4.4. Managerial insights 

The results show that adjustment for cognitive interference en
hances, on average, the predictive ability of the power learning curve 
more than other models with forgetting. Acknowledging that cognitive 
interference can potentially cause significant loss of knowledge over 
time would facilitate the decision-making process of industrial man
agers. In this regard, our model is the best, especially for a small number 
of production cycles (two or three) with relatively short interruptions. 
Such early production cycles are more likely to cause novice workers to 
experience interference due to processing a large amount of information 
while simultaneously focusing on other details that overload their 
working memory. Such learners typically are poor performers at first 
(post-break) repetitions, where interference explains why reaching 
plateauing is faster in subsequent repetitions. 

Using the interference-adjusted model could support managers with 
more accurate budgeting of labor costs, especially for novice workers or 
when workers frequently learn new tasks. For example, assume a $15 
hourly wage and 1700 h annually working per worker. Then, use the 
data of ten individuals from Bailey (1989), IDs #1 − 10, Table 3, and 
calculate the cumulative sum of the deviations estimated from the actual 

assembly hours 
∑n

i=1
ŷi − yij for each model j = LFCM, M-LFCM, RCM, 

IALFCM. We then linearly extrapolate the cumulative deviation to the 
annual level for each LaF model and sum them up for ten workers. The 
IALFCM overestimates the actual labor cost by $74, M-LFCM by $489, 
LFCM by $504, and RCM by $904, suggesting that IALFCM estimates the 
budget much more realistic than other models do. Using the IALFCM for 
the first few learning cycles would help identify those struggling learners 
and release precocious ones earlier than expected. Managers could 
quickly notice if employees need more support in the learning process. 
Considering the size of information and how one presents it to learners 
will help ensure smooth improvements towards a target standard-time. 
Our model could help managers detect periods of excessive interference 
for workers with cognitive disabilities when scheduling work or 
assigning tasks to workers. This feature provides insights for their in
structors, when such an undesirable interference is most likely to occur, 
how to avoid it, and promote their working ability. 

Despite its better accuracy and novelty in parameterizing the inter
ference effect, the IALFCM has limitations regarding its implementation. 
One of those is that the model becomes computationally expensive. For 
example, the number of fitting parameters increases proportionally to 
the number of production cycles. Another limitation is that as memory 
traces continue decaying over the break following the production cycle, 
long ones following plateaued performance may result in total decay 
(forgetting) and decrease the model accuracy as production resumes. 

5. Conclusions 

There is consensus among psychologists that interference of human 
cognition always results in forgetting. Cognitive interference depends on 
the content presented at each time point to a human whose working 
memory is limited. In practice, when a learner cannot absorb all the 
information, a working memory overload is experienced. This obser
vation suggests that some knowledge is continually lost over time, 
making it critical when performing psychomotor tasks. Inspired by this 
phenomenon, this paper challenges some prominent forgetting curve 
models in production and operations management that usually depict 
the relationship between break length and intensity of deterioration of 
task performance. More precisely, this paper presented an enhanced 
version of the power learning curve that accounts for cognitive inter
ference when learning (repeating a task) and forgetting due to breaks, 
referred to here as the Interference–Adjusted Learning-Forgetting Curve 
Model (IALFCM). In addition to forgetting as arising from production 
break, it shows that the experience gained during a learning session is 
not fully retained by the end of a learning session, i.e., when an inter
ruption starts. To do this, a recently modified version of the Wright 
learning curve that accounts for interference (Jaber et al., 2021) has 
been extended to consider multiple learning sessions separated by pro
duction breaks. More precisely, the interference-adjusted number of 
cumulative units has been used as a proxy to measure residual experi
ence. The model of this paper assumes that each repetition leaves a 
memory trace that decays exponentially with time. The IALFCM and 
three alternative models (Learn-Forget Curve Model, LFCM, its modified 
version, M-LFCM, and the Recency Model, RCM) have been tested 
against several empirical data sets from manual assembly and inspection 
tasks. The results showed that the IALFCM fitted the data very well. It 
produced much fewer errors than the other models. This finding was 
noticeable when learning data has one or two breaks or when the 
learning dataset points show plateauing and an unusual rise above the 
trend, reflecting various degrees of interference in learning processes. 
The interference parameter enables more curvature or plateauing, 
compared to other learning curve models. However, interference in 
learning, followed by a long break, would result in total decay (forget
ting) of memory traces, thus decreasing model accuracy when produc
tion resumes. A limitation of the IALFCM is that it becomes 
computationally expensive when the number of production cycles in
creases, which increases the number of fitting parameters. 

The model developed here is the first attempt to capture the relative 
level of interference for production runs separated by breaks. As such, it 
has many applications in production decision-making. For example, the 
model could detect an abnormally large interference, thus reflecting, e. 
g., memory overloading, worker fatigue, or cognitive disabilities in the 
learning process, requiring managers to provide additional support for 
better production planning. This observation would also help managers 
save on the training budget as managers could determine the frequency 
and lengths of training sessions. With its improved accuracy, the model 
also enables more realistic budgeting of labor costs. 

The model of this paper and the findings reported would serve as 
seeds for future research. For example, one could set up an experiment to 
test how overloading memory with different information affects per
formance in a psychomotor task. Further, developing a real-time 
tracking system of operator performance with adaptive instructions 
(information amount) could provide a worker with the most efficient 
learning experience. 
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Appendix  

Table A.1 
List of abbreviations and notations in the article  

Abbreviation Explanation Notation Explanation 

LaF Learning and forgetting n (ni) Unit number or cumulative production (in cycle i up to the point of interruption)  
WLC Wright’s learning curve Tn (Tni ) Time to produce unit n (in cycle i)  
POM Production and operations management T1  Time to produce the first unit 
PID Power-Integration-Diffusion b  Learning exponent 
LFCM Learn-forget curve model T̂n  Time for nth unit of lost experience of the forgetting curve 
M-LFCM Modified learn-forget curve model T̂1 (T̂1,i) Forgetting curve intercept (for cycle i)  
RCM Recency model fi  Forgetting exponent (slope) for cycle i  
IALFCM Interference-Adjusted Learning-Forgetting 

Curve Model 
dm (dm,i)  Break time to which total forgetting occurs (at cycle i)  

MWLC Modified Wright’s learning curve ui or Ui  Residual knowledge, measured in units, from previous cycles at the beginning of cycle i  
AMWLC Approximate modified Wright’s learning curve t(ui + ni) Time to produce ui + ni units, where the latter is the production accumulated by the end of cycle i  
BL Break length d (di) Break length (between cycles i and i + 1)  
INTF Interference yi  Number of units that would have been accumulated if production was not interrupted for di units of 

time.  
Pwr Power Ra

n (Ra
ni

) Discounting factor for unit n (in cycle i)  
Exp Exponential Rn (Rni ) Recency measure for unit n (in cycle i)  
PT Passage of time tn − t0

(tni − t0)

Elapsed time for unit n (in cycle i)  

CFV Controllable Forgetting Variable tn (tni )  Time to complete unit n (in cycle i)  
FCE Forgetting Curve Exponent a  Forgetting exponent 
FIP Forgetting Influential Parameters M  Number of information items accumulated 
SSE Sum square of errors K Number of information items recalled 
MSE Mean square of errors ne (nei )  Residual (after interference/forgetting) experience (in cycle i), measured in equivalent number of 

units remembered  
ID# Individual identification α (αi)  Decay parameter (in cycle i)  
LR Learning rate t  Fixed time step in calculation procedure   

γ (γi) Decay exponent (in cycle i)    
ŷj  Observed value of repetition j    
yj  Estimated value of repetition j    
I Total number of learning sessions/cycles   
Δj  Performance indicator of the model j   
c  Decay exponent  

References 

Abubakar, M.I., Wang, Q., 2019. Key human factors and their effects on human centered 
assembly performance. Int. J. Ind. Ergon. 69, 48–57. https://doi.org/10.1016/j. 
ergon.2018.09.009. 

Adler, G.L., Nanda, R., 1974. The effects of learning on optimal lot size 
determination—single product case. AIIE Trans. 6, 14–20. https://doi.org/10.1080/ 
05695557408974927. 

Anderlohr, G., 1969. What production breaks cost. Ind. Eng. 1, 34–36. 
Anderson, J.R., 1983. A spreading activation theory of memory. J. Verb. Learn. Verb. 

Behav. 22, 261–295. https://doi.org/10.1016/S0022-5371(83)90201-3. 
Anzanello, M.J., Fogliatto, F.S., 2011. Learning curve models and applications: literature 

review and research directions. Int. J. Ind. Ergon. 41, 573–583. https://doi.org/ 
10.1016/j.ergon.2011.05.001. 

Arthur, W., Bennett, W., Stanush, P.L., McNelly, T.L., 1998. Factors that influence skill 
decay and retention: a quantitative review and analysis. Hum. Perform. 11, 57–101. 
https://doi.org/10.1207/s15327043hup1101_3. 

Badiru, A.B., 2012. Half-life learning curves in the defense acquisition life cycle. Def. ARJ 
19, 283–308. 

Badiru, A.B., 1994. Multifactor learning and forgetting models for productivity and 
performance analysis. Int. J. Hum. Factors Manuf. 4, 37–54. https://doi.org/ 
10.1002/hfm.4530040105. 

Bailey, C.D., 1989. Forgetting and the learning curve: a laboratory study. Manag. Sci. 35, 
340–352. https://doi.org/10.1287/mnsc.35.3.340. 

Bailey, C.D., McIntyre, E.V., 1997. The relation between fit and prediction for alternative 
forms of learning curves and relearning curves. IIE Trans. (Institute Ind. Eng. 29, 
487–495. https://doi.org/10.1080/07408179708966355. 

Bailey, C.D., McIntyre, E.V., 1992. Some evidence on the nature of relearning curves. 
Account. Rev. 67, 368–378. 

Baloff, N., 1971. Extension of the learning curve — some empirical results. J. Oper. Res. 
Soc. 22, 329–340. https://doi.org/10.1057/JORS.1971.77. 

Baloff, N., 1970. Startup management. IEEE Trans. Eng. Manag. 132–141. https://doi. 
org/10.1109/tem.1970.6448538. 

Battig, W., 1972. Intratask interference as a source of facilitation in transfer and 
retention. Top. Learn. Perform. 131–159. 

Bruder, C., Hasse, C., 2019. Differences between experts and novices in the monitoring of 
automated systems. Int. J. Ind. Ergon. 72, 1–11. https://doi.org/10.1016/j. 
ergon.2019.03.007. 

Carlson, J.G., Rowe, A.J., 1976. How much forgetting cost. Ind. Eng. 8, 40–47. 
Chan, A.H.S., Hoffmann, E.R., Chung, C.M.W., 2017. Subjective estimates of times for 

assembly work. Int. J. Ind. Ergon. 61, 149–155. https://doi.org/10.1016/j. 
ergon.2017.05.017. 

Ebbinghaus, H., 1885. Über das Gedächtnis. Duncker and Humblot. 
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