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Abstract. Portfolio decision analysis models support selecting a portfolio of projects in view
of multiple objectives and limited resources. In applications, portfolio utility is commonly
modeled as the sum of the projects’ multiattribute utilities, although such approaches lack
rigorous decision-theoretic justification. This paper establishes the axiomatic foundations of a
more general class of multilinear portfolio utility functions, which includes additive and
multiplicative portfolio utility functions as special cases. Furthermore,wedevelop preference
elicitation techniques to assess these portfolio utility functions aswell as optimizationmodels
to identify the most preferred portfolio in view of resource and other constraints. We also
examine how the functional form of the portfolio utility function affects decision recom-
mendations by using randomly generated and real problem instances.
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1. Introduction
Selecting which portfolio of project candidates (e.g.,
products, infrastructure investments, research pro-
grams, policy options) to implement with the avail-
able resources is an important decision problem faced
frequently by both businesses and public organiza-
tions (e.g., Parnell et al. 2002, Ewing Jr. et al. 2006,
Phillips and Bana e Costa 2007, Grushka-Cockayne
et al. 2008, Montibeller et al. 2009, Lourenço et al.
2012, Lopes and de Almeida 2015, Mild et al. 2015,
Barbati et al. 2018). Often, such decisions are com-
plicated by the presence of several objectives, un-
certainties, multiple resource types, and project in-
terdependencies. Consequently, there has been a great
deal of research on developing and deploying methods
to support such decisions within the fields of, for ex-
ample, resource allocation decisions (Kleinmuntz 2007)
and portfolio decision analysis (PDA; Salo et al. 2011).
These methods combine decision analysis and opti-
mization techniques to capture preferences on risk and
multiple objectives and to identify the most preferred
combination (i.e., portfolio) of projects to implement.

Multiattribute PDA applications commonly utilize
the additive preference model (e.g., Golabi et al. 1981,
Parnell et al. 2002, Ewing Jr. et al. 2006, Kleinmuntz
2007, Phillips and Bana e Costa 2007, Gurgur and

Morley 2008, Lourenço et al. 2012, Lopes and de
Almeida 2015, Mild et al. 2015). In this model each
project is first evaluatedwith regard to a set of attributes,
after which a suitable multiattribute value/utility
function is used to obtain the overall value/utility of
each project. The overall value/utility of a portfolio is
then obtained as the sum of the multiattribute values/
utilities of projects included in the portfolio. The
widespread use of additive preference models in PDA
applications can be mainly attributed to two factors.
First, in terms of preference elicitation, the models
require only the assessment of a multiattribute value/
utility function over the measurement scales of the
attributes used to evaluate individual projects. Second,
the computational requirements of additive preference
models are modest, because the most preferred port-
folio can be identified using standard integer linear
programming tools.
A concern with the additive preference model is

that it is not particularly well-suited for handling
uncertain project outcomes. In particular, the axi-
omatization of the additive preference model in the
seminal paper by Golabi et al. (1981) builds on mea-
surable value theory (Dyer and Sarin 1979), which
characterizes preferences between certain outcomes
and changes thereof (cf. strength of preference).
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Essentially, this choice implies that the model can only
be deployed in applications where the projects’ out-
comes are deterministic. It is worth highlighting that,
even though Golabi et al. (1981) utilize utility func-
tions to capture multiattribute preferences at the
project level, these utility functions are not directly
used by the additive portfolio preference model. In-
stead, results of Dyer and Sarin (1979) are used to
identify a value function that represents the same
preferences as the utility function among deterministic
project outcomes, and this value function is used
in the additive model capturing preferences among
portfolios. Hence, although outcomes in practical
applications are often uncertain, the additive pref-
erence model lacks a solid axiomatic foundation to
accommodate these uncertainties.

Conceivably, this lack of axiomatic foundation could
be ignored and the additive preference model could
be applied in a settingwith uncertain project outcomes
by using expectations of portfolio values to provide
decision recommendations. This approach does not
eliminate the fact that the additive portfolio value
function entails a fixed attitude toward risk and does
not include any parameters to control this attitude
through preference elicitation questions. For instance,
the additive preference model assumes that there are no
benefits from diversification, but that a single project is
always equallypreferred to twoprojects the sumofwhose
expected values is equal to that of the single project.

We address this gap in the existing literature by
developing an axiomatic foundation for PDA under
uncertainty. Specifically, we show that under rea-
sonably mild assumptions about preferences among
portfolios with uncertain outcomes, these preferences
can be represented with a symmetric multilinear
utility function. Importantly, this portfolio utility
functionmakes use of amultiattribute utility function
constructed over the project evaluation scale, and as a
result the preference elicitation effort grows only
linearly in the number of projects when compared
with additive portfolio preference models. Moreover,
we establish results that identify the types of pref-
erences under which the multilinear portfolio utility
function is reduced to either a multiplicative or an
additive portfolio utility function. In the multiplica-
tive utility function, portfolio utility is obtained as a
product of the scaled multiattribute utilities of the
projects in the portfolio. In the additive portfolio
utility function, portfolio utility is obtained as a sum
of the projects’ multiattribute utilities. This result for-
mally establishes those preference assumptions that are
implicitly made in practical applications, where project
utilities are added up to obtain portfolio utility.

Our work provides continuation for the growing
interest in developing multilinear preference models
for various decision analytic contexts. For instance,

Keller and Simon (2019) develop multilinear value/
utility functions for spatial decision analysis, where the
alternatives’ outcomes vary across a geographical region
(Simon et al. 2014). Bordley and Kirkwood (2004)
utilize multilinear utility functions to represent prefer-
ences for achieving a certain target for each attribute in
general multiattribute decision problems. Abbas (2009)
shows thatmultilinear utility functions can be viewed
as a special case of multiattribute utility copulas.
In addition to the theoretical contribution, this

paper also develops and examines approaches that
are required to apply multilinear portfolio utility
functions in practice. First, we show how multilinear
portfolio utility functions can be constructed with
preference assessment questions involving uncertain
portfolio outcomes. Second, we develop mixed-integer
linear programming (MILP) models to identify the fea-
sible portfolio that maximizes expected multilinear
utility. This contribution is especially important from the
viewpoint of practical applicability of these new pref-
erencesmodels, as itmakes it possible to utilize standard
off-the-shelf optimization software to produce decision
recommendations. Finally, multilinear portfolio utility
functionsare applied to real-life and randomlygenerated
data sets to examine how the decision recommendations
they provide differ from those resulting from the stan-
dard additive portfolio utility function.
The portfolio utility functions developed here can

be viewed as symmetric versions of the general non-
symmetric multiattribute utility functions developed in
standard multiattribute utility theory (MAUT; Keeney
and Raiffa 1976; see also Fishburn 1973, Farquhar
1975). However, there are important theoretical and
practical differences between these functions that we
wish to highlight. First, the preference assumptions
required to establish a specific form for the portfolio
utility function can be quite different from those
commonly applied in MAUT. In particular, the prefer-
ence assumption implying the symmetric portfolio
utility function is fairly strong in the sense that only
relatively weak additional preference assumptions are
required to obtain its multilinear, multiplicative, and
additive forms. Second, preference elicitation for a
symmetric portfolio utility function requires different
techniques and involves fewer preference parameters.
For instance, the number of preference parameters in
the symmetric multilinear portfolio utility function
grows only linearly in the number of projects, whereas
for a nonsymmetric multilinear utility function this
number grows exponentially in the number of attri-
butes. Finally, in general MAUT, the question of how to
identify the expected utility maximizing decision al-
ternative is not usually addressed, as it is (implicitly)
assumed that it is possible to evaluate the expected
utility of each alternative. In PDA applications the
number of alternatives (i.e., feasible project portfolios) is
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often so high that such a complete enumeration ap-
proach is not possible. This necessitates the development
of portfolio optimization approaches to accompany
each of the developed functional forms of portfolio utility.

Besides MAUT, our work intersects with other
active strands of current research as well. For in-
stance, preference models for multiattribute portfolio
selection with deterministic project outcomes have
been discussed and developed by Clemen and Smith
(2009), Argyris et al. (2011, 2014), Liesiö (2014), Liesiö
and Punkka (2014), Morton (2015), and Morton et al.
(2016). In particular, Argyris et al. (2014) develop
nonadditive preferencemodels for deterministic PDA
using a more conventional multiobjective program-
ming framework. This framework differs from the
one used here in that it assumes the attributes mea-
sure performance at the portfolio level. Hence, the
framework is suitable for cases in which all attributes
have natural measurement scales, such as revenues:
For such attributes it is meaningful to say that a
portfolio containing two projects with revenues $200
and $500 has a composite revenue of $700. In turn,
our framework evaluates multiattribute outcomes
already at the project level, after which the resulting
project utilities are aggregated to obtain the portfolio
utility. Such a framework is best suited for settings
with attributes that do not have a natural measure-
ment scale, such as innovativeness or strategic fit, but
are evaluated on, for example, a 1–5 Likert scale or
even a verbal scale. In such a setting a portfolio con-
sisting of, for instance, two projects each with Likert
score 2 would not necessarily be equally preferred to a
portfolio containing a single project with score 4.

A framework similar to the one developed here is
used by Liesiö (2014), but the resulting multilinear
preference models are different. First, Liesiö (2014)
assumes deterministic project outcomes and, there-
fore, builds on measurable value theory (Dyer and
Sarin 1979). In contrast, we use MAUT, which allows
for uncertain project outcomes to bemodeled through
probability distributions. Consequently, the models
by Liesiö (2014) can be used to identify the portfolio
with the highest measurable value, whereas the models
proposed in this paper seek to optimize expected
portfolio utility. In general, the optimal portfolios
resulting from these two models are not the same. In
particular, using the projects’ expected outcomes as
the deterministic outcomes required by the portfolio
value model by Liesiö (2014) would generally result
in a different decision recommendation than what
would be obtained by maximizing expected portfolio
utility across all possible outcomes. Second, the dif-
ferent theoretical foundations of these models im-
ply different approaches to preference elicitation.
In particular, the preference assessment procedure
in Liesiö (2014) relies on the decision maker (DM)

comparing changes in deterministic portfolio out-
comes (i.e., strength of preference), whereas the
elicitation methods proposed in this paper seek to
capture the DM’s preferences with regard to uncer-
tain portfolio outcomes. Finally, the structure of the
axiomatic framework in this paper is fundamentally
different from that in Liesiö (2014). In particular, the
models developed here do not build on restrictive as-
sumptions on how the preferences are modeled within
projects, but allow for an arbitrary functional form to
aggregate the projects’ multiattribute outcomes into
project utilities. The focus is on preference assumptions
at the portfolio level and on the functional forms that
these assumptions imply for the portfolio utility function.
The rest of this paper is structured as follows.

Section 2 introduces the basic framework for multi-
attribute portfolio selectionunderuncertainty. Section 3
presents the preference assumptions under which
preferences among uncertain multiattribute portfolio
outcomes can be representedwith amultilinear utility
function. Section 4 discusses preference assessment
techniques to construct multilinear portfolio utility
functions. Section 5 provides results on two special
types of preferences that lead to additive and mul-
tiplicative forms for portfolio utility. Section 6 de-
velops optimization models to identify the most pre-
ferred portfolio under resource and other portfolio
constraints. Section 7 analyzes the effects that the use
of a multilinear portfolio utility function has on de-
cision recommendations compared with standard
approaches. Section 8 concludes.

2. Preliminaries on Multiattribute Project
Portfolio Selection

Consider selecting a portfolio from a set of project
candidates. The quality of each project candidate is
evaluated with regard to n attributes with measure-
ment scales Y1, . . . ,Yn. These attributes can represent
both quantitative measures (e.g., present value, pro-
duction volume) and qualitative evaluations (e.g.,fit to
company strategy, quality considerations; see, e.g.,
Kleinmuntz 2007, Clemen and Smith 2009, Lopes and
de Almeida 2015). The outcome of each project cor-
responds to a vector y � (y1, . . . , yn) belonging to the set

Y � Y1 × · · · × Yn. (1)
Moreover, we use y0 � (y01, . . . , y0n) and y∗ � (y∗1 , . . . , y∗n)
to denote the least and most preferred outcomes in
set Y, respectively.
We denote the uncertain outcome of the jth project

by x̃j, which is technically a vector-valued random
variable whose realizations take values in the set Y
given by (1). The possible outcomes and distribution of
this randomvariable depend onwhether the jth project
is selected or not. To formalize this dependence, we
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denote the outcome of project j by x̃Fj if it is selected
(cf. funded) and by x̃Bj if not (cf. baseline; Clemen and
Smith 2009, Liesiö and Punkka 2014, Morton 2015).
The realizations of both of these random variables
belong to set Y. Thus, the uncertain outcome of the jth
project is formally given by

x̃j �
x̃Bj if zj � 0,

x̃Fj if zj � 1,

{
(2)

where the binary decision variable zj � 1 if the project
is included in the portfolio. If the baseline outcome is
deterministic and the same for all projects—which is a
common assumption in reported applications—we
will denote it by yB ∈ Y.

The expected utility of the jth project is thusE[u(x̃j)],
where themultiattributeutility functionu : Y → Rmaps
the multiattribute project outcomes in Y to a single-
dimensional utility. Perhaps the most widely used is
the additive utility function u(y) � ∑n

i�1 wiui(yi), where
ui : Yi → R is the marginal utility function for the ith
attribute andwi is the importanceweight of attribute i.

As an example of a real-life portfolio selection
problem with uncertain project outcomes, we con-
sider an application in healthcare resource allocation
by Airoldi et al. (2011). In this application, public
healthcare officials decide on a portfolio of inter-
ventions (i.e., projects) that seek to improve the
quality of life and reduce health inequalities in a
particular geographical area. Specifically,m � 23 project
candidates are evaluated with regard to n � 2 attri-
butes, namely, health benefits and health inequality
reduction. Moreover, the projects’ outcomes with
regard to these attributes are uncertain due to the
possibility that an intervention fails and does not
deliver the planned outcomes. The expected utility
for a funded project candidate j is E[u(x̃Fj )] � pju(xSj ) +
(1 − pj) u(xUj ), where pj is the success probability of the
intervention, and xSj and xUj represent its outcome in
case the intervention is successful or unsuccessful,
respectively (see Airoldi et al. 2011 for details). If a
project is not funded, it yields a baseline utility of zero
(i.e., E[u(x̃Bj )] � 0). The expected utilities (scaled here
between 0 and 1), implementation costs, and benefit-
to-cost ratios of the projects are shown in Table 1.

In applications, it is often assumed that the most
preferred portfolio is the one that maximizes the sum
of the (expected) utilities of the projects included in
the portfolio. If, for instance, there is a single budget
constraint and the baseline utility for each project is
zero, then the most preferred portfolio can be iden-
tified by solving the knapsack problem

max
zj∈ 0,1{ }

∑
j
zjE u x̃Fj

( )[ ] ⃒⃒⃒⃒∑
j
zjcj ≤ b

{ }
, (3)

where cj is the cost of implementing the jth project
and b is the budget. In case of the healthcare exam-
ple of Table 1, the portfolio that maximizes the
sum of the expected project utilities given a budget
of £1.6 million (approximately 30% of the cost of
implementing all projects) consists of projects j � 1
(Pneumonia) through j � 7 (Psych therapies), and
projects j � 9 (CAMHS school), j � 10 (Prevention),
and j � 12 (Cardiac rehab).
This portfolio recommendation assumes that the

DM’s preferences among portfolios are correctly cap-
tured by the sums of the expected utilities of projects
included in these portfolios. For instance, project
j � 10 (Prevention) with a cost of £650,000 is recom-
mended over the equally expensive combination of
projects j � 8 (Early detection and diagnostics), j � 13
(Alcohol misuse svc), and j � 19 (Active treatment),
because its expected utility (0.62) is higher than the
sum of the expected utilities of the three projects
(0.58). Nevertheless, the DMmight actually prefer the
three-project combination, because then the health
benefits obtained with this substantial amount of
resources would not be entirely contingent on the
success of a single project. What type of a utility
function would represent such preferences, and what
kinds of assumptions would these preferences need
to satisfy? To address these questions, the following
sections develop multilinear and multiplicative util-
ity functions whose underlying preference assump-
tions are less restrictive than those required by the

Table 1. Expected Multiattribute Utilities (Airoldi et al.
2011) and Costs of the Intervention Projects

Project j E[u(x̃Fj )] cj (k£) E[u(x̃Fj )]/cj
Pneumonia 1 0.7 75 0.1579
Dementia services 2 0.31 50 0.1036
TIA and secondary prevention 3 0.32 130 0.0415
Prison MH 4 0.27 150 0.0301
Obesity training 5 0.1 60 0.0288
Workforce development 6 0.16 100 0.0278
Psych therapies 7 0.18 120 0.0254
Early detection and diagnostics 8 0.34 300 0.0191
CAMHS school 9 0.16 160 0.0172
Prevention 10 0.62 650 0.0161
CAMHS 1:1 11 0.07 80 0.0158
Cardiac rehab 12 0.08 100 0.0129
Alcohol misuse svc 13 0.22 300 0.0126
Social inclusion 14 0.22 300 0.0125
Palliative and EOL 15 0.54 760 0.0119
Obesity 1:1 16 0.07 140 0.0087
Primary prevention 17 0.27 600 0.0077
Access to dental 18 0.19 480 0.0068
Active treatment 19 0.02 50 0.0062
Stroke emergency 20 0.2 600 0.0056
CHD acute 21 0.05 300 0.0026

Note. The projects are listed in a decreasing order of utility-to-cost
ratios E[u(x̃Fj )]/cj.

1889
Liesiö and Vilkkumaa: Nonadditive Multiattribute Portfolio Utility Functions
Operations Research, 2021, vol. 69, no. 6, pp. 1886–1908, © 2021 The Author(s)



additive portfolio utility function. In Section 7.2, we
revisit the above example on healthcare resource al-
location to analyze the differences in portfolios that
are optimal in view of these different utility functions.

3. Multilinear Portfolio Utility Functions
In PDA, decision alternatives correspond to project
portfolios. Since each project is modeled as a vector-
valued random variable x̃j with realizations in set Y,
each portfolio corresponds to a random variable x̃ �
(x̃1, . . . , x̃m) with realizations in the set

X � Y × · · · × Y⏟̅̅̅̅ ⏞⏞̅̅̅̅ ⏟
m sets

, (4)

where Y is given by (1) and m is the number of project
candidates. The set of all portfolios is denoted by X .
With a slight abuse of notation we use x to denote
the degenerate random variable in X whose outcome
is x � (x1, . . . , xm) ∈ X with probability one (i.e., es-
sentially a deterministic variable). Furthermore, we
use the notation xj instead of x̃j to highlight that the
outcome of the jth project is deterministic.

The DM’s preferences among portfolios in X are
captured by a complete and transitive relation �.
Specifically, x̃ � x̃′ denotes that portfolio x̃ is (weakly)
preferred to portfolio x̃′. Strict preference 	 and in-
difference ∼ are defined in the usual manner. Assuming
the relation � satisfies certain additional assump-
tions (i.e., independence and Archimedean axioms;
von Neumann and Morgenstern 1947), there exists a
utility function U : X → R that represents the DM’s
preferences � in the sense that

E U x̃( )[ ] ≥ E U x̃′( )[ ] ⇔ x̃ � x̃′ ∀x̃, x̃′ ∈ X . (5)
This utility function is unique up to positive affine
transformations, and hence, it can be scaled by fixing
the utility of any two portfolios. We choose the fol-
lowing scaling: zero utility is assigned to a portfolio
in which all projects have the worst outcome (U(y0,
y0, . . . , y0) � 0), and unit utility is assigned to a port-
folio in which the outcome of the first project is changed
to its most preferred level (U(y∗, y0, . . . , y0) � 1).

We make two assumptions on the preferences among
portfolios. The first assumption is that if two portfo-
lios have degenerate outcomes that are equal up to
the indexing of projects, then these portfolios are
equally preferred.

Assumption 1. Preferences are independent from proj-
ect indexing:

x1, x2, . . . , xj−1, xj, xj+1, . . .
( ) ∼ xj, x2, . . . , xj−1, x1, xj+1, . . .

( )
.

Note that Assumption 1 only requires that a portfolio
remains equally preferred if the outcomes of the first

and jth project are interchanged. However, this as-
sumption implies that the outcomes of any two projects
with indices j and k can be interchanged without affect-
ing preferences, because the repeated use of the as-
sumptionyields (x1,. . .,xj,. . .,xk,. . .)∼(xj,. . .,x1,. . .,xk,. . .)∼
(xk,. . .,x1,. . ., xj,. . .)∼(x1,. . .,xk,. . .,xj,. . .). Thus, the per-
mutation of project indexing does not affect portfolio
preferences. This implies that any portfolio utility
function that represents preferences satisfying As-
sumption 1 has to be symmetric.

The second assumption addresses preference be-
tween two portfolios inwhich only the outcome of the
first project is uncertain, and the deterministic out-
comes of the remaining projects are equal in both
portfolios. In particular, the assumption requires that
preference between these two portfolios is not af-
fected if the deterministic outcomes are changed.
Hence, Assumption 2 can be viewed as a requirement
that the first project is utility independent of the other
projects (cf. utility independent attributes; Keeney
and Raiffa 1976).

Assumption 2. Preferences for uncertain project outcomes
do not depend on the deterministic outcomes of the other projects:

x̃1, x2, x3, . . .( ) � x̃′1, x2, x3 . . .
( ) ⇒ x̃1, x′2, x

′
3, . . .

( )
� x̃′1, x

′
2, x

′
3, . . .

( )
.

Note that, even when combined with Assumption 1,
Assumption 2 only restricts preferences between pairs
of portfolios both of which have exactly the same de-
terministic outcomes for all projects except for one.
Thereby, Assumption 2 does not rule out the possi-
bility that preferences may be affected by stochastic
dependencies (e.g., correlation) between project out-
comes. Moreover, Assumption 2 does not prohibit
introducing resource synergies (or cannibalization
effects) to the portfolio model using the same mod-
eling techniques as with additive portfolio utility or
value functions (for details, see, e.g., Liesiö et al. 2008).
These techniques include adding dummy projects
that capture synergy effects (e.g., reduction in cost)
and linear constraints that ensure these dummy projects
can only be included in the portfolio if specific synergy
conditions are met (e.g., a specific combination of
projects is selected).

Together, Assumptions 1 and 2 ensure that themost
and least preferred project outcomes can be defined
based on preferences among portfolios: If the as-
sumptions did not hold, these outcomes might be
different for each project, and they could also depend
on the outcomes of other projects in the portfolio.
Moreover, the two assumptions make it possible to
define a project utility functionu over the set of possible
multiattribute project outcomes Y (Equation (1)). If
the assumptions did not hold, then assessing a utility
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function over project outcomes would not make sense,
because the shape of the function could depend on the
outcomes of other projects in the portfolio. Specifi-
cally, the two assumptions together imply that the
portfolio utility function is a symmetric multilinear
function of the project utility functions. This result is
formally stated by the following theorem.

Theorem 1. Assumptions 1 and 2 hold if and only if the
portfolio utility function U : X → R is multilinear:

U x1, . . . , xm( ) � ∑
J⊆ 1,...,m{ }

λ |J|( )∏
j∈J

u xj
( )∏

j/∈J
1 − u xj

( )( )
,

(6)
where u : Y → R is the project utility function

u y
( ) � U y, y0, . . . , y0

( )
(7)

and λ : N+ ∪ {0} → R is a strictly increasing function

λ k( ) � U y∗, . . . , y∗⏟̅̅̅⏞⏞̅̅̅⏟
k elements

, y0, . . . , y0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (8)

Furthermore, u(y0) �λ(0) �U(y0, . . . ,y0) � 0 and u(y∗) �
λ(1) � U(y∗, y0, . . . , y0) � 1.

Detailed proofs are presented in Appendix A, but
the approach for establishing Theorem 1 is relatively
intuitive. Assumption 2 requires project x1 to be
utility independent from the rest of the projects.
Moreover, Assumption 1 states that the preferences
do not depend onproject indexing,which extends this
utility independence assumption to hold for the other
projects x2, . . . , xm as well. Keeney and Raiffa (1976)
(theorem 6.3) establish that if each attribute is utility
independent, then preferences are represented by a
(in general, nonsymmetric) multilinear function (see
also Fishburn 1973, Farquhar 1975). Assumption 1
then implies additional constraints on the parame-
ters of this function that ensure preferences do not

depend on project indexing, which makes the func-
tion symmetric.
The resulting symmetric multilinear portfolio utility

function U utilizes only two objects to capture the
preference structure among portfolios: (i) the project
utility function u that maps the multiattribute project
outcomes y ∈ Y to real values, and (ii) the real-valued
parameters λ(k) that represent the utilities of port-
folios inwhich each project has either themost or least
preferred outcome. Figure 1 illustrates the effect
parameter λ has on the shape of the multilinear
portfolio utility function. In the middle panel, the
utility λ(2) � U(y∗, y∗) � 2.0 of a portfolio of two proj-
ects that both attain the most preferred outcome y∗ is
equal to the sumof theprojects’utilitiesu(y∗)+u(y∗)�2.0.
As a result, the utility of any portfolio is always equal
to the sum of the projects’ utilities. In the leftmost
(rightmost) panel, λ(2) is strictly below (above) 2.0,
which results in portfolio utilities that are always
strictly lower (higher) than the sum of the utilities of
the projects included in the portfolio.
Note that the choice of defining the project utility

function as the utility of a portfolio with all other
projects having the least preferred outcome (Equa-
tion (7)) is a convenient scaling choice rather than a
fundamental property of the model. In particular, if
the outcomes of the other projects were fixed to some
other levels x2, . . . , xm, then the resulting project utility
function u′ would be a positive affine transformation
of u. This is because

u′ y
( ) � U y, x2, . . . , xm

( )
� u y

( )
U y∗, x2, . . . , xm( ) −U y0, x2, . . . , xm

( )⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
�α

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+U y0, x2, . . . , xm
( )⏟̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅⏟

�β
,

where constants α > 0 and β do not depend on y.

Figure 1. (Color online) TheMultilinear Portfolio Utility Function (6) form � 2 Projects,When Parameter λ(2) Is Equal to 1.5, 2,
or 2.5
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Compared with the standard approach where port-
folio utility is computed as the sum of project utili-
ties, the preference elicitation effort is only increased
by the need to specify the additional parameters
λ(2), . . . , λ(m). Importantly, the number of these pa-
rameters increases only linearly in the number of
project candidates m, whereas applying general non-
symmetric multilinear utility functions (Keeney and
Raiffa 1976, theorem 6.3) in the portfolio context
would result in the number of preference parameters
growing exponentially in m.

4. Preference Elicitation
We develop two alternative approaches for the as-
sessment of the parameters λ. The first approach
can be used without having assessed the project
utility function u, but requires the DM to compare
only portfolios in which each project yields either
the most (y∗) or the least preferred (y0) outcome. The
second approach is more flexible in terms of the
outcomes of the compared portfolios, but requires
that the project utility function has been assessed.

In the first approach, the DM is asked to repeatedly
compare two portfolios of different types. One portfo-
lio has a deterministic outcome such that k proj-
ects have the most preferred outcome y∗, while the
remaining m − k projects have the least preferred
outcome y0. The outcome of the second portfolio is
uncertain with two possible outcomes: Either k + 1
projects have the most preferred outcome with proba-
bility p, or k − 1 projects have the most preferred
outcome with probability 1 − p. In both cases, the rest
of the projects have the least preferred outcome.
The DM is asked to adjust the value of p until the
portfolio with the deterministic outcome and the
portfolio with the uncertain outcome are equally pre-
ferred. Formally, for each k ∈ {1, . . . ,m − 1} the DM
is asked to determine a probability p ∈ (0, 1) such
that portfolios

x′ � y∗, . . . , y∗⏟̅̅̅⏞⏞̅̅̅⏟
k elements

, y0, . . . , y0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ and

x̃ �
y∗, . . . , y∗⏟̅̅̅⏞⏞̅̅̅⏟
k−1 elements

, y0, . . . , y0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ with probability 1 − p,

y∗, . . . , y∗⏟̅̅̅⏞⏞̅̅̅⏟
k+1 elements

, y0, . . . , y0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ with probability p

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(9)

are equally preferred. Evaluating the expected utili-
ties of these portfolios gives

E U x′( )[ ] � E U x̃( )[ ]

U y∗, . . . , y∗⏟̅̅̅⏞⏞̅̅̅⏟
k elements

, y0, . . . , y0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � 1 − p

( )

×U y∗, . . . , y∗⏟̅̅̅⏞⏞̅̅̅⏟
k−1 elements

, y0, . . . ,y0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ pU y∗, . . . , y∗⏟̅̅̅⏞⏞̅̅̅⏟
k+1 elements

, y0, . . . , y0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⇔ λ k( ) � 1 − p
( )

λ k − 1( ) + pλ k + 1( )
⇔ λ k + 1( ) − λ k( ) � 1

p
− 1

( )
λ k( ) − λ k − 1( )( ),

(10)
which is a linear equation with three variables λ(k − 1),
λ(k), and λ(k + 1). Repeating this process for all k �
1, . . . ,m − 1 results inm − 1 linear equations withm − 1
variables λ(2), . . . , λ(m), since λ(0) � 0 and λ(1) � 1
are fixed.
To illustrate the elicitation approach, consider again

the case on healthcare resource allocation presented in
Table 1. The DM is first asked to consider a portfolio
that contains one project that is a perfect success in
that it would yield the highest total health benefits
and largest decrease in healthcare inequalities at-
tainable for a single intervention; and 20 projects that
would have no impact on health or health inequality.
Then, the DM is asked to consider a portfolio with 19
projects that would have no health-related impacts,
and two projectswith uncertain outcomes in thatwith
probability p they would both be perfect successes
and with probability 1 − p they would both fail to
deliver any health-related impacts. Finally, the DM is
asked to adjust p such that the DM would be indif-
ferent between the two portfolios. If, for instance, the
DM would state that the success probability of the
two uncertain projects would need to be 80% for such
indifference, then Equation (10) together with λ(0) � 0
and λ(1) � 1 would yield

λ 2( ) � 1 + 1
0.8

− 1
( )

1 − 0( ) � 1
0.8

� 1.25.

Next, the DM is asked to consider a portfolio that
contains two projects that would be perfect successes
and 19 projects that would have no health-related
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impacts, and compare this to a portfolio which would
contain either (i) three perfectly successful projects
and 18 projects with no health-related impacts with
probability p or (ii) one perfectly successful project
and 20 projects with no health-related impacts with
probability 1 − p. Again, then DM is asked to adjust p
such that the DM would be indifferent between the
two portfolios. Given, for instance, p � 70%, we would
have λ(3) � 1.25 + (1/0.7 − 1)(1.25 − 1) � 1 + 0.25/0.7 ≈
1.36. Continuing in this vein, all values of λ(k) can
be determined.

The above approach relies on the most and least
preferred outcomes (y0, y∗). These outcomes should
be defined in such a way that they are attainable for
real-life projects and meaningful in the sense that the
DM can state preferences between portfolios that
include projects with these outcomes. However, in
some applications—like in our example on healthcare
resource allocation—it can be the case that actual
portfolios do not contain many projects with such
extreme outcomes, whereby imagining such portfo-
lios for the purposes of preference statements can be
cognitively too demanding.

To address this issue, we propose a second ap-
proach for assessing parameters λ in a way that al-
lows the DM to compare portfolios with arbitrary
outcomes y−, y+ ∈ Y such that y0 ≺ y− � y+ ≺ y∗. An
advantage of this approach is that it enables the an-
alyst to choose whichever y−, y+ that would make the
most sense to the DM in the given decision situation.
For instance, y− could be the outcome resulting from
not selecting a project (i.e., baseline utility yB) and y+
could be the outcome of an “average” project. A
second advantage of this approach is its apparent
simplicity from the DM’s perspective: although the
choice of assessment questions and the underlying
calculations can be somewhat demanding, the effort
required from the DM to respond to these questions is
moderate. A third advantage is related to the issue of
DMs providing inconsistent preference statements,
which is not unique to our context. In this approach,
the range of feasible responses to each elicitation
question can be readily computed a priori, thereby
mitigating the problem of inconsistency.

The key challenge in modeling preferences be-
tween arbitrary portfolios is that even indifference
between two deterministic outcomes x and x′ will
lead to constraint U(x) � U(x′), where both sides of
the equality are multilinear functions. A set of such
preference statements leads to a system of nonlinear
constraints, the solutions to which can be difficult
to find—especially in an interactive preference elici-
tation process that requires fast computation. The
key insight to overcome this challenge is that, even
though the portfolio utility function U is a nonlinear
function on X (4), it is linear in parameters λ given a

fixed portfolio outcome x ∈ X. Specifically, combining
the terms in the multilinear portfolio utility func-
tion (6) that correspond to subsets of equal sizes gives

U x( ) � ∑
J⊆ 1,...,m{ }

λ |J|( )∏
j∈J

u xj
( )∏

j/∈J
1 − u xj

( )( )
� ∑m

k�0
λ k( ) ∑

J⊆ 1,...,m{ }
s.t. |J|�k

∏
j∈J

u xj
( )∏

j/∈J
1 − u xj

( )( )
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

�νk x( )

� ∑m
k�0

λ k( )νk x( ),

which is a linear mapping of the vector (λ(0), λ(1), . . . ,
λ(m)) when portfolio outcomes x and the project
utility function u are fixed.
Suppose that the DM compares two portfolios x

and x̃, where x has a deterministic outcome and x̃ has
two possible outcomes x′ and x′′ whose probabilities
are p and (1 − p), respectively. Suppose the DM is
asked to adjust p until the DM is indifferent between
the two portfolios. In this case we obtain

E U x( )[ ] �E U x̃( )[ ]
⇔U x( ) � pU x′( )+ 1−p

( )
U x′′( )

⇔∑m
k�0

λ k( )νk x( ) � p
∑m
k�0

λ k( )νk x′( )

+ 1−p
( )∑m

k�0
λ k( )νk x′′( )

⇔∑m
k�0

λ k( ) νk x( )+p νk x′′( )−νk x′( )( )−νk x′′( )( )⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
�Ψk

� 0,

(11)
which is a linear constraint on the parameters λ(0),
λ(1), . . . , λ(m). An important implication of this result
is that it suffices for the DM to provide m − 1 pref-
erence statements of the form (11) to completely
specify λ as long as the resulting vectors [Ψ0, . . . ,Ψm]
are linearly independent. Thus, this result opens up
several possibilities to assess preferences, as find-
ing parameters λ that are consistent with the given
preference statements requires only solving a system
of linear equations.
The second elicitation approach builds on the above

result by allowing the DM to specify the utility func-
tions over portfolios

ẋk � y+, . . . , y+⏟̅̅̅ ⏞⏞̅̅̅ ⏟
k elements

, y−, . . . , y−
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, k ∈ 0, . . . ,m{ }, (12)

where y−, y+ ∈ Y such that y0 ≺ y− � y+ ≺ y∗. In par-
ticular, we propose a bisection-type technique which
resembles those commonly used to assess a utility

1893
Liesiö and Vilkkumaa: Nonadditive Multiattribute Portfolio Utility Functions
Operations Research, 2021, vol. 69, no. 6, pp. 1886–1908, © 2021 The Author(s)



function over a monetary scale. In this technique, the
DM is repeatedly asked to adjust probability p so that
portfolio ẋk is equally preferred to a portfolio whose
outcome is ẋk with probability p and ẋk with proba-
bility (1 − p), where k � �(k + k)/2�. The process begins
by determining the utilities of portfolios ẋ0 and ẋm by
comparing each of them to a portfolio the outcome of
which is (y∗, . . . , y∗)with probability p and (y0, . . . , y0)
with probability (1 − p), and adjusting p in both cases
in such a way that the DM would be indifferent be-
tween the two portfolios. In the third assessment
question we set k � 0, k � m, in the fourth question
k � 0, k � �m/2�, and in the fifth one k � �m/2�, k � m.
Questions after that would further specify the utilities
between the portfolios ẋ0, ẋ�m/4�, ẋ�m/2�, ẋ�3m/4�, and ẋm.
This process can be continued until it suffices to use
simple interpolation to obtain the utilities that re-
main unspecified.

Note that each of these preference statements in
general results in a linear constraint involving all the
parameters λ(0), . . . , λ(m). This is in contrast to pref-
erence statements of the form (9), which resulted in a
constraint on three values λ(k − 1), λ(k), and λ(k + 1).
The consequence of this is that the DM cannot assign
an arbitrary value to probability p in (11), as this could
result in a preference statement that is not consistent
with the statements the DM has already provided.
Fortunately, due to the fact that the statements result
in linear constraints on the parameters λ, the interval
of consistent values for probability p can be readily
identified with linear programming (LP). Suppose that
the DM has given L preference statements resulting in
constraints

∑m
k�0 λ(k)Ψl

k � 0, where l ∈ {1, . . . ,L}. Then,
the minimum utility for portfolio ẋk is

U � min
λ

∑m
k′�0

νk′ ẋk
( )

∑m
k′�0

λ k′( )Ψl
k′ � 0 ∀l ∈ 1, . . . ,L{ },

λ k′( ) ≤ λ k′ + 1( ) ∀k′ ∈ 1, . . . ,m − 1{ }, (13)
and the maximum utility U can be obtained by maxi-
mizing the objective function subject to the same con-
straints. Thus, probability pmust belong to the interval

p ∈ U −U ẋk
( )

U ẋk
( )

−U ẋk
( ) , U −U ẋk

( )
U ẋk
( )

−U ẋk
( )⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (14)

since portfolio utilities U(ẋk) and U(ẋk) have been
specified by the preceding preference statements.

To illustrate this preference assessment approach,
consider a situation in which the DM is selecting a
portfolio from m � 40 candidate projects and, for the
purposes of preference elicitation, feels comfortable

with comparing portfolios in which each project has
either outcome y− or y+ such that u(y−) � 0.1 and
u(y+) � 0.6. Preference elicitation question (11) is first
used to specify the utilities of portfolios ẋ0 � (y−, . . . , y−)
and ẋ40 � (y+, . . . , y+). Assume, for instance, that the
DM would be indifferent between portfolio ẋ0 �
(y−, . . . , y−) and a portfolio whose outcome was x∗ �
(y∗, . . . , y∗)with probability p � 0.1 and x0 � (y0, . . . , y0)
with probability (1 − p) � 0.9; and between portfolio
ẋ40 � (y+, . . . , y+) and a portfolio whose outcome
was x∗ � (y∗, . . . , y∗)with probability p � 0.7 and x0 �
(y0, . . . , y0) with probability (1 − p) � 0.3. These as-
sessmentswould result in preference statementsU(ẋ0) �
0.9U(x0) + 0.1U(x∗) and U(ẋ40) � 0.3U(x0) + 0.7U(x∗),
respectively. Figure 2(a) shows the entire range of
utilities that portfolios ẋk can achieve for different
values of λ satisfying these statements (cf. LP prob-
lem (13)). Next the DM is asked to assess probability p
such thatportfolio ẋ20 is equally preferred to a portfolio
that has outcome ẋ0 � (y−, . . . , y−)with probability 1 − p
and outcome ẋ40 � (y+, . . . , y+) with probability p.
Suppose the DM states that p � 0.7, which corre-
sponds to

U ẋ20
( )

� 0.3U ẋ0
( )

+ 0.7U ẋ40
( )

,

and results in the minimum and maximum utilities
shown in Figure 2(b). Figure 2(c) presents the utility
ranges after an additional preference statementU(ẋ10) �
0.5U(ẋ0) + 0.5U(ẋ20), and Figure 2(d) presents the
utility ranges after preference statement U(ẋ30) �
0.7U(ẋ20) + 0.3U(ẋ40). After the last preference state-
ment, the DM could continue the process by assessing
utilities of portfolios ẋ5, ẋ15, ẋ25, ẋ35. As the ranges of
feasible probabilities in (14) become narrower, however,
the DM might find the task of providing further as-
sessments futile. Hence, an alternative approach would
be for the analyst to simply choose some feasible solution
λ to LP problem (13), which would result in utilities
U(ẋk) that lie in the intervals shown in Figure 2(d).

5. Additive and Multiplicative Portfolio
Utility Functions

Certain types of preferences satisfyingAssumptions 1
and 2 can be represented with a special case of the
multilinear portfolio utility function that has a sim-
pler functional form. To characterize such prefer-
ences, we utilize preference elicitation question (9)
that involves a portfolio with a certain outcome and a
portfolio with two possible outcomes. In particular,
we first consider a setting in which the DM states
that these two portfolios are always equally preferred
as long as the two uncertain outcomes are equally
likely. Formally, such preferences satisfy the fol-
lowing assumption.
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Assumption 3. The portfolios

x � y∗, . . . , y∗⏟̅̅̅⏞⏞̅̅̅⏟
k elements

, y0, . . . , y0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ and

x̃ �
y∗, . . . , y∗⏟̅̅̅⏞⏞̅̅̅⏟
k−1 elements

, y0, . . . , y0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ with probability 0.5,

y∗, . . . , y∗⏟̅̅̅⏞⏞̅̅̅⏟
k+1 elements

, y0, . . . , y0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ with probability 0.5

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
are equally preferred for any k ∈ {2, . . . ,m}.

Clearly, this is quite a strong assumption.However,
this assumption is implicitly made in many multi-
attribute project portfolio selection applications, be-
cause it is necessary for representing the portfolio
utility as the sum of project utilities. The following
theorem shows that preferences satisfying Assump-
tion 3 in addition to those of Theorem 1 are repre-
sented by an additive portfolio utility function.

Theorem 2. Assumptions 1, 2, and 3 hold if and only if the
portfolio utility function U is additive:

U x( ) � ∑m
j�1

u xj
( )

, (15)

where u is the project utility function (7).

The additive portfolio utility function is the sym-
metric special case of the general nonsymmetric ad-
ditive multiattribute utility function, which repre-
sents preferences if and only if the attributes are
additive independent (see, e.g., Keeney and Raiffa
1976, theorem 6.4; Fishburn 1965). In particular, ad-
ditive independence means that if two uncertain
outcomes have equal marginal distributions on each
attribute, then the outcomes are equally preferred.
Thus, Assumptions 1–3 together imply that projects
x1, . . . , xm are additive independent and hence pref-
erences among portfolios depend only on the mar-
ginal distribution of each project outcome, not their
joint distribution. Indeed, Assumption 1 (symmetric
preferences) together with the assumption of addi-
tive independent projects would be sufficient for
representing preferences with the additive portfolio
utility function (15). However, in the portfolio con-
text, Assumptions 2 and 3 are perhaps easier for a DM
to verify than the less concrete (but more general)
concept of preferences not being affected by the joint
distribution of project outcomes.
Theorem 2 raises the question about how the portfolio

utility function would change in case the uncertain
outcomes in Assumption 3 were not equally likely. In
particular, consider a DM who states that the two
portfolios are always equally preferred as long as the
probabilities of the two outcomes are fixed to some

Figure 2. Ranges of Utilities that Portfolios ẋk, k ∈ {0, . . . , 40} (Equation (12)) Can Obtain After (a) Two, (b) Three, (c) Four,
and (d) Five Preference Statements

1895
Liesiö and Vilkkumaa: Nonadditive Multiattribute Portfolio Utility Functions
Operations Research, 2021, vol. 69, no. 6, pp. 1886–1908, © 2021 The Author(s)



values p∗ �� 1
2 and 1 − p∗. Such preferences are formally

defined by the following assumption.

Assumption 4. There exists p∗ ∈ (0, 12) ∪ (12 , 1) such that
the portfolios

x � y∗, . . . , y∗⏟̅̅̅⏞⏞̅̅̅⏟
k elements

, y0, . . . , y0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ and

x̃ �
y∗, . . . , y∗⏟̅̅̅⏞⏞̅̅̅⏟
k−1 elements

, y0, . . . , y0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, with probability 1 − p∗,

y∗, . . . , y∗⏟̅̅̅⏞⏞̅̅̅⏟
k+1 elements

, y0, . . . , y0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, with probability p∗

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(16)

are equally preferred for any k ∈ {2, . . . ,m}.
Preferences satisfying this assumption in addition

to the assumptions of Theorem 1 are represented by a
multiplicative portfolio utility function, as stated by
the following theorem.

Theorem 3. Assumptions 1, 2, and 4 hold if and only if the
portfolio utility function U is multiplicative:

U x( ) � 1
θ

∏m
j�1

1 + θu xj
( )( ) − 1

θ
, (17)

where u is the project utility function (7) and θ � 1/p∗ −
2 ∈ (−1, 0) ∪ (0,∞).

The multiplicative portfolio utility function is the
symmetric special case of the general nonsymmetric
multiplicative multiattribute utility function (Keeney
and Raiffa 1976, theorem 6.1), which represents pref-
erences if and only if the attributes are mutually utility
independent (i.e., each subset of attributes is utility
independent from its complement). Theorem 3 thus
shows that Assumptions 1, 2, and 4 together imply
that the projects are mutually utility independent.
Indeed, Assumption 1 together with the assumption
of mutually independent projects would be suffi-
cient to represent preferences with the multiplicative
portfolio utility function. However, in the portfolio
context, Assumptions 2 and 4 seem more convenient
to verify than mutual utility independence, which
would require checking the utility independence of
subsets of projects.

Compared with the additive portfolio utility function,
the multiplicative function contains one additional pa-
rameter θ. The value of this parameter depends on the
probability p∗ in Assumption 4 through formula
θ � 1/p∗ − 2. Thus, a negative θ corresponds to the
case p∗ > 0.5, and a positive θ corresponds to the
case p∗ < 0.5.

Parameter θ can also be interpreted as a measure
that captures the deviation from the additive portfolio
utility function. In particular, both additive and multi-
plicative portfolio utility functions assign the same
utility to a portfolio having a single project with the
most preferred outcome while the rest of the projects
have the least preferred outcome, that is, U(y∗, y0, . . . ,
y0) � 1. However, they assign a different utility for a
portfolio having two projects with the most preferred
outcome: the additive utility of this portfolio is U(y∗,
y∗, y0, . . . , y0) � 2, whereas the multiplicative utility is
U(y∗,y∗,y0, . . . ,y0) � 1

θ(1+θ)2− 1
θ� 2+θ. Thus,θ ∈ (−1,0)

implies a decreasing marginal utility of changing the
outcomes of projects from the least to the most pre-
ferred level, whereas θ ∈ (0,∞) implies an increasing
marginal utility. Moreover, when θ approaches zero,
the multiplicative portfolio function approaches the
additive portfolio utility function, as the probability
p∗ � 1/(θ + 2) approaches 0.5.

6. Optimization Models for Maximizing
Expected Portfolio Utility

In standard multiattribute decision problems, the
alternative with the highest expected utility can be
identified by simply evaluating the expected utility of
each of the mutually exclusive decision alternatives.
In portfolio problems, however, decision alternatives
(i.e., project portfolios) often cannot be explicitly
enumerated, but rather they are defined implicitly as
subsets of project candidates that satisfy relevant
resource and other constraints. Therefore, the prob-
lem of identifying the portfolio with the highest ex-
pected utility has to be formulated as an optimiza-
tion model.
In this section, we show that the problem of identify-

ing the portfolio that maximizes the expected multi-
linear utility under linear constraints can be formu-
lated as aMILP problem. In particular, the section first
develops a MILP formulation suitable for a setting in
which the project outcomes are stochastically inde-
pendent, and then extends this formulation to capture
stochastic dependencies. Section 6.1 then develops
a computationally less demanding formulation for
settings in which the portfolio utility function is
multiplicative and project outcomes are stochasti-
cally dependent. These results contribute to the practical
applicability of the developed preference models as
they enable the use of standard off-the-shelf optimi-
zation software to produce decision recommendations.
To formulate an optimizationmodel for identifying

the portfolio with the highest expected utility, we
utilize binary decision variables z � (z1, . . . , zm)T, where
zj � 1 if the jth project candidate is included in the
portfolio. A feasible portfolio satisfies Az ≤ B, where
the elements of matrix A ∈ Rm×q and vector B ∈ Rq
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include the coefficients of q linear constraints. Such
linear constraints can be used to model limited re-
sources (budget), logical dependencies between project
decisions (e.g., follow-up projects), and interdepen-
dencies between the projects’ resource consumption
(e.g., synergies), for instance (see, e.g., Liesiö et al.
2008).With this notation, the portfolio thatmaximizes
expected utility is the optimal solution to the non-
linear integer programming (IP) problem

max
z∈ 0,1{ }m

E U x̃1, . . . , x̃m( )[ ], (18)

x̃j �
x̃Bj if zj � 0,

x̃Fj if zj � 1,
∀j ∈ 1, . . . ,m{ },

{
(19)

Az ≤ B, (20)
where random variables x̃F1 , . . . , x̃

F
m capture the un-

certain outcomes of the m project candidates in case
they are funded and x̃B1 , . . . , x̃

B
m capture their baseline

outcomes (cf. Equation (2)).
Evaluating the objective function of IP problem

(18)–(20) by using the definition of the multilinear
portfolio utility function (6) requires the enumeration
of all 2m subsets of the set {1, . . . ,m}. This seems to
indicate that there is little hope of building efficient
portfolio optimization models, because even the evalu-
ation of the objective function in a deterministic case
would require a computational effort that increases ex-
ponentially in the number of projects m. Fortunately,
U(x) can be evaluated efficiently by using a binomial
lattice as described by the following lemma.

Lemma 1. Let x � (x1, . . . , xm) ∈ X, and assume that δj,k,
j ∈ J, k ∈ {0, 1, . . . , j}, solve the system of linear equations:

For j � 1 : δ1,1 � u x1( ),
δ1,0 � 1 − u x1( ).

For j � 2, . . . ,m : δj,0 � 1 − u xj
( )( )

δj−1,0,
δj,k � 1−u xj

( )( )
δj−1,k

+u xj
( )

δj−1,k−1, k � 1, . . . , j− 1,

δj,j � u xj
( )

δj−1,j−1.

Then, U(x1, . . . , xm) � ∑m
k�0 λ(k)δm,k.

Lemma 1 allows us to formulate the multilinear
utility function as a system of linear constraints. If
project outcomes are stochastically independent, then
the project-specific expectations can be computed
prior to optimization, after which these expectations
can be mapped through U to obtain the expected
portfolio utility. This is because the expectation of the
sum (product) of independent randomvariables is the
sum (product) of the random variables’ expectations.
As a result, the expected utility maximizing portfolio

can be obtained by solving a MILP problem, as stated
by the following theorem.

Theorem 4. Assume that x̃1, . . . , x̃m are independent ran-
dom variables. Then, z∗ is an optimal solution to IP problem
(18)–(20) if and only if z∗ is an optimal solution to the
MILP problem

max
z,δ

∑m
k�1

λ k( )δm,k (21)
Az ≤ B, (22)
δj,k ≤ 1 − E u x̃Bj

( )[ ]( )
δj−1,k + E u x̃Bj

( )[ ]
δj−1,k−1

+ zj, j � 1, . . . ,m, k � 0, . . . , j, (23)
δj,k ≤ 1 − E u x̃Fj

( )[ ]( )
δj−1,k + E u x̃Fj

( )[ ]
δj−1,k−1

+ 1 − zj
( )

, j � 1, . . . ,m, k � 0, . . . , j, (24)
δj,k ∈ 0, 1[ ], j � 1, . . . ,m, k � 0, . . . , j, (25)
z ∈ 0, 1{ }m, (26)

where δ0,0 � 1 and δj,−1 � δj,j+1 � 0 for all j � 0, . . . ,m.

It is important to highlight that Theorem 4 does not
rule out the possibility of the attribute-specific out-
comes of an individual project being correlated. Spe-
cifically, solving the MILP problem gives the optimal
portfolio even if the components of each vector-valued
random variable x̃j are not stochastically independent.
However, Theorem 4 does assume that the outcomes
are stochastically independent across projects: the
probability of a specific project outcome does not
depend on the realized outcomes of other projects.
Note that, in case of uncertain baseline outcomes, this
assumption also rules out the possibility that the
baseline outcomes of projects would be stochastically
dependent. Moreover, the probability of a given
outcome for a funded project cannot depend on the
realizations of other projects’ baseline outcomes.
These independence assumptions may not be ap-

propriate in applications where some exogenous un-
certainties affect the outcomes of all projects. For in-
stance, revenues from research and development
projects can depend on the growth of a specific
market, which results in correlated project outcomes.
Such dependencies among project outcomes can be
modeled by extending the MILP model (21)–(26) to
capture the projects’ outcomes in several states (cf.
scenarios). For this purpose we introduce an integer-
valued random variable s̃ that indicates which of the d
states is realized. Furthermore, we assume that the
states are constructed in such a way that the project
outcomes are conditionally independent given the
state, that is, P(x̃j � xj|x̃i � xi, s̃� s) �P(x̃j � xj|s̃� s) when
j �� i. This allows us to compute the expected portfolio
utility conditioned on a specific state with the same
approach that is used in Theorem 4 to compute the
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portfolio utility across projects whose outcomes are
stochastically independent (cf. constraints (23)–(25)).
The state-specific conditional expected utilities can
then be aggregated in the objective function tomaximize
the expectedportfolioutility across the states. This results
in the MILP model

max
z

δ1,...,δd

∑d
s�1

∑m
k�1

P s̃ � s( )λ k( )δsm,k,

δsj,k ≤ 1 − E u x̃Bj
( )

|s̃ � s
[ ]( )

δsj−1,k

+ E u x̃Bj
( )

|s̃ � s
[ ]

δsj−1,k−1 + zj,

j � 1, . . . ,m, k � 0, . . . , j, s � 1, . . . , d,

δsj,k ≤ 1 − E u x̃Fj
( )

|s̃ � s
[ ]( )

δsj−1,k

+ E u x̃Fj
( )

|s̃ � s
[ ]

δsj−1,k−1 + 1 − zj
( )

,

j � 1, . . . ,m, k � 0, . . . , j, s � 1, . . . , d,
δsj,k ∈ 0, 1[ ], j � 1, . . . ,m, k � 0, . . . , j, s � 1, . . . , d,

Az ≤ B,

z ∈ 0, 1{ }m,
(27)

where δs0,0 � 1 and δj,−1 � δj,j+1 � 0 for all j� 0, . . . ,m,
s � 1, . . . , d.

6.1. Optimizing Additive and Multiplicative Portfolio
Utility Functions

Computationally less demanding optimization models
for maximizing the expected multilinear portfolio utility
can be formulated if some additional assumptions re-
garding preferences and the projects’ outcomes hold. In
particular, if preferences satisfy Assumption 3, the
portfolio utility function is additive (Theorem 2), and
hence, the objective function of IP problem (18)–(20)
can be written as

E U x̃1, . . . , x̃m( )[ ] � E
∑n
i�1

u x̃j
( )[ ]

� ∑n
i�1

E zju x̃Fj
( )

+ 1 − zj
( )

u x̃Bj
( )[ ]

even in cases where there are stochastic dependencies
among the projects’ outcomes. In this case, z∗ is an
optimal solution to the IP problem (18)–(20) if and
only if it is an optimal solution to the integer linear
programming (ILP) problem

max
z∈ 0,1{ }m

∑m
j�1

E u x̃Fj
( )[ ]

− E u x̃Bj
( )[ ]( )

zj

⃒⃒⃒⃒
Az ≤ B

{ }
. (28)

A similar ILP problem for identifying the most pre-
ferred portfolio can be formulated if preferences

satisfy Assumption 4, which implies that the portfolio
utility function takes a multiplicative form (Theorem 3).
However, this formulation requires that the projects’
outcomes are stochastically independent, as formally
stated by the following theorem.

Theorem 5. Assume that the portfolio utility function U is
multiplicative (see (17)) and x̃1, . . . , x̃m are independent
random variables. Then, z∗ is an optimal solution to IP
problem (18)–(20) if and only if it is an optimal solution to
the ILP problem

max
z∈ 0,1{ }m

∑m
j�1

1
θ
log

1 + θE u x̃Fj
( )[ ]

1 + θE u x̃Bj
( )[ ]

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠zj ⃒⃒⃒⃒ Az ≤ B

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭. (29)

It should be noted that the objective function value
of ILP problem (29) is not equal to the expected
portfolio utility, as was the case for (M)ILP problems
(21)–(26), (27), and (28). Theorem 5 only states that
the optimal solution of ILP problem (29) corresponds
to the portfolio that maximizes the multiplicative
portfolio utility function (17). Note also that the ar-
guments of the logarithmic functions in (29) are al-
ways positive, even though parameter θ can take also
negative values in the interval (−1, 0). Moreover, for
any project whose expected utility E[u(x̃Fj )] exceeds
the expected baseline utility E[u(x̃B)], the correspond-
ing objective function coefficient is positive regard-
less of the value of parameter θ ∈ (−1, 0) ∪ (0,∞). In
turn, if a project has an expected utility below the
baseline utility, then its objective function coefficient
is always negative. Hence, from a computational
point of view, optimization problem (29) is equivalent
to (28) in that both of them are (multiconstraint)
knapsack problems.

Extending ILP problem (29) to handle dependent
project outcomes through the use of multiple states
(cf. MILP problem (27)) is not possible without the
model becoming nonlinear. This is because the proof
of Theorem 5 relies on taking a logarithm of the mul-
tiplicative portfolio utility function to enable additive
aggregation across the contributions of each project
to the overall portfolio utility. With multiple states,
this approach could be used to obtain the logarithm of
the conditional expectations of portfolio utility in each
state. However, the aggregation of these state-specific
logarithmic expected utilities into an overall expected
utility would not be a linearmapping. Nevertheless, in
problems with stochastically dependent project out-
comes and a multiplicative portfolio utility function,
the optimal portfolio can be identified by solving
MILP problem (27), because the multiplicative port-
folio utility function is a special case of the multilinear
portfolio utility function.
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7. Effect of Multilinear Portfolio Utility
Function on Decision Recommendations

In general, the multilinear portfolio utility function—
and its special case, themultiplicative portfolio utility
function—will yield different expected utilities for
the feasible portfolios than the widely employed
additive portfolio utility function. However, because
themost important output of decision analysis models
are the decision recommendations, the key question
is whether the portfolios that optimize the expected
multilinear utility functions differ from those that
maximize additive utility, that is, whether these port-
folios consist of different projects. To address this
question we conducted two studies: The first study is
based on generating random instances of project port-
folio selection problems and then comparing the op-
timal portfolios corresponding to additive, multipli-
cative, and multilinear portfolio utility functions. The
second study applies different multilinear utility func-
tions to real data from healthcare resource allocation.

7.1. Simulation Study
We generated 150 instances of project portfolio se-
lection problems, each withm � 50 project candidates
and a single budget constraint that limits the total
portfolio cost to be at most 50% of the sum of the costs
of all candidate projects. The randomly generated
project costs cj and expected utilities E[u(x̃Fj )] have
uniform marginal distributions, and their joint dis-
tribution is a Gaussian copula. Problem instances
were generated using values 0.3, 0.6, and 0.9 for the
copula’s correlation coefficient ρ. The least preferred

outcome y0 is used as the common baseline yB, which
results in E[u(x̃Bj )] � u(yB) � u(y0) � 0.
For each problem instance, the following compu-

tationswere carried out. First, Theorem 5was utilized
to find the portfolios zθ that maximize the expected
multiplicative utility (17) for different values of pa-
rameter θ ∈ {−0.9,−0.8, . . . ,2.9,3} \ {0}. Second, prob-
lem (28) was solved to find a benchmark portfolio zA

that maximizes the expected additive utility (15).
Finally, two measures were computed to capture the
difference between the benchmark portfolios zA and
zθ for different values of θ: (i) the share of different
project decisions Δ(θ) � ∑m

j�1 |zθj − zAj |/m, and (ii) the
share of the optimal expected multiplicative utility
achieved by the benchmark portfolio, that is, Δ′(θ) �
EUθ(zA)/EUθ(zθ), where EUθ(z) denotes the expected
multiplicative utility of portfolio z. Recall that the
multiplicative portfolio utility function approaches
the additive function when parameter θ approaches
zero, whereby we can define Δ(0) � 0 and Δ′(0) � 1.
Figure 3 illustrates the differences between decision

recommendations resulting from the additive and
multiplicative portfolio utility functions for different
values of ρ and θ. In particular, the solid black line
shows the share of different project decisions Δ(θ)
across all problem instances, and the dashed black
lines show the 5th and 95th percentiles. Notably,
even when the multiplicative portfolio utility func-
tion is close to the additive one (i.e., θ is close to zero),
the decision recommendations given by the two
functions can be different. The gray lines show the
share of the optimal expected utility achieved by the

Figure 3. Share of Changed Project Decisions (Black) and Relative Loss in Expected Multiplicative Utility (Gray) When the
Portfolio Maximizing the Expected Additive Portfolio Utility Is Selected Instead of the Portfolio Maximizing the Expected
Multiplicative Utility with Parameter θ.

Note. Solid lines show the averages, and dashed lines show the 5th and 95th percentiles.
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benchmark portfolio Δ′(θ) with the solid line corre-
sponding to the average and the dashed lines corre-
sponding to the 5th and 95th percentiles. For negative
values of θ (corresponding to a decreasing marginal
utility of changing the outcomes of projects from the
least to the most preferred level), the expected mul-
tiplicative utility of the benchmark portfolio is very
close to that of the optimal portfolio although the
composition of the portfolios is different. This indi-
cates that, with negative values of θ, the multiplica-
tive portfolio utility function has a flat optimum in
which portfolios close to the optimal portfolio have
almost identical expected utilities. For large values of
θ and ρ (i.e., when the marginal utility of project
outcomes is strongly increasing and the projects’ costs
and expected utilities are highly correlated), the bench-
mark portfolio may yield only half of the optimal ex-
pected utility. This is because, for higher values of
parameter θ, the optimal portfolios contain more
projects, that is, projects whose costs are on average
lower. The effect becomes more prominent when
the projects’ costs and expected utilities are highly
correlated: With ρ � 0.3, the average number of proj-
ects in the optimal portfolio increases from approx-
imately 28 to 31 as θ changes from −1 to 3, whereas
with ρ � 0.9 this number increases from approxi-
mately 22 to 32.

Figure 4 shows results from a similar analysis
in which decision recommendations resulting from
the additive portfolio utility function are compared
with those provided bymultilinear utility function (6)
with λ-parameters specified by the S-shaped sigmoid

curve λ(k) � 1/(1+exp(−γ(k−15))). Specifically, these
results are based on solving 150 problem instances
with m � 30 projects for different values of parameter
γ ∈ (0, 1]. When γ approaches zero, then λ(k) becomes
linear in k, in which case the multilinear portfolio
utility function is arbitrarily close to the additive
utility function (cf. proof of Theorem 2). In turn, in-
creasing the value of γ results in function λ(k) devi-
ating more from the linear function k, thus increasing
the difference between the multilinear and additive
portfolio utility functions. This difference also affects
the composition of the optimal portfolios: the larger
the value of γ, the more low-cost projects are included
in the optimal portfolio. As was the case with mul-
tiplicative portfolio utility functions, this effect be-
comes stronger as ρ increases.
Results from Figures 3 and 4 suggest that the use of

the additive portfolio utility function in cases where
preferences do not satisfyAssumption 3 ismore likely
to yield erroneous decision recommendations and
loss in expected portfolio utility when the projects’
expected utilities and costs are correlated. This ob-
servation is intuitive: If there is little or no correlation
between the expected utilities and costs, projects
with a low cost and high utility are clear choices to
include in the portfolio, and small changes in the
portfolio utility function are not likely to change these
choices. However, if the utilities and costs are highly
correlated, then preference between a high-cost, high-
utility project and a project with a low cost and low
utility can be highly contingent on the form of the
portfolio utility function.

Figure 4. Share of Changed Project Decisions (Black) and Relative Loss in Expected Multilinear Utility (Gray) When the
Portfolio Maximizing the Expected Additive Portfolio Utility Is Selected Instead of the Portfolio Maximizing the Expected
Multilinear Utility with Parameters λ(k) � 1/(1 + exp(−γ(k − 15))).

Note. Solid lines show the averages, and dashed lines show the 5th and 95th percentiles.

1900
Liesiö and Vilkkumaa: Nonadditive Multiattribute Portfolio Utility Functions

Operations Research, 2021, vol. 69, no. 6, pp. 1886–1908, © 2021 The Author(s)



7.2. Application to Real Data
Besides helping to identify which project proposals to
implement, PDAmodels can also be used to select the
appropriate usage levels of resources (e.g., budget). A
common approach to this end is to solve the optimal
portfolios for a wide range of different budget levels
and then to visualize the optimal expected portfolio
utility as a function of the budget level. This visual-
ization provides the DMs with clear information
about, for instance, the marginal utility of increasing
the budget or the amount of utility that would be lost
if the budget was cut by a certain amount. Indeed, the
user interfaces of many PDA software tools are built
around graphs visualizing the efficient budget-utility
frontier (see, e.g., Lourenço et al. 2012).

To examine the impact that the choice of the portfolio
utility function has on both project-specific decision
recommendations and the efficient frontier, we revisit
the case on healthcare resource allocation discussed
in Sections 2 and 4 (Airoldi et al. 2011; see Table 1).
We solved the expected utility maximizing portfolios
for all budget levels using three portfolio utility
functions: additive, multiplicative, and multilinear.
The multiplicative utility function (17) uses param-
eter value θ � − 1

3, which corresponds to the case in
which Assumption 4 holds for probability p∗ � 0.6.
For instance, a single project with the most preferred
outcome is equally preferred to a portfolio of two
projects, both receiving the most preferred outcome
with a 60% probability and the least preferred out-
come with a 40% probability. For the multilinear
utility function (6), the parameters λ are specified us-
ing the S-shaped sigmoid function λ(k) � 1/ 1+exp(−(
(k−11))). This corresponds to setting in which the DM
assesses the probability p in preference elicitation
question (9) to be less than 50%when k < 11 andmore
than 50% when k > 11 (cf. risk-seeking for small
portfolios, and risk-averse for large portfolios).

Figure 5(a) shows the expected utilities of the op-
timal portfolios corresponding to the three portfolio
utility functions as a function of the budget level.
Notably, the choice of the portfolio utility function
has a significant impact on the shape of the efficient
frontier. For instance, the use of the additive portfolio
utility function suggests that a budget of approxi-
mately £2.5 million is required to achieve 70% of the
benefits that would be obtained by implementing all
interventions. However, the use of the multiplicative
portfolio utility function suggests that 70% of the
maximal benefit can be achieved already with a £1
million budget. This exemplifies that the functional
form of the portfolio utility function can have a sig-
nificant impact on the level of total resource usage if
this level is chosen based on the efficient budget-
utility frontier.

Figure 5, (b)–(d), showswhich projects are included
in each of the three optimal portfolios for different
budget levels. For instance, project Pneumonia ( j � 1)
with the highest utility-to-cost ratio is included in the
optimal portfolio for all three utility functions at all
budget levels exceeding its cost of £75K. In turn,
project Active treatment ( j � 19) jumps in and out of
the optimal portfolio throughout the budget interval
for each of the three utility functions. This is because
the project is the least expensive but also has a very
low expected utility, whereby it is included in the
portfolio only when the budget constraint impedes
the selection of another project that would yield
higher utility but at a higher cost.
For many budget levels, the composition of the

optimal portfolio is independent of which of the three
portfolio utility functions is used. The similarity of
the optimal portfolios implied by different portfolio
utility functions seems intuitive in view of the sim-
ulation results of Section 7.1, as the correlation be-
tween the projects’ costs and expected utilities in
these data (Table 1) is approximately 0.37. Further-
more, these differences in project decisions lead to
only small differences in the expected portfolio util-
ities. In particular, suppose that the true preferences
are captured by the multilinear utility function, but
nevertheless, the portfolio optimizing the expected
additive utility function is selected. The worst-case
loss in expected multilinear utility of this portfolio
choice is some 10% across all budget levels. In turn, if
the true preferences are captured by the multiplica-
tive utility function, selecting the additive utility
maximizing portfolio results in less than 1% loss in
expectedmultiplicative portfolio utility. Note that the
similarity of the optimal portfolios depends on the
choices of parameter values θ and γ. If these values
were chosen such that the corresponding multilinear/
multiplicative utility function deviated more from
the additive one, there would generally be larger
differences in the optimal portfolios and higher util-
ity losses.
Nevertheless, for some budget levels there are

differences between the optimal portfolios. One such
instance is at budget level £1.6 million, where each of
the three optimal portfolios (marked with asterisks in
Figure 5, (b)–(d)) contains projects j � 1 (Pneumonia)
through j � 4 (Prison MH), project j � 6 (Workforce
development), and project j � 7 (Psych therapies)
with a combined cost of £625K. Under multiplicative
portfolio utility, the remaining budget of £975K is
used to fund only two projects j � 8 (Early detection
and diagnostics) and j � 10 (Prevention) with an
average cost of £475K and average expected utility
of 0.48. On the other hand, using the multilinear
portfolio utility function results in allocating the
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remaining budget to six projects with an average
cost of approximately £162K and average expected
utility of 0.15. The optimal portfolio under additive
portfolio utility falls between these two extremes: the
remaining budget is allocated to four projects, the
average cost and expected utility of which are £243K
and 0.24, respectively. Interestingly, the multilinear
portfolio utility function recommends selecting the
combination of three projects j � 8 (Early detection
and diagnostics), j � 13 (Alcoholmisuse svc), and j � 19
(Active treatment) instead of the expensive project

j � 10 (Prevention) recommended by the additive
model. In this sense, the multilinear utility function
captures the preferences of our hypothetical DM in
Section 2, who was reluctant to allocate a large share
of the budget to a single expensive project.

8. Discussion and Conclusions
This paper advances both the theory and practice of
PDA. In particular, the paper develops an axiomatic
theory of utility functions that can be used to sup-
port project portfolio selection in view of multiple

Figure 5. Expected Utility (a) and Composition (b, c, d) of Optimal Portfolios for Different Budget Levels When Using the
Additive (Black), Multiplicative (Dark Gray), and Multilinear (Light Gray) Utility Function

Notes. The budget levels for which a particular project is included in the optimal portfolio are colored. Projects that are included in the optimal
portfolio at budget level £1.6 million are indicated with asterisks. The projects are listed in a decreasing order of utility-to-cost ratios E[u(x̃Fj )]/cj.
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attributes and uncertain project outcomes. This the-
ory shows that if (i) preferences between portfolios
are independent of project indexing and (ii) prefer-
ence between two uncertain project outcomes is not
affected by the outcomes of other projects, then these
preferences can be represented with a multilinear
portfolio utility function. The paper also presents
techniques that can be used to assess these portfolio
utility functions based on preference statements given
by the DM. Moreover, the paper develops optimiza-
tion models for identifying the portfolio of projects
that yields maximal expected utility, when feasible
combinations of projects that can be implemented are
defined implicitly through resource and other port-
folio constraints.

We also established a solid axiomatic foundation
for modeling portfolio utility as the sum of the projects’
multiattribute utilities; an approach that is widely
used in practical applications. In particular, such an
additive portfolio utility function is obtained as a
special case of the multilinear portfolio utility func-
tion when preferences between certain and uncertain
portfolio outcomes have a specific structure. Con-
versely, multilinear portfolio utility functions extend
additive portfolio utility functions by providingmore
flexibility in that they are able to represent a richer
variety of preferences.

The developed theory also includes conditions under
which preferences can be modeled by multiplicative
portfolio utility functions, in which portfolio utility
is obtained as a product of scaled project utilities.
Compared with the additive portfolio utility function,
the multiplicative utility function contains only one
additional real-valued parameter to be assessed based
on the DM’s preferences, but makes it possible to
adjust the level of risk-aversion/nonconstant mar-
ginal utility at the portfolio level. Moreover, maxi-
mizing the expected multiplicative portfolio utility
leads to a simple knapsack problem, as long as the
projects’ outcomes are stochastically independent.
Hence, the multiplicative portfolio utility function
offers a readily implementable and computationally
straightforward alternative for applications in which
the preference assumptions underlying the additive
portfolio utility function are not appropriate.

The application of the developed portfolio utility
functions to real and randomly generated data sets
shows that the choice of the utility function can be
expected to influence the decision recommendations
obtained from PDA. For instance, our results suggest
that the use of an additive portfolio utility function
in a setting where preferences are compatible with a
multiplicative utility function can lead to selecting a
portfolio in which one third of the project-specific

recommendations are erroneous. This finding is partic-
ularly important, because the additive portfolio utility
function is commonly used in applications, but little
effort seems to be put into verifying whether the
preference assumptions underlying this utility func-
tion actually hold. The tools developed in this paper
can be used to examine the sensitivity of the decision
recommendations when a multilinear or a multipli-
cative portfolio utility function is used instead of an
additive one.
This paper opens up several avenues for future

research. First, applied research deploying multi-
linear and multiplicative portfolio utility functions in
real-life cases is needed to create understanding on
how readily DMs are able to answer the preference
assessment questions that are required to specify
nonadditive portfolio utility functions. Second, the
preference assessment process could benefit from the
development of methods to provide decision rec-
ommendations based on incomplete preference in-
formation (cf. Montiel and Bickel 2014, Fliedner and
Liesiö 2016). Finally, the axiomatic theory developed
here could be extended to handle a more diverse
family of portfolio preferences by further relaxing
some of the underlying preference assumptions.

A. Proofs

Proof of Theorem 1. Tomake the proof compact wewill
utilize the results of Keeney and Raiffa (1976) that build
on the results by Fishburn (1973) and Farquhar (1975).
Assumption 2 implies that x1 is utility indepen-

dent from x2, . . . , xm. Together Assumptions 1 and 2
imply that each xj is utility independent from the
other projects x1, . . . , xj−1, xj+1, . . . , xm. Theorem 6.3 of
Keeney and Raiffa (1976) then states that U must be
multilinear. In particular, we will here utilize the
fact that according to equation (6.28) (proof of theo-
rem 6.3 in Keeney andRaiffa (1976)) anymultilinearU
must satisfy

U x1, . . . , xj−1, y, xj+1, . . . , xm
( )
� U y0, . . . , y0⏟̅̅̅⏞⏞̅̅̅⏟

j−1 elements

, y, y0, . . . , y0⏟̅̅̅⏞⏞̅̅̅⏟
m−j elements

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×U x1, . . . , xj−1, y∗, xj+1, . . . , xm( )
+ 1 −U y0, . . . , y0⏟̅̅̅⏞⏞̅̅̅⏟

j−1 elements

, y, y0, . . . , y0⏟̅̅̅⏞⏞̅̅̅⏟
m−j elements

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×U x1, . . . , xj−1, y0, xj+1, . . . , xm
( )

.

Moreover, Assumption 1 implies that the value of
U(y0, . . . , y0, y, y0 . . . , y0) does not depend on the index
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of y, and hence, we can denote u(y) � U(y, y0, . . . , y0) �
U(y0, . . . , y0, y, y0 . . . , y0) to obtain

U x1, . . . , xj−1, y, xj+1, . . . , xm
( )
� u y

( )
U x1, . . . , xj−1, y∗, xj+1, . . . , xm( )

+ 1 − u y
( )( )

U x1, . . . , xj−1, y0, xj+1, . . . , xm
( )

,

which holds for any index of y. This equality can be
used repeatedly for U(x1, . . . , xm) to obtain

U x1, . . . , xm( )
� u x1( )U y∗, x2, . . . , xm( ) + 1 − u x1( )( )
×U y0, x2, . . . , xm

( )
� u x1( ) u x2( )U y∗, y∗, x3, . . . , xm( )[
+ 1 − u x2( )( )U y∗, y0, x3, . . . , xm( )]
+ 1 − u x1( )( ) u x2( )U y0, y∗, x3, . . . , xm( )[
+ 1 − u x2( )( )U y0, y0, x3, . . . , xm

( )]
� u x1( )u x2( )U y∗, y∗, x3, . . . , xm( )
+ u x1( ) 1 − u x2( )( )U y∗, y0, x3, . . . , xm( )
+ 1 − u x1( )( )u x2( )U y0, y∗, x3, . . . , xm( )
+ (1 − u(x1)) 1 − u x2( )( )U y0, y0, x3, . . . , xm

( )
. . .

� ∑
J⊆ 1,...,m{ }

∏
j∈J

u xj
( )∏

j/∈J
1 − u xj

( )( )[

×U ŷ1 J( ), . . . , ŷm J( )( )]
,

where ŷj(J) � y∗ if j ∈ J and ŷj(J) � y0 otherwise.
Assumption 1 impliesU(ŷ1(J), . . . , ŷm(J)) � U(ŷ1(J′), . . . ,
ŷm(J′))whenever |J| � |J′| � k. Let us denote this utility
by λ(k). This yields

U x1, . . . , xm( ) � ∑
J⊆ 1,...,m{ }

λ |J|( )∏
j∈J

u xj
( )∏

j/∈J
1 − u xj

( )( )
.

To show that λ(·) is strictly increasing, assume that
λ(k + 1) ≤ λ(k) for some k ∈ {0, . . . ,m − 1}. Then,

U y∗, . . . , y∗⏟̅̅̅⏞⏞̅̅̅⏟
k+1 elements

, y0, . . . , y0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ U y∗, . . . , y∗⏟̅̅̅⏞⏞̅̅̅⏟
k elements

, y0, . . . , y0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⇔ E U y∗, . . . , y∗⏟̅̅̅⏞⏞̅̅̅⏟
k+1 elements

, y0, . . . , y0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ E U y∗, . . . , y∗⏟̅̅̅⏞⏞̅̅̅⏟
k elements

, y0, . . . , y0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇔ y∗, . . . , y∗⏟̅̅̅⏞⏞̅̅̅⏟
k+1 elements

, y0, . . . , y0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � y∗, . . . , y∗⏟̅̅̅⏞⏞̅̅̅⏟

k elements

, y0, . . . , y0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Assumption 2⇒ y∗,x2, . . . ,xm( )� y0,x2, . . . ,xm
( )

,

which violates the assumption that y∗ is strictly
preferred to y0.
Multilinear utility function U(x1, . . . , xm) is clearly

symmetric, which implies that Assumption 1 holds.
As U is a special case of the general nonsymmetric
multilinear function (Keeney and Raiffa 1976, theo-
rem 6.3), then each xj is utility independent, and thus,
Assumption 2 holds. □

Proof of Theorem 2. Using the general form of mul-
tilinear functions used in theorem 6.3 of Keeney and
Raiffa (1976) we can write the symmetric multilinear
portfolio utility function as

U x( ) � ∑
J⊆ 1,...,m{ }

κ |J|( )∏
j∈J

u xj
( )

, where

κ k( ) � λ k( ) − ∑
J′⊂ 1,...,k{ }

κ |J′|( ). (30)

If Assumption 3 holds, then for any k � 2, . . . ,m − 1,

U y∗, . . . , y∗⏟̅̅̅⏞⏞̅̅̅⏟
k elements

, y0, . . . , y0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � 1

2
U y∗, . . . , y∗⏟̅̅̅⏞⏞̅̅̅⏟

k−1 elements

, y0, . . . , y0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ 1
2
U y∗, . . . , y∗⏟̅̅̅⏞⏞̅̅̅⏟

k+1 elements

, y0, . . . , y0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⇔ λ k( ) � 1
2
λ k − 1( ) + 1

2
λ k + 1( )

⇔ λ k + 1( ) � 2λ k( ) − λ k − 1( ),
which together with λ(0) � U(y0, . . . , y0) � 0 and λ(1) �
U(y∗, y0, . . . , y0) � 1 implies λ(k) � k for k � 0, . . . ,m.
Evaluating κ gives κ(0) � λ(0) � 0, κ(1) � λ(1) � 1,

and

κ k( ) � λ k( ) − ∑
J′⊂ 1,...,k{ }

|J′|�1

κ |J′|( ) + ∑
J′⊂ 1,...,m{ }

|J′ |>1

κ |J′|( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� k − k κ 1( )⏟⏞⏞⏟
�1

− ∑
J′⊂ 1,...,k{ }

|J′ |>1

κ |J′|( ) � − ∑
J′⊂ 1,...,k{ }

|J′ |>1

κ |J′|( ),

which implies κ(k) � 0 for all k ∈ {2, . . . ,m}. Thus,
U x( ) � ∑

J⊆ 1,...,m{ }
|J|�1

κ |J|( )∏
j∈J

u xj
( ) � ∑m

j�1
κ 1( )⏟⏞⏞⏟
�1

u xj
( )

.
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Since U(x) � ∑m
j�1 u(xj) is a special case of the mul-

tilinearU (6), Assumptions 1 and 2 hold. Assumption 3
holds since

1
2
U y∗, . . . , y∗⏟̅̅̅⏞⏞̅̅̅⏟

k−1 elements

, y0, . . . , y0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + 1

2
U y∗, . . . , y∗⏟̅̅̅⏞⏞̅̅̅⏟

k+1 elements

, y0, . . . , y0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 1
2

k + 1( )u y∗( ) + 1
2

k − 1( )u y∗( )
� ku y∗( ) � U y∗, . . . , y∗⏟̅̅̅⏞⏞̅̅̅⏟

k elements

, y0, . . . , y0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

Proof of Theorem 3. If Assumption 4 holds, then there
exists p∗ ∈ (0, 1), p∗ �� 1

2, such that for any k � 2, . . . ,m − 1
it holds that

U y∗, . . . , y∗⏟̅̅̅⏞⏞̅̅̅⏟
k elements

, y0, . . . , y0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � 1 − p∗( )

×U y∗, . . . , y∗⏟̅̅̅⏞⏞̅̅̅⏟
k−1 elements

, y0, . . . , y0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ p∗U y∗, . . . , y∗⏟̅̅̅⏞⏞̅̅̅⏟
k+1 elements

, y0, . . . , y0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⇔ λ k( ) � 1 − p∗( )
λ k − 1( ) + p∗λ k + 1( )

⇔ λ k + 1( ) � 1
p∗ λ k( ) − 1

p∗ − 1
( )

λ k − 1( )
⇔ λ k + 1( ) � θ + 2( )λ k( ) − θ + 1( )λ k − 1( ),

(31)

where θ � (1/p∗ − 2) ∈ (−1,∞) \ {0}.
We again utilize presentation (30) by Keeney and

Raiffa (1976) and show by induction that (31) implies
κ(k) � θk−1 for k ≥ 1. First, note that κ(0) � λ(0) � 0 and
κ(1) � λ(1) � 1 � θ0. Now assume that for any k′ ≤ k it
holds that κ(k′) � θk′−1. Solving λ(k) from (30) gives

λ k( ) � κ k( ) + ∑
J′⊂ 1,...,k{ }

κ |J′|( ) � θk−1 + 1 + θ( )k−1 − θk

θ
,

(32)
where the last equality is obtained by using the bino-
mial formula

∑
J′⊆{1,...,k} θ|J′ | � (1 + θ)k. Substituting (32)

into (31) gives

κ k + 1( ) + 1 + θ( )k+1−1 − θk+1

θ

� 2 + θ( ) θk−1 + 1 + θ( )k−1 − θk

θ

( )
− 1 + θ( ) θk−2 + 1 + θ( )k−1−1 − θk−1

θ

( )
⇔ κ k + 1( ) � θk.

Substituting κ(k) � θk−1 into (30) gives

U x( ) � ∑
J⊆ 1,...,m{ }

θ|J|−1 ∏
j∈J

u xj
( )

� 1
θ

∏m
j�1

1 + θu xj
( )( ) − 1

θ
,

which is the symmetric special case of the multipli-
cative utility function (Keeney and Raiffa 1976, the-
orem 6.1).
Assumptions 1 and 2 hold, since U(x) � 1

θ

∏m
j�1 (1 +

θu(xj)) − 1
θ is a special case of the multilinear U (6).

Furthermore, Assumption 4 holds with

p∗ � 1
θ + 2

⇔ 1 − p∗ � θ + 1
θ + 2

since

1− p∗( )
U y∗, . . . ,y∗⏟̅̅̅⏞⏞̅̅̅⏟

k−1 elements

,y0, . . . ,y0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ p∗U y∗, . . . ,y∗⏟̅̅̅⏞⏞̅̅̅⏟
k+1 elements

,y0, . . . ,y0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� θ+ 1
θ+ 2

1
θ

1+θ( )k−1− 1
θ

( )
+ 1
θ+ 2

1
θ

1+θ( )k+1− 1
θ

( )
� 1
θ+ 2

1
θ

1+θ( )k−1+θ

θ

( )
+ 1
θ+ 2

1
θ

1+θ( )k+1− 1
θ

( )
� 1
θ

1
θ+ 2

1+θ( )k−1−θ+ 1+θ( )k+1−1
( )

� 1
θ

1
θ+ 2

1+θ( )k θ+ 2( ) − θ+ 2( )
( )

� 1
θ

1+θ( )k−1
( )

�U y∗, . . . ,y∗⏟̅̅̅⏞⏞̅̅̅⏟
k elements

,y0, . . . ,y0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

Proof of Lemma 1. Reordering the summation in the
multilinear utility (6) gives

U x( ) � ∑
J⊆ 1,...,m{ }

λ |J|( )∏
j∈J

u xj
( )∏

j /∈J
1 − u xj

( )( )
� ∑m

k�0
λ k( ) ∑

J⊆ 1,...,m{ }
|J|�k

∏
j∈J

u xj
( )∏

j /∈J
1 − u xj

( )( )
.

Hence, the lemma can be proved by showing that
if δ∗j,k, j ∈ {1, . . . ,m}, k ∈ {0, 1, . . . , j}, is a solution to the
system of linear inequalities

δ1,0 � 1 − u x1( ), (33)
δ1,1 � u x1( ), (34)
δj,0 � 1 − u xj

( )( )
δj−1,0, (35)
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δj,k � 1 − u xj
( )( )

δj−1,k + u xj
( )

δj−1,k−1,
k � 1, . . . , j − 1, (36)

δj,j � u xj
( )

δj−1,j−1, (37)
then

δ∗m,k �
∑

J⊆ 1,...,m{ }
|J|�k

∏
j∈J

u xj
( )∏

j /∈J
1 − u xj

( )( )
. (38)

We show this by using induction. First, let m � 1,
in which case the system consists of constraints
(33)–(34). Then,

δ∗1,0 � 1 − u x1( ) � ∑
J⊆ 1{ }
|J|�0

∏
j∈J

u xj
( )∏

j /∈J
1 − u xj

( )( )
,

δ∗1,1 � u x1( ) � ∑
J⊆ 1{ }
|J|�1

∏
j∈J

u xj
( )∏

j /∈J
1 − u xj

( )( )
,

that is, (38) holds. Now, assume (38) holds for somem
and all k � 0, . . . ,m. Then, for m + 1, (35) gives

δm+1,0 � 1 − u xm+1( )( )δm,0 � 1 − u xm+1( )( )
× ∑

J⊆ 1,...,m{ }
|J|�0

∏
j∈J

u xj
( )∏

j /∈J
1 − u xj

( )( )
� 1 − u xm+1( )( ) ∏

j /∈ 1,...,m{ }
1 − u xj

( )( )
� ∑

J⊆ 1,...,m+1{ }
|J|�0

∏
j∈J

u xj
( )∏

j /∈J
1 − u xj

( )( )
.

Moreover, (36) gives for each k � 1, . . . ,m

δm+1,k � 1 − u xm+1( )( )δm,k + u xm+1( )δm,k−1
� 1 − u xm+1( )( ) ∑

J⊆ 1,...,m{ }
|J|�k

∏
j∈J

u xj
( )∏

j /∈J
1 − u xj

( )( )
+ u xm+1( ) ∑

J⊆ 1,...,m{ }
|J|�k−1

∏
j∈J

u xj
( )∏

j /∈J
1 − u xj

( )( )
� ∑

J⊆ 1,...,m+1{ }
|J|�k, m+1( ) /∈J

∏
j∈J

u xj
( )∏

j /∈J
1 − u xj

( )( )
+ ∑

J⊆ 1,...,m+1{ }
|J|�k, m+1( )∈J

∏
j∈J

u xj
( )∏

j /∈J
1 − u xj

( )( )
� ∑

J⊆ 1,...,m+1{ }
|J|�k

∏
j∈J

u xj
( )∏

j /∈J
1 − u xj

( )( )
.

Finally, (37) gives

δm+1,m+1 � u xm+1( )δm,m � u xm+1( )
× ∑

J⊆ 1,...,m{ }
|J|�m

∏
j∈J

u xj
( )∏

j /∈J
1 − u xj

( )( )
� u xm+1( ) ∏

j∈ 1,...,m{ }
u xj
( )

� ∑
J⊆ 1,...,m+1{ }

|J|�m+1

∏
j∈J

u xj
( )∏

j /∈J
1 − u xj

( )( )
.

Hence, (38) holds for m + 1 and any k � 1, . . . ,m + 1
and, therefore, by induction for any m. □

Proof of Theorem 4. For any z ∈ {z ∈ {0, 1}m |Az ≤ B},
the objective function value for IP problem (18)–(20) is

E U x̃1, . . . , x̃m( )[ ] where x̃j � x̃Bj if zj � 0,
x̃Fj if zj � 1.

{

We show that optimizing the MILP problem (21)–(26)
with respect to δ provides an equal objective func-
tion value for z. Since the objective function coefficient
of δm,k is λ(k) > 0, variables δm,1, . . . , δm,m are to be
maximized. Furthermore, variables δj,1, . . . , δj,j, j �
1, . . . ,m, are bounded from above by the values of
variables δj−1,1, . . . , δj−1,j−1 through constraints

δj,k ≤ 1 − E u x̃Bj
( )[ ]( )

δj−1,k + E u x̃Bj
( )[ ]

δj−1,k−1 + zj,

δj,k ≤ 1 − E u x̃Fj
( )[ ]( )

δj−1,k + E u x̃Fj
( )[ ]

δj−1,k−1 + 1 − zj
( )

.

Hence, the optimal values of these variables are
given by

δ∗j,k � min 1 − E u x̃Bj
( )[ ]( )

δj−1,k
{

+ E u x̃Bj
( )[ ]

δj−1,k−1 + zj, 1 − E u x̃Fj
( )[ ]( )

δj−1,k

+E u x̃Fj
( )[ ]

δj−1,k−1 + 1 − zj
( )}

�

1 − E u x̃Bj
( )[ ]( )

δj−1,k + E u x̃Bj
( )[ ]

δj−1,k−1
if zj � 0,

1 − E u x̃Fj
( )[ ]( )

δj−1,k + E u x̃Fj
( )[ ]

δj−1,k−1
if zj � 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
For j � 1, this results in linear constraints

δ∗1,0 � 1 − E u x̃B1
( )[ ]

,

δ∗1,1 � E u x̃B1
( )[ ]

if z1 � 0 and linear constraints

δ∗1,0 � 1 − E u x̃F1
( )[ ]

,

δ∗1,1 � E u x̃F1
( )[ ]

if z1 � 1 (since δ0,0 � 1, δ0,−1 � δ0,1 � 0). Similarly, for
any j ∈ {2, . . . ,m}, the optimal variables δ∗ satisfy
linear constraints

δ∗j,0 � 1 − E u x̃Bj
( )[ ]( )

δj−1,0,

δ∗j,k � 1 − E u x̃Bj
( )[ ]( )

δj−1,k + E u x̃Bj
( )[ ]

δj−1,k−1,

k � 1, . . . , j − 1,

δ∗j,j � E u x̃Bj
( )[ ]

δj−1,j−1
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if zj � 0 and linear constraints

δ∗j,0 � 1 − E u x̃Fj
( )[ ]( )

δj−1,0,

δ∗j,k � 1 − E u x̃Fj
( )[ ]( )

δj−1,k + E u x̃Fj
( )[ ]

δj−1,k−1,

k � 1, . . . , j − 1,

δ∗j,j � E u x̃Fj
( )[ ]

δj−1,j−1

if zj � 1 (since δj−1,−1 � 0, δj−1,j � 0). Thus, δ∗ is a solu-
tion to the system of linear inequalities of Lemma 1,
whereby∑m

k�1
λ k( )δ∗m,k �

∑m
k�0

λ k( )δ∗m,k

� ∑
J⊆ 1,...,m{ }

λ |J|( )∏
j∈J

E u x̃j
( )[ ]∏

j /∈J
1 − E u x̃j

( )[ ]( )
� E U x̃1, . . . , x̃m( )[ ],

where the last equality holds since U is multilinear.
Specifically, U(x̃1, . . . , x̃m) is obtained by summing
products of independent random variables u(x̃1), . . . ,
u(x̃m), and the expected value of the product of in-
dependent randomvariables is equal to the product of
the expected values of these random variables. □

Proof of Theorem 5. Let us denote Z � {z ∈ {0, 1}m |
Az ≤ B} and

x̃j � x̃Bj if zj � 0,
x̃Fj if zj � 1.

{
The optimal solution to IP problem (18)–(20) with a
multiplicative utility function is

z∗ ∈ argmax
z∈Z

E
1
θ

∏m
j�1

1 + θu x̃j
( )( ) − 1

θ

[ ]

� argmax
z∈Z

1
θ

∏m
j�1

1 + θE u x̃j
( )[ ]( ) − 1

θ
,

since random variables x̃1, . . . , x̃m are independent. Be-
cause logarithm is a monotonically increasing function,

z∗ ∈ argmax
z∈Z

1
θ
log

∏m
j�1

1 + θE u x̃j
( )[ ]( )( )

� argmax
z∈Z

1
θ

∑m
j�1

log 1 + θE u x̃j
( )[ ]( )

� argmax
z∈Z

1
θ

∑m
j�1

zj log 1 + θE u x̃Fj
( )[ ]( )(

+ 1 − zj
( )

log 1 + θE u x̃Bj
( )[ ]( ))

� argmax
z∈Z

1
θ

∑m
j�1

zj log 1 + θE u x̃Fj
( )[ ]( )(

− log 1 + θE u x̃Bj
( )[ ]( ))

� argmax
z∈Z

1
θ

∑m
j�1

zj log
1 + θE u x̃Fj

( )[ ]
1 + θE u x̃Bj

( )[ ]
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.
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