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ABSTRACT Electricity demand forecast is necessary for power systems’ operation scheduling and man-
agement. However, power consumption is uncertain and depends on several factors. Moreover, since the
onset of covid-19, the electricity consumption pattern went through significant changes across the globe,
which made the forecasting demand more challenging. This is mainly due to the fact that pandemic-driven
restrictions changed people’s lifestyles and work activities. This calls for new forecasting algorithms to more
effectively handle these conditions. In this paper, ensemble-based machine learning models are utilized
for this task. The lockdown temporal policies are added to the feature set in order to make the model
capable of correcting itself in pandemic situations and enhance data quality for the forecasting task. Several
ensemble-based machine learning models are examined for the short-term country-level demand prediction
model. Besides, the quantile random forest regression is implemented for a probabilistic point of view. For
case studies, the models are trained for predicting Germany’s country-level demand. The results indicate that
ensemble models, especially boosting and bagging-boosting models, are capable of accurate country-level
demand forecast. Besides, the majority of these models are robust against missing the pandemic policy
data. However, utilizing the pandemic policy data as features increases the forecasting accuracy during
the pandemic situation significantly. Furthermore, the probabilistic quantile regression demonstrated high
accuracy for the aforementioned case study.

INDEX TERMS COVID-19 pandemic, demand forecasting, machine learning, decision tree ensembles,
probabilistic.

I. INTRODUCTION
Electricity power infrastructure transfers a huge amount of
energy to end-users in a fast, clean, and reliable manner.
It is imperative to provide a reliable power supply in today’s
modern times as brief power outages of even a few min-
utes or less may have significant consequences for energy
users. As such, generating, transporting, and delivering elec-
trical energy remain complex and costly. Moreover, electrical
power, unlike other forms of energy, cannot be stored in any
substantial amount [1]. Thus, power generation must match
total consumption. However, dispatchable generation units
are subject to inter-temporal constraints (e.g., ramp rates).

The associate editor coordinating the review of this manuscript and
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Therefore, the generation of these units should be scheduled
in advance. This requires a precise forecast of the uncertain-
ties associated with generation, transmission, and consump-
tion ahead of time by which the day-ahead market is cleared.
An accurate prediction of these uncertainties mitigates the
need for expensive storage and increases grid flexibility.

The uncertainties associated with generation and trans-
mission can be addressed through renewable power gen-
eration forecasting [2]–[4], and dynamic line rating [5].
On the other hand, demand is also another source of uncer-
tainty in power grids [6]. Demand forecasting assists system
operators in performing unit commitments and evaluating
the stability of the power system. The more forecast in
precise, the less real-time dispatch correction is required.
In light of the electricity market’s intense competitiveness,
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load forecasting may offer important information to aggre-
gators when engaging in energy trading and dynamically
controlling power demand [7]. This paper focuses on precise
forecasting demand to enable system operators to make more
rational decisions for the day-ahead market. This category of
demand forecasting is known as short-term demand forecast-
ing, as opposed to long-term demand forecasting, which is
commonly used for resource planning problems. Based on
the forecasting time horizon, the existing literature can be
categorized into four groups [8]:

• Very short-term load forecasting aims at forecasting
load from a few seconds to a few minutes in advance.

• Short-term load forecasting targets to predict demand
from a few minutes to a few hours ahead, which plays a
vital role in power systems’ operation.

• Medium-term load forecasting aims at predicting load
from a few hours to a few months ahead.

• Long-term load forecasting targets a longer duration of
demand forecasting, e.g., several years. This prediction
is used for system expansion and planning studies.

Although demand forecasting is necessary for the secure
operation of power systems, it is proved to be a diffi-
cult task as customers’ electricity demand is uncertain to
a great extent. Load profiles vary extensively with changes
in weather conditions, time, and special occasions. To cope
with these uncertainties, several approaches/methods have
been developed by researchers. For example, an additive
partially linear model is presented in [9] aiming at predicting
daily electricity consumption. Alongside the improvement in
computation capability of processors and Machine Learn-
ing (ML) and Deep Learning (DL) techniques in computer
science, electrical engineering researchers find out the ben-
efits of deploying ML and DL for demand forecasting. For
example, [10]–[12] developed K-Nearest Neighbors (KNN),
Support Vector Regression (SVR), and Artificial Neural
Network (ANN) as data-driven demand forecast models
at New York state, Northeastern China, and Pecan street,
respectively. A deep convolution neural network is pre-
sented in [13] for demand forecast in three Chinese cities.
The authors in [14] introduced a stacked hybrid machine
deep learning-machine learning regression for predicting the
city-level demand. Convolutional long short-term memory
(ConvLSTM) integrated with bidirectional long short-term
memory (BiLSTM) is used in [15] for predicting residential
and commercial consumption. Dilated CNN based multi-step
forecasting model is developed for the same purpose in [16].

One of the overlooked concerns in most ML-based load
forecasting approaches is the robustness of the method
against non-typical situations. An example of a non-typical
situation is data quality degradation due to a cyber-attack or
missing data. To cope with the abnormalities, a joint neural
network and Gravitational Search Optimization approach for
load forecasting is deployed in [17] for load and price predic-
tion. A Long Short-Term Memory (LSTM) neural network
model was presented in [18] for short-term demand and price

prediction. The method was trained and test for Spanish and
Pennsylvania-New Jersey-Maryland power markets. Authors
in [19] developed an LSTM integrated with Convolution
Neural Network (CNN) to forecast the Bangladesh power
system’s demand. Variational Mode Decomposition (VMD)
and SampEn (SVDM) decomposition method is adopted in
[20] to decompose the demand series to the summation of a
trend series and a set of fluctuating sub-series. Then, a linear
regression model is used for predicting the trend series, and
Extreme Gradient Boosting (XGBoost) is used for predicting
sub-series. In [21], the state-space prediction general prob-
lem is modeled with DL and then applied to probabilistic load
forecasting.

Accurate forecasting under atypical situations has
remained a consistent challenge in the previous studies as
many forecasting algorithms fail to make a precise forecast
facing abnormal situations. Experimental data shows that
demand prediction in the recent pandemic situation went
through a considerable error [22]. Therefore, the aforemen-
tioned forecasting models would fail to predict the demand
accurately in this specific situation. Thus, a robust model
capable of predicting demand in lockdown situations is
missing in the literature. Reference [22] analyzes the load
profile of three states of New York, California, and Florida in
the Covid-19 lockdown situation. After careful investigation,
they concluded that the demand ramp rate decrease in these
states. As a result, demand pattern changes compared to the
pre-pandemic situation. Authors in [23] compared Spain,
Italy, Belgium, and UK’s consumption patterns during the
pandemic situation with the same interval in 2019. It has
been observed that the demand profile changes depending on
the policy of the government during the pandemic. Similar
studies in [24] and [25] for Brazilian and Poland electri-
cal energy demand demonstrated that the load decreases
during the pandemic. The same has been concluded for
Spain in [26]. The changes in residential, commercial, and
industrial section demand in Lagos Nigeria have been studied
separately in [27]. Though industrial and commercial con-
sumption decreased, residential consumption increased. The
references above analyzed the consumption trends changes
during the Covid-19 tragedy. Reference [28] states that the
Ontario State’s electricity demand decreased by 25 percent
in some days during April 2020 compared to the same days
in 2019. The increase in total energy consumption while the
peak demand is constant in Warsaw residential demand is
demonstrated in [29]. Authors in [30] studied the demand
change in the pandemic situation in several countries. Next,
a conceptual framework of the temporal effect of lockdown
measures on energy consumption has been developed.

All of the mentioned references in the previous paragraph
adhere to the fact that a pandemic like the 2020 Covid-19
would dramatically change the electricity consumption pat-
terns. However, none of them has presented a demand fore-
casting method for the pandemic situation. Although the
planet is increasingly recovering from the current pandemic
due to universal vaccines’ availability, this is not a safeguard
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against future pandemics in the case of other viruses. Based
on the above discussion, it is of great importance to develop
pandemic situation-aware demand forecasting models. In this
paper, we aim to develop decision tree ensemble-based
pandemic-aware short-term load forecasting for the first time.
First of all, it is discussed what factors affect the demand
value, those which would be considered as the features of
the demand forecasting models. Then, it will be investigated
how to consider the pandemic situation in features. After that,
we used decision tree ensemble-basedmodels for 16-40 hours
ahead demand forecast. Since the probabilistic demand fore-
cast provides additional information about demand uncer-
tainty, the quantile regression is deployed for load forecasting
tasks in addition to deterministic ensemble models. The per-
formance metrics of the models are evaluated for Germany’s
country-level demand forecasting. To summarize, the main
contribution of this paper is as follows:

• Analyzing the impact of covid-19 pandemic and lock-
down measures on the energy consumption.

• Comparing the accuracy of several representative load
forecasting models, including deterministic and proba-
bilistic, bagging, boosting and bagging boosting deci-
sion tree ensembles, in the normal and pandemic
no-history situation.

• Analyzing and evaluating the resilience of developed
models for Germany’s country-level demand forecasting
in time of lockdown.

• Improving the performance of forecasting models by
including lockdown temporal policies as new features.

II. METHODOLOGY
This study aims to forecast electricity demand 16 to 40 hours
in advance by utilizing ML algorithms. Of all the ML models
in the field, decision tree ensemble-based ML models are
selected as it is highly capable of learning uncertainties and
variabilities associated with load profiles, thereby providing
high accuracy and generalizability. Besides, they are usually
trained fast, which offers the opportunity to re-train it as we
receive new electricity consumption data.

A. FEATURES
Every ML-based forecasting task requires to identify the
variables that affect the target variable. Electricity consump-
tion depends on several factors. The first influential factor
that contributes to the value of demand is the time of use.
The load demand at 1 p.m. is more than that of 4 a.m. due
to the fact that most of the people sleep and do not have
any activities at 4 a.m. Besides, the day of the week highly
affects the load, such that load in weekends is less than
the weekdays. Fig. 1 shows the electricity demand of four
successive weeks [31] demonstrated in blue, orange, green,
and red. This figure provides an illustrative example of the
dependency of the demand on the hour and day. This figure
reveals that the demand is substantially higher is day-time
peak hours. In contrast, it decreases considerably at night

FIGURE 1. Weekly demand for four successive weeks.

when people are not awake. The daily peak demand decreases
onweekends, especially on Sundays. Nevertheless, this figure
also reveals slight differences between the same hours of
the same days of different weeks. Therefore, the time is not
the only influential factor. Weather factors are important as
well. Electrical cooling or heating appliances have different
consumption in different weather conditions. For example,
refrigerators consumemore demand duringwarmer days. The
weather variables’ actual values are not known 16 to 40 hours
ahead necessitating weather condition forecasting.

Another feature would be the special holidays such as
Christmas. These occasions change the profile of the load due
to the changes in people’s activities. These features enable
the model to predict the demand in typical situations. How-
ever, in pandemic situations, the trends of consumption go
through significant changes. Therefore, it is necessary to add
some features representing the changes in activities. If exact
information is not available, a binary variable of lockdown
situation is added to the model. Nevertheless, a single binary
variable cannot fully represent the pandemic situation. If fur-
ther information of detailed actions is available, each of the
actions can be a feature. For example, the remote educational
and academic activities reduce the daytime demand, whereas
closing nightly public hobby centers lower the night demand.

B. ENSEMBLE-BASED MODELS
Adecision tree [32] is a model that divides the feature domain
into several sub-domains by binary branching, as shown in
Fig. 2. In each sub-domain, a value is predicted for the
output variable. The number of branches from the root to
terminal roots is called the depth of the tree. The more the
depth of the decision tree, the more the tree is capable of
learning from the training set. However, big values for depth
jeopardize the generalizability of the model. To minimize
bias/variance and maximize the model’s accuracy/precision,
generalizability and robustness, decision tree ensembles are
presented combining the prediction of different learners in
parallel or serial. They can be categorized into three groups
of Bagging, Boosting, and Bagging-Boosting [32], [33].
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FIGURE 2. General structure of a decision tree.

FIGURE 3. General structure of bagging ensembles.

Bagging models average the output of several independent
estimators that are trained on bootstraps of the original dataset
in order to decrease the variance. To further clarify, consider
that n sets of B1,B2, . . . ,Bn are independently generated as
bootstraps of the training set T by sampling with replacement.
The estimatorsM1,M2, . . . ,Mn are built according to (1). For
predicting the value of the target variable, equation (2) is used.
Fig. 3 demonstrates the bagging ensemble structure.

Mi : Train(Xj, yj) ∀ (Xj, yj) ∈ Bi (1)

ŷ =

n∑
i=1

Mi(X )

n
(2)

Random Forest is a more sophisticated form of Bagging in
which not only training datasets are bootstraps of the original
dataset, but also the features of each estimator is a bootstrap
of the original feature set.

Boosting models use several serial decision trees, each
aiming at compensating the error of the previous models.
Therefore, the bias of the finalmodel decreases in comparison
to a single decision tree. This structure is mathematically
formulated in (3) to (4). Fig. 4 also provides a visual repre-
sentation of the boosting ensemble structure.

F1 : Train(Xj, yj) ∀ (Xj, yj) ∈ T (3)

F2 : Train(Xj, yj − F1(Xj)) (4)

Fn : Train(Xj, yj − F1(Xj)− . . .− Fn−1(Xj)) (5)

ŷ =
n∑
i=1

Fi(X ) (6)

There are several boosting methods including Adaboost,
Gradient Boosting, XGBoost, Light GBoost (LGBoost)
and CatGboost. AdaBoost algorithm trains new predictors
sequentially to compensate the error of previous predictors
withmore emphasis on instancewith higher error. In Gradient
boosting (GBoost), gradient decent algorithm is combined
with AdaBoost learning algorithm. Extreme Gradient Boost
or XGBoost is an improved version of GBoost which pos-
sess higher performance level and scalablity. An approximate

FIGURE 4. General structure of boosting ensembles.

FIGURE 5. Bias-variance trade-off of different decision tree ensembles.

algorithm is utilized to find the best split point for continuous
features. By implementing built-in regularization, it is also
less prone to over-fitting [34]. LGBoost is another version
of GBoost with higher accuracy. This algorithm exploit his-
togram to bucket continuous variables into several discrete
bunch. As a result, this model trains pretty fast. Benchmark
LGBoost implementation demonstrate 11 to 15 times faster
than XGBoost. Besides, leaf-wise growth training proce-
dure provides more accuracy [34]. Categorical boosting (Cat-
Boost) is another version of gradient which boost can handle
the categorical data as well. This algorithm can also be imple-
mented on GPU [34]. XGBoost, CatBoost, and LGBoost’s
performances are high and very close.

Unlike bagging that provides a less variance model with
competence in noisy data, boosting is less biased with com-
petence in noise-free data. If both bias and variance need to be
enhanced, a combination of bagging and boosting methods,
which is called bagging-boosting, should be adopted. Fig. 5
provides a graphical illustration of ensemble models’ perfor-
mance compared to a single decision tree.

C. EVALUATION METRICS
Among several regression accuracy metrics, Mean Absolute
Error (MAE), Mean Absolute Percentage Error (MAPE),
Root Mean Squire Error (RMSE), and R2-Score metrics can
demonstrate the accuracy decently [5], [35]. MAE is defined
as the average absolute value of error in (7). On the other
hand, MAPE metric computes the average value of relative
error in (8). RMSE measures the root of the average squire
error according to (9). Since RMSE is the root ofMean Squire
Error (MSE) and root is a monotonic function, it is no longer
necessary to compare and compute MSE. Besides, RMSE
has similar dimension and unit with the forecasted variable.
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Therefore, it provides more insight to the performance of the
model. Finally, the R2-Score is an indicator of prediction to
the observation. In these formulas, yi is the actual value of the
N th sample, ŷi is the value of the N th sample’s output, and ȳ
is the average value of the observed output over samples.

MAE =
1
N

N∑
i=1

|ŷi − yi| (7)

MAPE =
1
N

N∑
i=1

|ŷi − yi|
yi

× 100 (8)

RMSE =

√√√√ 1
N

N∑
i=1

(ŷi − yi)
2 (9)

R2 = 1−

N∑
i=1

(yi − ŷi)
2

N∑
i=1

(yi − ȳ)2
(10)

D. QUANTILE REGRESSION
Traditionally, regressors aim at finding a model that estimate
the expected value of the dependent variable conditioned by
the independent variables as asserted in (11) [36].

g(x) = E(Y |X = x) (11)

However, this single point estimation would not be suffi-
cient in many engineering applications. In the case of load
forecasting, it would be more instructive for the system oper-
ator to know his or her level of confidence in the estimation.
Therefore, probabilistic regressionmodel would be beneficial
to indicate the most probable demand interval. Defining the
conditional probability function as represented in (12), the
quantile regressors aim at finding the value which is more
than the output variable with the probability of α. This value
is called α-quantile, and it is mathematically defined as (13).
The [Qα(x)−Qβ (x)] is called α− β prediction interval [36].

F(y|X = x) = P(Y ≤ y|X = x) (12)

Qα(x) = inf{y : F(y|X = x) ≥ α} (13)

The loss function is defined in according with (10). In the
training stage, the model is trained in a way in which the
expected value of loss is minimized. The loss function can
also be used for test evaluation. For the sake of space lim-
itation, we refuse to delve into details of the training and
structure of a quantile regressor. The respected reader can
read [36] in order to study more about quantile random forest
which is used in this paper.

III. CASE STUDIES
To evaluate the suggested forecasting framework’s accu-
racy, robustness, and generalizability, the case of Germany’s
national-level load [37] prediction is investigated in this
section.

FIGURE 6. Heat map representation of the energy demand (normalized)
at the first 9 months of 2017-2019.

TABLE 1. Demand Characteristic for Germany National Grid.

A. PREPROCESSING
Before delving into training themachine learningmodels, it is
of high importance to preprocess the raw data and analyze
the main characteristic of the data. Maximum, minimum,
average, and standard deviation of the Germany electricity
demand consumption [37] is summarized in Table 1. The data
contains the demand for each 15-minute interval. If a value is
missing from the dataset, the average of the preceding and
next samples is used to replace it. Only demand data until
26th September 2020 was available at the time this paper was
written. As Fig. 6 reveals, the scaled demand for the same
days of year in 2020 is less than 2017 till 2019, especially
for the days 100 to 200 when people’s activities were strictly
limited. In order to take the effects of these restrictions into
account, pandemic lockdown actions should be considered
as extra features for demand prediction. Since the actions
data of Germany during the pandemic is provided in [38],
a one-hot encoding binary feature variable vector is added
for each action. Lockdown actions during 2020 are shown
in Fig. 7. It is observed that several policies in different
intervals have been regulated during the pandemic situation,
and the level of lockdown differs from time to time. Generally
speaking, three levels of highly restrict, restrict, and moderate
lockdowns have been established in Germany. Each policy
is modeled with a one-hot encoding vector. Fig. 7 depicts
that restriction policies became partial in May and afterward.
Then, most of the restrictions have been abandoned after
July. Fig. 8 depicts the demand decrease for the first Monday
of April, last Monday of May, and first Monday of August
from 2019 to 2020. As it is observed, the demand decreases
considerably. The greatest drop in demand occurs on day
one, when extremely restrictive regulations are implemented.
Days 2 and 3, which correspond to the limited and moderate
policies, experience load decrease in the following level.

The following stage of preprocessing scales all charac-
teristics and the output (demand) between zero and one.

7102 VOLUME 10, 2022



A. Arjomandi-Nezhad et al.: Pandemic-Aware Day-Ahead Demand Forecasting Using Ensemble Learning

FIGURE 7. Lockdown policies in Germany during 2020.

FIGURE 8. Changes in electricity demand profile for three days during
Covid-19. Day1: the first Monday of April, day 2: last Monday of May, and
day 3: first Monday of August.

The training set is comprised of demand data from 2017 to
September 2020, with the exception of onemonth in 2019 and
one month in 2020, which serve as the test sets.

B. CASE 1
In the first case, short-term demand forecasting models are
trained using decision tree ensembles for two different fea-
ture sets. Set I contains the regular features and lockdown
policy binary variables and Set II consists only the regular
features. Train and test scores, reported in Table 2, demon-
strate that boosting models outperformed baggings in terms
of MAE, RMSE, MAPE and R2-Score metrics while all of
them are trained well. Results indicate an enhanced per-
formance in baggings by adopting boostings as their base
learners, i.e. bagging-boostings. It can be seen from Table 2
that CatBoost, Light Gradient Boosting, Bagging XGBoost,
Bagging CatBoost, and Bagging LGBoost provide close per-
formance metrics. The base tree learner’s depth is seven.
Moreover, Fig. 9 corroborates the fact that including lock-
down policies as additional features leads to better forecasts.
Fig. 10 compares trained decision tree ensembles for forecast-
ing Germany demand, where higher performance of boosting
and bagging boosting models can be distinguished from their
counterparts.

C. CASE 2
Load forecasts are inherently associated with uncertainty
which makes it crucial to estimate and communicate this

FIGURE 9. Comparison of the accuracy of models trained with features
set I (with lockdown policy features) and set II (without lockdown policy
features) for forecasting Germany demand.

FIGURE 10. Comparison of decision tree ensemble-based load
forecasting models.

uncertainty to forecast loads so that power systems operators
can make optimal decisions under uncertainties like pan-
demic. Dissimilar to deterministic forecasting, probabilistic
forecasting offers further information to measure the uncer-
tainty associated with electricity demand. Hence, the Quan-
tile Random Forest probabilistic model is deployed in this
case for load forecasting tasks in addition to deterministic
ensemble models. The interval between 97.5% and 2.5%
for a day in test interval is shown with green color in
Fig. 11. The average quantile loss for these two quantiles are
3017.232 MW and 1572.392 MW for the 2020 test set. Nor-
malizing these two values with the average value of demand
in this test set are 0.057 and 0.030; respectively. These low
values indicate that the high performance of the probabilistic
model. Approximately 99.22 percent of the demand values
are between 97.5%-quantile and 2.5%-quantile. It is even
more than 95% percent, which is desired.

D. CASE 3
The COVID-19 pandemic and consequent lockdown mea-
sures have led to an unprecedented decrease in the global
electricity demand. The lockdown policies depressed com-
mercial and industrial sector electricity consumption and
increased electricity demand in the residential sector, creating
an overall change in the shape of daily load profiles. Thus, this
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TABLE 2. Scores of Each Demand Forecasting Model for German National Grid.

FIGURE 11. Comparison between probabilistic and deterministic
ensemble-based models.

FIGURE 12. Comparison of decision tree ensemble-based load
forecasting accuracies in time of lockdown.

case addresses the resilience of forecasting systems against
this form of uncertainty. In this regard, seven days of a test

FIGURE 13. Comparison of the accuracy of load forecasting models
trained with features set I (with lockdown policy features) and set II
(without lockdown policy features) in time of lockdown.

period in 2020 were examined, which affected by covid-19
pandemic. As Table 2 reveals, XGBoost and AdaBoost result
in the best and worst forecasts when trained with feature
set II. However, to improve the resiliency of models against
the uncertainty attributed to the pandemic, it is necessary to
consider lockdown policies as demand forecasting features
during the pandemic situation. Results detailed in Table 2
substantiate that adding the lockdown policies as features in
the load predicting model change the MAE, RMSE, MAPE,
and R2-score metrics −31.26%, −24.19%, −31.81%, 3.26%
on average. Fig. 12 also verifies that the developed models
trained with feature set I, LGBoost as a representative deci-
sion tree ensemble depicted in Fig. 13, can resiliently fore-
cast the demand in time of lockdown. The interval between
97.5% and 2.5% for a day in this test interval is shown with
green color in Fig. 12. The average quantile loss for these
two quantiles are 4352.549 MW and 2729.605 MW for the
2020 test set. Normalizing these two values with the average
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value of demand in this test set are 0.083 and 0.052; respec-
tively. Approximately 89.57 percent of the demand values are
between 97.5%-quantile and 2.5%-quantile. It is only 5.43%
percent less than 95% percent, which is desired.

IV. CONCLUSION
Motivated by the substantial change in power consumption
during pandemic situation, this paper developed pandemic
aware day-ahead demand forecasting model. According to
these models, if enough information about different types of
pandemic-related policies is available, each type of policy
would be a feature. Otherwise, a binary variable indicating
lockdown situation is added to the feature set. Ensemble-
based models were used for the day-ahead demand fore-
casting task. The proposed forecasting framework has been
implemented for Germany’s power demand as the case stud-
ies. Results revealed that the models, especially boosting and
bagging-boosting models, are accurate and robust. Moreover,
quantile random forest has also been adopted for demand
prediction task in both normal and pandemic situations. With
small loss value, it has shown a decent performance.

Themethodology is based on the lockdown situationwhich
impacts business, commercial, and entertainments. These
impacts are reflected in demand profile and demand profile
prediction in consequence. Biology of virus in the future pan-
demic does not influence these items. Therefore, the model is
extendable for future pandemics.

Although demand is considerably affected by pandemic
situation, there are also several other variables that went
through substantial changes. For research in this area could
include market price and available flexibility forecasting in
pandemic situation.
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