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In this paper, we analyze spatial sampling of electro- (EEG) and magnetoencephalography (MEG), where the 

electric or magnetic field is typically sampled on a curved surface such as the scalp. By simulating fields originating 

from a representative adult-male head, we study the spatial-frequency content in EEG as well as in on- and off- 

scalp MEG. This analysis suggests that on-scalp MEG, off-scalp MEG and EEG can benefit from up to 280, 90 

and 110 spatial samples, respectively. In addition, we suggest a new approach to obtain sensor locations that 

are optimal with respect to prior assumptions. The approach also allows to control, e.g., the uniformity of the 

sensor locations. Based on our simulations, we argue that for a low number of spatial samples, model-informed 

non-uniform sampling can be beneficial. For a large number of samples, uniform sampling grids yield nearly the 

same total information as the model-informed grids. 

1. Introduction 

Electro- (EEG) and magnetoencephalography (MEG) are noninvasive 

neuroimaging techniques for measuring brain activity at millisecond 

time scale ( Hämäläinen et al., 1993; Nunez et al., 2006 ). EEG and MEG 

measure the electric and magnetic field, respectively, due to neuronal 

currents. Adequate spatial sampling is necessary to capture the spatial 

detail of the continuous field due to brain activity. EEG setups typically 

involve 16–128 electrodes placed uniformly on the subject’s scalp while 

state-of-the-art MEG systems use around 300 superconducting quantum 

interference device (SQUID) sensors placed rigidly around the subject’s 

head ( Baillet, 2017 ). 

Spatial sampling of EEG and MEG has again become a topic of in- 

terest. High-density EEG (hdEEG) with an electrode count of 128–256 

or even more has been suggested to be beneficial (e.g., Brodbeck et al. 

2011; Grover and Venkatesh 2016; Hedrich et al. 2017; Petrov et al. 

2014; Robinson et al. 2017 ). In MEG, in contrast to conventional liquid- 

helium-cooled SQUID sensors that measure the field ∼2 cm off the 

scalp, novel sensors such as optically-pumped magnetometers (OPMs; 

Budker and Romalis 2007 ) and high-T c SQUIDs ( Faley et al., 2017 ) have 

enabled on-scalp field sensing within millimetres from the head surface. 

Simulations have shown that the closer proximity of the sensors to the 

brain improves spatial resolution of MEG and provides more informa- 

tion about neuronal currents ( Boto et al., 2016; Iivanainen et al., 2017; 
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Riaz et al., 2017; Schneiderman, 2014 ). The number of sensors that is 

beneficial in on-scalp MEG is currently not known well. A recent sim- 

ulation study suggested that fewer sensors are needed in on-scalp MEG 

than with SQUIDs to achieve similar spatial discrimination performance 

( Tierney et al., 2019 ), while another experimental study suggested that 

∼50 OPMs give comparable results to a state-of-the-art SQUID system 

( Hill et al., 2020 ). 

The number of sensors or, equivalently, sensor spacing in EEG has 

been extensively studied. Srinivasan and colleagues (1998) argued that 

to characterize the full range of spatial detail available for EEG, at 

least 128 electrodes are needed (spacing ∼3 cm). More recently, finite- 

element modeling in a realistic head model suggested a minimum elec- 

trode spacing of 50–59 mm determined by the distance at which the po- 

tential decreased to 10% of its peak ( Slutzky et al., 2010 ). Experiments 

by Freeman and colleagues (2003) suggested that electrode spacing as 

small as 5–8 mm could be beneficial, if high spatial frequencies contain 

behaviorally relevant information above the noise level. 

The sensor spacing in MEG has been less studied. Analytical calcula- 

tions in half-infinite homogeneous volume conductors suggest that the 

sensor spacing should be approximately equal to the distance of the sen- 

sors to the brain ( Ahonen et al., 1993 ). In many MEG studies, different 

sensor arrays have been compared without necessarily formulating the 

comparison as a sampling problem ( Boto et al., 2016; Iivanainen et al., 

2017; Nenonen et al., 2004; Riaz et al., 2017; Wilson and Vrba, 2007 ). 
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Previous studies have mainly focused on spatial sampling where the 

sensors cover the entire scalp uniformly. However, the field can also be 

sampled nonuniformly. In certain applications, such as brain–computer 

interfaces, targeted non-uniform sampling would be of value: one could 

reduce the sensor count while maintaining spatial resolution and sensi- 

tivity to the cortical area of interest. 

In this work, we analyze spatial sampling of EEG and MEG on realis- 

tically curved surfaces. We carry out a spatial-frequency analysis of con- 

tinuous fields using the eigenfunctions of the surface Laplace–Beltrami 

operator ( Bronstein et al., 2017; Reuter et al., 2009 ). The basis formed 

by these functions can be seen as a natural generalization of the 1-D 

Fourier basis on a surface. These functions have been used in a variety of 

applications from signal and geometry processing ( Levy, 2006; Reuter 

et al., 2009 ) to cortical analysis ( Qiu et al., 2006 ) and deep learning 

( Bronstein et al., 2017 ). We further describe how more compact bases 

can be constructed using prior information of the neuronal field pat- 

terns. We discuss how these basis-function representations of the field 

patterns relate to the number of spatial samples. 

We investigate how to obtain optimal sample positions in EEG and 

MEG. We utilize Gaussian processes ( Abrahamsen, 1997; Williams and 

Rasmussen, 2006 ) to encode prior knowledge about the field. This per- 

spective is similar to kriging in geospatial sciences ( Chilès and Desassis, 

2018; Cressie, 1993 ) and Gaussian-process regression in machine learn- 

ing ( Williams and Rasmussen, 2006 ). We introduce measures from ex- 

perimental design ( Chaloner and Verdinelli, 1995; Krause et al., 2008; 

Lindley, 1956 ) that can be used to quantify the optimality of the sample 

positions. We suggest a method that maximizes Shannon’s information 

( Lindley, 1956; Shannon, 1949 ) for a given number of samples and prior 

assumptions. We use the method to generate sampling grids for different 

EEG and MEG experiments, where either the whole brain or parts of it 

are of interest. 

2. Theory and methods 

In this Section, we introduce the theoretical concepts behind our 

analysis of sampling of neuro-electromagnetic fields. In Section 2.1 , we 

describe how a scalar field measured on a surface can be analyzed us- 

ing a spatial-frequency basis. In Section 2.2 , we introduce the spatial- 

frequency-limited representation of the field and analyze the reconstruc- 

tion error due to the use of such a representation. This analysis provides 

the motivation for using the 99%-energy threshold for the number of 

spatial-frequency components in the field, which we later use to quan- 

tify the number of samples beneficial in spatial sampling of MEG/EEG. 

In Section 2.3 , we change the perspective to random fields, which 

provide another framework for field reconstruction and insight to the 

metrics we use to quantify the performance of a sampling grid in 

Section 2.5 . The concept of a field kernel is introduced in Section 2.3 and 

further described in Section 2.4 ; we employ such a kernel in constructing 

optimized sampling grids in Section 2.6 . 

2.1. Spatial-frequency representation of dipole fields 

The quasi-static electric potential or magnetic field component 𝑓 ( ⃗𝑟 ) 
is generated by distributed source activity 𝑞 ( ⃗𝑟 s ) inside the brain and can 

be written in terms of Green’s function ⃗ ( ⃗𝑟 , ⃗𝑟 s ) as ( Hämäläinen et al., 

1993; Nunez et al., 2006 ) 

𝑓 ( ⃗𝑟 ) = ∫ ⃗ ( ⃗𝑟 , ⃗𝑟 s ) ⋅ 𝑞 ( ⃗𝑟 s ) 𝑑𝑉 s . (1) 

By discretizing the neural source distribution 𝑞 ( ⃗𝑟 s ) into a set of primary 

current dipoles 𝑞 𝑖 ( ⃗𝑟 𝑖 ) = 𝑞 𝑖 ̂𝑞 𝑖 𝛿( ⃗𝑟 − ⃗𝑟 𝑖 ) , 𝑖 = 1 , … , 𝑀 , where 𝑞 𝑖 is the ampli- 

tude of the 𝑖 th source at ⃗𝑟 𝑖 and 𝑞 𝑖 its orientation, Eq. (1) becomes 

𝑓 
(
𝑟 
)
= 

∑
𝑖 

(⃗ 

(
𝑟 , ⃗𝑟 𝑖 

)
⋅ 𝑞 𝑖 

)
𝑞 𝑖 = 

∑
𝑖 

𝑓 𝑖 ( → 𝑟 ) 𝑞 𝑖 , (2) 

i.e., the field is composed of dipole fields 𝑓 𝑖 ( ⃗𝑟 ) = ⃗ ( ⃗𝑟 , ⃗𝑟 𝑖 ) ⋅ 𝑞 𝑖 corresponding 

to unit dipole sources. When the field is also discretized to (or sampled 

at) 𝑁 points, the equation reduces to a linear matrix equation 𝐟 = 𝐋𝐪 , 
where 𝐋 is the ( 𝑁 ×𝑀) lead-field matrix ( Hämäläinen et al., 1993 ). 

Please note that with an arrow we denote a Euclidean vector in the 3-D 

space while bolded letters refer to column vectors and matrices. 

In MEG and EEG, we sample 𝑓 ( ⃗𝑟 ) on a curved 2-D surface embed- 

ded in 3-D space. Conventional 1-D Fourier analysis can be extended 

to spatial-frequency (SF) analysis on such surfaces using a suitable 

orthonormal function basis. The generating equation for the spatial- 

frequency basis { 𝑢 𝑚 } is the Helmholtz equation ( Levy, 2006 ) 

−∇ 

2 
LB 𝑢 𝑚 = 𝑘 2 𝑚 𝑢 𝑚 , (3) 

which is the eigenvalue equation of the Laplace–Beltrami (LB) opera- 

tor ∇ 

2 
LB , i.e., the surface Laplacian. The eigenfunctions 𝑢 𝑚 are modes 

of standing waves on the surface, with increasing spatial frequency and 

complexity towards higher 𝑚 ( Fig. 3 B). The square roots of the eigenval- 

ues 𝑘 𝑚 generalize the concept of wavenumber. For example, in 1-D, 𝑘 𝑚 
correspond to the angular wavenumber of a sinusoid. Generalizing this 

relationship for eigenfunctions on a surface, the wavenumbers 𝑘 𝑚 cor- 

respond to wavelengths approximately as 2 𝜋∕ 𝑘 𝑚 . On a compact surface, 

the eigenvalue spectrum is discrete { 𝑘 𝑚 , 𝑢 𝑚 } and the eigenfunctions form 

an orthonormal basis with respect to the inner product ( Levy, 2006 ): 

⟨𝑢 𝑚 , 𝑢 𝑚 ′ ⟩ = ∫𝑆 

𝑢 𝑚 ( ⃗𝑟 ) 𝑢 𝑚 ′ ( ⃗𝑟 )d 𝑆 = 𝛿𝑚,𝑚 ′ , (4) 

where 𝛿𝑚,𝑚 ′ is the Kronecker delta. 

The SF basis can be used to analyze the spatial-frequency content of 

the fields. As the basis is orthonormal, any 𝑓 ( ⃗𝑟 ) can be expressed as a 

linear combination of SF basis functions 

𝑓 ( ⃗𝑟 ) = 

∞∑
𝑚 =1 

𝑎 𝑚 𝑢 𝑚 ( ⃗𝑟 ) = 

∞∑
𝑚 =1 

⟨𝑓, 𝑢 𝑚 ⟩𝑢 𝑚 ( ⃗𝑟 ) , (5) 

where the coefficients are projections of 𝑓 ( ⃗𝑟 ) on { 𝑢 𝑚 } . Due to orthonor- 

mality, the field energy can be decomposed as 

||𝑓 ||2 = ⟨𝑓 , 𝑓 ⟩ = ∫𝑆 

|𝑓 ( ⃗𝑟 ) |2 d 𝑆 = 

∞∑
𝑚 =1 

𝑎 2 𝑚 , (6) 

a relation similar to Parseval’s theorem for Fourier series. The squared 

coefficients 𝑎 2 𝑚 = ⟨𝑓, 𝑢 𝑚 ⟩2 comprise the energy spectrum of the field in the 

sense of spectral signal analysis. 

Sampling theorems typically assume that the signals are bandlimited 

[e.g., in 1-D ( Shannon, 1949 ); on a sphere ( McEwen and Wiaux, 2011 ); 

on a surface/manifold ( Pesenson, 2014; 2015 )]. In our context, a ban- 

dlimited field can be expressed with a limited number of SF basis func- 

tions { 𝑢 𝑚 } , i.e., 𝑎 𝑚 = 0 for 𝑚 > 𝐵 ( 𝑘 𝑚 > 𝑘 𝐵 ) . On a surface, the sam- 

pling theorem by Pesenson (2015) states that a 𝑘 𝐵 -bandlimited field 

is uniquely determined by its values on a grid with a uniform sample 

spacing 𝜌 = 𝑐 𝑘 −1 
𝐵 

, where 𝑐 is a proportionality constant that depends on 

the surface geometry. 

Figure 1 shows a spatial-frequency representation of a dipole field 

in MEG and EEG. Although most of the field energy in general resides 

at low spatial frequencies, fields are not strictly bandlimited. Thereby, 

standard sampling theorems are not directly applicable. 

2.2. Sampling and reconstruction assuming a bandlimit 

Here, we analyze how an effective bandlimit 𝐵 for the field can be 

chosen by studying reconstruction of 𝑓 from noisy samples. This section 

introduces the methodology used in Results Section 3.2 . 

The field can be represented as 

𝑓 ( ⃗𝑟 ) = 𝑓 𝐵 ( ⃗𝑟 ) + 𝑓 r ( ⃗𝑟 ) = 

𝐵 ∑
𝑚 =1 

𝑎 𝑚 𝑢 𝑚 ( ⃗𝑟 ) + 

∞∑
𝑚 = 𝐵+1 

𝑎 𝑚 𝑢 𝑚 ( ⃗𝑟 ) , (7) 

where 𝑓 𝐵 is the 𝐵-bandlimited representation of the field and 𝑓 r the 

residual. We assume that the field can be approximated with the 𝐵 first 

SF basis functions as 𝑓 ≈ 𝑓 B . To simplify the notation of Eq. (7) , we 

2 
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Fig. 1. Spatial-frequency representations of dipole fields in MEG and EEG. ‘On scalp’ refers to MEG measurement within millimetres from the scalp while ’off scalp’ 

to that within 2 cm. For details, see Section 3.1 . Left: Representation of a dipole field with an increasing number of spatial-frequency components. The maximum 

wavenumber (1/cm) and the cumulative energy of the representation are shown. Right: Energy spectrum and cumulative energy of the field as a function of 

wavenumber and wavelength (upper x-axis; estimated from the wavenumber 𝑘 as 2 𝜋∕ 𝑘 ). 

express the summation over the basis functions as a dot product 𝑓 𝐵 ( ⃗𝑟 ) = 

𝐮 ( ⃗𝑟 ) ⊤𝐚 where 𝐮 ( ⃗𝑟 )[ 𝑚 ] = 𝑢 𝑚 ( ⃗𝑟 ) and 𝐚 [ 𝑚 ] = 𝑎 𝑚 . 

We model 𝑁 noisy samples of 𝑓 B ( ⃗𝑟 ) at locations ⃗𝑟 𝑛 stacked in a col- 

umn vector 𝒚 as 

𝐲 = 

⎡ ⎢ ⎢ ⎣ 
𝐮 ( ⃗𝑟 1 ) ⊤

⋮ 
𝐮 ( ⃗𝑟 𝑁 

) ⊤

⎤ ⎥ ⎥ ⎦ 𝐚 + 𝝐 = 𝐔𝐚 + 𝝐, (8) 

where 𝐔 is an ( 𝑁 × 𝐵) matrix with the column vectors 𝐮 at ⃗𝑟 𝑛 on rows, 

i.e., 𝐔 [ 𝑛, 𝑚 ] = 𝑢 𝑚 ( ⃗𝑟 𝑛 ) , and 𝝐 ∼  (0 , 𝜎2 𝐈 ) is white measurement noise. 

When 𝑁 ≥ 𝐵, we can estimate the coefficients 𝐚 optimally using the 

least-squares method ( Kailath et al., 2000 ) 

�̂� = ( 𝐔 

⊤𝐔 ) −1 𝐔 

⊤𝐲 = 𝐆𝐲. (9) 

and the bandlimited field 𝑓 B can be reconstructed as 

𝑓 B ( ⃗𝑟 ) = 𝐮 ( ⃗𝑟 ) ⊤�̂� = 𝐮 ( ⃗𝑟 ) ⊤𝐆𝐲 = 

∑
𝑛 

( ∑
𝑚 

𝐆 [ 𝑚, 𝑛 ] 𝑢 𝑚 ( ⃗𝑟 ) 

) 

𝑦 𝑛 , (10) 

where the functions 
∑

𝑚 𝐆 [ 𝑚, 𝑛 ] 𝑢 𝑚 ( ⃗𝑟 ) are interpolation functions for the 

samples 𝑦 𝑛 . 

To study the reconstruction error, we update the measurement model 

as 𝐲 = 𝐔𝐚 + 𝐔 r 𝐚 r + 𝝐, where 𝐔 r [ 𝑛, 𝑚 ] = 𝑢 𝑚 + 𝐵 ( ⃗𝑟 𝑛 ) corresponds to the resid- 

ual field 𝑓 r . Inserting 𝐲 into Eq. (9) , the coefficient estimate can be ex- 

pressed as 

�̂� = 𝐆 ( 𝐔𝐚 + 𝐔 r 𝐚 r + 𝝐) = 𝐚 + 𝐆 ( 𝐔 r 𝐚 r + 𝝐) = 𝐚 + Δ𝐚 , (11) 

where Δ𝐚 = 𝐆 ( 𝐔 r 𝐚 r + 𝝐) is the error in the estimated coefficients. The 

error consists of two parts: 𝐆𝐔 r 𝐚 r is the error due to aliasing from com- 

ponents outside the band 𝑚 ≤ 𝐵, and 𝐆 𝝐 is the random error due to 

noise. 

The expected reconstruction error can now be evaluated as 

E ‖𝑓 − 𝑓 B ‖2 = E ‖𝑓 𝐵 − 𝑓 B ‖2 + E ‖𝑓 r ‖2 = E ‖Δ𝐚 ‖2 + E ‖𝐚 r ‖2 . (12) 

Since E ( ‖𝐆 𝝐‖2 ) = Tr [ 𝜎2 ( 𝐔 

⊤𝐔 ) −1 ] and E ( 𝝐) = 0 , we can rewrite the error 

as 

E ‖𝑓 − 𝑓 ‖2 = Tr 
[
𝜎2 (𝐔 

⊤𝐔 

)−1 ] + E 
(‖𝐆𝐔 r 𝐚 r ‖2 ) + E 

(‖𝐚 r ‖2 ). (13) 

If the noise term dominates the reconstruction error, 𝑓 B can be con- 

sidered a reasonably good approximation of 𝑓 ; the white noise vari- 

ance 𝜎2 can then be used to determine the number of components 𝐵

and the number of samples 𝑁 ≥ 𝐵 needed for the reconstruction. If the 

noise level is unknown, a threshold such as 1% expected residual can be 

used to determine the effective bandlimit 𝐵. This threshold may be ob- 

tained by finding the 𝐵 that covers at least 99% energy of every dipole 

field 𝑓 𝑖 . This bounds the expected error of a random distribution of such 

sources ( Appendix A ). A similar threshold has been used previously (e.g., 

Ahonen et al. 1993; Grover and Venkatesh 2016 ). Last, both the noise 

and the aliasing error depend on the sample positions { ⃗𝑟 𝑛 } via the matrix 

𝐔 . We will quantify the optimality of the sample positions in Section 2.5 . 

2.3. Sampling and reconstruction of random fields 

In this Section, we introduce random fields that will be used to model 

and quantify spatial field correlations as well as to introduce ways to 

optimize sample locations. We express the field as 𝑓 ( ⃗𝑟 ) = 𝝍 ( ⃗𝑟 ) ⊤𝐚 , where 

{ 𝜓 𝑚 } can be any set of (not necessarily orthonormal) basis functions 

(e.g., 𝑢 𝑚 or 𝑓 𝑖 ). We incorporate the prior knowledge by assigning a prior 

distribution for the coefficients 𝑎 𝑚 , which we consider random vari- 

ables. We assume them to be Gaussian with a joint probability density 

 ( 𝐦 𝑎 , 𝐊 𝑎 ) , where 𝐦 𝑎 is the prior mean of 𝐚 and 𝐊 𝑎 is the covariance 

matrix of 𝐚 . 
A linear combination of basis functions with Gaussian random coef- 

ficients is a Gaussian random field , an extension of the Gaussian pro- 

cess ( Williams and Rasmussen, 2006 ) to 3-D space. A random field 

𝑓 ( ⃗𝑟 ) = 𝝍 ( ⃗𝑟 ) ⊤𝐚 can be described by its mean field 

𝜇𝑓 ( ⃗𝑟 ) = E ( 𝑓 ( ⃗𝑟 )) = 

∑
𝑚 

𝝁𝑎 [ 𝑚 ] 𝜓 𝑚 ( ⃗𝑟 ) = 𝝍 ( ⃗𝑟 ) ⊤𝝁𝑎 (14) 

and covariance kernel 

𝐾 𝑓 ( ⃗𝑟 , ⃗𝑟 ′) = Cov ( 𝑓 ( ⃗𝑟 ) , 𝑓 ( ⃗𝑟 ′)) 

= 

∑
𝑚,𝑚 ′

𝐊 𝑎 [ 𝑚, 𝑚 

′] 𝜓 𝑚 ( ⃗𝑟 ) 𝜓 𝑚 ′ ( ⃗𝑟 ′) 

= 𝝍 ( ⃗𝑟 ) ⊤𝐊 𝑎 𝝍 ( ⃗𝑟 ′) . (15) 

Every finite collection of samples of a random field is jointly distributed 

as  ( 𝝁, 𝐊 ) , where 𝐊 is the sample covariance matrix defined elementwise 

as 𝐊 [ 𝑛, 𝑛 ′] = 𝐾 𝑓 ( ⃗𝑟 𝑛 , ⃗𝑟 𝑛 ′ ) = 𝝍 ( ⃗𝑟 𝑛 ) ⊤𝐊 𝑎 𝝍 ( ⃗𝑟 𝑛 ′ ) , and 𝝁 is the sample mean, i.e., 

𝝁[ 𝑛 ] = 𝜇𝑓 ( ⃗𝑟 𝑛 ) = 𝝍 ( ⃗𝑟 𝑛 ) ⊤𝝁𝑎 . 

The effect of measurement is encoded in the posterior distribution 

of the field as illustrated in Fig. 2 . Having a collection of (noisy) sam- 

ples 𝐲 at sampling points 𝑅 = { ⃗𝑟 𝑛 | 𝑛 = 1 , ..., 𝑁} , modeling the noise as 

𝝐 ∼  (0 , 𝚺) , and assuming E ( 𝑓 ( ⃗𝑟 )) = 0 , the posterior mean field and co- 

variance are ( Williams and Rasmussen, 2006 ) 

𝜇𝑓 ( ⃗𝑟 | 𝐲, 𝑅 ) = 𝐤 ( ⃗𝑟 ) ⊤( 𝐊 + 𝚺) −1 𝐲, 
𝐾 𝑓 ( ⃗𝑟 , ⃗𝑟 ′ |𝑅 ) = 𝐾 𝑓 ( ⃗𝑟 , ⃗𝑟 ′) − 𝐤 ( ⃗𝑟 ) ⊤( 𝐊 + 𝚺) −1 𝐤 ( ⃗𝑟 ′) , (16) 

where 𝐤 ( ⃗𝑟 ) is the covariance between the field at the sample points 

and the field at the point ⃗𝑟 : 𝐤 ( ⃗𝑟 )[ 𝑛 ] = 𝐾 𝑓 ( ⃗𝑟 , ⃗𝑟 𝑛 ) = 𝝍 ( ⃗𝑟 ) ⊤𝐊 𝑎 𝝍 ( ⃗𝑟 𝑛 ) . Alterna- 
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Fig. 2. Bayesian estimation of a random field. Left : Prior variance and a ground- 

truth field. Right : Posterior variance and the field reconstruction (the posterior 

mean field) after 1, 15, 30 and 100 noisy measurements (white dots) taken uni- 

formly on the surface. Each additional sample decreases the posterior variance, 

yielding a better reconstruction of the field. 

tively, the posterior mean and covariance of 𝑓 ( ⃗𝑟 ) can be expressed as 

[( Kailath et al., 2000 ) Sec 3.4] 

𝜇𝑓 ( ⃗𝑟 | 𝐲, 𝑅 ) = 𝝍 ( ⃗𝑟 ) ⊤𝐊 �̂� 𝚿⊤𝚺−1 𝐲 = 𝝍 ( ⃗𝑟 ) ⊤�̂� , 
𝐾 𝑓 ( ⃗𝑟 , ⃗𝑟 ′ |𝑅 ) = 𝝍 ( ⃗𝑟 ) ⊤𝐊 �̂� 𝝍 ( ⃗𝑟 ) , (17) 

where �̂� is the posterior mean of the coefficients and 𝐊 �̂� = ( 𝚿⊤𝚺−1 𝚿 + 

𝐊 

−1 
𝑎 ) 

−1 is the associated posterior covariance matrix. 

The posterior mean 𝜇𝑓 ( ⃗𝑟 | 𝐲, 𝑅 ) depends linearly on the samples 𝐲 and 

can be considered as the reconstruction of the field similar to Eq. (10) . 

The posterior covariance 𝐾 𝑓 ( ⃗𝑟 , ⃗𝑟 ′ |𝑅 ) describes the uncertainty in the 

field after the measurements; the noisier the samples, the more uncer- 

tainty is left. Uncertainty is reduced at all points 𝑟 that are correlated 

with the field at the sampling location. 

2.4. Kernels for bioelectric potential and magnetic field 

In this Section, we outline how to construct prior covariance kernels 

( Eq. (15) ) for a random field on the measurement surface. In the later 

Sections, we discuss how these kernels can be used to obtain sampling 

grids. 

Spatial-frequency kernel The SF basis functions can be used to express 

the prior kernel as 𝐾( ⃗𝑟 , ⃗𝑟 ′) = 𝐮 ( ⃗𝑟 ) ⊤𝐊 SF 𝐮 ( ⃗𝑟 ′) , where 𝐮 ( ⃗𝑟 )[ 𝑖 ] = 𝑢 𝑖 ( ⃗𝑟 ) is the 𝑖 th 
eigenfunction of the LB operator and 𝐊 SF is the covariance matrix of the 

spatial-frequency coefficients. For more details of kernel representation 

with Laplacian eigenfunctions, see Solin and Särkkä (2020) . 

The assumption of a bandlimited field ( Section 2.1 ) can be encoded 

by setting the diagonal of 𝐊 SF to a constant up to 𝐵 components and to 

zero above 𝐵; the highest wavenumber of the field is assumed to be 𝑘 𝐵 . 

The covariance structure of this kernel is visualized in Fig. 3 A both in the 

coefficient 𝐊 SF and spatial domains 𝐾( ⃗𝑟 , ⃗𝑟 ′) . The spatial profiles 𝐾( ⃗𝑟 , ⃗𝑟 𝑖 ) 
are sinc-like similar to reconstruction kernels in uniform 1D sampling 

of bandlimited functions ( Jerri, 1977 ) and the spatial variance 𝐾( ⃗𝑟 , ⃗𝑟 ) 
roughly uniform. 

Dipole-field kernel Considering the source amplitudes 𝑞 𝑖 in Eq. (2) to 

be Gaussian random variables ( de Munck et al., 1992 ), the covariance 

kernel is 

𝐾( ⃗𝑟 , ⃗𝑟 ′) = 𝐟 ( ⃗𝑟 ) ⊤𝐊 𝑞 𝐟 ( ⃗𝑟 ′) = 

∑
𝑖,𝑗 

𝐊 𝑞 [ 𝑖, 𝑗] 𝑓 𝑖 ( ⃗𝑟 ) 𝑓 𝑗 ( ⃗𝑟 ′) , (18) 

where 𝐊 𝑞 is the ( 𝑀 ×𝑀) source covariance matrix. The dipole fields 

𝑓 𝑖 ( ⃗𝑟 ) can be considered as the basis functions that assemble the kernel 

and 𝑞 𝑖 as the associated (possibly correlated) random coefficients. Com- 

pared to the SF kernel, more detailed prior knowledge of the random 

field can be encoded in this form. For a set of 𝑁 sampling points, the 

kernel reduces to a covariance matrix 𝐊 = 𝐋𝐊 𝑞 𝐋 

⊤, where 𝐋 is the dis- 

crete lead-field matrix. 

A relevant kernel can be constructed by assuming the source am- 

plitudes 𝑞 𝑖 identically and independently distributed (IID source prior): 

𝐊 𝑞 = 𝑞 2 𝐈 . This kernel 𝐾 IID ( ⃗𝑟 , ⃗𝑟 ′) = 𝑞 2 𝒇 ( ⃗𝑟 ) ⊤𝒇 ( ⃗𝑟 ′) has non-uniform spatial 

variance and the spatial profiles 𝐾( ⃗𝑟 , ⃗𝑟 𝑖 ) are asymmetric ( Fig. 3 A). 

Kernel eigendecomposition and eigenbasis Principal component anal- 

ysis can be extended to random processes using the Karhunen–Loéve 

decomposition, which corresponds to finding the eigenfunctions of the 

covariance kernel ( Loeve, 1978; Mercer, 1909 ). The Karhunen–Loéve 

theorem ( Stark and Woods 1986 , section 7.6) states that the eigenbasis 

has the minimal truncation error among all possible bases for represent- 

ing the random process with a given number of components. Any kernel 

can be written using its eigendecomposition as 

𝐾( ⃗𝑟 , ⃗𝑟 ′) = 𝐯 ( ⃗𝑟 ) ⊤𝐃𝐯 ( ⃗𝑟 ′) = 

∑
𝑚 

𝑑 2 𝑚 𝑣 𝑚 ( ⃗𝑟 ) 𝑣 𝑚 ( ⃗𝑟 
′) , (19) 

where eigenfunctions 𝑣 𝑚 ( ⃗𝑟 ) form an orthonormal basis on the measure- 

ment surface and 𝐃 is a diagonal matrix with variances 𝑑 2 𝑚 of the eigen- 

functions on the diagonal. 

When studying the degrees of freedom in a random field generated 

by IID random sources, it is useful to express the total field variance as 

a sum of the eigenvalues of 𝐾 IID , i.e., E ( ‖𝑓‖2 ) = 

∑∞
𝑚 =1 𝑑 

2 
𝑚 . With similar 

arguments as in Section 2.2 , we can get an estimate for the number 

of samples needed to reconstruct the random field, e.g., by truncating 

the series up to the number of components { 𝑣 𝑚 } that capture 99% of 

the total variance. A similar method has been applied before to study 

the sampling of EEG ( Vaidyanathan and Buckley, 1997 ). Additionally, 

the number of components in the dipole fields 𝑓 𝑖 can be analyzed by 

projecting them on the eigenbasis of 𝐾 IID as done with the SF basis in 

Section 2.1 . In Fig. 3 B, we compare the SF basis and the eigenbasis of 

𝐾 IID . 

Noise kernels and SNR Measurement noise can be modeled as a ran- 

dom field 𝜈( ⃗𝑟 ) with an associated covariance kernel 𝐾 𝜈 ( ⃗𝑟 , ⃗𝑟 ′) . Sensor 

noise is typically independent across the sensors with an equal variance 

𝜎2 , which can be modeled as an equivalent spatial white noise, i.e., a 

random field with a kernel 𝐾 𝜈( ⃗𝑟 , ⃗𝑟 ′) = 𝜎2 𝛿( ⃗𝑟 − ⃗𝑟 ′) . Projected to any or- 

thonormal basis, the covariance of white noise is proportional to the 

identity matrix. Noise that originates from sources other than the sen- 

sors is generally colored (i.e., not white) and can be modeled with a 

covariance function 𝐾 𝜈 ( ⃗𝑟 , ⃗𝑟 ′) = 𝝍 𝜈 ( ⃗𝑟 ) ⊤𝐊 𝜈𝝍 𝜈 ( ⃗𝑟 ′) , where 𝝍 𝜈 ( ⃗𝑟 ) are the ba- 

sis functions for the noise field and 𝐊 𝜈 is the prior covariance of the 

noise coefficients. 

We can also define the signal-to-noise ratio (SNR) of a random 

field. We first diagonalize the noise kernel as in Eq. (19) : 𝐾 𝜈( ⃗𝑟 , ⃗𝑟 ′) = 

𝐰 ( ⃗𝑟 ) ⊤𝚲𝐰 ( ⃗𝑟 ′) , where 𝑤 𝑖 ( ⃗𝑟 ) are eigenfunctions of 𝐾 𝜈 and 𝚲 contains the 

associated noise variances on its diagonal. The noise eigenfunctions 

can be used to compose a whitening kernel 𝑊 ( ⃗𝑟 , ⃗𝑟 ′) = 𝐰 ( ⃗𝑟 ) ⊤𝚲−1∕2 𝐰 ( ⃗𝑟 ′) , 
which, when applied to the noise field as ∫ 𝑊 ( ⃗𝑟 , ⃗𝑟 ′) 𝜈( ⃗𝑟 ′) 𝑑𝑆 

′, yields spa- 

tial white noise. Applying the whitener to a random field, we get a 

whitened field 𝑓 ( ⃗𝑟 ) = ∫ 𝑊 ( ⃗𝑟 , ⃗𝑟 ′) 𝑓 ( ⃗𝑟 ′) 𝑑𝑆 

′. The spatial SNR, i.e., the ex- 

pected SNR for a sample at ⃗𝑟 , is the variance of the whitened field 

SNR ( ⃗𝑟 ) = 𝐾 𝑓 ( ⃗𝑟 , ⃗𝑟 ) = ∫ ∫ 𝑊 ( ⃗𝑟 , ⃗𝑟 ′) 𝐾 𝑓 ( ⃗𝑟 ′, ⃗𝑟 ′′) 𝑊 ( ⃗𝑟 , ⃗𝑟 ′′) 𝑑 𝑆 

′𝑑 𝑆 

′′. (20) 

With white noise, the whitening operation only acts as scaling with 1∕ 𝜎2 . 

With colored noise, it also modifies the covariance structure of the ran- 

dom field. 

2.5. Optimality criteria of sampling grids 

In this and the following Section, we discuss how an optimal sam- 

pling grid 𝑅 can be constructed. A classical approach would be to choose 

𝑅 that minimizes the expected reconstruction error or the posterior 

variance, involving the inversion either of 𝐔 

⊤𝐔 ( Section 2.2 ) or 𝐊 + 𝚺
( Section 2.3 ). One way to obtain an optimal sampling is to find an 𝑅 that 

maximizes the ”size ” of either of these matrices. The matrix size can be 

generally quantified in multiple ways, giving different optimality crite- 

ria in the context of experimental design ( Chaloner and Verdinelli, 1995; 

Krause et al., 2008 ). 

A common criterion is A-optimality ( Krause et al., 2008 ) measured 

either as Tr [( 𝐔 

⊤𝐔 ) −1 ] or more generally as Tr [( 𝚿⊤𝚺−1 𝚿 + 𝐊 

−1 
𝑎 ) 

−1 ] . How- 

ever, when studying sampling on a bounded surface as in MEG and EEG, 
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Fig. 3. A : Field covariances corresponding to two prior models: the field is bandlimited in spatial-frequency basis (SF bandlimited) and the field is generated by 

identically and independently distributed neural sources (IID source prior). A, left : Prior coefficient covariance in the SF basis and in the eigenbasis of 𝐾 IID . The 

covariance matrix and its diagonal are shown. A, right : Spatial covariance. The spatial kernel and its decay are shown for one position on the measurement surface. 

The rightmost column shows the spatial variance. B : Comparison of the spatial-frequency (SF) basis and the eigenbasis of 𝐾 IID . Each column shows the SF function and 

eigenfunction with the corresponding index. Wavenumbers and approximate wavelengths of the SF functions are displayed. The energy spectrum of the eigenfunction 

in SF basis is shown at bottom. The SF basis was generated using the zero-Neumann boundary condition. The eigenfunctions comprise multiple SF components with 

an average wavenumber proportional to the index. C : Example fields and their energy spectra both in the SF basis and eigenbasis. Energy is distributed to lower 

index components in the eigenbasis than in the SF basis indicating compression by the eigenbasis. For details on the computation, see Section 3.1 . Units in the plots 

are arbitrary. 

we should rather measure how well the sampling pattern captures the 

overall variance on the surface. To measure optimality in this sense, we 

define the fractional explained variance: 

FEV ( 𝑅 ) = 1 − 

∫ 𝐾 𝑓 ( ⃗𝑟 , ⃗𝑟 |𝑅 ) 𝑑𝑆 

∫ 𝐾 𝑓 ( ⃗𝑟 , ⃗𝑟 ) 𝑑𝑆 

= 

∫ 𝐤 ( ⃗𝑟 ) ⊤( 𝐊 + 𝚺) −1 𝐤 ( ⃗𝑟 ) 𝑑𝑆 

∫ 𝐾 𝑓 ( ⃗𝑟 , ⃗𝑟 ) 𝑑𝑆 

, (21) 

which ranges from 0 to 1, i.e., from no to all variance ex- 

plained. This measure is related to I-optimality or integrated optimality 

( Atkinson, 2014 ). 

The matrix size can also be measured using the determinant; this cri- 

terion is called D-optimality ( Chaloner and Verdinelli, 1995 ). This leads 

to maximization of the total information ( Appendix B ) 

TI ( 𝑅 ) = 

1 
2 
log 2 

det ( 𝐊 + 𝚺) 
det ( 𝚺) 

= 

1 
2 
log 2 det ( ̃𝐊 + 𝐈 ) , (22) 

where �̃� = 𝚺−1∕2 𝐊 𝚺−1∕2 is the whitened sample covariance matrix. The 

D-optimal 𝑅 minimizes the posterior entropy of the random-field coef- 

ficients 𝐚 ( Sebastiani and Wynn, 2000 ), i.e., maximizes the information 

gained, e.g., from the neural sources. Previously, total information has 

been used in studies comparing MEG sensor arrays ( Iivanainen et al., 

2017; Kemppainen and Ilmoniemi, 1989; Nenonen et al., 2004; Riaz 

et al., 2017; Schneiderman, 2014 ). 

2.6. Sampling grid construction 

We now propose a method to obtain sampling grids that maximize 

the total information for given prior assumptions. In Appendix B , we 

show that this corresponds to maximizing the diagonal elements in the 

whitened sample covariance matrix �̃� while simultaneously minimizing 

the absolute values of the non-diagonal elements. In other words, maxi- 

mizing total information is equivalent to finding the sampling grid with 

the least correlations and maximal SNR. 

As an illustrating example, we first discuss how the sample spacing 

in the Shannon–Nyquist theorem ( Jerri, 1977; Shannon, 1949 ) can be 

seen to result from information maximization. When treating bandlim- 

ited functions as random processes with a uniform prior variance for 

the spatial-frequency coefficients up to 𝑘 𝐵 , the kernel 𝐾( 𝑥, 𝑥 ′) can be 

calculated as the Fourier transformation of a boxcar function. This re- 

sults in a sinc-function kernel with zeros at equispaced intervals 1∕(2 𝑘 B ) 
illustrated in Fig. 4 . When the samples are placed at the zero crossings, 

the sample covariance matrix 𝐊 becomes diagonal, maximizing the total 

information. 

For a general case, we reformulate the problem using the kernel 

eigenfunctions 𝑣 𝑛 ( ⃗𝑟 ) . We consider a (whitened) kernel 𝐾( ⃗𝑟 , ⃗𝑟 ′) with an 

eigendecomposition 𝐯 ( ⃗𝑟 ) ⊤𝐃𝐯 ( ⃗𝑟 ′) . The decomposition can be rewritten as 

𝐾( ⃗𝑟 , ⃗𝑟 ′) = �̃� ( ⃗𝑟 ) ⊤�̃� ( ⃗𝑟 ′) , where �̃� ( ⃗𝑟 ) = 𝐃 

1∕2 𝐯 ( ⃗𝑟 ) , i.e., the covariance between 

points ⃗𝑟 and ⃗𝑟 ′ can be calculated as an Euclidean dot product between 

�̃� ( ⃗𝑟 ) and ̃𝐯 ( ⃗𝑟 ′) . Rewriting the squared distance between these vectors as 

||�̃� ( ⃗𝑟 ) − ̃𝐯 ( ⃗𝑟 ′) ||2 = ||�̂� ( ⃗𝑟 ) ||2 + ||�̃� ( ⃗𝑟 ′) ||2 − 2 ̃𝐯 ( ⃗𝑟 ) ⊤�̂� ( ⃗𝑟 ′) 
= 𝐾( ⃗𝑟 , ⃗𝑟 ) + 𝐾( ⃗𝑟 ′, ⃗𝑟 ′) − 2 𝐾( ⃗𝑟 , ⃗𝑟 ′) , (23) 

we can see that maximizing this distance with respect to sample posi- 

tions ⃗𝑟 and 𝑟 ′ corresponds to maximizing the diagonal elements in the 
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Fig. 4. Illustration of covariance kernel and sampling. Left : Coefficient variance 

as a function of spatial frequency for a strictly bandlimited process and a process 

with a smooth variance decay. Middle : The covariance functions and samples. 

The red and cyan curves describe the covariance functions for two samples while 

the spikes show the sample positions. Equispaced samples fit the zeros of the sinc 

functions. For a non-sinc covariance, there is no trivial choice for the optimal 

sampling distance. Right : Sample covariance matrices for the two cases, i.e., the 

covariance functions sampled at the equispaced locations. Dashed lines indicate 

the rows corresponding to the covariance functions on the left. 

sample covariance matrix 𝐊 while simultaneously minimizing the non- 

diagonal elements. 

The sample configuration that yields maximal information can be 

found with the farthest-point sampling algorithm ( Eldar et al., 1997; 

Schlömer et al., 2011 ), which attempts to maximize the pair-wise min- 

imum distances between the sample points. Instead of maximizing dis- 

tances |𝑟 − ⃗𝑟 ′|, we maximize ‖�̃� ( ⃗𝑟 ) − ̃𝐯 ( ⃗𝑟 ′) ‖; otherwise the algorithm 

works similarly. If 𝑲 [ 𝑖, 𝑗] = 𝐾( ⃗𝑟 𝑖 , ⃗𝑟 𝑗 ) are positive for neighbouring sam- 

ples, the algorithm leads to minimization of the non-diagonal |𝑲 [ 𝑖, 𝑗] |, 
and thereby to maximization of the total information. 

Generally, the sampling grid given by the method follows the co- 

variance structure of the kernel ( Fig. 3 ). For example, approximately 

uniform sampling grids can be generated using spatial-frequency- 

bandlimited covariance with circularly symmetric sinc-like kernels 

( Section 3.4 ). This showcases a connection between our sampling 

method and the sampling theorems that assume bandlimited functions 

and use uniform sampling ( Pesenson, 2015; Shannon, 1949 ). 

3. Simulations 

In this Section, we simulate spatial-frequency (SF) spectra of dipole 

fields and covariance kernels of random fields due to random source 

distributions. Further, we construct optimal sampling grids for differ- 

ent kernels and evaluate their performances. We begin by outlining the 

numerical methods. 

3.1. Models and computations 

We computed the electric potential and magnetic field using linear 

Galerkin boundary-element method with the isolated-source approach 

( Stenroos et al., 2007; Stenroos and Sarvas, 2012 ). The head was as- 

sumed a piecewise constant isotropic conductor with four compart- 

ments: brain (the white and gray matter as well as the cerebellum), 

cerebrospinal fluid (CSF), skull and scalp. The conductivity of the soft 

tissues (brain and scalp) was set to 0.33 S/m, the conductivity of CSF 

to 1.79 S/m, and skull conductivity to 0.33/50 S/m. The head model 

was built from the example data of SimNIBS software (version 2.0; 

Windhoff et al. 2013 ) in an earlier study by Stenroos and Nummenmaa 

2016 . In addition to the conductivity interfaces the model included the 

grey–white-matter boundary. 

We discretized the source-current distribution into point-like dipo- 

lar source-current elements. We placed the dipoles on the gray–white- 

matter boundary at 3-mm average spacing. The 20 324 sources were 

oriented normal to the surface following the anatomical orientation of 

apical dendrites of pyramidal neurons. 

We calculated the electric potential and the normal component of 

the magnetic field at the nodes of triangular meshes that represented the 

measurement surfaces. The measurement surfaces were generated from 

a dense scalp mesh by cutting the mesh above a plane defined roughly 

by the ears and nose. The cut mesh was resampled to 5 404 nodes and 10 

421 triangles. The mesh for the electric potential (EEG) was obtained by 

projecting the node positions onto the scalp. An ’on-scalp’ MEG surface 

was generated by inflating the mesh 4.5 mm away from the scalp. A 

more distant ’off-scalp’ MEG surface was obtained by further inflating 

the mesh and by smoothing it with the function smoothsurf in the 

iso2mesh MATLAB toolbox ( Fang and Boas, 2009 ). The median distance 

of the nodes of the off-scalp MEG surface to the scalp was 2.4 cm (2.0–

4.4 cm). 

We further computed the lead-field matrices for 102 magnetome- 

ters of a commercial SQUID-MEG system (MEGIN Oy, Helsinki, Finland) 

and for a 60-channel custom version of the ANT waveguard TM EEG cap 

(ANT Neuro, Hengelo, The Netherlands). The sensor locations were de- 

rived from a measurement file of the MEGIN system and were manu- 

ally coregistered to the used head geometry. 57 electrodes of the 60- 

channel EEG layout were employed in the measurement; we used those 

for the lead-field computation. We denote these arrays as SQUID102 and 

EEG57, respectively ( Fig. 10 C & D). The SQUID magnetometers were 

modeled with four integration points as described in the MNE software 

( Gramfort et al., 2014 ). 

The SF basis vectors were computed by discretizing the LB operator 

to the triangle mesh in the weak form ( Reuter et al., 2009) . The discrete 

form of the eigenvalue Eq. (3) is 

− 𝐂𝐮 𝑖 = 𝑘 2 𝑖 𝐌𝐮 𝑖 , (24) 

where 𝐮 𝑖 contains the nodal values for the 𝑖 th SF function, 𝐌 is a matrix 

that takes account the overlap in the piecewise-linear basis functions, 

and 𝐂 is the discrete LB operator. Matrices 𝐂 and 𝐌 were computed 

using MATLAB functions cotmatrix and massmatrix included in 

gptoolbox ( Jacobson et al., 2018 ). The zero-Neumann boundary condi- 

tion, which sets the outwards-facing derivative of 𝑢 to zero, was used 

in the spectral energy analysis, while the zero-Dirichlet boundary con- 

dition, setting 𝑢 to zero, was used in the grid construction. The energy 

spectra were calculated by discretizing the inner product in Eq. (4) as 

⟨𝑢 𝑖 , 𝑢 𝑗 ⟩ = ∫𝑆 

𝑢 𝑖 ( ⃗𝑟 ) 𝑢 𝑗 ( ⃗𝑟 )d 𝑆 ≈ 𝐮 ⊤𝑖 𝐌𝐮 𝑗 . (25) 

The dipole-field kernel 𝐾 IID ( Section 2.4 ) was constructed by assum- 

ing the sources on the cortically-constrained source space identically 

and independently distributed. The eigenbasis of 𝐾 IID was computed by 

discretizing the kernel on the surface and solving the discrete eigenvec- 

tors 𝐯 𝑖 . 

3.2. Energy spectra and decompositions of dipole fields 

Methods . We quantified the dipole-field energy spectra to estimate 

the beneficial numbers of spatial samples as discussed in Section 2.2 . 

Specifically, we analyzed the number of SF components needed to get 

99% energy of each dipole field. We denote this number by 𝐵 99% and 

define the corresponding wavenumber as the 99% bandwidth, 𝑘 99% . The 

sensor spacing in each modality corresponding to the largest 𝐵 99% val- 

ues across the sources was estimated using uniform sampling grids (see 

Section 3.4 ). Further, in order to quantify compressibility of the dipole 

fields, we calculated energy spectra in the eigenbasis of 𝐾 IID ; we denote 

the number of eigencomponents to achieve 99% energy as 𝑀 99% . 

We inspected how many SF components of the dipole fields were 

above spatial white noise for a given SNR. We defined the dipole-field 
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Fig. 5. The effective number of spatial components in dipole fields of on-scalp 

MEG, off-scalp MEG, and EEG for each source position on the cortical surface. 

Left: The number of spatial-frequency (SF) components to reach 99% of the en- 

ergy ( 𝐵 99% ). Center: The number of 𝐾 IID -eigencomponents to reach 99% energy 

( 𝑀 99% ). Right: 𝐵 99% and 𝑀 99% as function of source depth. The sources have 

been distributed to 2.5-mm-wide bins according to their depth. The solid lines 

plot the median values of 𝐵 99% and 𝑀 99% for the bins while the dashed lines 

indicate the 2.5 and 97.5 percentiles. 

SNR as SNR 𝑓 = ‖𝑓‖2 ∕ E ( ‖𝜈‖2 ) , where ‖𝑓‖2 is energy of the dipole field 

𝑓 and E ( ‖𝜈‖2 ) is the expected energy of a sensor-noise-equivalent white- 

noise field 𝜈. For every modality and source, we set the ratio of dipole 

amplitude and white noise level so that the source had the given SNR. 

We then computed the number of SF components that had energy higher 

than the flat white noise spectrum. Three values of SNR were considered: 

0.1, 1 and 10. 

Results Fig. 5 displays 𝐵 99% and 𝑀 99% for sources on the left cortical 

hemisphere. Generally, 𝐵 99% decreases as a function of source depth. For 

the sources in the most superficial bin, the 97.5th percentile of 𝐵 99% is 

276, 93 and 109 for on-scalp, off-scalp MEG and EEG, respectively. The 

bandwidths 𝑘 99% are then about 2.1, 1.0 and 1.3 1/cm, respectively, with 

corresponding uniform sensor spacings 1.6, 3.3 and 2.6 cm. Generally, 

𝑀 99% is lower than 𝐵 99% indicating compressibility of the dipole fields, 

e.g., for the most superficial sources, the 97.5th percentiles of 𝑀 99% are 

177, 63 and 72. 

Field energies and numbers of SF components above noise are shown 

in Fig. 6 . In MEG, the energy–depth curves have inverted V shape for 

the superficial sources as radial sources on gyri have smaller energies 

than tangential sources on sulcal walls. Additionally, MEG energy curves 

decay faster than those of EEG. For sources with SNR = 10, at maximum 

205, 109 and 91 components are above noise in on-scalp/off-scalp MEG 

and EEG. 

3.3. Field kernels 

Methods We analyzed the spatial variance 𝐾 IID ( ⃗𝑟 , ⃗𝑟 ) (amount of sig- 

nal) and correlations 𝐾 IID ( ⃗𝑟 𝑖 , ⃗𝑟 ) (sample spacing; Section 2.4 ). The num- 

ber of eigencomponents explaining 99% of the total variance was cal- 

culated to estimate the spatial degrees of freedom of the random source 

distribution ( Section 2.4 ). Field correlation length was quantified for 

each measurement point 𝑟 𝑖 by computing the distance along the sur- 

face at which 𝐾 IID ( ⃗𝑟 𝑖 , ⃗𝑟 ) had decayed to half of its maximum value (the 

‘half-maximum width’). The distances along the surfaces were computed 

using a method based on the heat equation ( Crane et al., 2017 ) im- 

plemented as the MATLAB function heat_geodesic in gptoolbox 

( Jacobson et al., 2018 ). 

Results Fig. 7 illustrates the kernels due to the IID random source dis- 

tribution for the three modalities. To explain 99% of the total variance, 

88, 35 and 26 eigencomponents are needed in on-scalp MEG, off-scalp 

MEG and EEG, respectively. Variance is distributed nonuniformly on the 

measurement surface with the highest values around the temporal cor- 

tex. The kernels are asymmetric and the correlation length varies across 

the surface; the least correlated area can be found on top of the temporal 

cortex. The correlation lengths are shortest in on-scalp MEG as indicated 

by smaller values of half-maximum widths compared to off-scalp MEG 

and EEG. 

3.4. Sampling grid construction and evaluation 

Methods The sampling grids were constructed by subsampling the 

nodal positions of the triangle meshes using the method described in 

Section 2.6 . For a given kernel discretized on the mesh, we calculated 

its eigendecomposition, and utilized a farthest-point sampling algorithm 

implemented in gptoolbox ( Jacobson et al., 2018 ) to obtain the optimal 

sampling positions. 

Grid construction We constructed sampling grids for scenarios where 

random source distributions were defined in the brain: a global scenario 

where the whole brain was assumed active and of interest, and for a local 

scenario where a region of interest (ROI) in the brain was defined. We 

compared the performance of uniform sampling to model-informed sam- 

pling for different numbers of spatial samples 𝑁 . Uniform sampling was 

generated using bandlimited priors in the SF basis (white covariance for 

the 𝑁 lowest SF coefficients; SF bandlimited prior; Section 2.4 ). Model- 

informed sampling was generated by encoding the prior in the covari- 

ance of the cortically-constrained sources (IID source prior; Section 2.4 ). 

The grids were evaluated by computing total information (TI) and frac- 

tional explained variance FEV according to Eqs. (22) and (21) from the 

‘ground-truth’ model of the signal and noise. 

We ran the optimization algorithm several times with a random ini- 

tial configuration as the output of the algorithm was sensitive to the 

initial condition. In the global scenario, the algorithm was run 20 times 

for 𝑁 < 25 , 10 times for 25 ≤ 𝑁 < 50 and twice for 𝑁 ≥ 50 . More itera- 

tions were chosen for small 𝑁 due to the higher variance in TI. To seek 

a globally optimal grid with model-informed sampling, we took the grid 

with maximum TI for each 𝑁 . For the uniform grids, we computed the 

average TI across the iterations as we wanted to quantify the general 

average performance of uniform sampling. In the local scenario, the al- 

gorithm was run once for each 𝑁 ; 𝑁 ranged in steps of 1 so that one 

iteration for each 𝑁 was deemed sufficient to extract a general trend of 

TI as a function 𝑁 . 

3.4.1. Global scenario 

Methods Here, the ground-truth model corresponded to the IID source 

prior and spatial white noise. The grids were constructed on meshes with 

the regions of eyes cropped out. We performed two analyses. In the first, 

we compared uniform and model-informed sampling in EEG and MEG 

as a function of SNR. The white noise variance ranged from 0 . 05 𝜎2 
0 to 

20 𝜎2 
0 . The reference noise level 𝜎0 was fixed in each modality so that it 

gave an average SNR (Eq. (20)) of 1 for source standard deviation of 

7.6 pAm. Using this convention, 𝜎0 was determined to be 9 fT, 3.7 fT 

and 42 nV in on-scalp, off-scalp MEG and EEG, respectively. TI was also 

computed for MEG102 and EEG57; 𝜎0 was calculated to be 2.9 fT and 

42 nV, respectively. 

In the second analysis, we compared uniform sampling of on-scalp 

and off-scalp MEG as a function of spatial white noise level. We set the 

reference source variance 𝑞 2 0 so that the average SNR of off-scalp MEG 

was 1 with a white noise level of 3 fT. The white noise level of on- 

scalp MEG ranged from 1 to 20 fT and the source variance was varied 

( 0 . 2 𝑞 2 0 , 𝑞 
2 
0 and 5 𝑞 2 0 ). On-scalp MEG grids comprising 10–600 points were 

generated, while off-scalp MEG had 100 or 300 points. 

Results Fig. 8 summarizes the first analysis in the global scenario. 

For model-informed sampling, the sample density is the highest on the 
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Fig. 6. Dipole-field energies and numbers of spatial- 

frequency (SF) components above noise. Left: Nor- 

malized dipole-field energies for on-scalp MEG, off- 

scalp MEG, and EEG for each source on the left corti- 

cal hemisphere and the same data as a function of 

source depth (the bins and the statistics are same 

as in Fig. 5 ). Right: The number of SF components 

in the dipole field above noise floor for each source 

position at different dipole-field SNR levels. Each 

dipole field has the same SNR, i.e., the source vari- 

ance varies between the dipoles. 

Fig. 7. Analysis of dipole-field kernel due to IID Gaussian sources. A: Variance as a function of the kernel eigencomponent. Inset shows the normalized eigenvalues 

(variances). B: Distribution of the variance on the measurement surface. C: Spatial profile of the field kernel at one position (red dot) on the measurement surface 

and the distance at which the covariance has decayed to half (half-maximum width). D: Half-maximum width of the kernel across the measurement surface. 

temporal lobe, which corresponds to the shorter correlation lengths and 

higher variance of the field kernel shown in previous analysis ( Fig. 7 ). 

Model-informed sampling is especially beneficial in MEG at low SNR 

< 1 and small sample numbers, giving about 10–25% increase in TI 

compared to uniform sampling. 

With the same SNR and the same number of samples, the TI is high- 

est in on-scalp MEG among the modalities. When the SNR is low (0.1), 

approximately 60, 70 and 80% of variance is explained (on-scalp MEG, 

off-scalp MEG and EEG, respectively) with a sample number as high as 

400. When the SNR is high (10), about 80, 30 and 20 samples are needed 

to explain 90% of the total variance. 

Figure 9 gives a summary of the second analysis comparing on- and 

off-scalp MEG. With a similar noise level, SNR as averaged over the 

whole measurement surface is higher in on-scalp MEG by a factor of 6.0. 

Figure 9 B shows TI and FEV as a function number of spatial samples and 

noise. With a comparable noise level, on-scalp MEG achieves the same 

information as 300 off-scalp samples with fewer samples. 

Figure 9 C gives the number of spatial samples needed in on-scalp 

MEG for the same TI as in off-scalp MEG as a function of noise level. For 

example, with a source variance of 𝑞 2 0 and noise levels of 3, 7, 10 and 

15 fT in on-scalp MEG, about 30, 130, 260 and 590 samples are needed 

to yield the same TI as 300 off-scalp MEG samples at 3-fT noise level. 

3.4.2. Local scenario 

Methods In the local scenario, the ground-truth model consisted of 

IID sources distributed in an ROI defined around the motor cortex. Both 

white (sensor) and colored (sensor + background brain activity) noise 

were considered. The ROI consisted of sources within a patch that had 

a radius of approximately 3 cm along the cortical surface (387 source 

elements; Fig. 10 A). Sampling grids were constructed for on-scalp MEG 

and EEG. The total information was analyzed and SQUID102 and EEG57 

were used as references. 

The source variance 𝑞 2 was set so that the maximum SNR of the on- 

scalp MEG was 3 with a spatial white noise level of 9 fT. The white 

noise level of EEG (25 nV) was set so that the maximum SNR was also 

3. To model colored noise due to brain background activity, the sources 

outside the ROI were assumed active (IID Gaussian; variance 𝑞 2 ∕100 ). 
The noise level of SQUID102 was set to 3 fT while that of EEG57 was 

24 nV. 

The field kernel was whitened as described in Section 2.4 and SNR 

was analyzed. The eigenvalues 𝜆𝑖 of the whitened kernel were converted 

to bits as 1∕2 log 2 ( 𝜆𝑖 + 1) . These values were used to analyze the number 

of eigencomponents contributing to the total information. Two uniform 

sampling schemes were considered. In the first, samples were distributed 

evenly on the whole head. In the second, the SF basis was constrained 

to a region on the surface that had a distance to the center of the ROI 

less than 9 cm. For model-informed sampling, a dipole-field kernel cor- 

responding to the ground-truth model was used, while the noise kernel 

corresponded either to the white or colored noise model. 

Results Fig. 10 A shows the SNR distributions as well as the TI content 

across the eigencomponents. With white noise, the TI is 28 bits in MEG 

and 27 bits in EEG. With colored noise, the maximum SNR is 1.1 in MEG 

and 0.3 in EEG while the TI is 18 and 12 bits, respectively. The TI and 

maximum SNR in SQUID102 are 4.6 bits and 1.1 with white noise and 
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Fig. 8. Comparison of uniform (SF bandlimited prior) and model-informed (IID source prior) sampling of the whole brain in on-scalp MEG, off-scalp MEG and 

EEG. A: Example on-scalp MEG sampling grids generated with the priors and their average and minimum sample spacing. B: Total information (TI) and fractional 

explained variance (FEV) of the uniform grids. TI for SQUID102 and EEG57 are also shown. C: Ratio of the TI obtained by model-informed and uniform sampling 

with different SNRs (top) and the number of additional samples required with uniform sampling to achieve the same TI as with model-informed sampling (bottom). 

Fig. 9. Spatial sampling of independent sources (variance 𝑞 2 0 ) distributed over the whole cortex with on-scalp and off-scalp MEG. A: Signal-to-noise ratio averaged 

over the whole measurement surface as a function of spatial white noise level. B: Total information (TI) and fractional explained variance (FEV). Colored lines give 

the values for on-scalp MEG as a function of sample number and noise level. The vertical lines show the values for off-scalp MEG with 100 and 300 samples with a 

noise level of 3 fT. The source variance is 𝑞 2 0 . C: Number of spatial samples needed in on-scalp MEG to achieve the same TI as in off-scalp MEG with a noise level 

of 3 fT as a function of on-scalp MEG white noise level. Comparisons to the TI of 100 off-scalp samples is plotted with the dashed line and to 300 samples with the 

solid line. 

9 



J. Iivanainen, A.J. Mäkinen, R. Zetter et al. NeuroImage 245 (2021) 118747 

Fig. 10. Spatial sampling of on-scalp MEG (left panel; A, C and E) and EEG (right; B, D and F) fields due to uncorrelated sources in an ROI around the motor cortex 

(shown on the center in red on the inflated cortical surface). A & B: Distribution of total information (TI) among the eigencomponents and the spatial distribution of 

SNR computed with spatial white noise as well as with colored noise (brain background activity + white noise). C & D: Example grids constructed with IID source 

and bandlimited SF ( ∼uniform sampling) priors. With IID source prior, two noise priors (white and colored) were considered. Sensor layouts of SQUID102 and EEG57 

arrays are also shown. E & F: TI as a function of number of samples in the grids computed using the two noise models. Wholehead 100 refers to a uniform wholehead 

grid with 100 spatial samples. 

3.6 bits and 0.8 with colored noise, respectively. The corresponding TIs 

in EEG57 are 5.7 and 3.8 bits, respectively; the maximum SNRs are 2.4 

and 1.3. 

The grids constructed using the different priors for signal and noise 

are presented in Fig. 10 B. Compared to uniform sampling, the model- 

informed grids are more densely distributed, especially when the col- 

ored noise model is used. Compared to whole-head sampling, using the 

source prior to distribute samples on the region with high SNR is benefi- 

cial. With colored noise, 10 samples are needed in the model-informed 

MEG grids to reach the same TI as with 100 whole-head samples. In 

EEG, 20 samples are needed. 

4. Discussion 

We quantified the number of spatial samples beneficial for MEG and 

EEG by analyzing the spatial-frequency content of fields due to dipolar 

sources. Based on a review of Gaussian processes and optimal design, 

we related the information metric used in MEG sensor-array designs to 

the covariance of random-field models. This relationship was used to 

derive an information-maximizing sampling algorithm. We applied the 

algorithm to generate sampling grids, which we used to quantify the 

benefit of model-informed sampling of random source distributions in 

comparison to uniform sampling. 

4.1. Field analysis 

To capture 99% of the field energy of every source in the brain of 

a representative adult male, approximately 280, 90 and 110 SF com- 

ponents were needed in on-scalp, off-scalp MEG and EEG, respectively. 

These numbers represent the maximum number of spatial degrees of 

freedom in any field due to neural activity in the used head model. Ad- 

ditionally, they correspond to the number of uniform samples needed to 

achieve at most roughly 1% field reconstruction error in noiseless con- 

ditions. These results agree with previously published results. For MEG, 

the numbers corresponds to the ”rule of thumb ” presented by Ahonen 

et al. (1993) : the sensor spacing should be approximately the distance 

of the sensors to the closest source. For EEG, the results are in line with 

the arguments by Srinivasan et al. (1998) : the sensor count should be 

at least roughly 120 for adequate sampling of the EEG in a typical adult 

head. 

The eigenbasis of the dipole-field kernel due to IID sources was found 

out to reduce the component number needed to capture 99% of the 

dipole-field energies, compressing the field representations. This com- 

pression and the variance analysis of IID sources suggest that the sample 

numbers given by the SF analysis provide oversampling, and, thereby, 

give a good upper limit on the beneficial sample number. 

4.2. Head models 

We employed a four-compartment realistically-shaped piecewise ho- 

mogeneous head model. To our knowledge, previous sampling anal- 

yses have been carried out in simpler models such as half-infinite 

and spherically symmetric conductors. An essential property of the 

four-compartment model is the inclusion of geometrically complex gy- 

ral folding that strongly deviates from simple layer structure repre- 

sented by spherical models or three-shell (3S) models commonly used 
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in EEG source analysis. Compared to EEG, MEG is only weakly sensi- 

tive to inclusion or omission of thin layer-like conductivity structures 

( Hamalainen and Sarvas, 1989; Stenroos et al., 2014 ). The inclusion of 

CSF, however, breaks the simple layer structure: the omission of CSF 

has roughly as large effects on MEG and EEG dipole fields, when com- 

pared with relative-error or correlation metrics ( Stenroos and Nummen- 

maa, 2016 ). 

While detailed analysis of different head models is beyond the scope 

of this manuscript, we did a simple model comparison to see, how 

the spatial frequency content is affected by the CSF and the skull, or 

the omission of them in the models. The comparison, presented in 

Appendix C , shows that the effective number of spatial-frequency com- 

ponents and the overall spatial spectrum in on- and off-scalp MEG 

are negligibly affected by the CSF. For EEG, we replicated the well- 

known low-pass filter property of a brain–skull–scalp system (e.g., 

Srinivasan et al. 1996 ), or more generally, of a layered structure of 

high, low and high conductivities. The highly conductive CSF enhances 

the low-pass phenomenon. The effect of the CSF on spatial-frequency 

decay, can, however, be partially compensated by lowering the conduc- 

tivity of the skull in a 3S model, as was already demonstrated for EEG 

dipole fields in ( Stenroos and Nummenmaa, 2016 ). The remaining dif- 

ference in the energy spectrum is mainly of constant-gain nature. Most 

of the smearing of EEG is thus characterized by the parameters of the 

layer-like low-pass filter system, and the complex folding of CSF plays 

a smaller role. 

Our conductor model did not contain separate white and gray matter 

or white-matter anisotropy, which affect EEG and MEG dipole fields 

( Guellmar et al., 2010; Vorwerk et al., 2014; Wolters et al., 2006 ). In 

the separation of white and gray matter in a model that contains the 

CSF, the amount of added conductivity contrast and deviation from layer 

structure are smaller than in the inclusion of CSF. The separation of 

white and gray matter should thus have a smaller effect on MEG and 

EEG energy decays and component counts than the CSF has. The white- 

matter anisotropy may have a non-negligible effect for sampling deeper 

sources with EEG. 

Finally, our simulation was based on normal adult head. Strong de- 

viations from layer structure between the source and sensors, such as 

fontanels in small children ( Lew et al., 2013 ), surgical holes in the skull, 

or CSF-filled brain lesions, may have a strong effect on spatial informa- 

tion especially in EEG but also in MEG. These effects are a potential 

topic for future studies. 

4.3. Grid construction 

To generate sampling grids, we presented a method that utilizes prior 

information of signal and noise in the form of a covariance kernel. As- 

suming random spatial-frequency coefficients with a uniform variance 

up to some bandlimit, the kernel is isotropic and translation-invariant 

and the method yields uniform sampling grids similar to those in the 

sampling theorems introduced in Section 2.1 . With this approach, uni- 

form grids may be constructed also on more complex surfaces and do- 

mains. The kernel constructed from the dipole fields of IID random neu- 

ral sources has a location-dependent shape and width, and the method 

yields nonuniform sampling grids. 

In the whole-head scenario, nonuniform model-informed sampling 

was only slightly beneficial compared to uniform sampling in terms of 

total information. When the number of samples was small and the noise 

level high, nonuniform sampling yielded roughly 10–25% more infor- 

mation than uniform sampling in MEG. When decreasing the noise level 

or increasing the number of samples, the performance of uniform and 

nonuniform sampling grids became roughly similar. With nonuniform 

sampling, the same total information was, however, reached with fewer 

number of samples. In EEG, the benefits of nonuniform sampling were 

less clear; EEG may not benefit from it due to long-range correlations. 

When a cortical region of interest was defined, local high-density 

(nonuniform) spatial sampling was beneficial; dense sampling of the lo- 

cal components yielded higher total information than uniform sampling 

covering a larger surface area or the whole head. Dense sampling may 

be especially useful when colored noise fields (such as those generated 

by background brain activity) are present and the region of interest is 

small. Local dense arrays could be beneficial in applications where a cer- 

tain part of the brain is of interest and the number of sensors is limited 

(e.g., Iivanainen et al., 2020 ) or in brain–computer interfacing where 

simple measurement setups are desirable. 

4.4. Practical considerations and future directions 

Our analysis corroborates the observation that the spatial-frequency 

content of MEG mostly depends on the source-to-sensor distance 

( Ahonen et al., 1993 ). Accordingly, for designing whole-scalp sensor 

arrays, the rule of thumb (sensor spacing approximately the distance of 

the sensors to the closest source) should give the approximate uniform 

sensor spacing. For example, in the case of an infant head where the 

source-to-sensor distance can be as small as 5 mm, this rule of thumb 

would suggest a sensor spacing of 5 mm. In addition to the spacing, the 

sensor array should have adequate coverage of the scalp so that most 

of the energy of the topographies can be captured by the spatial sam- 

ples. For example, in the case of SQUID helmets, the limited coverage 

of frontal sources often leads to a loss of signal as well as spatial infor- 

mation from the frontal regions. 

Our quantitative results are based on the analysis of a single adult 

head model and, thereby, cannot be directly generalized as there may be 

considerable variation in head sizes and shapes. For example, as men- 

tioned earlier, smaller sensor spacing would be beneficial when mea- 

suring an infant. Thus, it would be valuable to perform similar com- 

putations in different subject populations and extract statistics on the 

metrics introduced in this paper. We note that there are freely available 

head-model collections that could be used for this purpose (see, e.g., 

Htet et al. 2019 ). 

We demonstrated the developed method using a single ROI defined 

around the motor cortex. In future studies, the locations, sizes and num- 

ber of ROIs could be varied and correlations between the sources could 

be included. The ROI could be defined to match the cortical area of 

experimental interest (e.g., V1 of the visual cortex). 

The sampling grid optimization presented here does not necessar- 

ily result in sensor arrays that can be readily implemented in practice. 

For example, the minimum distance between the sensors was not con- 

strained and the sensor dimensions were ignored. Sensor dimensions 

limit the minimum distance between the sensors and the sensor noise 

level is proportional to them in many sensor types (e.g., Kemppainen and 

Ilmoniemi 1989; Mitchell and Alvarez 2020 ). Spatial integration within 

a sensor can be viewed as spatial low-pass filtering, an effect that can 

be used to reduce aliasing due to high spatial frequencies ( Roth et al., 

1989 ). These matters should be taken into account in future studies 

when designing practical sensor arrays. Also, the method could be used 

with a population of head models to design arrays with the best average 

performance. 

We did not include in our simulation the effects of systematic or 

random sensor-positioning errors. Intuitively, the higher the spatial fre- 

quency, the more it will be affected by a given amount of sensor position 

error. By the same argument, sensor positioning errors might negate the 

benefits gained by using optimized sensor arrays. However, the sensor 

positioning error could be included in the optimization to some degree 

by blurring the kernel. We note that the spatial-frequency representa- 

tion gives convenient means to assess how the spatial components of the 

field are affected by the sensor-position errors. 

We analyzed scalar fields which is sufficient in EEG. In contrast, 

magnetic field is a vector field, and the orthogonal field components 

may each provide additional information about the neural sources 

( Iivanainen et al., 2017 ). The sensor orientation could be included in the 

optimization by applying vector basis functions to assemble the kernel. 

Also (external) interference fields could be taken into account. In this 
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case, vector-spherical harmonics could provide a useful basis ( Taulu and 

Kajola, 2005 ). Sampling grids with triaxial sensors in a single layer 

( Brookes et al., 2021 ) or as multiple layers at different distances from the 

scalp should be beneficial in separating signals from the external inter- 

ference ( Nurminen et al., 2013; 2010 ). In fact, OPMs can provide dual- 

or tri-axial measurements of the field, making realistic implementations 

of such arrays feasible ( Brookes et al., 2021 ). The methods presented 

here could be further developed and used to guide the design of such 

arrays. We note that the choice between a single- or multi-axis measure- 

ment for each sensor might not be trivial as the sensitivity of the OPM 

typically decreases when multiple components of the field are measured 

simultaneously (see, e.g., Osborne et al. 2018 ). 

In MEG, it is common to use gradiometers instead of magnetometers. 

According to Ahonen et al. 1993 , gradiometers that sample the tangen- 

tial gradient of the normal field component can be placed at larger spac- 

ing than magnetometers. On the other hand, long-baseline axial gra- 

diometers have similar lead fields as magnetometers ( Malmivuo and 

Plonsey, 1995 ) suggesting that the results for those would be similar 

to what we obtained in this paper. However, adding external interfer- 

ence fields to the stochastic model would probably result in differences 

between the optimal magnetometer and axial-gradiometer arrays. 

With the generalization of the SF basis to an arbitrary measurement 

surface, the standard 1-D signal processing methods such as filtering and 

interpolation should be straightforward to apply to spatial EEG/MEG 

data. Spatial-frequency filtering could be useful in noise and interfer- 

ence rejection as demonstrated by Graichen et al. (2015) ; the continu- 

ous SF basis functions make the filtering less dependent on the sensor 

configuration. As the SF basis is both data- and model-independent, the 

filtering methods may be useful in real-time applications. The SF filter- 

ing as a part of preprocessing would be similar to the spline Laplacian 

( Nunez et al., 2019 ), providing flexibility for defining the filter coeffi- 

cients. Filtering and interpolation may also help in data visualization. 

Estimating the neural sources that could have generated the data, 

i.e., solving the bioelectromagnetic inverse problem ( Sarvas, 1987 ) is 

often of interest. We did not explicitly consider the inverse problem. 

However, the total information should be an estimator of the source- 

estimation performance as it quantifies the size (or the stability of the 

inversion) of the modelled or measured measurement covariance matrix. 

In other terms, when the kernel is generated using dipole fields, total 

information maximization corresponds to minimization of the posterior 

entropy of the sources ( Section 2.5 ). 

We conclude the discussion by summarizing the results from a prac- 

tical perspective. Considering whole-scalp sampling, our results show 

that when the sensor count is sufficiently large (hundreds) the benefits 

from optimized sampling are minimal compared to uniform sampling. 

With lower sensor counts (tens), sampling that is optimized either for 

an individual subject or across a subject population might, however, be 

beneficial. On the other hand, considering the sampling of an a-priori 

determined cortical region, our results show that the scalp area with the 

strongest signal is quite compact and, thereby, dense sampling might 

be beneficial. OPMs that use a single vapor cell with multiple densely- 

packed channels (e.g., Xia et al. 2006 ) could be used to assess the bene- 

fits of dense sampling over a conventional array, e.g., in a classification 

task (for such an analysis with EEG, see Robinson et al. 2017 ). 

5. Conclusions 

We analyzed the spatial sampling of EEG and MEG and suggested a 

method for designing optimal sampling positions. Our simulations sug- 

gest that when measuring adult males on-scalp MEG can benefit from 

up to roughly 300 spatial samples while for off-scalp MEG and EEG this 

number is around 100. The theoretical framework we present in this 

manuscript as well as the sample-positioning method we introduce can 

be used to design sampling grids that convey the most information from 

the neuronal sources. Such designs may be useful when the sensor num- 

ber is limited or a certain region of the brain is of interest. 
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Appendix A. Effective bandlimit 

To determine an effective bandlimit for field 𝑓 given by Eq. (2) , we 

note that the spectral coefficients can be written as 𝑎 𝑚 = 

∑
𝑖 𝑞 𝑖 ⟨𝑓 𝑖 , 𝑢 𝑚 ⟩. 

Further assuming that the source amplitudes 𝑞 𝑖 are independent random 

variables with zero mean ( E ( 𝑞 𝑖 𝑞 𝑗 ) = 0 ), the expected energy of 𝑓 can be 

decomposed using the spectra of the source fields: 

E ( ‖𝑓‖2 ) = 

∞∑
𝑚 =1 

∑
𝑖 

E ( 𝑞 2 𝑖 ) ⟨𝑓 𝑖 , 𝑢 𝑚 ⟩2 . (A.1) 

If 𝑓 𝐵 in the bandlimited representation of 𝑓 is chosen such that every 

source field 𝑓 𝑖 is expressed up to 1 − 𝛼 of its total energy (e.g., 1 − 0 . 01 = 

0 . 99 ), the expected energy of the residual field (the truncation error) can 

be bounded using Eq. (A.1) as 

E ( ‖𝑓 r ‖2 ) = 

∑
𝑖 

E ( 𝑓 2 𝑖 ) 
∞∑

𝑚 = 𝐵+1 
⟨𝑓 𝑖 , 𝑢 𝑚 ⟩2 

≤ 

∑
𝑖 

E ( 𝑓 2 𝑖 ) 𝛼‖𝑓 𝑖 ‖2 = 𝛼E ( ‖𝑓‖2 ) . (A.2) 

Thus, any field due to independent neural sources is expected to have 1 − 

𝛼 of its energy in the subspace spanned by the 𝐵 first SF basis functions. 
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Fig. C.11. The effective number of spatial-frequency (SF) components for dipole fields ( 𝐵 99% ) in different head models. The sources have been distributed to 2.5- 

mm-wide bins according to their depth. The solid lines with dots show the median values per bin, the dashed lines indicate the 2.5 and 97.5 percentiles. 

Fig. C.12. The spatial-frequency spectra of dipole fields in different models. The solid lines with dots show the median value across the cortex, the dashed lines 

indicate the 2.5 and 97.5 percentiles. The data of each model has been normalized to have unit maximum value in the median plot. 

Appendix B. Total information and covariance 

Here, we show how the total information (TI) relates to the sample 

and noise covariance matrices, 𝐊 and 𝚺 ( Section 2.3 ). If the samples 

as well as the noise were uncorrelated, TI would be 1∕2 
∑

𝑖 log 2 ( 𝑃 𝑖 + 1) 
where 𝑃 𝑖 is the power signal-to-noise ratio of each measurement. If the 

measurements are correlated, they can be orthogonalized by the eigen- 

decomposition of the whitened covariance matrix �̃� = 𝚺−1∕2 𝐊 𝚺− ⊤∕2 = 

𝐕𝐏𝐕 

⊤, where 𝐕 contains eigenvectors of �̃� and 𝐏 is a diagonal matrix 

of 𝑃 𝑖 . Starting from the original formula, TI can be now written as 

TI ( 𝑅 ) = 

1 
2 
∑
𝑖 

log 2 ( 𝑃 𝑖 + 1) = 

1 
2 
log 2 det ( 𝐏 + 𝐈 ) 

= 

1 
2 
log 2 det ( ̃𝐊 + 𝐈 ) = 

1 
2 
log 2 

det ( 𝐊 + 𝚺) 
det ( 𝚺) 

. (B.1) 

Total information can be maximized by choosing the measurement 

grid so that �̃� is diagonal, i.e., each sample measures independent infor- 

mation. This can be seen, e.g., from the matrix derivative ( Petersen and 

Pedersen, 2012 ) 

𝜕 ln det ( 𝐗 + 𝐈 ) 
𝜕𝐗 

= 2( 𝐗 + 𝐈 ) −1 − 𝐈 ⊙ ( 𝐗 + 𝐈 ) −1 , (B.2) 

where 𝐈 ⊙ is element-wise product with identity matrix resulting in the 

diagonal-part of the matrix. The logarithm of determinant is maximized 

when the derivative with respect to its elements is zero, which means 

that the non-diagonal elements of ( 𝐗 + 𝐈 ) −1 must be zero. This is equiva- 

lent to 𝐗 being diagonal itself. For diagonal elements, no solution exists, 

but their derivatives are always positive when 𝐗 is positive definite. 

Appendix C. Head model comparison 

To assess how different head tissues affect the spatial frequency con- 

tent of measurements, we compared three simplified models to the four- 

compartment (4C) model. The roles of CSF compartment and skull con- 

ductivity were evaluated using two three-shell models with homoge- 

neous compartments for the scalp, skull, and intracranial space. The 

conventional three-shell (3S) model had the same conductivities for the 

brain, skull and scalp as the 4C model. In the compensated three-shell 

model (3Sc), the conductivity of the skull was decreased to 0.33/80 

S/m to compensate for the omission of the CSF ( Stenroos and Num- 

menmaa, 2016 ). To assess the degree of lowpass filtering due to the 

brain–skull–scalp system on EEG and the role of skull in MEG, we used 

a single-shell (1S) model, bounded by the scalp. 

We first compared 𝐵 99% , the effective number of spatial components 

in dipole fields. The results are displayed in Fig. C.11 . In MEG, the num- 

ber of components is minimally affected by the omission of CSF, while 

the 1S model slightly exaggerates the level of detail with deeper sources. 

In EEG, the differences are largest with superficial sources; the 3S model 

somewhat exaggerates the number of components, while the 1S model 

produces essentially larger numbers, the median reaching 291 (vs. 80 

in the 4C model) for the most superficial sources. 
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In addition, we compared spatial spectra for all sources, i.e., the con- 

tribution of each spatial-frequency component to the signal energy. The 

results are shown in Fig. C.12 . For MEG, the spectra are nearly iden- 

tical. In on-scalp MEG, the simplified models very slightly exaggerate 

the most superficial sources, which shows here as slightly larger values 

for the 4C model at deeper sources. For EEG, the 4C and 3-shell models 

produce very similar spectra, while the 1S model produces considerably 

larger values for high spatial frequencies. 

Supplementary material 

Supplementary material associated with this article can be found, in 

the online version, at 10.1016/j.neuroimage.2021.118747 . 

References 

Abrahamsen, P., 1997. A review of Gaussian random fields and correlation functions. 

Ahonen, A.I. , Hämäläinen, M.S. , Ilmoniemi, R.J. , Kajola, M. , Knuutila, J.E.T. , Simola, J. , 

Vilkman, V.A. , 1993. Sampling theory for neuromagnetic detector arrays. IEEE Trans. 

Biomed. Eng. 40 (9), 859–869 . 

Atkinson, A.C. , 2014. Optimal Design. In: Wiley StatsRef: Statistics Reference Online, 

pp. 1–17 . 

Baillet, S. , 2017. Magnetoencephalography for brain electrophysiology and imaging. Nat. 

Neurosci. 20 (3), 327 . 

Boto, E., Bowtell, R., Krüger, P., Fromhold, T.M., Morris, P.G., Meyer, S.S., Barnes, G.R., 

Brookes, M.J., 2016. On the potential of a new generation of magnetometers for MEG: 

A beamformer simulation study. PLOS ONE 11 (8), e0157655. doi: 10.1371/jour- 

nal.pone.0157655 . 

Brodbeck, V. , Spinelli, L. , Lascano, A.M. , Wissmeier, M. , Vargas, M.-I. , Vulliemoz, S. , 

Pollo, C. , Schaller, K. , Michel, C.M. , Seeck, M. , 2011. Electroencephalographic source 

imaging: a prospective study of 152 operated epileptic patients. Brain 134 (10), 

2887–2897 . 

Bronstein, M.M. , Bruna, J. , LeCun, Y. , Szlam, A. , Vandergheynst, P. , 2017. Geometric deep 

learning: going beyond Euclidean data. IEEE Signal Process. Mag. 34 (4), 18–42 . 

Brookes, M.J. , Boto, E. , Rea, M. , Shah, V. , Osborne, J. , Holmes, N. , Hill, R.M. , Leggett, J. , 

Rhodes, N. , Bowtell, R. , 2021. Theoretical advantages of a triaxial optically pumped 

magnetometer magnetoencephalography system. NeuroImage 236, 118025 . 

Budker, D. , Romalis, M. , 2007. Optical magnetometry. Nat. Phys. 3 (4), 227 . 

Chaloner, K. , Verdinelli, I. , 1995. Bayesian experimental design: a review. Stat. Sci. 

273–304 . 

Chilès, J.-P. , Desassis, N. , 2018. Fifty years of kriging. In: Handbook of Mathematical 

Geosciences. Springer, pp. 589–612 . 

Crane, K., Weischedel, C., Wardetzky, M., 2017. The heat method for distance computa- 

tion. Commun. ACM 60 (11), 90–99. doi: 10.1145/3131280 . 

Cressie, N. , 1993. Statistics for Spatial Data. John Wiley & Sons . 

de Munck, J.C., Vijn, P.C.M., Lopes da Silva, F.H., 1992. A random dipole model 

for spontaneous brain activity. IEEE Trans. Biomed. Eng. 39 (8), 791–804. 

doi: 10.1109/10.148387 . 

Eldar, Y. , Lindenbaum, M. , Porat, M. , Zeevi, Y.Y. , 1997. The farthest point strategy for 

progressive image sampling. IEEE Trans. Image Process. 6 (9), 1305–1315 . 

Faley, M. , Dammers, J. , Maslennikov, Y. , Schneiderman, J. , Winkler, D. , Koshelets, V. , 

Shah, N. , Dunin-Borkowski, R. , 2017. High-Tc SQUID biomagnetometers. Supercond. 

Sci. Technol. 30 (8), 083001 . 

Fang, Q. , Boas, D.A. , 2009. Tetrahedral mesh generation from volumetric binary and 

grayscale images. In: 2009 IEEE International Symposium on Biomedical Imaging: 

From Nano to Macro. Ieee, pp. 1142–1145 . 

Freeman, W.J. , Holmes, M.D. , Burke, B.C. , Vanhatalo, S. , 2003. Spatial spectra of scalp 

EEG and EMG from awake humans. Clin. Neurophysiol. 114 (6), 1053–1068 . 

Graichen, U. , Eichardt, R. , Fiedler, P. , Strohmeier, D. , Zanow, F. , Haueisen, J. , 2015. 

SPHARA-a generalized spatial Fourier analysis for multi-sensor systems with non-u- 

niformly arranged sensors: application to EEG. PloS one 10 (4), e0121741 . 

Gramfort, A. , Luessi, M. , Larson, E. , Engemann, D.A. , Strohmeier, D. , Brodbeck, C. , Parkko- 

nen, L. , Hämäläinen, M.S. , 2014. MNE software for processing MEG and EEG data. 

NeuroImage 86, 446–460 . 

Grover, P. , Venkatesh, P. , 2016. An information-theoretic view of EEG sensing. Proc. IEEE 

105 (2), 367–384 . 

Guellmar, D. , Haueisen, J. , Reichenbach, J.R. , 2010. Influence of anisotropic electrical 

conductivity in white matter tissue on the EEG/MEG forward and inverse solution. A 

high-resolution whole head simulation study. NeuroImage 51 (1), 145–163 . 

Hämäläinen, M. , Hari, R. , Ilmoniemi, R.J. , Knuutila, J. , Lounasmaa, O.V. , 1993. Magne- 

toencephalography-theory, instrumentation, and applications to noninvasive studies 

of the working human brain. Rev. Mod. Phys. 65 (2), 413 . 

Hamalainen, M.S. , Sarvas, J. , 1989. Realistic conductivity geometry model of the hu- 

man head for interpretation of neuromagnetic data. IEEE Trans. Biomed. Eng. 36 (2), 

165–171 . 

Hedrich, T. , Pellegrino, G. , Kobayashi, E. , Lina, J.-M. , Grova, C. , 2017. Comparison of 

the spatial resolution of source imaging techniques in high-density EEG and MEG. 

NeuroImage 157, 531–544 . 

Hill, R.M. , Boto, E. , Rea, M. , Holmes, N. , Leggett, J. , Coles, L.A. , Papastavrou, M. , Ever- 

ton, S. , Hunt, B. , Sims, D. , et al. , 2020. Multi-channel whole-head OPM-MEG: helmet 

design and a comparison with a conventional system. NeuroImage 116995 . 

Htet, A.T. , Burnham, E.H. , Noetscher, G.M. , Pham, D.N. , Nummenmaa, A. , Makarov, S.N. , 

2019. Collection of CAD human head models for electromagnetic simulations and 

their applications. Biomed. Phys. Eng. Express 5 (6), 067005 . 

Iivanainen, J. , Stenroos, M. , Parkkonen, L. , 2017. Measuring MEG closer to the brain: 

performance of on-scalp sensor arrays. NeuroImage 147, 542–553 . 

Jacobson, A., et al., 2018. gptoolbox: Geometry Processing Toolbox. http://github.com/ 

alecjacobson/gptoolbox . 

Iivanainen, J. , Zetter, R. , Parkkonen, L. , 2020. Potential of on-scalp MEG: Robust detection 

of human visual gamma-band responses. Hum. Brain Mapp. 41 (1), 150–161 . 

Jerri, A.J. , 1977. The Shannon sampling theorem-its various extensions and applications: 

a tutorial review. Proc. IEEE 65 (11), 1565–1596 . 

Kailath, T. , Sayed, A.H. , Hassibi, B. , 2000. Linear Estimation. Prentice Hall . 

Kemppainen, P. , Ilmoniemi, R. , 1989. Channel capacity of multichannel magnetometers. 

In: Advances in Biomagnetism. Springer, pp. 635–638 . 

Krause, A. , Singh, A. , Guestrin, C. , 2008. Near-optimal sensor placements in gaussian pro- 

cesses: theory, efficient algorithms and empirical studies. J. Mach. Learn. Res. 9 (Feb), 

235–284 . 

Levy, B. , 2006. Laplace-Beltrami eigenfunctions towards an algorithm that “understands ”

geometry. In: IEEE International Conference on Shape Modeling and Applications 

2006 (SMI’06). IEEE . pp. 13–13 

Lew, S. , Sliva, D.D. , Choe, M.S. , Grant, P.E. , Okada, Y. , Wolters, C.H. , Hamalainen, M.S. , 

2013. Effects of sutures and fontanels on MEG and EEG source analysis in a realistic 

infant head model. NeuroImage 76, 282–293 . 

Lindley, D.V. , 1956. On a measure of the information provided by an experiment. Ann. 

Math. Stat. 27 (4), 986–1005 . 

Loeve, M. , 1978. Probability Theory II, fourth ed. Springer . 

Malmivuo, J. , Plonsey, R. , 1995. Bioelectromagnetism: Principles and Applications of Bio- 

electric and Biomagnetic Fields. Oxford University Press, USA . 

McEwen, J.D. , Wiaux, Y. , 2011. A novel sampling theorem on the sphere. IEEE Trans. 

Signal Process. 59 (12), 5876–5887 . 

Mercer, J. , 1909. Functions of positive and negative type, and their connection the theory 

of integral equations. Philos. Trans. R. Soc.London Ser. A 209 (441–458), 415–446 . 

Mitchell, M.W. , Alvarez, S.P. , 2020. Colloquium: quantum limits to the energy resolution 

of magnetic field sensors. Rev. Mod. Phys. 92 (2), 021001 . 

Nenonen, J. , Kajola, M. , Simola, J. , Ahonen, A. , 2004. Total information of multichannel 

MEG sensor arrays. In: Proceedings of the 14th International Conference on Biomag- 

netism (Biomag2004), pp. 630–631 . 

Nunez, P.L. , Nunez, M.D. , Srinivasan, R. , 2019. Multi-scale neural sources of EEG: genuine, 

equivalent, and representative. A tutorial review. Brain Topogr. 32 (2), 193–214 . 

Nunez, P.L. , Srinivasan, R. , et al. , 2006. Electric Fields of the Brain: The Neurophysics of 

EEG. Oxford University Press, USA . 

Nurminen, J. , Taulu, S. , Nenonen, J. , Helle, L. , Simola, J. , Ahonen, A. , 2013. Improving 

MEG performance with additional tangential sensors. IEEE Trans. Biomed. Eng. 60 

(9), 2559–2566 . 

Nurminen, J. , Taulu, S. , Okada, Y. , 2010. Improving the performance of the signal space 

separation method by comprehensive spatial sampling. Phys. Med. Biol. 55 (5), 1491 . 

Osborne, J. , Orton, J. , Alem, O. , Shah, V. , 2018. Fully integrated standalone zero field 

optically pumped magnetometer for biomagnetism. In: Steep Dispersion Engineering 

and Opto-Atomic Precision Metrology XI, Vol. 10548. International Society for Optics 

and Photonics, p. 105481G . 

Pesenson, I. Z., 2014. Multiresolution analysis on compact Riemannian manifolds. arXiv 

preprint arXiv:1404.5037 . 

Pesenson, I.Z. , 2015. Sampling, splines and frames on compact manifolds. GEM-Int. J. 

Geomath. 6 (1), 43–81 . 

Petersen, K. B., Pedersen, M. S., 2012. The matrix cookbook 

http://www2.compute.dtu.dk/pubdb/pubs/3274-full.html . 

Petrov, Y. , Nador, J. , Hughes, C. , Tran, S. , Yavuzcetin, O. , Sridhar, S. , 2014. Ultra-dense 

EEG sampling results in two-fold increase of functional brain information. NeuroIm- 

age 90, 140–145 . 

Qiu, A. , Bitouk, D. , Miller, M.I. , 2006. Smooth functional and structural maps on the 

neocortex via orthonormal bases of the Laplace-Beltrami operator. IEEE Trans. Med. 

Imaging 25 (10), 1296–1306 . 

Reuter, M. , Biasotti, S. , Giorgi, D. , Patanè, G. , Spagnuolo, M. , 2009. Discrete Laplace—

Beltrami operators for shape analysis and segmentation. Comput. Graph. 33 (3), 

381–390 . 

Riaz, B. , Pfeiffer, C. , Schneiderman, J.F. , 2017. Evaluation of realistic layouts for next 

generation on-scalp MEG: spatial information density maps. Sci. Rep. 7 (1), 6974 . 

Robinson, A.K. , Venkatesh, P. , Boring, M.J. , Tarr, M.J. , Grover, P. , Behrmann, M. , 2017. 

Very high density EEG elucidates spatiotemporal aspects of early visual processing. 

Sci. Rep. 7 (1), 16248 . 

Roth, B.J. , Sepulveda, N.G. , Wikswo Jr, J.P. , 1989. Using a magnetometer to image a 

two-dimensional current distribution. J. Appl. Phys. 65 (1), 361–372 . 

Sarvas, J. , 1987. Basic mathematical and electromagnetic concepts of the biomagnetic 

inverse problem. Phys. Med. Biol. 32 (1), 11 . 

Schlömer, T. , Heck, D. , Deussen, O. , 2011. Farthest-point optimized point sets with maxi- 

mized minimum distance. In: Proceedings of the ACM SIGGRAPH Symposium on High 

Performance Graphics. ACM, pp. 135–142 . 

Schneiderman, J.F. , 2014. Information content with low-vs. high-Tc SQUID arrays in MEG 

recordings: the case for high-Tc SQUID-based MEG. J. Neurosci. Methods 222, 42–46 . 

Sebastiani, P. , Wynn, H.P. , 2000. Maximum entropy sampling and optimal Bayesian ex- 

perimental design. J. R. Stat. Soc. Ser. B 62 (1), 145–157 . 

Shannon, C. , 1949. Communication in the presence of noise. Proc. IRE 37 (1), 10–21 . 

Slutzky, M.W. , Jordan, L.R. , Krieg, T. , Chen, M. , Mogul, D.J. , Miller, L.E. , 2010. Optimal 

spacing of surface electrode arrays for brain–machine interface applications. J. Neural 

Eng. 7 (2), 026004 . 

14 

https://doi.org/10.1016/j.neuroimage.2021.118747
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0002
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0002
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0002
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0002
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0002
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0002
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0002
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0002
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0003
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0003
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0004
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0004
https://doi.org/10.1371/journal.pone.0157655
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0006
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0006
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0006
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0006
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0006
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0006
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0006
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0006
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0006
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0006
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0006
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0007
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0007
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0007
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0007
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0007
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0007
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0008
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0008
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0008
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0008
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0008
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0008
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0008
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0008
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0008
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0008
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0008
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0009
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0009
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0009
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0010
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0010
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0010
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0011
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0011
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0011
https://doi.org/10.1145/3131280
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0013
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0013
https://doi.org/10.1109/10.148387
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0015
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0015
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0015
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0015
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0015
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0016
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0016
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0016
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0016
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0016
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0016
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0016
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0016
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0016
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0017
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0017
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0017
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0018
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0018
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0018
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0018
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0018
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0019
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0019
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0019
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0019
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0019
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0019
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0019
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0020
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0020
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0020
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0020
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0020
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0020
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0020
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0020
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0020
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0021
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0021
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0021
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0022
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0022
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0022
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0022
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0023
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0023
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0023
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0023
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0023
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0023
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0024
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0024
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0024
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0025
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0025
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0025
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0025
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0025
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0025
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0026
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0026
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0026
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0026
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0026
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0026
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0026
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0026
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0026
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0026
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0026
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0026
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0027
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0027
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0027
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0027
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0027
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0027
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0027
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0028
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0028
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0028
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0028
http://github.com/alecjacobson/gptoolbox
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0029
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0029
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0029
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0029
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0031
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0031
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0032
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0032
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0032
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0032
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0033
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0033
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0033
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0034
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0034
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0034
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0034
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0035
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0035
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0035
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0036
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0036
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0036
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0036
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0036
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0036
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0036
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0036
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0037
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0037
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0038
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0038
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0039
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0039
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0039
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0040
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0040
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0040
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0041
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0041
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0042
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0042
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0042
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0043
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0043
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0043
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0043
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0043
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0044
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0044
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0044
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0044
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0045
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0045
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0045
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0045
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0046
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0046
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0046
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0046
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0046
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0046
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0046
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0047
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0047
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0047
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0047
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0048
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0048
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0048
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0048
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0048
http://arxiv.org/abs/1404.5037
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0050
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0050
http://www2.compute.dtu.dk/pubdb/pubs/3274-full.html
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0052
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0052
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0052
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0052
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0052
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0052
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0052
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0053
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0053
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0053
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0053
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0054
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0054
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0054
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0054
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0054
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0054
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0055
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0055
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0055
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0055
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0056
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0056
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0056
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0056
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0056
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0056
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0056
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0057
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0057
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0057
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0057
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0058
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0058
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0059
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0059
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0059
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0059
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0060
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0060
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0061
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0061
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0061
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0062
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0062
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0063
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0063
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0063
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0063
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0063
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0063
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0063


J. Iivanainen, A.J. Mäkinen, R. Zetter et al. NeuroImage 245 (2021) 118747 

Solin, A. , Särkkä, S. , 2020. Hilbert space methods for reduced-rank Gaussian process re- 

gression. Stat. Comput. 30 (2), 419–446 . 

Srinivasan, R. , Nunez, P.L. , Tucker, D.M. , Silberstein, R.B. , Cadusch, P.J. , 1996. Spatial 

sampling and filtering of EEG with spline laplacians to estimate cortical potentials. 

Brain Topogr. 8 (4), 355–366 . 

Srinivasan, R. , Tucker, D.M. , Murias, M. , 1998. Estimating the spatial Nyquist of the hu- 

man EEG. Behav. Res. Methods Instrum.Comput. 30 (1), 8–19 . 

Stark, H. , Woods, J.W. , 1986. Probability, Random Processes, and Estimation Theory for 

Engineers. Prentice-Hall, Inc. . 

Stenroos, M. , Hunold, A. , Haueisen, J. , 2014. Comparison of three-shell and simplified 

volume conductor models in magnetoencephalography. NeuroImage 94, 337–348 . 

Stenroos, M. , Mäntynen, V. , Nenonen, J. , 2007. A matlab library for solving quasi-static 

volume conduction problems using the boundary element method. Comput. Methods 

Programs Biomed. 88 (3), 256–263 . 

Stenroos, M. , Nummenmaa, A. , 2016. Incorporating and compensating cerebrospinal fluid 

in surface-based forward models of magneto- and electroencephalography. PLOS ONE 

11 (7), 1–23 . 

Stenroos, M. , Sarvas, J. , 2012. Bioelectromagnetic forward problem: isolated source ap- 

proach revis (it) ed. Phys. Med. Biol. 57 (11), 3517 . 

Taulu, S. , Kajola, M. , 2005. Presentation of electromagnetic multichannel data: the signal 

space separation method. J. Appl. Phys. 97 (12), 124905 . 

Tierney, T.M. , Mellor, S. , O’Neil, G.C. , Holmes, N. , Boto, E. , Roberts, G. , … Barnes, G.R. , 

2020. Pragmatic spatial sampling for wearable MEG arrays. Scientific reports 10 (1), 

1–11 . 

Vaidyanathan, C. , Buckley, K.M. , 1997. A sampling theorem for eeg electrode configura- 

tion. IEEE Trans. Biomed. Eng. 44 (1), 94–97 . 

Vorwerk, J. , Cho, J.-H. , Rampp, S. , Hamer, H. , Knösche, T.R. , Wolters, C.H. , 2014. A 

guideline for head volume conductor modeling in EEG and MEG. NeuroImage 100, 

590–607 . 

Williams, C.K. , Rasmussen, C.E. , 2006. Gaussian Processes for Machine Learning. MIT 

Press Cambridge, MA . 

Wilson, H. , Vrba, J. , 2007. Comparison of MEG arrays-revisited. In: International Congress 

Series, Vol. 1300. Elsevier, pp. 619–622 . 

Windhoff, M. , Opitz, A. , Thielscher, A. , 2013. Electric field calculations in brain stimu- 

lation based on finite elements: an optimized processing pipeline for the generation 

and usage of accurate individual head models. Hum. Brain Mapp. 34 (4), 923–935 . 

Wolters, C.H. , Anwander, A. , Tricoche, X. , Weinstein, D. , Koch, M.A. , MacLeod, R.S. , 2006. 

Influence of tissue conductivity anisotropy on EEG/MEG field and return current com- 

putation in a realistic head model: a simulation and visualization study using high- 

-resolution finite element modeling. NeuroImage 30 (3), 813–826 . 

Xia, H. , Ben-Amar Baranga, A. , Hoffman, D. , Romalis, M. , 2006. Magnetoencephalography 

with an atomic magnetometer. Appl. Phys. Lett. 89 (21), 211104 . 

15 

http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0064
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0064
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0064
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0065
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0065
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0065
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0065
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0065
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0065
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0066
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0066
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0066
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0066
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0067
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0067
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0067
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0068
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0068
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0068
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0068
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0069
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0069
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0069
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0069
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0070
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0070
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0070
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0071
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0071
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0071
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0072
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0072
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0072
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0073
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0073
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0073
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0073
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0073
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0073
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0073
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0073
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0073
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0074
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0074
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0074
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0075
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0075
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0075
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0075
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0075
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0075
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0075
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0076
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0076
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0076
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0077
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0077
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0077
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0078
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0078
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0078
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0078
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0079
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0079
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0079
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0079
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0079
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0079
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0079
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0080
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0080
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0080
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0080
http://refhub.elsevier.com/S1053-8119(21)01019-3/sbref0080

