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Abstract – Auditory localisation accuracy may be degraded when a head-worn device (HWD), such as a
helmet or hearing protector, is used. A computational method is proposed in this study for estimating how
horizontal plane localisation is impaired by a HWD through distortions of interaural cues. Head-related impulse
responses (HRIRs) of different HWDs were measured with a KEMAR and a binaural auditory model was used
to compute interaural cues from HRIR-convolved noise bursts. A shallow neural network (NN) was trained
with data from a subjective listening experiment, where horizontal plane localisation was assessed while wearing
different HWDs. Interaural cues were used as features to estimate perceived direction and position uncertainty
(standard deviation) of a sound source in the horizontal plane with the NN. The NN predicted the position
uncertainty of localisation among subjects for a given HWD with an average estimation error of 1�. The
obtained results suggest that it is possible to predict the degradation of localisation ability for specific HWDs
in the frontal horizontal plane using the method.
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1 Introduction

Head-worn devices (HWDs), such as helmets or hearing
protectors, may obstruct the acoustic transmission of sound
to the ear completely or partially. In potentially hazardous
environments, workers often need to wear protection
HWDs and it is vital to ensure that the performance or
safety of the person wearing the device is not unnecessarily
compromised due to any potential deterioration of auditory
perception. Depending on the task of the worker, the ability
to communicate verbally, locate and identify potential
objects of interest, and maintain a sense of space may be
essential for successfully carrying out their operations. A
traditional perceptual evaluation of a HWD requires con-
ducting structured listening tests which can require a large
number of participants and substantial time to prepare and
complete. Especially during the development of new prod-
ucts, large scale listening tests for each potential feature
are not a viable option.

Acoustic measurements, on the other hand, are rela-
tively easy and quick to perform. In principle, the head-
related transfer functions (HRTFs) from a source to the
ear canals of a subject can be measured with and without
a HWD, and the differences between the responses can then
be monitored. However, it is not a straightforward task to

evaluate the effect of a device on the spatial perception of
surroundings from these differences. Developing tools that
provide robust evaluation from acoustical measurements
would contribute to improving product quality and reduc-
ing development time and costs. If the evaluation estimates
the subjective effect introduced by the product accurately,
intermediate modifications in early stages of development
can be tested without the need of subjective experiments.

In this study, an instrumental method based on acoustic
measurements is proposed to assess how HWD products
introduce distortions to the binaural cues estimates. This
method aims at contributing to a larger framework to assess
the sound quality of HWDs, including front-back confu-
sions, elevated sources, externalisation, timbral differences,
etc. The degradation caused by HWDs on horizontal local-
isation was assessed with formal subjective listening exper-
iments, and a method to estimate the degradation with a
computational model-based analysis of acoustically mea-
sured responses was developed. The method estimated the
binaural cues with a simple binaural auditory model and
utilised a neural network (NN) to estimate the spatial
perception with the cues as input features. The scope of this
model was to provide a method for the objective assessment
of a HWD performance, based on subjective data. This
model may be useful for applications such as characteriz-
ing HWDs, evaluating hear-through systems in virtual real-
ity, or improving the methods for evaluating the acoustic*Corresponding author: pedro.llado@aalto.fi
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transparency of audio devices. The method is thus an appli-
cation of a computational model of binaural hearing to a
real-world problem, similar to several methods in [1].

2 Background
2.1 Models of binaural hearing

Auditory modeling of the hearing is motivated to con-
tribute to the understanding of the hearing system, and
to produce tools that mimic as accurately as possible the
function that is being emulated [2]. Models of spatial hear-
ing aim at emulating the functions of the auditory system
that are related to the localisation of sounds. The inputs
to the model are usually the acoustic signals that reach
the two ears, and the direction of arrival is estimated based
on, e.g., spectral features of the individual signals (monau-
ral cues), or the differences in timing, level, and similarity
between the two ears (binaural cues). When the location
of a sound source is restricted only to the frontal horizontal
plane, binaural cues are typically enough to resolve the
direction of the sound. Thus, an auditory model that does
not take advantage of the monaural cues suffices when
the localisation task is limited to the frontal horizontal
plane, as in the current study. Binaural auditory models
can be found in The Auditory Modeling Toolbox by Sønder-
gaard and Majdak [3] (i.e. [4–6]), and are included in the
book The technology of binaural listening, by Blauert
et al. [7].

Even though the auditory system is able to determine
the direction of a sound source based on binaural cues, it
is not clear how the details of that process play out. The
timing and level differences between the two ears, interaural
time differences (ITD) and interaural level differences
(ILD), respectively, are frequency-dependent and may in
some cases provide conflicting information in different
frequency bands. Nevertheless, the cues are ultimately com-
bined into a single perceived direction. The auditory nerve
carries the signals from the cochlea to the cochlear nucleus,
where the information is distributed to the superior olivary
complex, which is divided into the medial superior olive
(MSO) and the lateral superior olive (LSO). These two oli-
vary complexes are known to be sensitive to ITD and ILD
and appear to have a key role in azimuth localisation [8, 9],
even though these binaural cues are not enough to resolve
sound source direction due to what is often called the cone
of confusion (regions where multiple points in the space
share the same ITD and ILD values). However, the precise
neural mechanisms that underlie the extraction of binaural
cues remains unknown [10, 11]. Thus, even when dealing
with the restricted case of horizontal plane localisation,
the mapping from the binaural signals to the perceived
direction of the auditory event is far from trivial.

One approach for estimating the perceived sound source
direction from binaural cues involves probabilistic models,
which have been proposed by [12, 13]. In [13], ITD and
ILD cues were compared to a database of ITD and ILD
values for known source locations, and the most probable
sound source position was estimated from a posterior

probability distribution. This model could also incorporate
prior information in the form of “knowledgemaps”weighting
the probability distribution. In [12], a binaural auditory
front-end interface was followed by a Gaussian Mixture
Model. Sound source direction was estimated bymaximizing
the likelihood of a given observation to a database for each
cochlear frequency band. The final direction estimation
across frequency bands was based on a probabilistic model.

2.2 Acoustics and evaluation of head-worn devices

Head-worn devices may partially or completely occlude
the ears, leading to distortions in frequency and time
domains. In the specific case of sound source localisation,
this may lead to altered binaural and monaural cues, which
in turn may deteriorate localisation accuracy. The amount
of attenuation of a hearing protection device or the physical
shape of a protection helmet play a significant role on the
introduced effect and it is not evident how a device distorts
the spatial sound perception without a subjective test
evaluation.

The evaluation of the introduced effect on spatial local-
isation by HWDs is essential when they are worn in duties
where good conservation of communication abilities and
spatial perception of auditory surroundings is important.
An American National Standard onMethods for Measuring
the Effect of Head-worn Devices on Directional Sound local-
ization in the Horizontal Plane [14] presents three alterna-
tive methods for evaluating the effect of a HWD on
horizontal plane localisation. All methods are based on
subjective listening experiments, where the task is to indi-
cate the active loudspeaker in a circular horizontal array
of loudspeakers. The number of loudspeakers in the array
as well as the method of indicating the active loudspeaker
differ between the alternative methods of the standard.
The second method in it is of interest in this study, which
is designed to measure localisation error in the horizontal
plane with a high-resolution response metric.

Several studies about HWDs evaluation on localisation
tasks can be found in the literature. Vause and Wesley
Grantham [15] found that wearing earplugs and protective
headgear increased horizontal localisation errors when
compared to an open ears condition both in frontal and lat-
eral directions, being more notable for the latter. Their
results suggest that earplugs may disrupt interaural cues.
Similar results were found in a following study on the effect
of hearing protectors by Bolia et al. [16], where wearing
earmuffs or earplugs increased mean azimuth localisation
error by 5�. Simpson et al. [17] found that head movement
patterns and search time for sound source localisation were
affected by hearing protection devices. Their results suggest
that localisation cues may be especially disrupted in all
dimensions when wearing earplugs and earmuffs together.
Zimpfer and Sarafian [18] studied front-back, up-down
and left-right localisation errors when different HWDs were
worn. They found significant differences on sound localisa-
tion performance which depended on the type of HWD,
where active hearing protection devices induced more errors
than passive devices.
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Schepker et al. [19] and Denk et al. [20] investigated the
sound quality of commercially available hear-through
devices with subjective listening experiments. In [19],
perceptual sound quality was evaluated. Their results sug-
gest that the main factor in perceived sound quality was
determined by how similar the transfer functions of the
inserted device and the open ear canal were. The closer
the perceptual characteristics were to the open ear, the
better. In [20] large differences between devices were found;
some devices conserved open ear properties well, while
others introduced severe artefacts and destroyed the binau-
ral cues. However, the direct implications of these artefacts
were not reported. In the current study, the relationship
between measured spatial cues artefacts and subjective
behavior is investigated and utilised in objectively charac-
terising HWDs.

The mapping between sound source location and the
corresponding auditory spatial cues depend on the interplay
between source content and individual ear, head, and upper
body morphology. The auditory system exhibits long-term
adaptation to the individual auditory cues [21], and is
remarkably robust to a wide range of surrounding acoustic
conditions and source content. Adaptation to altered binau-
ral and monaural cues require sound exposure, training
with feedback or explicit training [22]. This adaptation
requires extended periods of time, especially if no feedback
and no explicit training is allowed. In the current study,
each HWD is worn for a limited time and no feedback or
training is given in the test. Thus, it is assumed that sub-
jects don’t adapt to any of the spatial cue distortions caused
by the HWDs, and that their task performance reflects the
degradation of spatial cues due to the HWDs.

2.3 Neural networks on parameter estimation

Machine learning, in the context of artificial intelligence,
is the field of computer science that aims at developing tools
for solving tasks for which they were not explicitly pro-
grammed. A task for machine learning is to generate a
model that is able to estimate the output values (labels)
of a function that is unknown from a given set of input
values (features). Supervised learning is the technique that
uses a labeled training dataset to build the hypothesis to
predict the output.

Artificial neural networks, or simply neural networks
(NN), are computing systems that estimate labels following
a structure inspired by biological neural connections. A NN
is formed by interconnected nodes, also called neurons,
originally based on the model of the perceptron [23]. These
neurons are structured in layers, which transmit informa-
tion from the input layer (formed by the input features)
to the output layer (labels) through so-called hidden layers
[24]. Neurons and their interconnections build the hypothe-
sis by learning weights that optimize the estimation error
on estimating the labels by processing the input features.

Machine learning techniques are of special interest when
the analytical solution of a system is unknown. NNs in par-
ticular are useful for their ability to generate non-linear
hypotheses and to adapt to a wide range of systems. Studies

involving NNs on sound direction of arrival have been pro-
posed in the past. Chakrabarty and Habets [25] trained a
convolutional NN able to estimate the direction of arrival
of broadband noise, even in acoustic conditions that were
not included in the training set. Adavanne et al. [26] used
recurrent convolutional NNs to estimate the direction of
arrival formultiple sources.Themodelwas able to determine
the number of sources and their direction in a two-
dimensional space. However, the direction of arrival com-
puted with these techniques is not necessarily representative
of the human perception mechanisms and could outperform
the human ability to localise sounds.

A neural network-based approach was proposed in [27],
where the model was trained to evaluate localisation perfor-
mance in the horizontal plane when HWDs were worn. The
inputs in this model are: a single value to represent the ITD
computed using IACC between directional impulse
responses, a single value to represent the ILD computed
as the difference of directional transfer function above
1.5 kHz, and a proximal stimulus that contains spectral
information. The model is able to predict realistic perfor-
mances when earplugs are worn, but the estimation error
increases when earmuffs are assessed.

3 Methods
3.1 Head-worn devices

In this study, six different HWDs were investigated.
The devices span a wide range of hearing devices and use
cases (see Tab. 1): A and B were open-back headphones;
C and D were hearing protection devices (HPDs); E and
F were protection helmets. An open ears (OE) condition
was also included in the study.

Device B was a pair of AKG K702 headphones, and A
was a modified version of the same model [28]. The design
of A was originally proposed as a DIY solution for aug-
mented reality audio. The most relevant modifications in
device A are openings cut on the front and back sides of
each earpad [28].

Head-worn device C was a HPD that is meant to work
as a communication headset (SAVOX Noise-COM 200)
with noise-cancelling features together with a hear-through
system using two microphones (located at left and right ear-
muffs). In condition C1, the default active features, includ-
ing hear-through, were used. The sound was attenuated
5.9 dB and 7.9 dB at the left and right dummy head ear,
respectively, compared to the open ears condition.

In C2, the balance setting of the active sound was set
three steps towards the left ear. According to the manufac-
turer, this translates to a 4.5 dB attenuation in the right ear
compared to the default settings, while the left ear was
maintained as in the default settings. In condition C2, the
sound was attenuated 5.9 dB and 13.7 dB at the left and
right dummy head ear, respectively, compared to the open
ears condition.

Device D was a Peltor Pro-Tac II, which is a HPD with
similar characteristics to C. Default settings for device D
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were not specified in the user manual, and only the active
hear-through gain was adjustable. The gain could be
selected from no active sound present to a high level of
active hear-through. The selected gain was set and main-
tained during the duration of the study and was the same
for all participants and the HRTF measurements. In condi-
tion D, the sound was attenuated 12.9 dB and 14.5 dB at
the left and right dummy head ear, respectively, compared
to the open ears condition.

Head-worn device E was a Bullard Magma firefighter
protection helmet, which was studied in two conditions:
E1, with visor down, and E2, with visor up. Device F was
a Gecko MK11 marine safety helmet, which has a pair of
holes in the ears position and without a visor.

3.2 Subjective evaluation

3.2.1 Apparatus

The listening experiment was conducted in a variable-
acoustics room at the Aalto Acoustics lab facilities
(RT60250 Hz = 0.2363 s, RT60500 Hz = 0.3272 s, RT601 kHz =
0.3421 s, RT602 kHz = 0.5284 s, RT604 kHz = 0.5671 s,
RT608 kHz = 0.04819 s). The experiment was designed to
be similar to the second method of ANSI/ASA S3.71-2019
[14]. For example, the loudspeaker array, the stimulus and
the response grid were as recommended in the method.
However, the procedure in the standard was modified in
order to shorten the time of the experiment, so that a
greater number of HWDs could be investigated. Thirty-six
Genelec 1029A loudspeakers were mounted on a circular
ring of 1.5 m radius, resulting in a 10�-spaced loudspeaker
array. Only the loudspeakers at positions 0�, ±10�, ±30�,
±50�, ±70� and ±90� were used for this study. The height
of the array was adjusted so that each subject’s ears were
level with the loudspeakers.

Subjects sat on a rotable chair, fixed in the center of the
loudspeaker array. The chair was fitted with an adjustable
head-rest to ensure correct positioning of the head before
each trial.

The loudspeakers were obscured by a black, acoustically
transparent curtain, so that subjects did not have informa-
tion about the number and location of loudspeakers.
Attached on the curtain, there was a numbered response
grid with a 2� spacing between grid markers. Subjects
gave their responses using a tablet computer, which showed
the same response grid on a graphic user interface. Even
though the response grid was 2�-spaced, the precision of

the user interface was higher, and answers were saved with
an accuracy of 1�.

3.2.2 Listening experiment

Nineteen subjects (average age 28.68 years, 3 female/
16 male) with self-reported normal hearing took part in
the listening experiment. All subjects were employees at
the Aalto Acoustics Lab and are considered experienced
listeners. The study complies with the Declaration of
Helsinki and was approved by the Research Ethics
Committee of Aalto University. The participants provided
written informed consent.

The total experiment consisted of 9 rounds, one round
for each described condition wearing a HWD (A–F) and
one without wearing any. Each round consisted of 27 trials:
three repetitions were collected for each azimuth (0�, ±10�,
±30�, ±50� and ±70�) in a randomized order, which was
different for every round and every subject. The stimulus
was a 250 ms pink noise burst, with an A-weighted level
of 70 dB SPL, measured at the listener’s position.

The chair was equipped with a head support which aided
in head positioning. The subjects were instructed to place
their head in the correct position before each trial using
the head support as a reference, which was adjusted for each
subject. After making sure the head was correctly positioned
and facing 0�, the user pressed a button to start the trial.
After a 1-second delay, the stimulus was presented, after
which the subject was allowed to move their head. The task
for the subject was to report the perceived direction of the
sound source. After giving their answer with the tablet
computer they pressed a button to confirm their response
and move to the next trial. Before starting the next trial,
they were again reminded to position their head correctly
before they could start. The subjects were allowed to take
as many breaks as desired and to follow their own pace.

Prior to the experiment, the subjects completed one full
training round in the open ears condition to ensure that
they understood the task and were familiar with the user
interface.

3.3 HRTF measurements

HRTFswith theHWDs in placeweremeasuredwith aG.
R.A.S. KEMAR 45 BC head and torso simulator with
anthropometric pinnae. The KEMAR was placed into the
large anechoic chamber at Aalto University Acoustics Lab
and mounted on a digitally-controlled turntable. The center

Table 1. Summary of head-worn devices.

ID Type Model Settings

A Headphones AKG K-702 DIY version [28]
B Headphones AKG K-702 Original
C1 HPD SAVOX Noise-COM 200 Default
C2 HPD SAVOX Noise-COM 200 Balanced
D HPD Peltor Pro-Tac II –

E1 Helmet Bullard Magma Visor down
E2 Helmet Bullard Magma Visor up
F Helmet Gecko MK11 –
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of the dummy headwas at a distance of 1.5 m from aGenelec
8331 loudspeaker, which was used for playback of the mea-
surement signals. The KEMAR ear simulators RA0045
(Shore 00-35) were connected to a G.R.A.S. 12 AG 8 chan-
nels power module, from which the signal was routed to
the line input of a Fireface UFX+ sound interface.

The HWDs were fitted onto the G.R.A.S. KEMAR
45 BC dummy head. Exponential sweeps from 10 Hz to
25 kHz with a length of 1 s and an average presentation
level of 80 dB SPL were presented at 1.5 m to record the
impulse responses. Free-field reference responses were mea-
sured using a free-field G.R.A.S. Type 46AF microphone set
located at the position of the center of the dummy head
without the manikin being present, and were used for deriv-
ing the HRIR.

The KEMAR was mounted on a turntable at a 1.5 m
distance from the loudspeaker. The turntable was automat-
ically turned 10� between measurements, creating a 10�
spaced set of measurements in the horizontal plane. Special
attention was paid when fitting the HWDs onto the
KEMAR to avoid possible errors due to their location.
The measurements were checked in-situ to avoid unreliable
recordings caused by misplacement of the HWDs. The mea-
sured impulse responses were corrected using the free-field
microphone response to get the HRIRs [29].

3.4 Auditory model processing

A functional model of binaural hearing based on inter-
aural cross-correlation was applied to compute binaural
cues. The model is adapted from [10], based on the coinci-
dence detector model proposed by Jeffress [30]. Although
cross-correlation-based auditory modeling is not bolstered
by neurophysiological evidence [8], the approach has been
proven to explain directional perception in free field with
good accuracy [2]. As in the subjective listening test, pink
noise stimuli of 250 ms were used and convolved with the
HRIRs from the measurements. Anechoic HRIRs were
used, since we assume that the directional perception is
based mostly on direct sound in the listening test. The early
reflections and the reverberation time were relatively low in
level in the room.

Peripheral frequency selectivity was modeled with a
gammatone filterbank [31] from the Auditory Modeling
Toolbox [3], in which center frequencies are distributed on
the equivalent rectangular bandwidth (ERB) scale between
50 Hz and 8 kHz [32]. To mimic neural activity patterns, the
bandpass filtered signals were half-wave rectified and low-
pass filtered using a first-order IIR with a cut-off frequency
of 1 kHz. The interaural cross-correlation approachwas used
to find out the maximum correlation value to estimate the
ITD for each cochlear frequency band (adapted from [10]).
This was computed within a maximum lag of 760 ls at each
time frame of 20 ms (hop size = 10 ms) and frequency band
between the two ears. The level difference in dB SPL
between the signals at each time frame was computed to
get the ILD values for each cochlear frequency band.

ITD and ILD values were averaged over time to get an
ITD and an ILD value for each listening test condition and

azimuth direction. Values of ITD up to 1.5 kHz and ILD
from 1 kHz [2] were gathered as input features for the neural
network model (see Fig. 1).

3.5 Estimation of perceived direction using neural
networks

As mentioned before, the estimation of the direction
perceived by a subject from the spatial cues measured from
ear canal signals has been found to be a complicated process
that depends on many factors, such as source direction and
signal content. Nevertheless, in the case investigated in the
present study, the task may be simpler. The aim of this
study is to develop tools to evaluate HWDs as an alterna-
tive to running standardised listening tests, which narrows
down the task quite prominently. Instead of explaining
directional perception in general case, it is meaningful to
simulate the perception only in the listening scenario of
the listening test defined in the standard. The test uses
short noise bursts in the horizontal plane, which potentially
makes the machine learning task easier.

It should also be noted that the aim of the computa-
tional model is not to emulate human sound localisation
behavior in detail, but to predict HWD-induced changes
in localisation performance. Therefore, it is not the focus
of the current study to evaluate whether the computational
model results in a realistic representation of the human
binaural system. The results and the computational model
presented in the current study are not expected to gener-
alise to other problem formulations involving binaural
auditory processing.

Two artificial neural networks were trained using ITD
and ILD estimates as input features and subjective data
from the listening test as labels. Each training sample
included 36 input features: 18 ITD values, one for each
cochlear frequency band from 50 Hz to 1.5 kHz; and
18 ILD values, one for each cochlear frequency band from
1 kHz to 8 kHz. Both neural networks aimed at estimating
data obtained from subjective tests.

For each subject response on perceived direction h, aver-
age l and standard deviation r were computed:

l hi;u;s
� � ¼ 1

Mi;u;s

XMi;u;s

m¼1

hi;u;s;m;

r hi;u;s
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Mi;u;s

XMi;u;s

m¼1

½hi;u;s;m � lðhi;u;sÞ�2
vuut ;

where:
hi,u,s,m is the perceived direction during HWD condition
i, sound source direction u, by subject s in trial m;
Mi,u,s is the number of trials for HWD condition i, sound
source direction u and subject s;
m is the trial.

One of the NNs aimed at estimating the perceived direc-
tion of the source. For each sound source direction and
HWD condition, the average of responses over all subjects
was computed:
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Figure 1. Left: ITD values per frequency band at the output of the auditory model. Right: ILD values per frequency band at the
output of the auditory model.
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l hi;u
� � ¼ 1

Ns

XNs

s¼1

l hi;u;s
� �

;

where:
s is the subject;
Ns is the number of subjects.

This perceived angle average, l(hi,u), was used as a
label, ydirection,i,u, to train the NN to estimate the perceived
direction of the source:

ydirection;i;u ¼ l hi;u
� �

:

The other NN aimed at estimating the position uncertainty
of the source. We assumed in this study that the standard
deviation of azimuth responses in the subjective test reflects
the perceived position uncertainty of the sound source. For
each sound source direction and listening condition, the
standard deviation of responses among all subjects was
computed:

r hi;u
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PNs

s¼1
rðhi;u;sÞ2

Ns

vuuut
:

This standard deviation, r(hi,u), was used as a label,
yuncertainty,i,u, to train the NN to estimate the position
uncertainty of the source:

yuncertainty;i;u ¼ r hi;u
� �

:

A data augmentation technique was used to improve the
generalisation of the model. The size of the dataset was
augmented 10 times by adding Gaussian noise to the input
feature vectors, which was 60 dB SNR, empirically chosen
to provide enough variation to the data not to overfit
and, at the same time, maintain meaningful values when
new data was generated. To achieve a better generalisation
and avoid overfitting, each model was trained five times
and the estimated outputs of each iteration were averaged
to compute the NN-estimated output.

The amount of data was relatively small, which could
potentially lead to results where the network would memo-
rise each trained HWD case perfectly, making the result
questionable in terms of generalisation to HWD models
not used in training. To avoid this effect, a strategy based
on the Leave-one-out (LOO) technique was used. LOO is
a particular case of cross-validation algorithms that uses,
for each iteration, the whole dataset as training data except
one sample that is used as validation data. This process of
training and evaluation is iterated for each sample until all
samples are evaluated. For our particular case, a similar
approach was used leaving one HWD out of the training
data and using the excluded device data as test data. After
all the iterations, all devices were evaluated. This approach
aims to extrapolate how the NN would perform in a general
case at estimating the effect of a HWD that has not been
evaluated before.

To estimate the position uncertainty of the source when
wearing a HWD, a single 16 neurons hidden layer fully

connected NN with Levenberg–Marquardt backpropaga-
tion was trained to minimise the mean squared estimation
error by optimising the network parameters. The NN was
trained with the rest of the HWD conditions, using the
ITD and the ILD values as input features and r(hi,u) as
labels.

To estimate the perceived direction when wearing a
HWD, a single 22 neurons hidden layer fully connected
NN with Levenberg–Marquardt backpropagation was used
to train the networks to minimise the mean squared estima-
tion error by optimising the network parameters. The NN
was trained with the rest of HWD conditions, using the
ITD and ILD values as input features and l(hi,u) as labels
(Fig. 2).

Figure 2. Neural Networks scheme. Two neural networks were
trained to estimate perceived direction and position uncertainty
of a sound source using ITD and ILD values computed with a
binaural auditory model.
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4 Results
4.1 Subjective evaluation results

For each participant, the average and standard devia-
tion of responses per listening condition and sound source
were computed. The data of subject 6 was discarded from
analysis due to an abnormal strategy on responding when
front-back confusions were encountered, responding always
90� when the sound was perceived from the back. Apart
from this aforementioned subject, two trials were discarded
from analysis, since it appeared clear that a mistake had
been made using the user interface which had a high impact
on the neural network performance. The first discarded trial
was one of subject 8 in condition A and �10� source
stimulus; responses were: �90�, �1�, �4�. As �90� was
the default value if no response was given and it was the
first trial of that round, the �90� response was excluded.
The second discarded trial was one of subject 14 in condi-
tion C2 and 10� source stimulus; responses were: 0�, 0�,
89�. That response value generated a distortion in the stan-
dard deviation. Leaving it out provided a better representa-
tion of the results, so 89� response was excluded.

The average and standard deviation values of perceived
azimuth for each listening condition and source angle are
shown in Table 2. A one-way ANOVA was conducted for
each source azimuth angle to compare the effect of HWDs
on perceived direction (see Tab. 3). The effect of the
HWD reached statistical significance (p < 0.05) at 70�,
50�, 0�, �10�, �50� and �70�. Post hoc t-tests with
Bonferroni correction showed evidence of statistically signif-
icant differences in 17 out of 36 possible pairs of HWDs for at
least in one of the studied source azimuth directions (see
Tab. 4).

The HWD-induced angular error was computed as
the absolute difference between the perceived azimuth using
a HWD and the perceived azimuth in the open ears

condition. As mentioned before, in this study position
uncertainty of the source is assumed to be represented by
the standard deviation of azimuth responses in the subjec-
tive test data. In Figure 3, position uncertainty of the
source and HWD-induced angular error is shown. Correla-
tion analysis was performed obtaining r = 0.686,

Table 2. Subjective experiment results. Average and standard deviation (in parenthesis) of perceived direction for each source
azimuth angle and each listening condition.

Device u 70� 50� 30� 10� 0� �10� �30� �50� �70�

OE 66.96�
(5.04�)

45.07�
(3.44�)

27.11�
(4.05�)

9.19�
(2.19�)

�0.31�
(1.11�)

�8.74�
(1.93�)

�28.28�
(3.60�)

�44.56�
(4.63�)

�67.43�
(5.15�)

A 63.48�
(5.51�)

41.07�
(5.37�)

24.81�
(3.36�)

8.31�
(3.07�)

�0.50�
(1.56�)

�8.88�
(2.94�)

�26.74�
(8.92�)

�39.74�
(3.29�)

�65.61�
(5.59�)

B 77.54�
(4.06�)

53.31�
(5.01�)

28.37�
(3.44�)

10.37�
(2.56�)

0.17�
(1.40�)

�6.67�
(2.63�)

�28.80�
(6.22�)

�49.71�
(7.83�)

�77.81�
(5.20�)

C1 67.04�
(6.33�)

42.74�
(3.64�)

25.72�
(4.11�)

7.15�
(2.93�)

�0.78�
(2.06�)

�8.80�
(3.28�)

�32.65�
(8.46�)

�49.91�
(5.79�)

�74.69�
(6.95�)

C2 71.30�
(6.94�)

51.91�
(7.65�)

26.63�
(7.23�)

8.17�
(2.54�)

1.59�
(3.19�)

�6.46�
(3.49�)

�32.11�
(8.51�)

�53.02�
(9.53�)

�76.43�
(6.48�)

D 66.33�
(6.36�)

49.72�
(7.80�)

26.28�
(5.90�)

7.31�
(2.80�)

�0.78�
(1.59�)

�9.63�
(4.38�)

�29.37�
(6.28�)

�54.00�
(7.59�)

�75.30�
(4.02�)

E1 65.96�
(6.12�)

51.00�
(5.63�)

28.00�
(4.59�)

10.43�
(2.34�)

�0.81�
(2.49�)

�9.89�
(3.70�)

�27.39�
(4.61�)

�50.09�
(4.57�)

�70.80�
(7.09�)

E2 66.31�
(6.51�)

43.67�
(3.67�)

25.81�
(2.02�)

8.93�
(2.13�)

�0.13�
(1.43�)

�8.85�
(2.85�)

�27.06�
(2.74�)

�40.85�
(3.23�)

�67.43�
(6.74�)

F 68.33�
(6.07�)

45.57�
(5.53�)

26.06�
(2.40�)

8.69�
(2.22�)

�0.81�
(1.51�)

�9.81�
(4.12�)

�29.57�
(3.39�)

�46.13�
(5.18�)

�69.91�
(6.10�)

Table 3. One-way ANOVA for each source azimuth angle
(statistical significance is reached when p < 0.05).

u F p

70� F(8, 153) = 2.65 < 0.001
50� F(8, 153) = 3.75 < 0.001
30� F(8, 153) = 0.86 < 0.5551
10� F(8, 153) = 1.62 < 0.1231
0� F(8, 153) = 2.68 < 0.001
�10� F(8, 153) = 2.07 < 0.0424
�30� F(8, 153) = 1.02 < 0.42
�50� F(8, 153) = 3.95 < 0.001
�70� F(8, 153) = 4.29 < 0.001

Table 4. Summary of pairwise t-test with Bonferroni correction
for all azimuth directions. (*p < 0.05 at least in one of the
studied source azimuth directions).

Device OE A B C1 C2 D E1 E2 F

OE = – * – – – * * –

A – = * – * * * – –

B * * = * – – * * –

C1 – – * = * – – – –

C2 – * – * = * * * *
D – * – – * = – * –

E1 * * * – * – = – *
E2 * – * – * * – = –

F – – – – * – * – =
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p = 0.0603, which doesn’t show statistical significance of
correlation (p < 0.05). However, a linear dependency trend
can be observed for 7 out of 8 devices.

4.2 Neural network model results

A NN predicted the HWD effect on position uncertainty
of the source. For each HWD i, averages of the standard
deviation of responses from the subjective test were
computed, yuncertainty,i, and sorted to create a ranking of
HWDs by position uncertainty. Similarly, averages of
NN-estimated position uncertainty values were computed
ŷuncertainty;i. NN-estimated values were compared to actual
subjective test values for each HWD, which resulted in a
perfect position in the ranking for five HWDs: A, C1, C2,
E2 and F; a relatively small error for two HWDs: B and
D; and a large mismatch for HWD E1 (see Fig. 4).

Mean absolute error (MAE) was computed as the aver-
age prediction error generated by the NN when its output
was compared to actual subjective test data. For NN-
estimated values, average NN-estimation errors,
MAEuncertainty,i and MAEdirection,i over all samples for
HWD i was defined as:

MAEk;i ¼
PNi

n¼1
jyk;i;n � ŷk;i;nj

Ni
;

where:
MAEk,i is the mean absolute error for estimating values
of type k for HWD condition i;
k is uncertainty or direction, depending on the training
labels;
yk,i,n is the actual value of type k for HWD condition i on
sample n;

ŷk;i;n is the NN-estimated value of type k for HWD con-
dition i on sample n;
Ni is the number of samples of HWD condition i.

The average estimation error of the NN on position
uncertainty of the source for all HWDs together was
MAEuncertainty,all = 1.22�. 6 out of 8 HWDs conditions were
estimated with a MAEuncertainty,i < 1.5�. NN-estimated data
is compared to subjective data for each HWD in Figure 5.

The other NN predicted the HWD effect on perceived
source direction. The average estimation error of the NN
on perceived source direction for all HWDs together was
MAEdirection,all = 7.08�. 6 out of 8 HWDs conditions were
estimated with a MAEdirection,i < 7�. NN-estimated data is
compared to subjective data for each HWD in Figure 5.

The NN weights for each input feature were collected to
analyse the relative importance of each binaural cue to the
final decision. These learnt weights to estimate the subjec-
tive data are shown in Figure 6.

5 Discussion

The current study tested the effect of HWDs on the
perceived direction and position uncertainty of a sound
source in the horizontal plane. A listening condition without
HWD was tested to serve as a baseline. The results in an
open ears condition met the authors’ expectations; per-
ceived direction was biased towards the center and position
uncertainty was higher for more lateral source positions.
This higher position uncertainty is consistent with Blauert
et al. [2], who reported that dependency between localisa-
tion blur and source azimuth angle was found from subjec-
tive data included in [33], which increases with sound source
displacement from the forward direction. Bias on perceived
direction may depend on the possibility of subjects to move
their heads [34], with a tendency to overestimate azimuth
angles when their head is fixed and to underestimate

Figure 3. The relationship between average position uncer-
tainty of the sound source and average HWD-induced error from
the subjective test. The position uncertainty was computed as
the standard deviation of the azimuth responses from the
listening test data. The HWD-induced angular error was
computed as the absolute difference between perceived direction
using a HWD and perceived direction in the open ears condition.

Figure 4. Comparison between position uncertainty of the
sound source from the subjective test data and NN-estimated
position uncertainty averages.
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it when subjects can move freely during the stimulus or
instructed to face the source after the stimulus, which was
the case for this study.

The results of the subjective test showed statistically
significant differences in perceived direction in 6 out of 9
studied angles for the tested HWDs. These results are in
agreement with previous studies. Bolia et al. [16] found sig-
nificant differences on perceived direction in the horizontal
plane when hearing protectors devices were tested. In their
study, wearing hearing protectors occasioned an increase in
the mean azimuth error on the order of 5�, which is in accor-
dance with the results of this study. Similarly, Vause and
Wesley Grantham [15] found a significant increase on local-
isation errors caused by the effect of earplugs and protective
headgear.

The introduced effect of HWDs only reached statistical
significance for conditions B, E1 and E2 when compared to
the open ears condition. However, noticeable differences can
be found both in azimuth average and standard deviation
that may cause a practical effect even though significance
wasn’t reached. Differences in azimuth average and in stan-
dard deviation to the order of 5� may not seem enough to
disturb localisation of a source in real scenarios, but these
effects could lead to confusions and discomfort that would
make a difference depending on the task they are worn for.

Comparison among HWDs wasn’t straightforward due
to inconsistency of the effect of the devices. For example,
a device could conserve the perception of the source direc-
tion and position uncertainty for a tested source azimuth
direction but affect both source direction and position
uncertainty for another tested direction. For that, the over-
all performance was analysed by comparing the position
uncertainty average of the sound among HWDs, repre-
sented in this study as the standard deviation of azimuth
responses in the subjective test. Correlation between
average position uncertainty of the source and average

Figure 5. Left: perceived direction comparison between original
subjective data and NN-estimated data in the horizontal plane.
Right: position uncertainty comparison between original subjec-
tive data and NN-estimated data in the horizontal plane.

Figure 6. Left: ITD weights learnt by the NN to estimate
subjective data for each cochlear frequency band. Right: ILD
weights learnt by the NN to estimate subjective data for each
cochlear frequency band.
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HWD-induced direction error over azimuth angles wasn’t
statistically significant. Nonetheless, its dependency follows
a linear trend for 7 out of 8 HWDs, which suggests that esti-
mating the sound source position uncertainty using the
standard deviation of azimuth responses from subjective
test may be useful to predict the HWD-induced angular
error.

Methods that objectively measure and quantify the
effect introduced by a HWD can be found in the literature,
especially in the context of hear-through devices and trans-
parency evaluation. In [35], headphone influence was
measured as the difference transfer function between the ref-
erence HRIRs (open ears) and the obstructed HRIR (when
headphones were worn). A subjective test was conducted
that revealed that change in perceived sound source position
was the second most important feature for the participants
to rate the devices transparency, after coloration introduc-
tion. Although the used objective measure may be a good
estimator for coloration introduction, it is likely not enough
to explain spatial effects without further analysis.

In [20], HRIRs were analysed and a binaural cues anal-
ysis based on interaural cross-correlation was conducted to
examine distortions in ITD, ILD and interaural coherence.
Peripheral processing was applied using third-octave bands
around 250 Hz, 1 kHz, 4 kHz and 8 kHz to approximate
auditory filters. Differences in ITD and ILD were found
that depended on the hearing device and on the studied fre-
quency band, which is in line with this study. Although
devices effects were assessed subjectively in [19], no specific
task about source localisation was conducted. Moreover,
the relationship between objective data and perceptual
evaluation was not addressed, and therefore it is not clear
if the objective metrics were sufficient to explain the effect
of the analysed HWDs.

The computational model proposed in this study utilises
the output of an auditory model as the input for a NN that
estimates HWD-induced effects in sound source localisa-
tion. This approach allows the usage of the state of the
art auditory models for application oriented evaluations,
and also enables the possibility of correlating objective
and subjective data to assess the reliability of the used
objective measures.

An auditory model-based method was built to estimate
the effect of HWDs on horizontal localisation. At the out-
put of the auditory model, ITD and ILD distortions due
to different HWDs were estimated. As a general overview,
ILD was significantly affected by all HWDs, while ITD
was better conserved. This confirms that it is possible to
estimate the effect of HWDs on horizontal localisation using
an auditory model. In the results from [20], ILD was gener-
ally better conserved than ITD, which differs from the
results of this study, at least for conditions C1 – F.
Nonetheless, HWDs A and B could be comparable to the
ear-worn devices included in [20], aimed at evaluating
acoustic transparency, while HWDs C1 – F distorted
severely the interaural cues, especially ILDs.

A NN approach was used to explore to prove the feasi-
bility of estimating subjective evaluation data by machine
learning, when actual subjective evaluation data is not

available. To keep the model as accurate as possible to
the human hearing system, only the parts of the hearing
system that are not fully understood were modeled with a
NN. The learnt weights by the NN showed that all the
included ITD and ILD frequency bands were used com-
bined to estimate the subjective data. This is consistent
with the auditory perception literature, being azimuth
localisation dependent on a complex combination of binau-
ral cues that remains unclear.

The relationship between the position uncertainty of a
source (represented in this study as the standard deviation
of azimuth responses in the subjective test) and HWD-
induced error suggests that estimating the average position
uncertainty would be useful to predict the average HWD-
induced angular error. Ranking a new device among the
training database using the aforementioned position uncer-
tainty was successful, which suggests that it is possible to
build amodel that predicts the effect of aHWDonhorizontal
plane localisation. The NN-estimation error when predicting
the perceived direction was kept reasonably low, since the
average error was in the order of the subjective test data
standard deviation of azimuth responses.

6 Summary and conclusion

A method to estimate the effect of head-worn devices on
frontal horizontal localisation is proposed in this study. A
subjective listening test to evaluate localisation perfor-
mance in the horizontal plane when wearing head-worn
devices is conducted, the results of which show significant
differences on perceived azimuth direction when head-worn
devices are worn. A binaural auditory model is used to com-
pute ITD and ILD values for each cochlear frequency band,
which are used as feature vectors for a neural network
model that estimates the perceived direction and position
uncertainty of a source from listening test data.

It is shown that the effect of head-worn devices on local-
isation ability of the wearer measured with subjective test-
ing can be estimated using a computational method that
utilises a simple model of binaural interaction and a
machine learning stage implemented with neural networks.
The level of degradation of perception of direction imposed
by a head-worn device can be predicted. Future work could
expand the scope of the method to evaluate other dimen-
sions of spatial hearing, such as front-back confusions,
elevation or distance.
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