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Camouflage learning: Data obscuring ambient
intelligence for constrained devices

Le Ngu Nguyen, Member, IEEE, Stephan Sigg, Member, IEEE, Jari Lietzen, Rainhard Dieter Findling,
and Kalle Ruttik, Member, IEEE

Abstract—Ambient intelligence demands collaboration schemes for distributed constrained devices which are not only highly energy
efficient with respect to distributed sensing, processing and communication, but which also respect data privacy. Traditional algorithms
for distributed processing suffer in Ambient intelligence domains either from limited data privacy, or from their excessive processing
demands for constrained distributed devices.
In this paper, we present Camouflage learning, a distributed machine learning scheme that obscures the trained model via probabilistic
collaboration using physical-layer computation offloading and demonstrate the feasibility of the approach on backscatter
communication prototypes and in comparison with federated learning, a popular distributed learning scheme. We show that
Camouflage learning is more energy efficient than traditional schemes and that it requires less communication overhead while reducing
the computation load through physical-layer computation offloading. The scheme is synchronization-agnostic and thus appropriate for
sharply constrained, synchronization-incapable devices. We demonstrate model training and inference on four distinct datasets and
investigate the performance of the scheme with respect to communication range, impact of challenging communication environments,
power consumption, and the backscatter hardware prototype.

Index Terms—Distributed machine learning, Data obfuscation, Backscatter, Computation offloading, Ambient Intelligence
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1 INTRODUCTION

THE ubicomp and Pervasive computing vision of com-
puting any time and everywhere through instrumented

and connected environments and objects, has attracted sig-
nificant attention over the past two decades [1]. Related
research on the Internet of Things (IoT) [2], middleware [3],
mobile computing [4], sensors [5], [6], microprocessors [7],
[8], user interfaces [9], computer networks [10], new materi-
als [11], localization [12] and activity recognition [13] have
flourished and advanced this vision.

Computing any time and everywhere demands contin-
uous perception and communication among instrumented
objects. This opens challenges with respect to (a) data pri-
vacy, (b) extreme energy efficiency for sensing, processing
and communication, as well as (c) overhead-less collabora-
tion among constrained devices (cf. figure 1).

To achieve (a), federated learning [14], data obfusca-
tion [15], or homomorphic encryption [16] have been pro-
posed, which demand high processing or communication
load or compromise accuracy. We propose Camouflage Learn-
ing, an efficient and accurate distributed machine learning
scheme that obscures the jointly utilized and trained model
through non-reversible data aggregation.

Likewise, (b) energy-less operation for sensing, process-
ing and communication has been approached through the
development of energy harvesting schemes [17], chemical
and organic sensors [18], [19] or, for instance, highly effi-
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Fig. 1. Concepts and technology to realize the Ubicomp vision of com-
puting to appear anytime and everywhere.

cient communication schemes, such as LoRa [20], [21]. Our
camouflage learning implementation is compatible with any
low energy sensor, achieves energy-less computation via
physical-layer computation offloading and discounts commu-
nication cost via backscattering. We show that our scheme
outperforms LoRa in energy efficiency for communication.

Overhead-less collaboration (c) has been addressed with
collision resilient protocols [22] that usually require at least
weak synchronization. We utilize probabilistic collaboration to
dispose synchronization need. Our contributions are:

• A Camouflage Learning scheme: distributed ma-
chine learning via non-reversible data aggregation
(all devices have incomplete model-information).

• Synchronization agnostic distributed training and
inference via physical layer probabilistic collabora-
tion and wireless channel computation offloading

• A Proof-of-concept implementation and evaluation
utilizing highly efficient backscatter prototypes

• A performance comparison demonstrating higher
efficiency than traditional distributed learning.
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Fig. 2. Horizontal vs. vertical data separation across devices

In contrast to existing distributed machine learning, in-
formation on the model is scattered across devices (Camou-
flage Learning). No single device has, at any time, knowl-
edge on the complete model or on other device’s data.

2 RELATED WORK

Data science, the extraction of information and patterns
from data, has applications in virtually every domain in in-
dustry, academia and public [23]. The data d from software
or hardware sensors is analyzed with respect to relevant
features x to approximate a target function f that predicts
specific target classes y = f(x) [24]. For this, a candidate
model h(x) approximates f(x) from the hypothesis space
H using historical data for training and testing. The model
h combines the weighted features into a mathematical func-
tion where the weights w are chosen such that the errors in
the mapping between feature space and target classes are
minimized according to the historical data [25].

In Ambient Intelligence, data is collected by distributed
sensing devices [26], so that the feature vector x might be
physically spread across the environment. Furthermore, it
often contains personal information, that might demand
privacy [27] (section 2.1). Furthermore, since energy con-
sumption is of major concern in Ambient Intelligence do-
mains, section 2.2 will discuss advances in energy efficient
sensing, processing, and communication. Finally, section 2.3
summarizes low overhead device collaboration mechanisms
for Ambient Intelligent environments.

2.1 Distributed Machine Learning and privacy
Classical machine learning assumes a single data set and
data distribution, as it is typical in Ambient Intelligence,
might require ineffective or sometimes infeasible data dis-
semination [28]. Distributed machine learning algorithms,
originally fuelled by the need to scale up learning algo-
rithms in big data domains [29], [30], [31], [32] are designed
to mitigate these shortcomings [33], [34] but heavily rely on
data exchange [35], [36].

Ambient Intelligence often distributes data via sensors
in the environment while device constraints (e.g. energy,
storage) limit data mobility. Data can be fragmented hori-
zontally (distribution of data instances) or vertically (distri-
bution of feature values) [37], [38], [39] (cf. figure 2).

Many distributed learning algorithms share ideas from
ensemble learning, where a set of different classifiers are
trained on subsets of the data (populating different hypothe-
ses hi) [40]. Results are then combined according to the
ensemble technique [39], [41], [42]. This procedure provably

Fig. 3. Energy consumption of various communication technologies

decreases the error with increasing number of classifiers and
is more likely to meet constraints of constrained devices
by dividing the data and problem complexity into smaller
pieces. It is also scalable and respects data privacy due to
distributed processing and data [43].

Other approaches comprise effective voting (evaluating
statistical significance of classifier performance with paired
t tests) [32] and consensus-based methods [39]. However,
these are of low relevance in Ambient Intelligence environ-
ments with limited inter-device communication means.

Recently, Federated learning (FL) is gaining increased
attention, which addresses both data separation and data
privacy [44], [45]. In FL, a global model is trained by the
individual devices with local data, so that the model is
known to all devices while the data is not shared [46].

We propose Camouflage learning, which distributes the
data in the same way as vertical federated learning, and
in addition obfuscates the model for all devices and for
the coordinator. It thereby addresses privacy requirements
of sensitive data in Ambient Intelligence, such as medical
records, behaviour patterns or identity [47], [48], [49].

Other proposals towards privacy preserving distributed
learning [50], [51] comprise, for instance, homomorphic
encryption [52], differential privacy [53], [54], [55], cyclic
parameter or secret sharing [48], [56], using oblivious trans-
fer [57], as well as multi-party computation [58]. These
protocols, however, require additional processing or com-
munication overhead.

Instead, for Camouflage learning we reduce the com-
putation and communication load through backscattering
physical layer computation offloading (here physical-layer
superposition of weighted features) which simultaneously
obscures data from prospective eavesdroppers. Camouflage
learning provides differential privacy since nothing can be
learned about the individual data provided from the super-
imposed aggregate. In addition, information on the model
(i.e. features and weights) is distributed and not shared fully
with any single device or even with the coordinator.

2.2 Efficient sensing, processing and communication

In Ambient Intelligence domains, constrained devices limit
the energy budget, which in turn constrains the compu-
tational and communication capabilities of devices [59].
Hence, local data processing, sensing and communication
must be energy-optimized [60], [61], [62], [63].

We suggest to employ chemical and organic sensors
that feature energy consumption in the order of few
µW [64], [65], [66]. Some examples of low-power sensors are
the MMA865xFC accelerometer (19.8µW), the MPL3115A2
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Fig. 4. Conceptional principle of backscattering burst sequences

pressure sensor (26.4µW), the PCT2202UK temperature sen-
sor (4.6µW), the MAG3110 magnetometer (56.8µW)1, or the
3.3µW vibration sensor [67], [68].

Furthermore, ultra-low power microprocessors are ad-
visable for the use in Ambient Intelligence domains [69],
[70]. Battery-free operation can then be achieved via power
harvesting [71]. The interested reader is referred to the good
overviews available on the topic, for instance, [17], [72], [73],
[74] Our approach can be combined with energy harvesting
and any sensor or microprocessor as only feature extraction,
multiplication with a weight value and evaluation of a
stochastic process are required [75].

The communication load can be reduced via algorithmic
solutions, such as compressed sensing [76], which can re-
cover sparse signals from far fewer samples than what is
predicted by the Nyquist-Shannon sampling theorem [77],
[78]. However, it requires complex data preparation, which
contradicts the processing and energy constraints in Am-
bient Intelligence domain. Alternatively, low-power trans-
mission protocols help to reduce the energy consumption
through communication [21]. As depicted in figure 3, tra-
ditional, even low-power schemes consume significant en-
ergy [79], [80], [81], [82]. This involves also LoRa, a Long
Range chirp spread spectrum modulation technique [83]
that is receiving increased attention recently for its im-
proved efficiency in long range communication [84].

On the other end of the spectrum are backscatter type
systems that do not employ an own oscillator and signal
generator but instead modulate their signals onto a reflected
environmental signal (cf. figure 4) [85], [86]. Due to the
absence of a dedicated signal generator and oscillator, the
communication cost can be significantly reduced [87]. This
mechanism can offer long-range communication by means
of frequency synthesizers [79], [88] and oscillators [89] and
various authors have considered backscatter communica-
tion for ambient Intelligence environments [90], [91]. We
utilize a stripped-down (no frequency synthesizer or oscil-
lator) prototype backscatter device that minimizes device
complexity, cost and power consumption while compromis-
ing the transmission range [89], [92], [93]. We show that the
backscatter prototype is feasible for indoor scenarios with a
communication range of up to 6 meters. We exploit physical
layer probabilistic collaboration for data transmission, to
overcome device synchronization overhead and to trade
computation cost for communication cost.

1Low Power Sensing Whitepaper:
http://cache.freescale.com/files/sensors/
doc/white paper/LOWPOWERSENSWP.pdf

Fig. 5. Concepts of vertical federated learning and Camouflage learning.

2.3 Low overhead device collaboration
In constrained device communication, collision and
scheduling of transmissions is a central concern [94], [95],
[96]. For ambient backscatter-type communication (in con-
trast to e.g. RFID [97]), this is of particular concern, as de-
vices are not synchronized by a strong signal to read out the
tags [98]. This is addressed by collision-resistant protocols
for simultaneous transmission which scale to large number
of simultaneously transmitting nodes [22], [99], [100].

We exploit superposition of simultaneously transmitted
sequences for data aggregation and to obscure data from
distributed transmitters to realize Camouflage learning.

Function computation via superposition of wireless sig-
nals was first suggested in [101]. Goldenbaum et al. [102],
[103], [104], [105] calculated the arithmetic mean, the geo-
metric mean, polynomials and other functions at the time of
transmission with suitable pre- and post-processing. This
approach requires accurate time synchronization and to
control transmit signal power, which is challenging for
constrained devices and backscatter communication.

We propose probabilistic collaboration to achieve
physical-layer aggregation for non-synchronized dis-
tributed devices [106]. In particular, we utilize Poisson-
distributed burst sequences to compute the sum of the
weighted feature inputs

∑n
i=1 wixi during simultaneous

transmission. Synchronisation with respect to phase, trans-
mit symbols or transmission power is not required.

Related work using physical layer computation offload-
ing has addressed anomaly detection [107], activity recog-
nition [108] and distributed machine learning [109]. From
these, [107], [109] are dependent on tight device synchro-
nization as it uses the protocol from [102]. Similar to [108],
they use computation-offloading as a helper, but do not
spread the model across distributed devices.

Instead, we implement both the training and the infer-
ence process on the through function computation on the
wireless communication channel and utilize probabilistic
collaboration to obscure data for camouflage learning.

3 CAMOUFLAGE LEARNING

We propose Camouflage learning, a distributed machine
learning scheme that obfuscates part of the model to all
participating devices. In Camouflage learning, neither the
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∑
i µi of the

convoluted Poisson-distributed sequence to obtain an estimate on
∑
i wixi..

coordinator nor any of the participating devices is at any
time aware of the complete model. Figure 5 compares
vertical Federated learning [34] with Camouflage learning.
While in vertical Federated learning devices compute and
share local model updates (model known to all devices),
in Camouflage learning, the coordinator computes a single
model inference from the received aggregated information∑n
i=1 wixi for a particular set of inputs x (section 3.1). For

n > 2, it is infeasible for the coordinator or any individual
device dj , j 6= i to extract xi or wi from

∑n
i=1 wixi. Learning

is achieved iteratively between the coordinator and devices,
alternatingly sharing the loss and their feature updates
(section 3.2).

We demonstrate Camouflage learning for distributed
linear regression [110]. Other approaches, that utilize aggre-
gation over weighted feature values (e.g. neural networks,
support vector machines), can be realized analogously [111].

Consider an instrumented environment with distributed
backscatter-equipped sensors di, i = 1, ..., n, such as tem-
perature, humidity, light, audio, etc. A device di extracts
features xi and holds and updates the weight wi. (with-
out loss of generality, we assume that a single device ex-
tracts a single.) Through non-reversible data aggregation via
probabilistic collaboration and physical layer computation
offloading, devices share

∑
i wixi = wTx with the coordi-

nator to compute h(x) = 1

1+ewT x
+ c. Learning is achieved

through an iterative protocol to minimize the loss l(wTx).

3.1 Model inference via probabilistic collaboration
Model inference is achieved via probabilistic collaboration
through physical layer computation offloading as depicted
exemplarily in figure 6. In particular, when triggered by
the coordinator, devices di read out their feature value xi,
multiply it with the weight wi and transmit µi = wixi
by modulating signal bursts onto a reflected incident sig-
nal. The values µi are encoded as a burst sequence that
follows a Poisson-distribution with mean µi. In particular,
for a time duration of T , device di repeatedly transmits a
burst (ON) with probability e−µit (µit)

k

tk! and no burst (OFF)
else. Superimposing n such sequences during physical layer
computation offloading, again yields a Poisson distributed
burst sequence with mean M =

∑n
i=1 µi [112] (cf. figure 6).

Note that, for T >> t, the aggregation is independent

Fig. 7. To train the Camouflage learner, distributed weights are iteratively
optimized via gradient descent.

of device synchronization in phase, amplitude and time,
since bursts are counted irrespective of the signal phase
and amplitude and since at any time, device di transmits
a burst with the same probability e−µit (µit)

k

tk! , which is only
conditioned on wixi.

The coordinator decodes a received burst sequence by
counting the number of bursts in a pre-defined interval of
length t and thereby estimating the mean M =

∑n
i=1 wixi

of the distribution encoded in the superimposed signal se-
quence [106]. From this non-reversibly aggregated weighted
sum of the individual features, the coordinator then com-
putes the model inference as h(x) = 1

1+ewT x
+ c.

While burst collisions can not be avoided in the scheme,
their probability, and hence the accuracy in the estimation of
the distribution at the receiver can be controlled repeating
the estimation multiple times (for T >> t) and by proper
choice of k, t and T [106].

3.2 Training distributed weights

For training, we implement a gradient descent variant [110].
Guided by information on the loss shared by the coordi-
nator, distributed devices di update their respective weight
values wi following a local random search protocol until
convergence is reached (cf. figure 7) [111]. Let’s first assume
that devices are equipped with a common Rx interface
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Distributed device i

Distributed device i

Distributed device i

. . .

Coordinator

Coordinator

Coordinator

Stored current weight wi, previous weight w′
i,

and step size δi
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Transmit wixi

Received:
∑n
i=1 wixi = w>x
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Positive b: wi = w′
i + δ′i; δi = δ′i

Negative b: wi = w′
i − δi; δi = − δ

′
i
2

Broadcast binary feedback b

Fig. 8. Update of device di weight wi based on binary input b. The
process is repeated until convergence.

receive l(wTx) from the coordinator with

l(wTx) = − log
(
L(wTx)

)
= −y log (h(x))

+(1− y) log (1− h(x)) (1)

Since devices di are not aware of wj , j 6= i, they are not
capable of computing a standard gradient descent update
as

wi = w′i + λ · ∂

∂w′i
l(w′

T
x). (2)

Instead, each device di will conduct a local random search
on the 1-dimensional space of wi as

wi =

{
w′i + δ′i; δi ← δ′i if l(wTx) improved
w′i − δ′i; δi ← −

δ′i
2 else

(3)

With w′i and δ′i we denote the old/previous value of wi and
δi, before updating the weights.

Since in Ambient Intelligence domains, devices are ex-
pected to be constrained, we implement the feedback from
the coordinator as either a broadcast signal transmission
(l(wTx) improved) or no signal ((l(wTx) worse). We can
read out this information from the backscatter interface by
monitoring the voltage change on the interface. Also for the
binary feedback, the optimization of the weights follows the
update mechanism in equation (3) (cf. figure 8).

4 A PROTOTYPE BACKSCATTER DEVICE

We designed prototype backscatter devices to implement
Camouflage learning in an Ambient intelligent environment
(cf. figure 9a). For data modulation, we absorb (OFF) or
reflect (ON) the signal. The device consists of only five
components and can be connected to a microcontroller
to guide the modulation onto the reflected signal via the
switch (SW1). We used a 50 Ω (Ohm) transmission line,
terminated with a power detector circuit matched to 50 Ω2.

2For simple backscattering, only a resistor is needed. The power
detector allows communication back from the coordinator (voltage-
based data reception for binary feedback)

(a) Schematic (b) Reflected power up to 3GHz

Fig. 9. Schematic for our backscatter prototype. The components are a
50 Ω transmission line (TL1), a power detector circuit matched to 50 Ω
and which serves as a terminating resistor (RL), a switch (SW1) and two
DC-blocking capacitors (C1, C2).

The signal propagates the transmission line and is absorbed
by the power detector circuit (non-reflecting OFF-state). The
reflecting ON-state is realized using a current-controlled
switch to reflect the signal back.

4.1 Equipment cost
We purchased the components to produce the backscatter
devices from Digikey 3. The highest cost is that of an SMA
connector jack WM17359-ND with 3.92 EUR (approximately
4.39 USD). For the final device design with a fixed operating
frequency patch antenna printed on the back of the board,
this cost can be discarded. The diode (SW1) Infineon Tech-
nologies BAR8802VH6327XTSA1 costs less than 0.1 EUR
(approximately 0.12 USD). This low device cost is essential
to realize smart environments with massive deployment of
backscatter-equipped sensors.

For comparison, active system including RF switch (2.5
USD), ultra-low power oscillator (1.8 USD) and a multi-
plexer (2.6 USD) will raise the cost significantly [89].

4.2 Input return loss
We measured the characteristics of the modulator with a
network analyser. In particular, we are interested in the
input return loss, which tells how much the back-scattered
signal is attenuated in non-reflecting and reflecting states.
Figure 9b depicts the average of the measurements for ten of
or our backscatter devices. Observe that the received power
difference between ON-state and OFF-state is about 20dB
up to approximately 2GHz. In addition, the received power
for the ON-state is close to 0dB. Due to the regulation of
radio frequencies and our available licenses, we select the
frequency of 868MHz in our experiments in section 5.

4.3 Power consumption
For signal reflection and modulation, the backscatter de-
vice uses 0.5 mA continuously over 10ms. 4. In addition,
the microcontroller operating the voltage-controlled switch
demands 1.98mA MCU. For operation, our prototype con-
sumes 0.9mW with an 1.8V operating voltage and 2.5mW

3https://www.digikey.com/
4The power consumption can be further reduced by using RF

switches such as Analog Devices HMC190BMS8 [89]. For instance,
using 5 V to control the switch, the current consumption would drop to
1µA, which is small enough to supply with an RF energy harvester [114]
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(a) Current consumption during transmission:
backscatter prototype vs. CC2420 [113]

(b) Estimated power consumption of our pro-
totype and TelosB [113] for transmission

(c) Power consumption vs. energy harvesting:
TelosB and backscatter prototype [114]

Fig. 10. Performance comparison: TelosB [113] vs. backscatter prototype, and estimated amount of energy harvested from ambient sources [114]

INDOOR [115] OUTDOOR [116]
Environmental information in an office over several days.
Modalities: temperature, humidity, CO2 level, and light in-
tensity. The ground-truth was acquired using a surveillance
camera. The target of this dataset is to detect occupancy of
the office: whether there are people inside the office or not.

Scattered sensors over 900× 300m2, separated by at least 20-
40m. Modalities: acoustic (microphone), seismic (geophone),
and infrared (polarized IR sensor). The data describes vehi-
cles from two classes: tracked and wheeled.

Fig. 11. Datasets used to feed continuous streams of data to devices in our experiments

with 5 V. For comparison, PLoRa power consumption is
2.591 mW (250× smaller than LoRa) [117].

Figure 10a compares a CC2420 802.15.4 radio transceiver
to our backscatter prototype, both operated by a 8Mhz 16-
bit TI MSP430 micro-controller [118] (1.98mA MCU). To
transmit a packet (0dB), the CC2420 draws a current of
18.92mA-1.98mA= 16.94 mA in 1012ms [119]. We chose the
CC2420 and MSP430 for their use by the TelosB [113], [120],
which draws less current than, e.g. the LoRaBug [121].

Figure 10b and figure 10c show the power advantage
of our prototype5. Using -5dBm Tx power, TelosB con-
sumes 54mW (transmit), 60mW (listen), 61mW (receive),
and 4.8mW (compute). For fair comparison, we assumed the
same backscatter compute power consumption of 4.8mW.

We estimate the average power of communication
PMSG = EMSG

TMSG
as the amount required to send a message

EMSG over the duration between consecutive messages
TMSG [122]. For TMSG = 1, the average energy amount re-
quired to send a message is 0.003125mJ using our backscat-
ter device, 0.0035mJ using PLoRa, and 4.17mJ using LoRa.

5 EXPERIMENTS

We study Camouflage learning and our hardware prototype
with respect to transmission range, communication load,
classification, training and environmental impacts.

5.1 Distributed model inference and training
We compare Camouflage learning to other distributed ma-
chine learning approaches using two datasets (cf. figure 11).
These datasets were chosen for their relevance to Ambient
Intelligence, diversity in size, number of features, and sen-
sors [115], [116]. We assign one feature to each distributed
device. For OUTDOOR [116], we randomly split 75% for

5Estimated according to 1
2
CV 2F [93] with diode capacitance C,

voltage V and frequency F )

Fig. 12. Device installation for the case study

training and 25% for testing while for INDOOR [115], we
follow the authors approach to use six days for training and
the remaining days for testing.

We compared Camouflage learning against a non-
distributed logistic regression (using scikit-learn 0.20.1 6)
and federated learning.

5.1.1 Probabilistic collaboration experiment
To test the burst recognition accuracy for Probabilistic col-
laboration through physical layer computation offloading,
we utilized the Indoor dataset and employed four backscat-
ter devices, one for each feature stream (light, temperature,
humidity, and CO2). To generate and read out the modu-
lated signals reflected from the backscatter prototypes, two
Ettus N200 USRPs (SBX daughterboards, 868MHz, 1MHz
sampling rate) were used as Tx and Rx (cf. figure 12).

Devices modulated their weighted (see section 3.2) fea-
ture values (wixi) periodically via Poisson-distributed burst
sequences onto the reflected signals. The samples were
averaged over non-overlapping 60 second feature windows,
since each sensor had its own sampling rate. The burst

6https://scikit-learn.org/stable/
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(a) Raw signal amplitude (b) Filtered signal

Fig. 13. Ambiguity of detected bursts when there is movement

(a) Static-LoS (b) Static-non-LoS

(c) Interference-LoS (d) Interference-non-LoS

Fig. 14. Layout of devices in the experiments on environmental variation

length was 10-20ms and for accurate estimation of the burst
recognition accuracy, we maintained the transmission for 60
seconds. For burst detection, our instrumentation achieved
a precision of 0.9 and a recall of 0.89. Overall, camouflage
learning for the INDOOR dataset achieved an accuracy of
0.82 (F1 score 0.82). For comparison, training logistic re-
gression via gradient descent on a desktop computer (Intel
Core i5 1.8GHz, 8GB RAM, with scikit-learn library version
0.20.1) achieved an accuracy of 0.94 (F1 score 0.93).

5.1.2 Effect of changes in an environment

Human movement in the monitored area may affect the
wireless channel and hence impact the burst detection accu-
racy [123]. For example, a person blocking the line-of-sight
(LoS) between a backscatter device and the receiver (RX) or
human movement may increase the noise floor and impair
the correct counting of bursts at the receiver (cf. figure 13).

We investigated the impact of four types of human
interference, (a) Static-LoS: No person in the room or people
sitting still and not blocking the line-of-sight, (b) Static-non-
LoS: A person blocks the line-of-sight between backscatter
device and RX), (c) Interference-LoS: One person moves
around in the room, not blocking the line-of-sight, and
(d) Interference-non-LoS: One person moves around freely in
the room, occasionally blocking the line-of-sight between a
backscatter device and RX (figure 14).

In cases, we varied the distance between backscatter and
Rx from 3m to 5m while modulating 50 distinct humidity
samples xi from the INDOOR dataset (16.7 ≤ xi ≤ 39.1;
σ = 25.7, std=5.5) through physical layer probabilistic col-
laboration. The burst detection Mean Absolute Error (MAE)
and Mean Absolute Percentage Error (MAPE) at the Rx is
shown in figure 15. The MAE is at most 3.5 within 3m
and higher when the signal is blocked or at larger distance.

(a) Mean Absolute Error (b) MAPE Error

Fig. 15. Burst detection in various environmental conditions

(a) INDOOR [115]: 4 features, 8143
training samples

(b) OUTDOOR [116]: 100 features,
73896 training samples

Fig. 16. Power consumption: Camouflage vs. Federated learning

Possible improvements can be achieved by locating devices
above human height and by template matching.

5.1.3 Model performance through distributed training
Figure 16a and figure 16b depict the convergence speed
of the algorithms. The figures plot the loss along with the
confidence interval (10 repetitions). Camouflage learning
uses less power to optimize the weights of the logistic
regression model. The prediction accuracyies achieved are
competitive: INDOOR 0.92 (0.94), OUTDOOR 0.72 (0.78) (cf.
figure 17 and figure 18).

The power consumption of our backscatter device
is 0.003125mW . For comparison, that of PLoRa [117]
is 0.0035mW , which implements frequency shifting for
backscattering communication, while that of an active
LoRa node is 4.17mW [117]. Based on these figures,
we estimate the power utilized during training on two
datasets [115] [116]

Finally, Camouflage learning also exchanges less data
overall (figure 19). This is because federated learning re-
quires active data transmission and reception of all devices.

5.2 Communication range
The communication range of ambient backscatter devices is
severely limited since the reflected modulated signal is mag-
nitudes lower than that of the original carrier signal [86].
In this section, we investigate the communication range of
our ambient backscatter devices in real indoor environments
and with respect to different antenna configurations.

5.2.1 Omnidirectional antennas
In our first setting with an early prototype version of our
backscatter interface, we investigated the communication
range utilizing an omnidirectional antenna (Ettus VERT900
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(a) Camouflage learning (b) Federated learning

Fig. 17. Confusion matrices for the INDOOR dataset [115]

(a) Camouflage learning (b) Federated learning

Fig. 18. Confusion matrices for the OUTDOOR dataset [116]

(a) INDOOR dataset [115] (b) OUTDOOR dataset [116]

Fig. 19. Communication load: Camouflage vs. Federated learning

824 to 960 MHz, 1710 to 1990 MHz Quad-band Cellular/PCS
and ISM Band omnidirectional vertical antenna, at 3dBi
gain). In this early prototype manufactured on fiber glass
circuit board, we used a general purpose diode (1N4148),
470 nF / 50 V ceramic capacitors and a terminating resistor
made of two parallel connected 100 Ohm resistors. The
device was brought out in line-of-sight between Tx and
Rx (Ettus N200 USRPs with SBX daughterboards using the
same omnidirectional antenna, see figure 20). Gradually
moving Tx and Rx farther away (1m to 1.5m; step size 0.1m),
the received power at the backscatter device ranged from
approximately 1.1mW to 486µW and after 1.4m the proto-
type ceased to detect the backscattered binary sequence.

We improved the prototype with superior components:
BAR8802VH6327XTSA1 Infineon Technologies diode, 10 nF

Fig. 20. Measuring the working distance of our first prototype

(a) Semi-directional antennas
(868MHz and 2.42GHz) used

(b) Signal-to-noise ratio (SNR) with
various distances

Fig. 21. Microstrip antennas (fiber glass board and copper layers, rela-
tive permittivity 4.5, maximum gain 4.7dBi) and their impact on the range

Fig. 22. Layout of our experiments on the operating distance

capacitors, a 49.9 Ohm resistor and directional antennas.

5.2.2 Semi-directional antennas
We used semi-directional antennas (figure 21a) to extend
the range of the system. In a larger indoor space (figure 22)
we placed Ettus N200 USRP devices (SBX daughterboards,
868MHz, 1MHz sample rate) at 3m (Tx) and 1-6m (Rx) from
the backscatter prototype.

Measurements were conducted with both omnidirec-
tional and directional-type Tx antennas and repeated 10
times for each distance and antenna type (figure 21b).
The signal strength at the prototype with omnidirectional
antenna was approximately 121µW. The signal was well
received up to 5m, which is sufficient for many indoor
environments. To further extend the range, we suggest
the use of switching frequency control [124] or frequency
synthesizers [79], [89].

6 DISCUSSION

We discuss further aspects of camouflage learning below.

6.1 Backscatter design
While our design does not limit to the operating frequency,
the limiting factor is the quality of components used to man-
ufacture the device. With ideal components, the termination
resistor would be perfectly matched to the transmission line
and the reflection coefficient in non-reflecting state would be
0 while with an ideal switch, all power would be reflected
back for a reflection coefficient of -1.
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Fig. 23. Schematic of a generic energy harvesting device. Power splitter
for simultaneous energy harvesting and information reception.

The switching diode used has a parasitic capacitance of
0.28 pF (OFF) and 2 Ω forward resistance (ON), so that
the return loss in ON-state is 0.70 dB. Correspondingly,
the reactance of the parasitic capacitor in parallel with the
terminating resistor gives a return loss of 28.4 dB in the
OFF-state.

A diode requires a constant current to keep it conducting
(in this case 0.5 mA). Traditionally, a switching diode is
biased backwards when not conducting by applying a neg-
ative voltage, thus minimizing the off-state capacitance. For
improved results, we suggest, a voltage- instead of current-
controlled element, such as a field effect transistor.

The circuit board material used in our experiments is
also not optimized for RF applications and the performance
therefore starts to degrade above 2GHz frequency.

6.2 Energy harvesting for battery-free operation
For long-term deployments, a maintenance-free operation
is desired [125]. The power consumption of the TI CC2650
controlled backscatter device is lower than the power that
can be harvested from solar and thermoelectrics [114]. The
amount that can be collected from RF sources with 4cm2

antenna (transmit power 4 W and distance 15 m) and
thermal 1cm2 piezoelectric material is 20µW and 1mW,
respectively [114]. Using improved components can further
reduce the power consumption of the backscatter prototype.

Figure 23 depicts a generic architecture for energy har-
vesting devices. In particular, the device is able to exploit
the received power both for energy harvesting and, simul-
taneously, for information reception. We propose to employ
power-splitting, as this achieves better tradeoffs between
information rate and amount of RF energy transferred when
compared to simpler time-slotted schemes [126], [127].

Experiments on the amount of harvested RF energy from
ambient RF signals indicate that about 2µW of energy can
be harvested from isotropic 2W RF transmitters (such as,
for instance, WiFi) in about 25m distance [128], [129] and at
about 0.5 − 1.5V [130], [131]. For comparison, using digital
TV signals, even an energy harvesting rate from over 60µW
in typical distances of about 4km has been reported in [130].
This enables the operation of the aforementioned low-power
or power-less (zero-power) environmental sensing devices.

6.3 Choice of antenna
For a production-level system, we propose to print a patch
antenna, which is cheap to manufacture, on the back of the
circuit board. Such antenna will need a rectangular space of
1
4 to 1

2 of wavelength λ. For instance, a backscatter system
with a patch antenna in the 2GHz range could have dimen-
sions smaller than 4cm×4cm. Usually, antennas are matched

to 50Ω, as all cables and connectors are also 50Ω. The nat-
ural impedance of the patch antenna is higher though, for
instance, 100Ω. In this case, all circuitry should be matched
to the same impedance as the antenna. This minimizes the
return loss in ON-state as the ratio of the diode’s forward
resistance and the impedance of the antenna is bigger.

6.4 Privacy

With our distributed approach, the model is by design
not shared but instead distributed among participating de-
vices. Learning the model in our scheme means to reverse-
engineer it from the model prediction, or to conduct ad-
vanced signal analysis and processing while inside the en-
vironment, both of which constitutes a significant effort [49].

Since the model is distributed and not known completely
to any individual device, it is harder to steal and thereby to
learn properties of the environment or its inhabitants [132].
It is also more difficult for any device, including the coordi-
nator to learn of the feature values, since only the weighted
sum is disclosed, which further contributes to improved
privacy. Summarizing, we believe that Camouflage learning
improves privacy in instrumented environments.

6.5 Camouflage learning with other learners

We have demonstrated camouflage learning via physical
layer computation offloading with a logistic regression
classifier. It is straightforward to extend the model for
other learning approaches. For instance, aggregation of the
weighted inputs in the first layer of a neural network,
aggregation of the weighted features in the mathematical
description of a support vector machine or also offloading
the product of potential functions in conditional random
fields by encoding the product terms as sum of logarithms.

6.6 Computational complexity

The computational complexity of the individual devices is
comprised by a single multiplication (wixi) and repeated
random decisions on whether or not to switch to ON-state
according to a Poisson distribution with mean wixi. Both
of these computations can be realized in hardware. At the
receiver, for 10η−1 < WTX ≤ 10η , the complexity is
O
(
η1.465 · log(η)

)
[133], where the term η1.465 is according

to 3-way Toom-Cook multiplication [134].

6.7 Application to arbitrary datasets

Camouflage learning can be applied to arbitrary datasets
and applications are not restricted to Ambient Intelligence
domains. To demonstrate this, we verified camouflage learn-
ing on two benchmarking datasets [135] [136]. We achieved
classification performances for camouflage (federated)
learning 0.98 (0.97) (INTRUSION DETECTION [135]: 494020
samples, 40 features) and 0.75 (0.80) (PHISHING [136]: 11055
samples, 30 features) as depicted in figure 25 and figure 26.
Figure 27 shows that Camouflage learning requires strictly
less data transmission in both datasets.
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(a) INTRUSION [135] (b) PHISHING [136]

Fig. 24. Power consumption of Camouflage learning and non-distributed
logistic regression (Active LoRa Node and PLoRa [117])

(a) Camouflage learning (b) Federated learning

Fig. 25. Confusion matrices for the INTRUSION dataset [135]

(a) Camouflage learning (b) Federated learning

Fig. 26. Confusion matrices for the PHISHING dataset [136]

7 CONCLUSION

We have proposed Camouflage learning, a distributed
machine learning technique for vertically-partitioned data
collected by distributed sensing devices. Our approach
achieves energy-less computation via physical-layer com-
putation offloading, exploiting interference of backscattered
signals for data aggregation. It thereby brings battery-free
distributed learning and continuous operation in Ambient
Intelligence environments into reach.

Each sensor-equipped device acquires and processes en-

(a) INTRUSION [135] (b) PHISHING [136]

Fig. 27. Communication load of Camouflage and federated learning [39]

vironmental stimuli and modulates the weighted feature
values wixi as Poisson-distributed burst sequences onto a
reflected electromagnetic signal. The coordinator estimates
the weighted sum

∑
i wixi from the superimposed burst

sequences to evaluate and guide the model optimization via
binary feedback.

None of the devices nor the coordinator is at any time
aware of the complete model. Camouflage learning ad-
vances the state-of-the-art with respect to (1) Physical layer
Computation offloading, (2) obscuring the model via total dis-
tribution, (3) Model training through distributed random search,
and (4) Zero-synchronization requirement thanks to proba-
bilistic collaboration via superimposed Poisson-distributed
burst sequences for weighted feature aggregation.

We extensively evaluated the scheme in comparison to
traditional approaches with respect to power efficiency, pre-
diction accuracy as well as various aspects and limitations
of the prototype hardware.

Camouflage learning was evaluated using prototype
backscatter devices deployed in indoor environments.
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